

Page: 1 of 56

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Equipment Under Test GPS Navigation System

Brand NameTomTomModel No.4AL51

Company Name TomTom International B.V.

Company Address De Ruijterkade 154, 1011 AC Amsterdam, The

Netherlands

Standards IEEE/ANSI C95.1-1992, IEEE 1528-2013,

KDB248227D01v02r02,KDB865664D01v01r04, KDB865664D02v01r02,KDB447498D01v06,

KDB941225D07v01r02,

FCC ID S4L4AL51

Date of ReceiptDec. 23, 2016Date of Test(s)Jan. 20, 2017Date of IssueMar. 28, 2017

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on behalf of SGS	
Engineer Jimmy Chang	Supervisor
Jimmy Chang	John Teh
Jimmy Chang	John Yeh
Date: Mar. 28, 2017	Date: Mar. 28, 2017

Page: 2 of 56

Revision History

Report Number	Revision	Description	Issue Date
E5/2016/C0012	Rev.00	Initial creation of document	Sep. 07, 2016
E5/2016/C0012	Rev.01	1 st modification	Mar. 28, 2017

Page: 3 of 56

Contents

1. General Information	4
1.1 Testing Laboratory	4
1.2 Details of Applicant	
1.3 Description of EUT	
1.4 Test Environment	
1.5 Operation Description	8
1.6 The SAR Measurement System	g
1.7 System Components	
1.8 SAR System Verification	
1.9 Tissue Simulant Fluid for the Frequency Band	17
1.10 Evaluation Procedures	18
1.11 Probe Calibration Procedures	19
1.12 Test Standards and Limits	22
2. Summary of Results	24
3. Instruments List	25
4. Measurements	
5. SAR System Performance Verification	
6. DAE & Probe Calibration Certificate	
7. Uncertainty Budget	
8. Phantom Description	
9. System Validation from Original Equipment Supplier	
9. System vandation from Original Edulpment Supplier	

Page: 4 of 56

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Electronics & Communication Laboratory			
No. 2, Keji 1st Rd., Guishan Township, Taoyuan County, 33383, Taiwan			
Tel +886-2-2299-3279			
Fax +886-2-2298-0488			
Internet	http://www.tw.sgs.com/		

1.2 Details of Applicant

Company Name	TomTom International B.V.	
Company Address	De Ruijterkade 154, 1011 AC Amsterdam, The Netherlands	

Page: 5 of 56

1.3 Description of EUT

Equipment Under Test	GPS Navigation System			
Brand Name	TomTom			
Model No.	4AL51			
FCC ID	S4L4AL51			
Antenna Designation (Maximum Gain)	2.45GHz: 0.85 (dBi)			
Mode of Operation	⊠WLAN802.11 b/g/n(20M) ⊠Bluetooth			
Duty Cyclo	WLAN802.11 b/g/n(20M)		1	
Duty Cycle	Bluetooth		1	
TX Frequency Range	WLAN802.11 b/g/n(20M)	2412	_	2462
(MHz)	Bluetooth	2402	_	2480
Channel Number	WLAN802.11 b/g/n(20M)	1	_	11
(ARFCN)	Bluetooth	0	_	78

Max. SAR (1 g) (Unit: W/Kg)					
Band Measured Reported Channel Position					
WLAN802.11b	0.512	0.556	1	Back side_Curve	

Page: 6 of 56

WLAN802.11 b/g/n(20M) conducted power table:

***	WEAROOLITE By grin(2011) Contacted power labie.				
	802.11 b	Max. Rated Avg.	Average conducted output power (dBm)		
СН	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)		
CIT	(MHz)	Tolerance (dbirt)	1		
1	2412	15.5	15.14		
6	2437	15.5	15.09		
11	2462	15.5	14.89		

	802.11 g	Max. Rated Avg.	Average conducted output power (dBm)
СН	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)
ОП	(MHz)	Tolerance (dbin)	6
1	2412	12	11.99
6	2437	12	11.69
11	2462	12	11.49

802	2.11 n(20M)	Max. Rated Avg.	Average conducted output power (dBm)
СН	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)
ОП	(MHz)	Tolerance (dbin)	6.5
1	2412	10.5	10.48
6	2437	10.5	9.92
11	2462	10.5	9.95

Page: 7 of 56

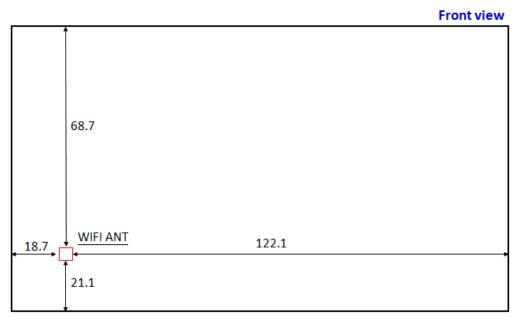
Bluetooth conducted power table:

Frequency	Data	Max. Rated Avg. Power + Max.	Average Po	ower (dBm)
(MHz)	Rate	Tolerance (dBm)	dBm	mW
2402	1	1	0.35	1.084
2441	1	1	0.19	1.045
2480	1	1	0.13	1.030
2402	2	-1	-1.11	0.774
2441	2	-1	-1.25	0.750
2480	2	-1	-1.35	0.733
2402	3	-1	-1.12	0.773
2441	3	-1	-1.26	0.748
2480	3	-1	-1.35	0.733

Frequency (MHz)	Max. Rated Avg.	Avg.	
		BT4.0	
		dBm	mW
2402	-1.5	-2.97	0.505
2442	-1.5	-3.22	0.476
2480	-1.5	-3.52	0.445

Page: 8 of 56

1.4 Test Environment

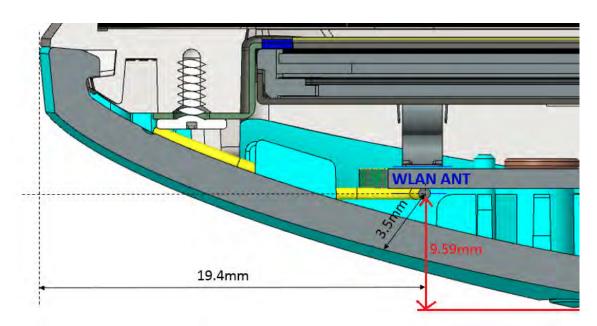

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation Description

Use chipset specific software to control the EUT, and makes it transmit in maximum power. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.

EUT was tested based on KDB inquiry.

Front/back/bottom/left/backside_curve with test distance 5mm Backside_curve with test distance 0/1/2mm



Unit: mm

Antenna location (front view)

Page: 9 of 56

Cross section view

Note:

802.11b DSSS SAR Test Requirements:

- SAR is measured for 2.4 GHz 802.11b DSSS mode using the highest measured maximum output power channel, when the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

802.11g/n OFDM SAR Test Exclusion Requirements:

3. SAR is not required for 802.11g/n since the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Initial Test Configuration:

4. An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band.

Page: 10 of 56

5. SAR is measured using the highest measured maximum output power channel. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

- 6. BT and WLAN use the same antenna path and Bluetooth can't transmit simultaneously with WLAN.
- 7. Since the dimension size and features are belong to KDB941225D07 (overall diagonal dimension ≤ 20cm), the device was tested for 1-g SAR on all surfaces and side edges with a transmitting antenna located at ≤ 25 mm from that surface or edge, at 5 mm separation from a flat phantom.
- 8. Based on KDB447498D01,
 - (1) SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

$$\frac{\text{Max.tune up power(mW)}}{\text{Min.test separation distance(mm)}} \times \sqrt{f(\text{GHz})} \le 3$$

When the minimum test separation distance is < 5mm, 5mm is applied to determine SAR test exclusion.

- (2) For test separation distances > 50 mm, and the frequency at 100 MHz to 1500MHz, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B of KDB447498 D01. [(Threshold at 50mm in step1) + (test separation distance-50mm)x(((INHA)))](mW),
- (3) For test separation distances > 50 mm, and the frequency at >1500MHz to 6GHz, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B of KDB447498 D01.

[(Threshold at 50mm in step1) + (test separation distance-50mm)x10](mW),

				back/bottom ckside_curv	
Mode	Maximum power(dBm)	Maximum power(mW)	Test separation distance (mm)	Exclusion threshold	Require SAR testing?
ВТ	1	1.259	5	0.397	No

Page: 11 of 56

9. According to KDB447498 D01, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is ≤ 0.8 W/kg, when the transmission band is ≤ 100 MHz.

10. According to KDB865664 D01, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~10% from the 1-g SAR limit).

Page: 12 of 56

1.6 The SAR Measurement System

A block diagram of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). The model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|Ei|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY 5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage intissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

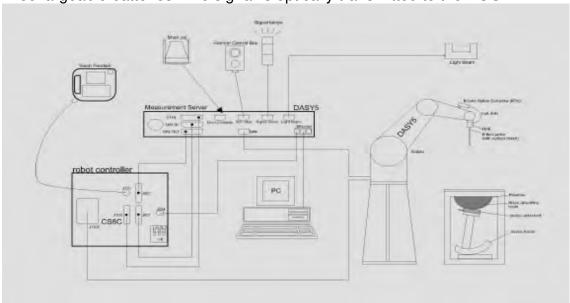


Fig. a The block diagram of SAR system

Page: 13 of 56

- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 7.
- 8. DASY 5 software.
- 9. Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Page: 14 of 56

1.7 System Components

EX3DV4 E-Field Probe

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 2450 MHz Additional CF for other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic	$10 \mu W/g \text{ to } > 100 \text{ mW/g}$
Range	Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Tip diameter: 2.5 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Page: 15 of 56

SAM PHANTOM V4.0C

SAM PHANTO	JM V4.0C	
Construction	usage as well as body mounted cover prevents evaporation of t	SAM) phantom defined in IEEE ation of left and right hand phone usage at the flat phantom region. A he liquid. Reference markings on e setup of all predefined phantom
Shell Thickness	2 ± 0.2 mm	
Filling Volume Dimensions	Approx. 25 liters Height: 850 mm; Length: 1000 mm; Width: 500 mm	

DEVICE HOLDER

Construction	The device holder (Supporter) for Notebook is made by POM (polyoxymethylene resin), which is non-metal and non-conductive. The height can be adjusted to fit varies kind of notebooks.	基基
		Device Holder

Page: 16 of 56

1.8 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10% from the target SAR values. These tests were done at 2450 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was 21.7°C, the relative humidity was 62% and the liquid depth above the ear reference points was \pm 15 cm \pm 5 mm (frequency \pm 3 GHz) or \pm 10 cm \pm 5 mm (frequency \pm 3 GHz) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

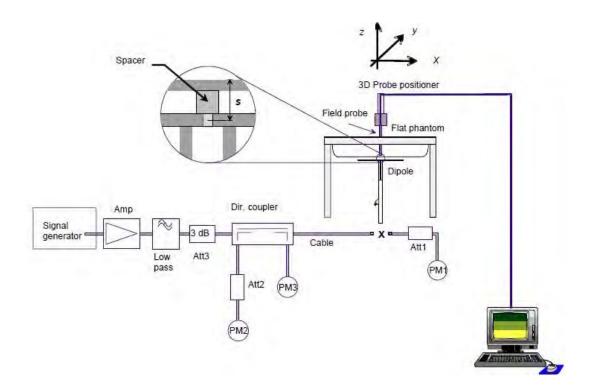


Fig. b The block diagram of system verification

Page: 17 of 56

Validation Kit	S/N	Frequ (Mł	•	1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W (mW/g)	Deviation (%)	Measured Date
D2450V2	727	2450	Body	49.6	13	52	4.84%	Jan. 20, 2017

Table 1. Results of system validation

1.9 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this body-simulant fluid were measured by using the Agilent Model 85070E Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Network Analyzer (30 KHz-6000 MHz).

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the flat section of the phantom was \geq 15 cm \pm 5 mm (Frequency \leq 3G) or \geq 10 cm \pm 5 mm (Frequency >3G) during all tests. (Fig. 2)

Tissue Type	Measurement	Measured Frequency (MHz)	Target Dielectric Constant, εr	l arget Conductivity	Measured Dielectric Constant, Er	i weasured	% dev εr	% dev σ
Body	Jan. 20, 2017	2412	52.751	1.914	51.600	1.952	2.18%	-2.00%
Бойу	Jan. 20, 2017	2450	52.700	1.950	51.548	1.988	2.19%	-1.95%

Table 2. Dielectric Parameters of Tissue Simulant Fluid

The composition of the tissue simulating liquid:

-				Ingr	edient			Talal
Frequency (MHz)	Mode	DGMBE	Water	Salt	Preventol D-7	Cellulose	Sugar	Total amount
2450M	Body	301.7ml	698.3ml	_	_	_	_	1.0L(Kg)

Table 3. Recipes for Tissue Simulating Liquid

Page: 18 of 56

1.10 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements.

Page: 19 of 56

The measured volume of 30x30x30mm contains about 30g of tissue.

The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.11 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.11.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

whereby σ is the conductivity, ρ the density and c the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

Page: 20 of 56

 The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

- The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.
- The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (\sim 2% for c; much better for p) , there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed ±5%.
- Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements. The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about ±10% (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is $\pm 5\%$ (RSS) when the same liquid is used for the calibration and for actual measurements and ±7-9% (RSS) when not, which is in good agreement with the estimates given in [2].

1.11.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids. When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- The setup must enable accurate determination of the incident power.
- The accuracy of the calculated field strength will depend on the

Page: 21 of 56

assessment of the dielectric parameters of the liquid.

 Due to the small wavelength in liquids with high permittivity, even small setups might be above the resonant cutoff frequencies. The field distribution in the setup must be carefully checked for conformity with the theoretical field distribution.

References

- 1. N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- 2. K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{1962, Oct. 1996.
- 3. K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

Page: 22 of 56

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube).
- (2) Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (3) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not

Page: 23 of 56

exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section. (Table 4.)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR (Brain)	1.60 W/kg	8.00 W/kg
Spatial Average SAR (Whole Body)	0.08 W/kg	0.40 W/kg
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 W/kg	20.00 W/kg

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 24 of 56

2. Summary of Results

WLAN

Mode	Position	Distance	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged SAR over 1g (W/kg)		Plot	
		(mm)		(IVITIZ)	Tolerance (dBm)	(dBm)	o o		Reported	page	
	Front side	5	1	2412	15.5	15.14	8.64%	0.029	0.032	-	
	Back side	5	1	2412	15.5	15.14	8.64%	0.054	0.059	-	
	Back side_Curve	5	1	2412	15.5	15.14	8.64%	0.200	0.217	26	
WLAN802.11b	Back side_Curve	2	1	2412	15.5	15.14	8.64%	0.332	0.361	27	
WLANOUZ.IID	Back side_Curve	1	1	2412	15.5	15.14	8.64%	0.440	0.478	28	
	Back side_Curve	0	1	2412	15.5	15.14	8.64%	0.512	0.556	29	
	Bottom side	5	1	2412	15.5	15.14	8.64%	0.011	0.012	-	
	Left side	5	1	2412	15.5	15.14	8.64%	0.015	0.016	-	

Note:

Scaling = $\frac{\text{reported SAR}}{\text{measured SAR}} = \frac{\text{P3}(\text{mW})}{\text{P1}(\text{mW})} = 10^{\left(\frac{P_2 - P_1}{40}\right)(\text{dBm})}$

Reported SAR = measured SAR * (scaling)

Where P2 is maximum specified power, P1 is measured conducted power

Page: 25 of 56

3. Instruments List

Manufacturer	Device	Туре	Serial number	Date of last calibration	Date of next calibration
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3831	Jan.27,2016	Jan.26,2017
Schmid & Partner Engineering AG	System Validation Dipole	D2450V2	727	Apr.19,2016	Apr.18,2017
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	547	Mar.21,2016	
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required	Calibration not required
Schmid & Partner Engineering AG	Vector Network Analyzer and Vector Reflect meter	DAKS VNA R140	0170813	Mar.23,2016	Mar.22,2017
Schmid & Partner Engineering AG	Dielectric Probe Kit	DAKS-3.5	0004	Mar.23,2016	Mar.22,2017
Agilent	Dielectric Probe Kit	85070E	MY44300677	Calibration not required	Calibration not required
Agilent	Dual-directional	772D	MY46151242	Jul.11,2016	Jul.10,2017
Agilent	coupler	778D	MY48220468	Jul.06,2016	Jul.05,2017
Agilent	RF Signal Generator	N5181A	MY50145142	Feb.19,2016	Feb.18,2017
Agilent	Power Meter	E4417A	MY52240003	Oct.17,2016	Oct.16,2017
Agilent	Power Sensor	E9301H	MY52200003	Oct.17,2016	Oct.16,2017
Agiletit	I OWEL OFFISOL	L330111	MY52200004	Oct.17,2016	Oct.16,2017
TECPEL	Digital thermometer	DTM-303A	TP130075	Mar.30,2016	Mar.29,2017

Page: 26 of 56

4. Measurements

Date: 2017/1/20

WLAN 802.11b_Body_Back side_CH 1_5mm_Curve

Communication System: WLAN 2.45G; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.952$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature: 22.5° C; Liquid temperature: 22.0° C

DASY5 Configuration:

Probe: EX3DV4 - SN3831; ConvF(7.05, 7.05, 7.05); Calibrated: 2016/1/27;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn547; Calibrated: 2016/3/21

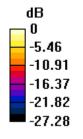
Phantom: Body

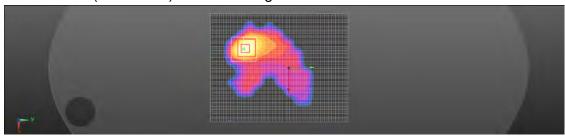
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Head/Area Scan (111x141x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.422 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm


Reference Value = 2.687 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.513 W/kg

SAR(1 g) = 0.200 W/kg; SAR(10 g) = 0.074 W/kg

Maximum value of SAR (measured) = 0.340 W/kg

0 dB = 0.340 W/kg = -4.68 dBW/kg

Page: 27 of 56

Date: 2017/1/20

WLAN 802.11b Body Back side CH 1 2mm Curve

Communication System: WLAN(2.45G); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.952$ S/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature: 22.5° C; Liquid temperature: 22.0° C

DASY5 Configuration:

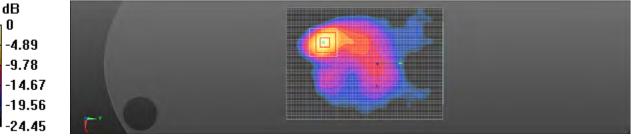
- Probe: EX3DV4 SN3831; ConvF(7.05, 7.05, 7.05); Calibrated: 2016/1/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x141x1): Interpolated grid: dx=12 mm, dy=12

Maximum value of SAR (interpolated) = 0.476 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm


0

Reference Value = 4.125 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.820 W/kg

SAR(1 q) = 0.332 W/kq; SAR(10 q) = 0.127 W/kq

Maximum value of SAR (measured) = 0.563 W/kg

0 dB = 0.563 W/kg = -2.50 dBW/kg

Page: 28 of 56

Date: 2017/1/20

WLAN 802.11b Body Back side CH 1 1mm Curve

Communication System: WLAN(2.45G); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.952$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature: 22.5° C; Liquid temperature: 22.0° C

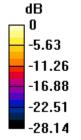
DASY5 Configuration:

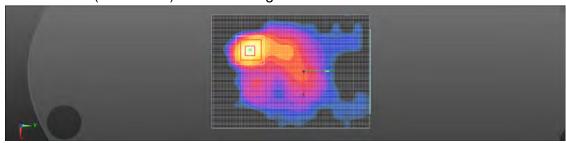
- Probe: EX3DV4 SN3831; ConvF(7.05, 7.05, 7.05); Calibrated: 2016/1/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x141x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.814 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm


Reference Value = 4.519 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.440 W/kg; SAR(10 g) = 0.166 W/kg

Maximum value of SAR (measured) = 0.763 W/kg

0 dB = 0.763 W/kg = -1.17 dBW/kg

Page: 29 of 56

Date: 2017/1/20

WLAN 802.11b Body Back side CH 1 0mm Curve

Communication System: WLAN(2.45G); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.952$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature: 22.5° C; Liquid temperature: 22.0° C

DASY5 Configuration:

- Probe: EX3DV4 SN3831; ConvF(7.05, 7.05, 7.05); Calibrated: 2016/1/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x151x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 1.03 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 5.043 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.512 W/kg; SAR(10 g) = 0.194 W/kg

Maximum value of SAR (measured) = 0.891 W/kg

0 dB = 0.891 W/kg = -0.50 dBW/kg

Page: 30 of 56

5. SAR System Performance Verification

Date: 2017/1/20

Dipole 2450 MHz SN:727

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.988 \text{ S/m}$; $\varepsilon_r = 51.548$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.5° C; Liquid temperature: 22.0° C

DASY5 Configuration:

Probe: EX3DV4 - SN3831; ConvF(7.05, 7.05, 7.05); Calibrated: 2016/1/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

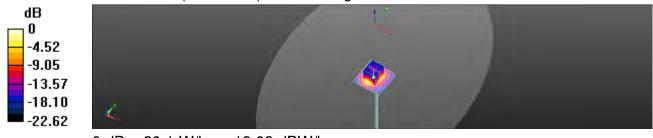
Electronics: DAE4 Sn547; Calibrated: 2016/3/21

Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=250mW/Area Scan (51x51x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 20.9 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.43 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.98 W/kg Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

Page: 31 of 56

6. DAE & Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibriordienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden)

Certificate No: DAE4-547_Mar16

Accreditation No.: SCS 0108

Physical	DAE4 - SD 000 DO	04 BM - SN: 547	
Californition prodedure(s)	OA CAL-06,v29 Calibration proced	lure for the data acquisition electron	onics (DAE)
Calibration date:	March 21, 2016		
		nal standards, which relate the physical units shability we given on the following pages and r	
All calibrations have been conduc	cled in the closed laboratory	facility: environment temperature (22 x 3)°C a	and humidity < 70%.
Calibration Equipment used (M8'	TE (Highli for collibration)		
Calibration Equipment used (M&)		facility: environment temperature (22 s S)°C s Cal Date (Certificate No.) 09-Sep-15 (No.17153)	Scheduled Calibration Sep-16
Calibration Equipment used (M8' Primary Standards Keithley Multimeter Type 2001	TE critical for calibration) iD # SN: 0810278	Cal Date (Certificate No.) 69-Sep-15 (No.17153)	Scheduled Calibration Sep-16
Calibration Equipment used (M&)	#D # SN: 0810278	Çalı Darie (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Kerthley Multimeter Type 2001 Secondary Standards Auto DAE Carbration Unit	#D # SN: 0810278	Cai Date (Certificate No.) (6)-Sep-15 (No.17153) Check Date (in house) 05-Jan-16 (in house)	Scheduled Calbretion Sep-16 Scheduled Check In house check: Jan-17 In house check: Jan-17
Calibration Equipment used (M& Primary Standards Kerthley Multimeter Type 2001 Secondary Standards Auto DAE Cambration Unit	ID # SN: 0810278 JD # SE UWS 063 AA 1002 SE UMS 006 AA 1002	Cal Date (Certificate No.) 66-Sep-15 (No.17153) Check Date (in house) 65-Jan-16 (in house check) 05-Jan-16 (in house check)	Scheduled Calibration Sep-15 Scheduled Check In house check: Jan-17 In house check: Jan-17

Certificate No: DAE4-547_Mar18

Page 1 of 5

Page: 32 of 56

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrass 43, 8004 Zurich, Switzemant

S Schweizerlacher Keilbrierdiens C Service auisee d'étalonnage Servizio svizzero di taratura S wibs Calibration Service

Accordated by the Series Accorditation Service (SAS)
The Swiss Accorditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement; Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The ligure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation/ influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the Internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Selow this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Centricate No: DAE4-547_Mar16

Page 2 nt 5

Page: 33 of 56

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	z
High Range	403.135 ± 0.02% (k=2)	403.036 ± 0.02% (k=2)	402.684 ± 0.02% (k=2)
Low Range	3.95305 ± 1.50% (k=2)	3.90339 ± 1.50% (k=2)	3.96094 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	162.0 ° ± 1 °

Page: 34 of 56

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	199994.21	2.19	0.00
Channel X	+ Input	20002.69	2.01	0.01
Channel X	- Input	-19996.82	4.06	-0.02
Channel Y	+ Input	199993.69	1.38	0.00
Channel Y	+ Input	19998.39	-2.33	-0.01
Channel Y	- Input	-20002.28	-1.42	0.01
Channel Z	+ Input	199992.57	0.40	0.00
Channel Z	+ Input	20001.18	0.43	0.00
Channel Z	- Input	-19999.63	1.28	-0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.74	0.01	0.00
Channel X + Input	200.96	-0.15	-0.08
Channel X - Input	-198.85	-0.17	0.09
Channel Y + Input	2000.55	-0.24	-0.01
Channel Y + Input	200.62	-0.63	-0.31
Channel Y - Input	-199.16	-0.63	0.32
Channel Z + Input	2000.92	0.18	0.01
Channel Z + Input	200.09	-1.21	-0.60
Channel Z - Input	-199.88	-1.33	0.67

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.77	-5.74
	- 200	5.75	4.10
Channel Y	200	-0.96	-1.19
	- 200	-0.19	-0.50
Channel Z	200	5.38	5.39
	- 200	-7.88	-7.92

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.23	-2.09
Channel Y	200	9.86	-	4.46
Channel Z	200	4.46	8.53	-

Certificate No: DAE4-547_Mar16

Page: 35 of 56

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	16360	14961
Channel Y	16477	16929
Channel Z	16075	16224

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.98	0.14	1.82	0.32
Channel Y	-0.29	-1.11	0.56	0.32
Channel Z	-1.72	-2.77	-0.15	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Power Consumption (Typica values for Information)					
Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)		
Supply (+ Vcc)	+0.01	+6	+14		
Supply (- Vcc)	-0.01	-8	-9		

Certificate No: DAE4-547_Mar16

Page 5 of 5

Page: 36 of 56

Calibration Laboratory of Schmid & Partner Engineering AG Zeughauestosse 43, 8986 Zurich, Switzerland

S Schweizerscher Kalibrierdienst
C Service seisse d'étalonnage
Servizie svizzere di taratura
Swiss Calibration Service

Accomplisation No.: SCS 0108

Accredited by the Sexts Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration partificates

Client

SGS-TW (Audan)

Certificate No: EX3-3831 Jan 16

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3831

Californion procedure(s)

QA GAL-01.V9, QA GAL-14 V4, QA CAL-25 V5, QA CAL-25 V6

Calibration procedure for desimetric E-field probes

Calibration date:

January 27, 2016

The calibrator conflicte documents the incredibity to national standards, which regize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the confidence.

All cautrations have been conducted in the closed aboratory facility in windowed harquesture (22 ± 3) °C and humbby = 70° in

Calibration Equipment used (M&TE critical for calibration)

Primery Elandards	ID	Cai Dare (Certificate No.)	Scheduled Californition
Fower meter E/4118	GB41293874	Ct-Apr-15 (No. 217-02128)	Mari 16
Fower sensor E4412A	MY45498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attentions	SN: 85054 (3c)	01-Apr-15 (No. 217-02129)	March0
Reference 30 dtl Atlenuator	SN: 95277 (20x)	01-Apr-15 (No. 217-02132)	Ma-15
Refinance 30 dB Attunuatur	SN: S5129 (30th)	81-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN 3013	\$1-Dec-15 (No. ES3-3013_Dec15)	Dec 16
DAE4	SN: 650	23-Dec-15 (No DAE4-RED ORC15)	Dec-16
Secondary Standards	1D	Creck Date (in house)	Schoduled Check
RF generality HP 5648C	US36421J01700	4-Aug-98 (in house check Apr-13)	In house check Apr-16
Network Analyzes HP 875TE	US37398565	18-Oct-01 (in house shack Oct-15)	to house check: Dct.16

	Name	Function	Signature
Calibrated by:	Jeggn Kasarpii	Cabinstony Technician	f= le
Approved by	Kinga Policovic	Tanhrasal Managir	Relly
			Issued: January 28, 2016

Certificate No. EX3-3831 Jan 19

Page 1 of 11

Page: 37 of 56

Calibration Laboratory of Schmid & Partner Engineering AG aghnusstrasse 43, 8064 Zurich, Switzerland

C

Schweizenscher Kalibriemienei Service suisse d'étaignouge Servicio avezneo di Gredura Savine Calibration Service.

Accreditation No.: SCS 0108

Accredited by the Sales Accreditation Barrice (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certification

Glossary:

tissue simulating liquid TSL NORWX,y,z sensitivity in free space sensitivity in TSL / NORMx.y.z (flode compression point) DOP

prest factor (1/duty_cycle) of the RF signal. CF A. B. C. D moduration dependent inconzation parameters

Polarization e y rotation around probe sxis

Polarization % a mation around an axis linal is in the plane normal to probe axis (at measurement center).

i.e., % = 0 is normal to probe axis

information used in DASY system to align prote sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific." Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement. Techniques*, June 2013
IEC 62209 1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close

proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) IEC 62209-2. Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)*, March 2010 kDB 865664, 'SAR Measurement Requirements for 100 MHz to 6 GHz*

Methods Applied and Interpretation of Parameters:

NORMX,y,z: Assessed for E-field potarization II = 0 (f < 900 MHz in TEM-cell; t > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E² field incentainty inside TSL (see below ConvF).

 $NORM(f)x_y_z = NORMx_y_z$ "frequency, response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx.y.z: DCP are numerical Inearization personetive assessed based on the data of power swincp with CW signal (no uncertainty required). DCP does not depend on frequency risk media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

Ax.y.z: Bx.y.z: Cx.y.z: Dx.y.z: VRx.y.z: A, G, C. D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in that phentom using E-field (or Temperature Transfer-

Slandard for f < 800 MHz) and inside waveguide using unalytical field distributions based on power measurements for t > 800 MHz. The same saliups are used for assessment of the parameters applied to boundary comparisation (alpha, depth) of which typical undurtainty values are given. These parameters are used in DASY# software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMA, y.z.* ConvF whereby the uncertainty corresponds to their given for ConvF. A frequency deprindent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 DMILE

Spherical isotropy (3D deviation from isotropy): In a field of low gradients restized rising a flat phantom. exposed by a patch antenna

Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe sxis). No tolerance required,

Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required)

Dertificate No: EX3-3831_.lan16

Fagu 2 of 11

Page: 38 of 56

EX3DV4 - SN:3831

January 27, 2016

Probe EX3DV4

SN:3831

Manufactured: Calibrated:

September 6, 2011 January 27, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3831_Jan16

Page 3 of 11

Page: 39 of 56

EX3DV4-SN:3831

January 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3831

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.45	0.42	0.43	± 10.1 %
DCP (mV) ^R	100.7	102.6	99.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	dB	VR mV	Une ^{tt} (k=2)
0	CW	X	0.0	0.0	1.0	0.00	153.7	±3.3 %
		Y	0.0	0.0	1.0		139.5	
		Z	0.0	0.0	1.0		143.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3831_Jan16

Page 4 of 11

A The uncertainties of Norm X,Y,Z do not effect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

Page: 40 of 56

EX3DV4-- SN:3831

January 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3831

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁸ (mm)	Unc (k=2)
750	41.9	0.89_	9.38	9.38	9.38	0.23	1.35	± 12.0 %
835	41.5	0.90	8.84	8.84	8.84	0.19	1.62	± 12.0 %
900	41.5	0.97	8.77	8.77	8.77	0.20	1.51	± 12.0 %
1450	40.5	1.20	8.17	8.17	8.17	0.28	0.97	± 12.0 %
1750	40.1	1.37	7.92	7.92	7.92	0.41	0.80	± 12.0 %
1900	40.0	1.40	7.66	7.86	7.66	0.37	0.80	± 12.0 %
2000	40.0	1.40	7.61	7.61	7,61	0.32	0.80	± 12.0 %
2300	39.5	1.67	7.33	7.33	7.33	0.31	0.96	± 12.0 %
2450	39.2	1.80	6.92	6.92	6,92	0.27	1.09	± 12.0 %
2600	39.0	1.96	6.71	6.71	6.71	0.40	0.89	± 12.0 %
3500	37.9	2.91	6.41	6.41	6.41	0.42	1.03	±_13.1 %
5200	36.0	4.66	4.76	4.76	4.76	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.46	4.46	4.46	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.08	4.08	4.08	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.10	4.10	4.10	0.50	1.80	± 13.1 %

Frequency whichly above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else t is restricted to ± 50 MHz. The uncertainty is the PSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency whichly below 300 MHz is ± 10, 25, 40, 60 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**At frequencies below 3 GHz, the whichly of assue parameters (c and a) can be released to ± 10% if flauld compensation formule is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 6%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**AphatDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3831_Jan16

Page 5 of 11

Page: 41 of 56

EX3DV4- SN:3831

January 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3831

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ⁵	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.25	9.25	9.25	0.26	1.29	± 12.0 %
835	55.2	0.97	9.08	9.08	9.08	0.35	1.04	± 12.0 %
900	55.0	1.05	9.05	9.05	9.05	0.30	1.12	± 12.0 %
1750	53.4	1,49	7.74	7.74	7.74	0.27	1.01	± 12.0 %
1900	53.3	1.52	7.54	7.54	7.54	0.35	0.85	± 12.0 %
2000	53.3	1.52	7.62	7.62	7.62	0.37	0.84	± 12.0 %
2300	52.9	1.81	7.06	7.06	7.06	0.35	0.80	± 12.0 %
2450	52.7	1.95	7.05	7.05	7.05	0.34	0.80	± 12.0 %
2600	52.5	2.16	6.71	6.71	6.71	0.37	0.80	± 12.0 %
5200	49.0	5.30	4.07	4.07	4.07	0.50	1.90	± 13.1 %
5300	48.9	5.42	3.81	3.81	3.81	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.47	3.47	3.47	0.55	1.90	± 13.1 %
5800	48.2	6.00	3.52	3.52	3.52_	0.60	1.90	± 13.1 9

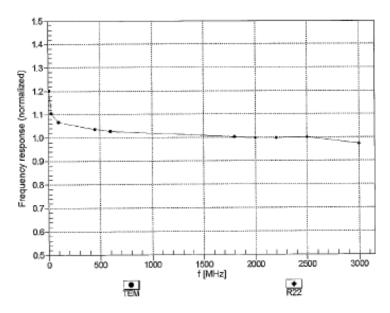
[©] Firequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 90 MHz. The uncertainty is the RSS of the CernF uncertainty of calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for comference and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (and or) can be reliased to ± 10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (and or) is instituted to ± 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters.

*AphatDepth are determined during calibration. SPAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3831_Jen16

Page 6 of 11



Page: 42 of 56

EX3DV4-SN:3831

January 27, 2016

Frequency Response of E-Field (TEM-Cell:Ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3831_Jan16

Page 7 of 11



Page: 43 of 56

EX3DV4- SN:3831

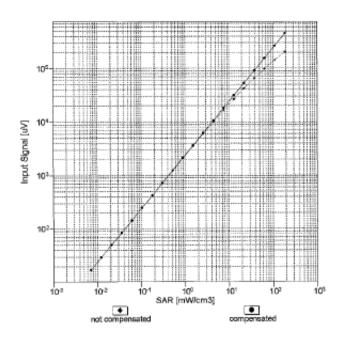
January 27, 2016

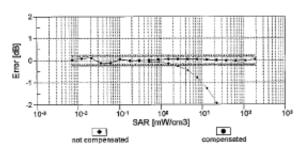
Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3831_Jan16

Page 8 of 11




Page: 44 of 56

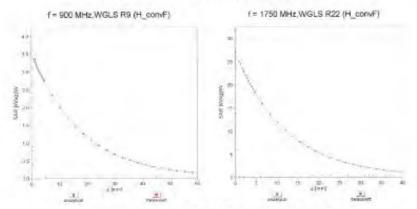
EX3DV4- SN:3831

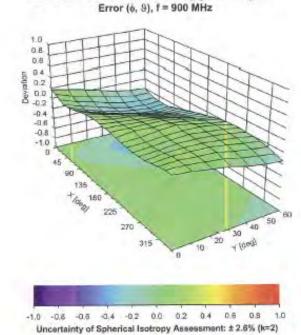
January 27, 2016

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3831_Jan16


Page 9 of 11


Page: 45 of 56

EX3DV4- SN:3831 January 27, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No. EX3-3831_Jan16

Page 10 of 11

Page: 46 of 56

EX3DV4-SN:3831

January 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3831

Other Probe Parameters

Triangular
-20.3
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm

Certificate No: EX3-3831_Jan16

Page 11 of 11

Page: 47 of 56

7. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test (0.3-3G)

Α	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit y	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Vef
Measurement system									
Probe calibration	6.00%	N	1	1	1	1	6.00%	6.00%	∞
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	∞
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	∞
Modulation Response	2.40%	R	√3	1.732	1	1	1.40%	1.40%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	∞
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	∞
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	∞
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	∞
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	∞
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	∞
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	∞
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	∞
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	∞
Liquid permittivity (mea.)	2.19%	N	1	1	0.64	0.43	1.40%	0.94%	М
Liquid Conductivity (mea.)	2.00%	N	1	1	0.6	0.49	1.20%	0.98%	М
Combined standard uncertainty		RSS					11.57%	11.49%	
Expant uncertainty (95% confidence							23.13%	22.98%	

Page: 48 of 56

8. Phantom Description

Schmid & Panner Engineering AG

Zeughausstrasse 42, 8004 Zunch, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 intelligency com. http://www.speag.com

Certificate of Conformity / First Article Inspection

item	SAM Twin Phantom V4.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	SPEAG Zeughaupstrasse 43 CH-8004 Zürich Switzerland	

The series production process used allows the similation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0,2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff.
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz – 6 GHz: Relative permittivity < 5, Loss tangent < 0.05	Material samples
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material competibility.	DEGMBE based simulating liquids	Pre-series, First article, Malerial samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid.	< 1% typical < 0.8% if filled with 155mm of HSL900 and without DUT below	Prototypes, Sample testing

Standards

- CENELEC EN 50361 IEEE Std 1528-2003
- IEC 62209 Part I FCC OET Bulletin 65, Supplement C, Edition 01-01
- The IT'S CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Based on the sample tests above, we cartify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

Schmid & Pagnar Engineering AQ Zmigheuerdese 43, 8054 Zorlof, Seltberland Phone sell 1, 265 0100 (February 246 9779 Into Papage, com. http://www.speeg.com

Day No. 881 - 00 000 (40 C-F

Signature / Stamp

Page: 49 of 56

9. System Validation from Original Equipment Supplier

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizilo svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Certificate No: D2450V2-727 Apr16

CALIBRATION	ERTIFICATE					
Object	D2450V2 - SN:727					
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	ove 700 MHz			
Calibration date:	April 19, 2016					
		ional standards, which realize the physical un robability are given on the following pages an				
All calibrations have been conduc	ted in the closed laborate	ry facility; environment temperature (22 ± 3)*	C and humidity < 70%.			
Calibration Equipment used (M87	E critical for calibration)					
Primary Standards	ID#	Cal Date (Cartificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17			
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17			
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17			
the Aller was been been as a second	SN: 5058 (20k)	AND A COUNTY OF THE PARTY OF				
Reference 20 dB Attenuator	distribution (marris)	05-Apr-16 (No. 217-02292)	Apr-17			
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17			
Type-N mismatch combination Reference Probe EX3DV4	SN: 5047.2 / 06327 SN: 7349	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 Dec-15)	Apr-17 Dec-16			
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17			
Type-N mismatch combination Reference Probe EX3DV4	SN: 5047.2 / 06327 SN: 7349	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 Dec-15)	Apr-17 Dec-16			
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 5047.2 / 06327 SN: 7349 SN: 601	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 Dec15) 30-Dec-15 (No. DAE4-601 Dec15)	Apr-17 Dec-16 Dec-16			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 5047.2 / 06327 SN: 7349 SN: 601	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 Dec15) 30-Dec-15 (No. DAE4-601 Dec15) Check Date (in house)	Apr-17 Dec-16 Dec-16 Scheduled Check			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 5047.2 / 06327 SN: 7349 SN: 501 ID # SN: GB37480704	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 Dec15) 30-Dec-15 (No. DAE4-601 Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct/16			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 5047.2 / 06327 SN: 7349 SN: 501 ID # SN: GB37480704 SN: US37292783	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 _Dec15) 30-Dec-15 (No. DAE4-501_Dec15) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 _Dec15) 30-Dec-15 (No. DAE4-501_Dec15) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5047.2 / 06327 SN: 7349 SN: 601 ID ii SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 _Dec15) 30-Dec-15 (No. DAE4-601 _Dec15) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (in house check .lun-15)	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5047.2 / 06327 SN: 7349 SN: 601 ID ii SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 Dec15) 30-Dec-15 (No. DAE4-601 Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check .lun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 Dec15) 30-Dec-15 (No. DAE4-601 Dec15) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349 Dec15) 30-Dec-15 (No. DAE4-601 Dec15) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16			
Type-N mismatch combination Reference Proba EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 5047.2 / 06327 SN: 7349 SN: 501 ID # SN: GB37480704 SN: US37292783 SN: US37292783 SN: 100972 SN: US37390585 Name Michael Weber	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function Laboratory Technician	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16			

Certificate No. D2450V2-727_Apr16

Page 1 of 8

Page: 50 of 56

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibsierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signaturies to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards;

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-727_Apr16

Page 2 of 8

Page: 51 of 56

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr16

Page 3 of 8

Page: 52 of 56

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.3 Ω + 2.0 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.1 Ω + 4.8 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,148 ns
Liectical Delay (one direction)	1.140 113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the *Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-727_Apr16

Page 4 of 8

Page: 53 of 56

DASY5 Validation Report for Head TSL

Date: 19.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

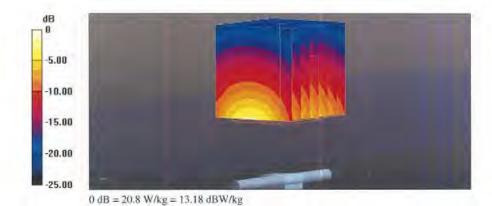
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83 \text{ S/m}$; $\varepsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

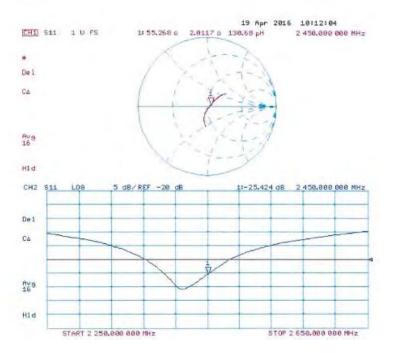

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- · Electronics; DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.93 W/kg Maximum value of SAR (measured) = 20.8 W/kg


Certificate No: D2450V2-727_Apr16

Page 5 of 8

Page: 54 of 56

Impedance Measurement Plot for Head TSL

Page: 55 of 56

DASY5 Validation Report for Body TSL

Date: 19.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ S/m}$; $\epsilon_c = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

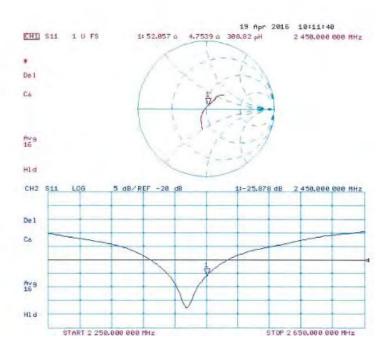
- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 30,12,2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.0 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 24.9 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.86 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg


Certificate No: D2450V2-727_Apr16

Page 7 of B

Page: 56 of 56

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-727_Apr16

Page 8 of 8

- End of 1st part of report -