

FCC Radio Test Report

FCC ID: 2ADQS-107001333

Report No. Equipment Model Name Brand Name	BTL-FCCP-1-2411T019 Portable Bluetooth Speaker ROCKSTER CROSS 2 Teufel	
Applicant	Lautsprecher Teufel GmbH	
Address	Budapester Str. 44, 10787 Berlin, Germany	
Radio Function	Bluetooth	
FCC Rule Part(s) Measurement Procedure(s)	FCC CFR Title 47, Part 15, Subpart C (15.247) ANSI C63.10-2013	
Date of Receipt Date of Test Issued Date	2024/11/4 2024/11/12 ~ 2024/11/25 2025/2/14	

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

: Brett Shen, Engineer

Jerry Chuard, Supervisor

-MRA Testing Laboratory 0659

Approved by

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVIS	ION HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
1.4	DUTY CYCLE	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	11
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.4	SUPPORT UNITS	13
3	AC POWER LINE CONDUCTED EMISSIONS TEST	14
3.1	LIMIT	14
3.2	TEST PROCEDURE	14
3.3	DEVIATION FROM TEST STANDARD	15
3.4	TEST SETUP	15
3.5	EUT OPERATION CONDITIONS	15
3.6	TEST RESULT	15
4	RADIATED EMISSIONS TEST	16
4.1	LIMIT	16
4.2	TEST PROCEDURE	17
4.3	DEVIATION FROM TEST STANDARD	17
4.4	TEST SETUP	17
4.5	EUT OPERATING CONDITIONS	18
4.6	TEST RESULT – 9 KHZ TO 30 MHZ	19
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	19
4.8	TEST RESULT – ABOVE 1 GHZ	19
5	NUMBER OF HOPPING CHANNEL	20
5.1	APPLIED PROCEDURES	20
5.2	TEST PROCEDURE	20
5.3	DEVIATION FROM STANDARD	20
5.4	TEST SETUP	20
5.5	EUT OPERATION CONDITIONS	20
5.6	TEST RESULTS	20
6	AVERAGE TIME OF OCCUPANCY	21
6.1	APPLIED PROCEDURES / LIMIT	21
6.2	TEST PROCEDURE	21
6.3		21
6.4	TEST SETUP	21
6.5	EUT OPERATION CONDITIONS	21
6.6	TEST RESULTS	21
7	HOPPING CHANNEL SEPARATION MEASUREMENT	22
7.1	APPLIED PROCEDURES / LIMIT	22
7.2	TEST PROCEDURE	22
7.3	DEVIATION FROM STANDARD	22
7.4	TEST SETUP	22
7.5	TEST RESULTS	22

8	BAND	WIDTH TEST	23
8.1		PLIED PROCEDURES	23
8.2		T PROCEDURE	23
8.3		/IATION FROM STANDARD	23
8.4	TES	ST SETUP	23
8.5	EUT	OPERATION CONDITIONS	23
8.6	TES	ST RESULTS	23
9	OUTPU	JT POWER TEST	24
9.1	APF	PLIED PROCEDURES / LIMIT	24
9.2	TES	T PROCEDURE	24
9.3	DE\	/IATION FROM STANDARD	24
9.4	TES	ST SETUP	24
9.5	EUT	OPERATION CONDITIONS	24
9.6	TES	ST RESULTS	24
10	ANTEN	NA CONDUCTED SPURIOUS EMISSION	25
10.1	APF	PLIED PROCEDURES / LIMIT	25
10.2	TES	T PROCEDURE	25
10.3	DE\	/IATION FROM STANDARD	25
10.4	TES	ST SETUP	25
10.5	EUT	OPERATION CONDITIONS	25
10.6	TES	ST RESULTS	25
11	LIST C	F MEASURING EQUIPMENTS	26
12	EUT T	EST PHOTO	28
13	EUT P	HOTOS	28
APPEN	NDIX A	AC POWER LINE CONDUCTED EMISSIONS	29
APPEN	NDIX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	34
APPEN	NDIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	39
APPEN	NDIX D	RADIATED EMISSIONS - ABOVE 1 GHZ	42
APPEN	NDIX E	NUMBER OF HOPPING CHANNEL	61
APPEN	NDIX F	AVERAGE TIME OF OCCUPANCY	63
APPEN	NDIX G	HOPPING CHANNEL SEPARATION MEASUREMENT	66
APPEN	NDIX H	BANDWIDTH	69
APPEN	NDIX I	OUTPUT POWER	72
APPEN	NDIX J	ANTENNA CONDUCTED SPURIOUS EMISSION	74

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2411T019	R00	Original Report.	2025/2/14	Valid

1 SUMMARY OF TEST RESULTS

Test	procedures	according	to	the	technical	standards.
1000	procoadroo	according	.0		toorninour	oluniaarao.

Standard(s) Section	Description Test Result		Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX G	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX H	Pass	
15.247 (b)(1)	Output Power	APPENDIX I	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX J	Pass	
15.203	Antenna Requirement		Pass	

Statement of Conformity

The statement of conformity is based on the binary decision rule according to IEC Guide 115 and ILAC G8 "simple acceptance" principle. Without considering measurement uncertainty, its specific risk is less than 50% PFA. (PFA: Probability of False Accept)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.

1.1 TEST FACILITY

 The test locations stated below are under the TAF Accreditation Number 0659.

 The test location(s) used to collect the test data in this report are:

 No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

 (FCC DN: TW0659)

 ☑
 C05
 □
 CB11
 □
 SR10

 No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

SR11

(FCC DN: TW0659)

 \Box C06 \boxtimes CB21 \Box CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

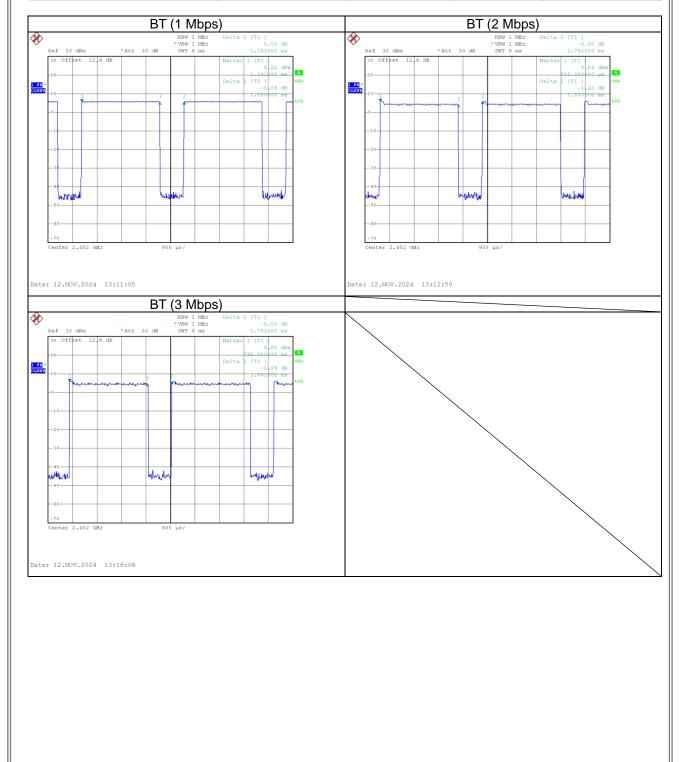
C. Conducted test :

Test Item	U (dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS


Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 64 %	AC 120V	Ken Lan
Radiated emissions below 1 GHz	25 °C, 60 %	AC 120V	Emily Chang
Radiated emissions above 1 GHz	25 °C, 60 %	AC 120V	Emily Chang
Number of Hopping Frequency	22 °C, 54 %	AC 120V	Easton Tsai
Average Time of Occupancy	22 °C, 54 %	AC 120V	Easton Tsai
Hopping Channel Separation	22 °C, 54 %	AC 120V	Easton Tsai
Bandwidth	22 °C, 54 %	AC 120V	Easton Tsai
Output Power	22 °C, 54 %	AC 120V	Easton Tsai
Antenna conducted Spurious Emission	22 °C, 54 %	AC 120V	Easton Tsai

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 2			Delta 3	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Widde	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.880	1	2.880	3.762	76.56%	1.16
BT (2 Mbps)	2.880	1	2.880	3.762	76.56%	1.16
BT (3 Mbps)	2.862	1	2.862	3.762	76.08%	1.19

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Portable Bluetooth Speaker		
Equipment Model Name	ROCKSTER CROSS 2		
Brand Name	Teufel		
Model Difference	N/A		
Power Source	#1 Supplied from Type-C port.		
Fower Source	#2 Supplied from battery.		
Dower Dating	#1 DC 5/9/12/15/20V		
Power Rating	#2 DC 7.4V / 5510mAh		
Products Covered	1 * Type-C USB cable		
Products Covered	1 * Strap		
HW Version	Main-V4/ IO-V3 / Key_LED-V4		
AE Version	Same as current Rockster Cross 2018		
ME Version	Released DV2 3D		
FW Version	EEPROM:V1.3		
	BT:V0.8.02		
Operation Band	2400 MHz ~ 2483.5 MHz		
Operation Frequency	2402 MHz ~ 2480 MHz		
Modulation Type	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology	FHSS		
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps		
	1 Mbps: 6.58 dBm (0.0045 W)		
Output Power Max.	2 Mbps: 6.56 dBm (0.0045 W)		
	3 Mbps: 6.87 dBm (0.0049 W)		
Test Software Version	BT FCC Tool V2.25		
Test Model	ROCKSTER CROSS 2		
Sample Status	Engineering Sample		
EUT Modification(s)	N/A		

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Antenna	Manufacture	Model Name	Туре	Connector	Frequency (MHz)	Gain (dBi)
1	World Elite	YD-S01	PCB	N/A	2400-2480	2.57

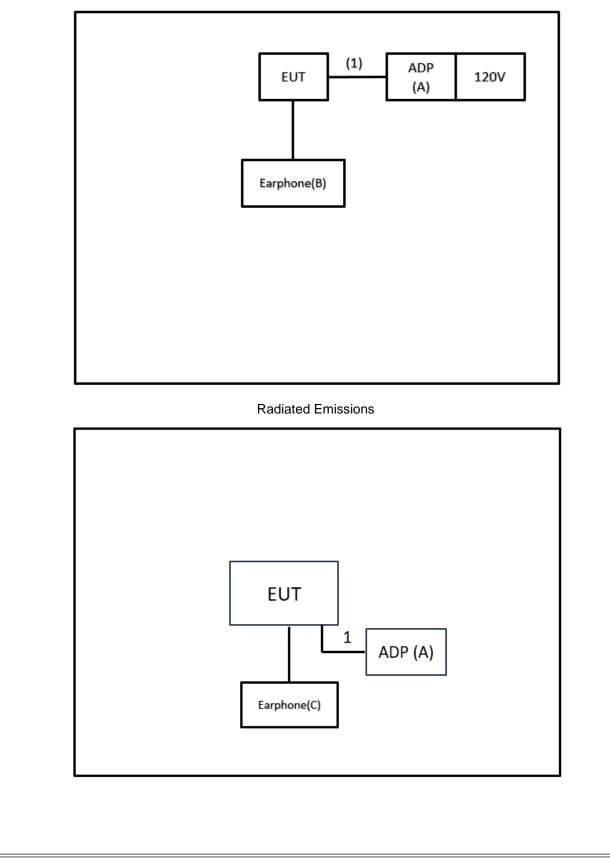
(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	39	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Transmitter Radiated Emissions (above 18GHz)	3 Mbps	39	-
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.


(2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

2.4 SUPPORT UNITS

	Item	Equipment	Brand	Model No.	Series No.	Remarks
	А	ADP	N/A	N/A	N/A	Supplied by test requester
	В	Earphone	N/A	N/A	N/A	Furnished by test lab.
I	С	Earphone	N/A	N/A	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	Type C to Type C	Supplied by test requester

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56 *	56 - 46 *		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)
 - Margin Level = Measurement Value Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB)		Measurement Value (dBµV)
38.22	+	3.45	Ш	41.67

Measurement Value (dBµV)		Limit Value (dBµV)		Margin Level (dB)
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 KHz	

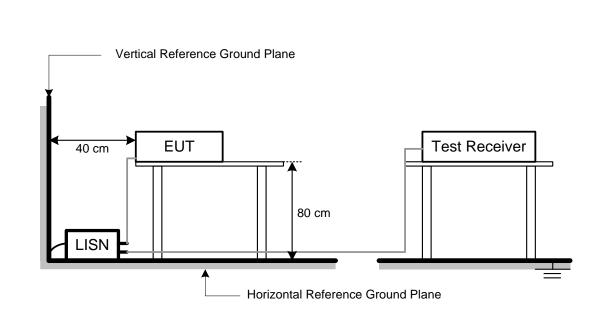
3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATION CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting/receiving data or hopping on mode.

3.6 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated I (dBu	Measurement Distance	
	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

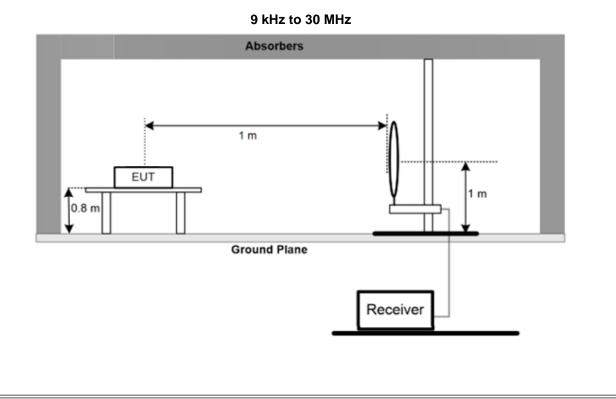
Calculation example:

Reading Level (dBµV)		Correct Factor (dB/m)		Measurement Value (dBµV/m)
35.45	+	-11.37	II	24.08

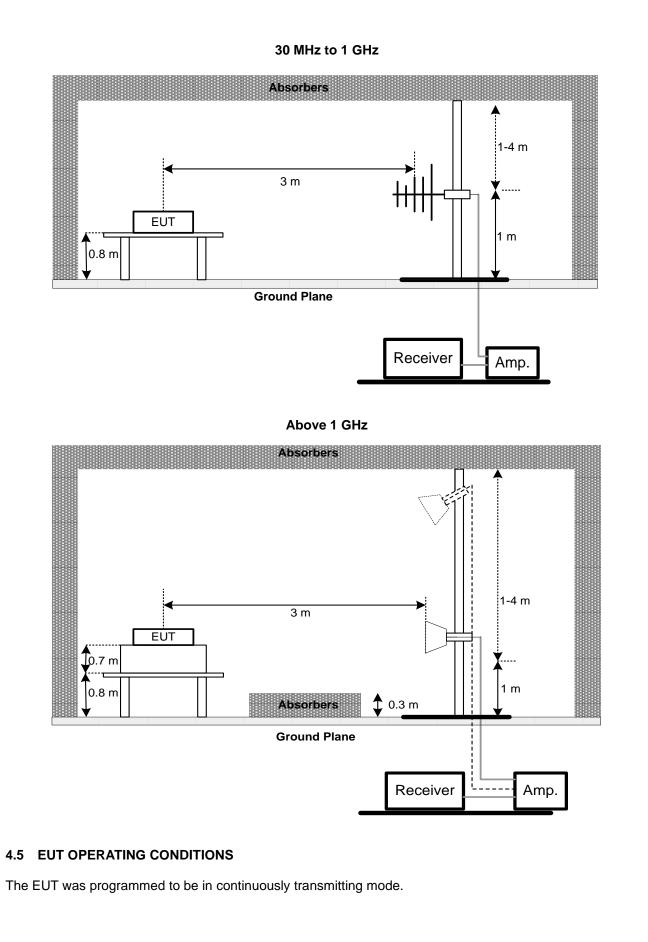
Measurement Value		Limit Value		Margin Level
(dBµV/m)		(dBµV/m)		(dB)
24.08	-	40	Ш	-15.92

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1MHz / 3MHz for Peak,	
(Emission in restricted band)	1MHz / 1/T for Average	

Spectrum Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector		
Start ~ Stop Frequency	90KHz~110KHz for QP detector		
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector		
Start ~ Stop Frequency	490KHz~30MHz for QP detector		
Start ~ Stop Frequency	30MHz~1000MHz for QP detector		


4.2 TEST PROCEDURE

- a. The measuring distance of 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 30MHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- c. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- d. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- f. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- g. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- h. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- j. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section	Section Test Item		Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse. A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel):

DH1 Time Solt: Reading * (1600/6)/79 * (0.4 * 79) DH3 Time Solt: Reading * (1600/6)/79 * (0.4 * 79) DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH3 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

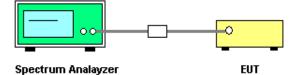
Please refer to the APPENDIX F.

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX G.

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	
15.247(a)(2)	Bandwidth	2400-2483.5	

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

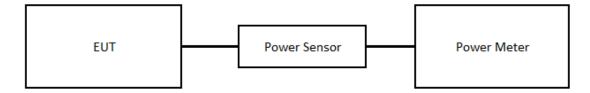
8.6 TEST RESULTS

Please refer to the APPENDIX H.

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX I.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX J.

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2024/9/5	2025/9/4	
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2024/3/30	2025/3/29	
3	EMI Test Receiver	R&S	ESR3	102950	2024/4/12	2025/4/11	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2024/9/5	2025/9/4
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2024/9/4	2025/9/3
4	Preamplifier	EMCI	EMC001340	980579	2024/9/4	2025/9/3
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2024/9/9	2025/9/8
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2024/5/17	2025/5/16
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2024/6/14	2025/6/13
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2024/6/14	2025/6/13
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2024/3/13	2025/3/12
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

		Num	ber of Hopping Fr	equency		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26

	Average Time of Occupancy												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26							

ItemEquipmentManufacturerType No.Serial No.DateUntil1SpectrumR&SESP 401001292024/3/272025/3/			Hopping Channel Separation												
	Item		Manufacturer	Type No.	Serial No.		Calibrated Until								
Analyzei	1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26								

			Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26

			Output Power	•		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2024/5/11	2025/5/10
2	Power Sensor	Anritsu	MA2411B	1126001	2024/5/11	2025/5/10

	Antenna conducted Spurious Emission												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26							

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

12 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2411T019-FCCP-1 (APPENDIX-TEST PHOTOS).

13 EUT PHOTOS

Please refer to document Appendix No.: EP-2411T019-2 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

est Moo	de 🏻 🛛	Normal						Tested Date	2024/11/12
est Fre	quency -							Phase	Line
80.0	dBuV								
70									
60									
50									
40	(5 ×						
30		3 X	6 X	7 X	9 X				
20	2	4 ×		8 ×	10				11 X
10	`				×				12 X
0.0									
U.1	150		.5		(MHz)		5		30.000
No. Mk		Reading Level	Correct Factor	Measure- ment	Limit	Margin			
1	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1522	26.17 4.01	9.68 9.68	35.85 13.69	65.88 55.88	-30.03	QP AVG		
3	0.1322	18.06	9.00	27.64	57.45	-29.81	QP		
4	0.4200	9.05	9.58	18.63	47.45	-28.82	AVG		
5	0.7845	23.79	9.56	33.35	56.00	-22.65	QP		
6 *	0.7845	14.13	9.56	23.69	46.00	-22.31	AVG		
7	1.2593	16.67	9.56	26.23	56.00	-29.77	QP		
8	1.2593	7.07	9.56	16.63	46.00	-29.37	AVG		
9	2.3213	13.46	9.57	23.03	56.00	-32.97	QP		
10	2.3213	3.63	9.57	13.20	46.00	-32.80	AVG		
11	17.1938	8.59	9.73	18.32	60.00	-41.68	QP		

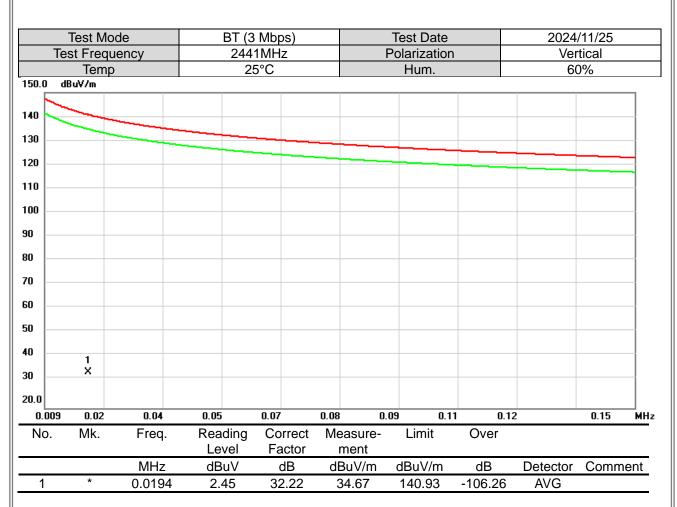
(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

est Mo	ode	Normal						Tested Date	2024/11/12
est Fre	equency	-						Phase	Neutral
80.0) dBu¥								
70									
60									
50									
40	1 X								
30		3 X	5 X	7					
20	2	4 ×	6 ×	8	9 X				11 X
10	×			×	10 X				12 X
0.0 N	0.150).5		(MHz)		5		30.000
No. M		Reading Level	Correct Factor	Measure- ment		Margin			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.1598	25.74	9.66	35.40	65.47	-30.07	QP		
2	0.1598	1.88	9.66	11.54	55.47	-43.93	AVG		
3	0.4290	16.04	9.57	25.61	57.27	-31.66	QP		
4	0.4290	4.90	9.57	14.47	47.27	-32.80	AVG		
5	0.7867	18.67	9.55	28.22	56.00	-27.78	QP		
6*		9.81	9.55	19.36	46.00	-26.64	AVG		
7	1.1692		9.55	20.98	56.00	-35.02	QP		
8	1.1692		9.55	12.20	46.00	-33.80	AVG		
9	2.3258		9.59	17.80	56.00	-38.20	QP		
10	2.3258		9.59	9.12	46.00	-36.88	AVG		
11	26.3693		9.76	16.28	60.00	-43.72	QP		
12	26.3693	-1.13	9.76	8.63	50.00	-41.37	AVG		

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

est Mo		Idle						Tested Date	2024/11/12
est Fre	equency	-						Phase	Line
80.0	dBuV								
70									
60									
50									
40	1 X		5 X						
30		3 X	6 X	7 X	9 X				
20	2	4 ×		8 ×	10 X				11 X
10	<u> </u>				^				12 X
0.0									
0.	.150		.5		(MHz)		5		30.000
No. MI		Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.1522	25.02	9.68	34.70	65.88	-31.18	QP		
2	0.1522	3.78	9.68	13.46	55.88	-42.42	AVG		
3	0.4312	18.06	9.58	27.64	57.23	-29.59	QP		
4	0.4312	9.03	9.58	18.61	47.23	-28.62	AVG		
5	0.7867	23.94	9.56	33.50	56.00	-22.50	QP		
6 *	0.7867	14.36	9.56	23.92	46.00	-22.08	AVG		
7	1.2548	16.36	9.56	25.92	56.00	-30.08	QP		
8	1.2548	6.57	9.56	16.13	46.00	-29.87	AVG		
9	2.3258	13.37	9.57	22.94	56.00	-33.06	QP		
10	2.3258	3.78	9.57	13.35	46.00	-32.65	AVG		
11	17.3220	8.76	9.73	18.49	60.00	-41.51	QP		
12	17.3220	-1.75	9.73	7.98	50.00	-42.02	AVG		

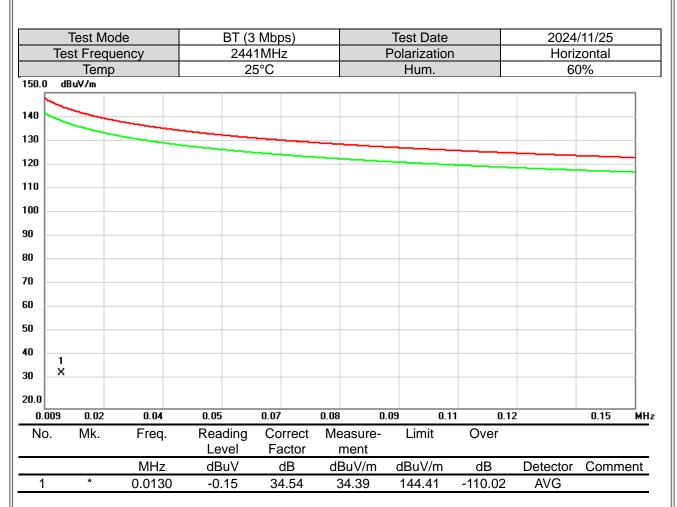
(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.


									0004/44/40
est Mo		Idle						Tested Date	2024/11/12
est Fre	equency	_						Phase	Neutral
80.0	dBu¥								
70									
60									
50									
40	ı X								
30		3 ×	5 ×	7					
20	2	4 ×	6 ×	8	9 X				11 X
10	×			×	10 X				12 X
0.0	450		_						
U.	150		.5		(MHz)		5		30.000
No. MI		Reading Level	Correct Factor	Measure- ment	Limit	Margin			
4	MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector	Comment	
1	0.1522	27.05	9.66	36.71 12.49	65.88 55.88	-29.17 -43.39	QP AVG		
3	0.1322	15.88	9.00	25.45	57.36	-45.59	QP		
4	0.4245	4.51	9.57	14.08	47.36	-33.28	AVG		
5	0.7845	18.58	9.55	28.13	56.00	-27.87	QP		
6 *	0.7845	9.57	9.55	19.12	46.00	-26.88	AVG		
7	1.2660	10.93	9.56	20.49	56.00	-35.51	QP		
8	1.2660	2.35	9.56	11.91	46.00	-34.09	AVG		
9	2.3145	7.55	9.59	17.14	56.00	-38.86	QP		
10	2.3145	-1.01	9.59	8.58	46.00	-37.42	AVG		
11	26.6303	7.06	9.75	16.81	60.00	-43.19	QP		
12	26.6303	-1.28	9.75	8.47	50.00	-41.53	AVG		

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

(1) Measurement Value = Reading Level + Correct Factor.


(2) Margin Level = Measurement Value - Limit Value.

	Test Mo	ode	BT	(3 Mbps)		Test Date		2024	/11/25	
Te	st Freq	uency	24	41MHz		Polarization	۱	Ver	tical	
	Tem	D		25°C		Hum.		60)%	
120.0 d	Bu¥/m									
110 100 90 80 70 60	1									
50 40 30 1 20								6		
10		2 X	3 X		4 ×		5 X	×		
-10.0										
0.150	3.14	6.12	9.10	12.09		8.06 21.		03	30.00	MHz
No.	Mk.	Freq.	Reading Level	g Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent
1		0.1500	15.77	13.96	29.73	123.16	-93.43	AVG		
2		4.0335	16.72	-4.10	12.62	88.62	-76.00	QP		
3		8.8075	16.29	-3.34	12.95	88.62	-75.67	QP		
4		15.1178	12.40	-3.50	8.90	88.62	-79.72	QP		
5		20.9813	19.11	-3.78	15.33	88.62	-73.29	QP		
6	*	25.7305	23.52	-2.86	20.66	88.62	-67.96	QP		

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

	Test Mo st Freq			(3 Mbps) 41MHz		Test Date Polarizatior	1		/11/25 zontal	
10	Tem			25°C		Hum.	•)%	
120.0 dl	 3u∀/m	5		20 0		, i i di i ii			570	
110 100 90 80 70 60 50 40 30 × 20								6		
10		2 X	3 X	4			5 X	×		
0				×						_
-10.0										
0.150	3.14	6.12	9.10	12.09	15.08 1	8.06 21.	.04 24.	03	30.00	∣ MH₂
No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent
1		0.1500	15.70	13.96	29.66	123.16	-93.50	AVG		
2		4.0673	13.07	-4.11	8.96	88.62	-79.66	QP		
3		8.7070	12.77	-3.37	9.40	88.62	-79.22	QP		
4		12.5963	9.38	-3.26	6.12	88.62	-82.50	QP		
5		21.2340	13.74	-3.74	10.00	88.62	-78.62	QP		
6	*	25.4360	17.78	-2.93	14.85	88.62	-73.77	QP		

APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

	-	Fest M	ode			BT (3	Mbr	os)			Test Date		2024	/11/25	
			luency				1MH	,			Polarizatio			tical	
		Tem				2	5°C				Hum.		60)%	
80.0	dB	uV/m													_
70															
60															
50															
40															
30	1 X		2 X							4 ×		5 X	6 X		
20					3 X					×					
10															
0.0															
30	.000	127.0	00 224.	00	321.	DO	418.	00	515.	.00 6	12.00 70	9.00 806	5.00	1000.00	MHz
No).	Mk.	Freq		Rea Lev			orrect actor		easure- ment	Limit	Over			
			MHz	2	dB	uV		dB	d	BuV/m	dBuV/m	dB	Detector	Comme	ent
1		*	57.19	23	39.	31	-1	2.08		27.23	40.00	-12.77	peak		
2			148.34	00	38.	94	-1	1.97	2	26.97	43.50	-16.53	peak		
3			298.59		34.		-1	1.45	2	23.20	46.00	-22.80	peak		
4			554.67		30.		-5	5.54		24.81	46.00	-21.19	peak		
5			758.11	43	31.	24	-1	.66	1	29.58	46.00	-16.42	peak		
6			879.10)57	31.	84	-().36	:	31.48	46.00	-14.52	peak		

		est Mo				BT (3						est Date					/11/25	
	Test	Frequ					<u>1MH</u> 5°C	Ζ				larizatio	n		Г		zontal	
80.0	dBu	Temp)			Z	5-0					Hum.				60)%	
70													_					
60 -													_					
50																	Ē	
40																		
30]			3 X					4 ×				5 X		6 X		
20	1 X		2 X							×								
10																		
0.0																		
30.	000	127.00	224.	00	321.0	00	418.	00	515.	00 E	612.0	0 70)9.00	806	6.00		1000.0	D MHz
No		Mk.	Freq		Rea Lev			rrect actor		easure- ment		Limit	C	Over				
			MHz	2	dB		(dB	dl	3uV/m	d	BuV/m		dB	Detec	ctor	Comm	ent
1			64.823	30	33.	41	-1	3.27	2	20.14		40.00	-1	9.86	pea	k		
2			188.17	'46	37.	31	-1	4.50	2	22.81		43.50	-2	0.69	pea	k		
3			300.85	63	39.		-1	1.40		27.84		46.00	-1	8.16	pea	k		
4			532.03		31.			6.03		25.21		46.00		0.79	pea	k		
5			760.31		31.			.65		30.13		46.00		5.87	pea	k		
6		*	902.74	13	32.	26	-().03	3	32.23		46.00	-1	3.77	pea	k		

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

	Test Mod	de		E	3T (1	Mbp	os)			Т	est Da	ate			2024	/11/25	
Te	est Frequ	ency			240	2MH	Z			Po	olarizat	tion			Horiz	zontal	
_	Temp				2	5°C					Hum.				60	0%	
130.0	dBuV/m																_
120																	
110																	
100																	
90																	_
80								+									
70								X									
60									-								
50	huhanturantura	opposition	nhh	hvara-nylasi	white	hhaydrallyn	www.	wine	home	www	whendut	lundhu	mmmm	Madag- Ya	illeren a n an	www.	Man
40							2 X									7 X	
30																	
20																	-
10.0																	
	000 2322.00		00	2362.		2382		2402		2422		2442		462.00	J	2502.00) MH2
No.	Mk.	Freq.		Read Lev	•		orrect actor		easure∙ ment	-	Limit		Over				
		MHz		dBu	١V		dB	d	3uV/m	(dBuV/r	m	dB	D	etector	Comm	ent
1		2389.80)7	55.7	70	-5	5.01	Ę	50.69		74.00)	-23.31		peak		
2		2389.80)7	44.(5.01		39.02		54.00		-14.98		AVG		
3		2400.00		69.2			1.99		64.24		74.00		-9.76		peak	NoLir	
4	Х	2402.00		105.		-5	5.00	1	00.21		74.00)	26.21		peak	NoLin	
5	*	2402.00		104.			5.00		9.58		54.00		45.58		AVG	NoLir	nit
6		2495.04		54.8			1.87		9.97		74.00		-24.03		peak		
7		2495.04	10	43.1	16	-4	1.87	3	38.29		54.00)	-15.71		AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	odo		DT /1	Mbp	c)			Test Da	to		2024	/11/25	
	Test Frequ				0MHz	/			Polarizat				zontal	
	Temp				5°C	-			Hum.				0%	
130.0	dBuV/m													-
120														
														1
110														1
100 -														{
90														
80														1
70														
70														
60	1										5 X			
60 50		naanahaana	and/hann	weekawaha	the work with	h Martin M	more	mandes	ngebuartantingen gettang	mpanantuto	5 X 6	the states and the states of t	whenter	~
60	2 X	nationalisationalisation	and/theory	walanta	ter an de Wilde	h.Mandray	adried	mandes	nectros toxingingingiturg	mpagamenta	5 × 6 ×	olyhadron vin sydaaddnig via da	Www.mathyadd	~
60 50		unaatuudhaanadhaaadh	gend/hummh	water		kommente N	more	man	nerbenertseeleneetseelene	andpendier der Sein der	х 44/4 6	hyhalasturiniskaathurjohda	dert-motheration	4
60		unaansa karaa karaa ka	andhinn	watanta	ter an	h. Marina	nstru	man	nedras dastratos das	and programmed and the	х 44/4 6	the for the second s	ahasta ayatka	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60 - 50 - 40 - 30 - 20 -		naanahaaja.ho	andmaan	withyation	th-and With	k Mariney	nord	man	necture tradinations there	indpediencent in fra	х 44/4 6	eignature-solaasturgooda	du trazellapeter	
60 50 50 50 50 50 50 50 50 50 50 50 50 50					<i>د</i>		2480			2520.00	х 44/4 6		uunnangalaga	
60 50 50 50 50 50 50 50 50 50 50 50 50 50	2 ×		2440 Rea	0.00 Iding	2460. Cor	00 rect	2480		2500.00		254			
60	2 ×	00 2420.00 Freq.	2440 Rea Le	D.00 ading avel	2460. Coi Fa	00 rrect ctor	2480 Me	200 2 easure- ment	2500.00 Limit	2520.00 Ove	254	D.00	2580.00	MHz
60 50 40 30 20 10.0 2380 No.	2 ×	00 2420.00 Freq. MHz	2440 Rea Le dB	0.00 ading avel BuV	2460. Coi Fa	00 rrect ctor	2480 Me r dE	.00 a easure- nent BuV/m	2500.00 Limit dBuV/n	2520.00 Ove n dB	2540 r	0.00 Detector		MHz
60	2 ×	00 2420.00 Freq. MHz 2389.673	2440 Rea Le dB 55	D.00 ading evel BuV .07	2460. Cor Fa co -5	.00 Trect ctor IB .01	2480 Me r dE	.00 2 easure- nent 3uV/m 50.06	2500.00 Limit dBuV/n 74.00	2520.00 Ove n dB -23.9	2540 r	0.00 Detector peak	2580.00	MHz
60	2 ×	00 2420.00 Freq. MHz 2389.673 2389.673	2440 Rea Le dB 55 43	0.00 ading avel 3uV .07 .12	2460. Cor Fa d -5 -5	00 rrect ctor	2480 Me r dE 5	.00 2 easure- nent 3uV/m 50.06 38.11	2500.00 Limit dBuV/n 74.00 54.00	2520.00 Ove n dB -23.9 -15.8	x 6 X 254(r 4 9	Detector peak AVG	2580.00	mHz ent
60	2 X 0.000 2400.0 Mk.	00 2420.00 Freq. MHz 2389.673	2440 Rea Le dB 55 43 105	D.00 ading evel BuV .07	2460 Cor Fa 0 -5 -5 -5 -4	.00 rrect ctor B .01	2480 Me r dE 5 3 1	.00 2 easure- nent 3uV/m 50.06	2500.00 Limit dBuV/n 74.00	2520.00 Ove n dB -23.9	x 6 X 2541 r 4	0.00 Detector peak	2580.00 Comme	MHz nt
60 50 40 20 10.0 2380 No. 1 2 3	2 X 0.000 2400.0 Mk.	00 2420.00 Freq. MHz 2389.673 2389.673 2480.000	2440 Rea Le dB 55 43 105 105	0.00 ading avel BuV .07 .12 5.73	2460. Cor Fa co -5 -5 -5 -4 -4	.00 rect ctor B .01 .01 .89	2480 Me r dE 5 3 10	.00 2 easure- nent 3uV/m 50.06 38.11 00.84	2500.00 Limit dBuV/n 74.00 54.00 74.00	2520.00 Ove n dB -23.9 -15.8 26.8	2540 r 4 9 4 1	Detector peak AVG peak	2580.00 Comme	MHz

	Test Mod				BT (3	Mh	190			т	est Da	ato			2024	/11/25	
	st Freque					2MH					olariza					zontal	
	Temp					5°C					Hum					0%	
130.0 d	BuV/m																
120																	
110																	
100																	
90																	
80																	
70								×									
60																	
50	and particular	WWW	ntrall e t	-transminution			www.ww	ulorv	Lunnor	haya fan I	manstruct	A ^N 4/~981	werthward	k-11-140	whentherester	nytermenter	, Arry
40					2	2 <											7 X
30																	
20																	
10.0																	
	00 2322.00			2362		238		2402		2422		2442		462.0	0	2502.	00 MH
No.	Mk.	Freq	•	Rea Lev			orrect actor		asure [.] nent	-	Limit	[Over				
		MHz		dB	uV		dB	dE	3uV/m	(dBuV/	m	dB	D	Detector	Com	ment
1		2372.5	60	56.	11	-{	5.03	5	51.08		74.00)	-22.92		peak		
2		2372.5	60	43.	54	-{	5.03	3	8.51		54.00)	-15.49		AVG		
3		2400.0	00	74.	99	-4	1.99	7	0.00		74.00)	-4.00		peak	NoL	imit
4	Х	2402.0	00	105	.06	-5	5.00	1	00.06		74.00)	26.06		peak	NoL	imit
5	*	2402.0	00	100	.49	-5	5.00	ç	5.49		54.00)	41.49		AVG	NoL	imit
6		2500.6	67	55.			1.86		0.72		74.00)	-23.28		peak		
7		2500.6	67	43.	.11	-4	1.86	3	8.25		54.00)	-15.75		AVG		

	Test Mo	do	DT /2	3 Mbps)		Test Date		2024	/11/25
	Test Frequ			0MHz		Polarization	1		zontal
	Temp			5°C		Hum.)%
130.0	dBu¥/m								
100									
120									
110									
100					3				
					ñ				
90									
80									
70									
60									
50	i X data at buy	d warden war when	a talana daalah wa	March Mappine	send march the	www.wantaka-wanta	A set the case of a sector		una del des a deve
40		atur. Alaba in Alaba atu 1995 atu	لا يا رايين سيار يحديا ورايين الم	a de la completa de l		6	an a	and the second	Provide by Provide 14
40	2 X					X			
30									
						^			
20						~ 			
20 10.0									
10.0	80.000 2400.0	0 2420.00	2440.00	2460.00	2480.00 2		20.00 254	0.00	2580.00 MHa
10.0		0 2420.00 Freq.	2440.00 Reading	2460.00 Correct	2480.00 2 Measure-		20.00 254 Over	0.00	2580.00 MHz
10.0 23		Freq.	Reading Level	Correct Factor	Measure- ment	500.00 252 Limit	Over		
10.0 23 No		Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	500.00 252 Limit dBuV/m	Over dB	Detector	2580.00 MHz Comment
10.0 23 No	o. Mk.	Freq. MHz 2387.413	Reading Level dBuV 54.77	Correct Factor dB -5.01	Measure- ment dBuV/m 49.76	500.00 252 Limit dBuV/m 74.00	Over dB -24.24	Detector peak	
10.0 23 No	o. Mk.	Freq. MHz 2387.413 2387.413	Reading Level dBuV 54.77 42.96	Correct Factor dB -5.01 -5.01	Measure- ment dBuV/m 49.76 37.95	500.00 252 Limit dBuV/m 74.00 54.00	Over dB -24.24 -16.05	Detector peak AVG	Comment
10.0 23 No 1 2 3	o. Mk.	Freq. MHz 2387.413 2387.413 2480.000	Reading Level dBuV 54.77 42.96 105.45	Correct Factor dB -5.01 -5.01 -4.89	Measure- ment dBuV/m 49.76 37.95 100.56	500.00 252 Limit dBuV/m 74.00 54.00 74.00	Over dB -24.24 -16.05 26.56	Detector peak AVG peak	Comment NoLimit
10.0 23 No 1 2 3 4	 Mk. X * 	Freq. MHz 2387.413 2387.413 2480.000 2480.000	Reading Level dBuV 54.77 42.96 105.45 101.09	Correct Factor dB -5.01 -5.01 -4.89 -4.89	Measure- ment dBuV/m 49.76 37.95 100.56 96.20	500.00 252 Limit dBuV/m 74.00 54.00 74.00 54.00	Over dB -24.24 -16.05 26.56 42.20	Detector peak AVG peak AVG	Comment
10.0 23 No 1 2 3	 Mk. X * 	Freq. MHz 2387.413 2387.413 2480.000	Reading Level dBuV 54.77 42.96 105.45	Correct Factor dB -5.01 -5.01 -4.89	Measure- ment dBuV/m 49.76 37.95 100.56	500.00 252 Limit dBuV/m 74.00 54.00 74.00	Over dB -24.24 -16.05 26.56	Detector peak AVG peak	Comment NoLimit

	Test M				(1 Mbps)		Test Date			/11/25
	Test Free				02MHz		Polarizatio	on		tical
130.0	Terr dBuV/m	ip			25°C		Hum.		60)%
130.0	abatrin									
120										
110										
100										
90										
80 -										
70										
60 —										
50 -										
			1 X							
40			2							
30 –			×							
20										
10.0										
	0.000 2700	00 44	00.00	6100.00	7800.00	9500.00	11200.00 1	2900.00 146	:00.00	 18000.00 MHz
No.	Mk.	Fre		Reading		Measure-		Over	00.00	10000.00 MI12
140.	IVIIX.	110	·Y•	Level	Factor	ment	Linne	0,001		
		M	Ιz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804	.000	43.70	0.88	44.58	74.00	-29.42	peak	
2	*	4804	.000	31.86	0.88	32.74	54.00	-21.26	AVG	

	Test M					BT (1						Test Da				/11/25
7	Test Free		псу				<u>2MH</u>	Z			F	Polariza				zontal
130.0	Ten dBuV/m	np				2	5°C					Hum	•		60	0%
130.0	UDU¥7III															
120																
120																
110																
100																
90 -																
80																
70																
60 —																
50																
30				1 X												
40				2												
30				x												
20																
10.0																
	.000 2700	D.00	4400		6100		7800		9500			200.00			4600.00	18000.00 MI
No.	Mk.		Freq	•	Rea			orrect		easur		Limit		Over		
			MHz	-	Le [.] dB			actor dB		ment			~	dB	Detector	Comment
1			1804.0		ав 43.			ав .88		3uV/r 44.16		dBuV/ 74.00		-29.84	Detector	Comment
2	*		4804.0 4804.0		43. 31.			.00 .88		+4.16 32.78		54.00		-29.64	peak AVG	
۷		2	+004.0	00	31.	90	0	.00		DZ.18		54.00	J	-21.22	AVG	

	Test Mo			Mbps)		Test Date			/11/25
-	Test Frequ			1MHz		Polarization	n		tical
<u> </u>	Temp)	2	5°C		Hum.		60	0%
130.0	dBu¥/m	1							
120									
110									
100 -									
90									
80 -									
70									
60									
50		1							
40		2 X							
30									
20									
	.000 2700.0	0 4400.00	6100.00	7800.00	9500.00 1	1200.00 12	900.00 146	500.00	 18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	43.55	1.04	44.59	74.00	-29.41	peak	Comment
2	*	4882.000	32.31	1.04	33.35	54.00	-20.65	AVG	

_	Test Mo Test Frequ			I Mbps) 1MHz		Test Date Polarization			/11/25 zontal
	Temp			5°C		Hum.			2011.ai
130.0	dBuV/m)	2	50		TIUIII.		0	J 70
120									
110									
100 -									
90 –									
80 -									
70									
60									
50		1 X							
40 -									
		2 X							
30									
20 –									
10.0									
1000	.000 2700.0)0 4400.00	6100.00	7800.00	9500.00 1	1200.00 12	900.00 146	500.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	43.22	1.04	44.26	74.00	-29.74	peak	
2	*	4882.000	32.76	1.04	33.80	54.00	-20.20	AVG	

	Test N				E	BT (1						Test D					/11/25	
	Test Fre		ency				<u>DMH</u>	Z			F	Polariza					tical	
130.0	Ter dBuV/m	np				25	5°C					Hum	i .			60)%	
130.0	abuv/m																	
120 -																		
110																		
100																		
90																		
80 -																		
70																		
60																		
50				X														
40				2 X														
30				^														
20																		
10.0																		
	D.000 270				6100.		7800		9500			200.00			14600.00		18000.	00 MHz
No.	Mk.		Freq.		Read Lev			rrect actor		easur ment		Limi	t	Over	r			
			MHz		dBu		(dB		3uV/r		dBuV/	/m	dB	De	tector	Comm	nent
1			4960.00	00	44.8	34	1	.21	2	46.05		74.0	0	-27.9	5 р	eak		
2	*		4960.00	00	32.3	30	1	.21	3	33.51		54.0	0	-20.4	9 A	WG		

	Test				ļ	BT (1						Test Da				4/11/25		
	Test Fre		ency				<u>0MH</u>	Z			F	Polariza				Horizontal 60%		
130.0	Ter dBu¥/m	np				2:	5°C					Hum	•		6	0%		
T30.0	dbuttin																1	
120																		
110																	1	
100 -																		
90																		
30																	1	
80 -																	{	
70																	1	
60 -																	1	
50				1 X													1	
40																		
10				2 X]	
30				^													1	
20																		
10.0																		
	0.000 270	0.00	4400	.00	6100	.00	7800).00	9500).00	11	200.00	129	DO.00	14600.00	18000.00	.∣ ∙MHz	
No.	Mk.		Freq		Read	ding	Сс	rrect	Me	easur	e-	Limi	t	Over			—	
			•		Le		Fa	actor		ment								
			MHz		dB			dB		BuV/r		dBuV/		dB	Detector	Comme	nt	
1			4960.0		44.			.21		45.51		74.00		-28.49				
2	*		4960.0	00	32.	26	1	.21	3	33.47		54.00)	-20.53	3 AVG			

	Test Mo			B Mbps)		Test Date			/11/25
le	est Frequer			2MHz		Polarization	Vertical 60%		
130.0 (Temp 1Bu¥/m	0	2	5°C		Hum.		60	0%
130.0 0	JD U¥7III								
120									
110 -									
100									
90 -									
во									
70									
50									
50									
40		1							
30		2 X							
20									
10.0									
1000.0	00 2700.	00 4400.00) 6100.00	7800.00	9500.00 1	1200.00 12	900.00 146	00.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000) 44.27	0.88	45.15	74.00	-28.85	peak	
2	*	4804.000) 32.01	0.88	32.89	54.00	-21.11	AVG	

	Test Mo	ode	BT (3	3 Mbps)		Test Date		2024	/11/25
-	Test Frequ	uency	240	2MHz		Polarization	Horizontal		
	Temp)	2	5°C		Hum.		60%	
130.0	dBuV/m								
120									
110									
100									
90 -									
80 -									
70									
60									
50									
40		1	<						
40		2	2						
30		>	<u>s</u>						
20									
10.0									
1000).000 2700.0	DO 4400.00) 6100.00	7800.00	9500.00 1		900.00 146	600.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000) 44.72	0.88	45.60	74.00	-28.40	peak	
2	*	4804.000) 32.15	0.88	33.03	54.00	-20.97	AVG	

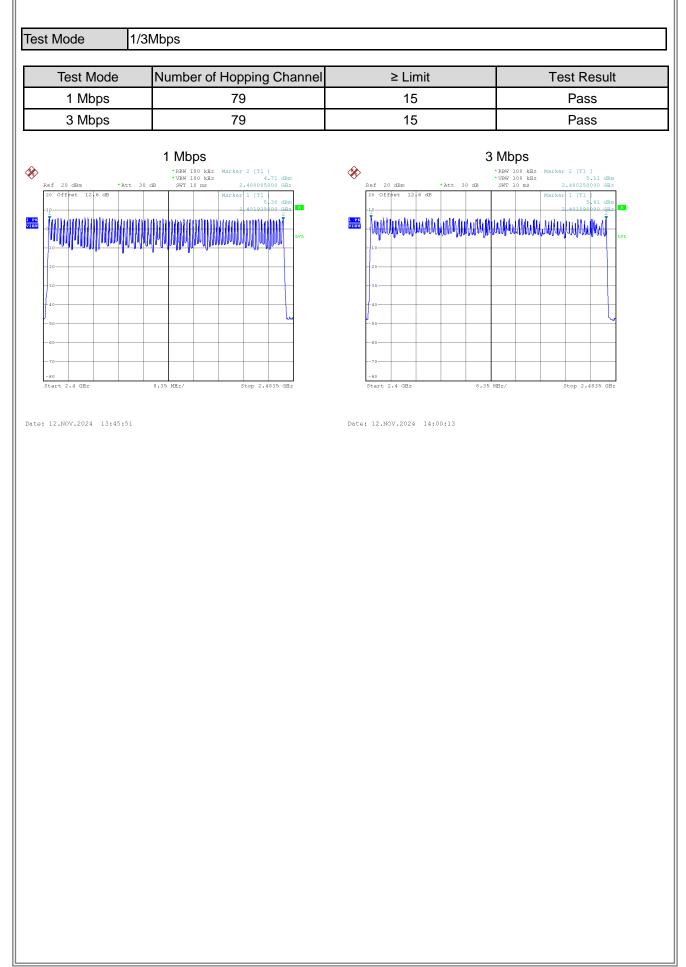
	Test Mo	de	BT (3	B Mbps)		Test Date		2024	/11/25	
1	Test Frequ	lency		1MHz		Polarization	n	Vertical		
	Temp)	2	5°C		Hum.		60%		
130.0	dBuV/m									
120										
110										
100 -										
90 -										
80										
70										
60										
50		1×								
40		2 X								
20										
10.0										
1000	.000 2700.0	0 4400.00	6100.00	7800.00	9500.00 1	1200.00 12	900.00 146	60.00	18000.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4882.000	43.81	1.04	44.85	74.00	-29.15	peak		
2	*	4882.000	32.41	1.04	33.45	54.00	-20.55	AVG		

т	Test Mo est Frequ			3 Mbps) 1MHz		Test Date Polarizatio			/11/25 zontal	
<u> </u>	Temp			5°C	Hum.			60%		
130.0	dBuV/m	/	2	50		Tium.		0	570	
120 🗕										
110										
110										
100										
90 -										
_										
80										
70 🗖										
60 —										
50										
		1 X	:							
40 -		2								
30 –		×								
20										
10.0										
	.000 2700.0		6100.00	7800.00				500.00	18000.00 MH	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4882.000	43.68	1.04	44.72	74.00	-29.28	peak		
2	*	4882.000	32.96	1.04	34.00	54.00	-20.00	AVG		

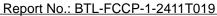
	Test Mo	ode	BT (3	3 Mbps)		Test Date		2024	/11/25	
-	Test Frequ	lency		30MHz		Polarization	า	Vertical		
	Temp)	2	25°C		Hum.		60%		
130.0	dBuV/m									
120										
110										
100 -										
90										
80										
70										
60 -										
50			1 X							
40			2 X							
30 -			×							
20 –										
10.0										
).000 2700.0			7800.00				00.00	18000.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4960.000	44.81	1.21	46.02	74.00	-27.98	peak		
2	*	4960.000	32.29	1.21	33.50	54.00	-20.50	AVG		

	Test Mo	ode	BT (3	3 Mbps)		Test Date		2024	/11/25	
-	Test Frequ			0MHz		Polarization		Horizontal		
	Temp		2	5°C		Hum.		60%		
130.0	dBuV/m									
120										
110										
100										
90 -										
80 -										
70										
60 -										
50			ı X							
40										
			2							
30			•							
20										
10.0										
1000	0.000 2700.0	0 4400.00	6100.00	7800.00	9500.00 1	1200.00 12	900.00 146	600.00	18000.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4960.000	45.25	1.21	46.46	74.00	-27.54	peak		
2	*	4960.000	32.35	1.21	33.56	54.00	-20.44	AVG		

т	Test Mod est Freque				Mbps) 1MHz		Test Dat Polarizati			/11/25 tical		
<u> </u>	Temp	cricy			5°C		Hum.			60%		
130.0	dBuV/m			_			- Tomm					
120												
120												
110												
100 -												
90 -												
80 -												
70 ⊨												
60 -												
50 -		1										
40 –		1 X										
30 -		2 X										
20 -												
10												
0.0												
18000	0.00018850.0	00 19700.	00 2	20550.00	21400.00	22250.00	23100.00	23950.00 24	800.00	26500.00 MH		
No.	Mk.	Freq.		leading Level	Correct Factor	Measure ment	- Limit	Over				
		MHz		dBuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment		
1		19528.0	0	51.69	-6.96	44.73	74.00	-29.27	peak			
2	*	19528.0	0	40.92	-6.96	33.96	54.00	-20.04	AVG			



Т	Test Mode Test Frequency				Mbps) 1MHz		Test Date Polarizatio			/11/25 zontal
	Temp				5°C	Hum.			60%	
130.0	dBuV/m									
120										
110										
100 🗕										
90										
80										
70										
60 -										
50		1								
40		1 X								
30		2 X								
20										
10										
0.0										
18000	0.000 18850.	00 19700.	.00	20550.00	21400.00	22250.00	23100.00 23	3950.00 248	300.00	26500.00 MH;
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		19528.0	0	52.87	-6.96	45.91	74.00	-28.09	peak	
2	*	19528.0	0	41.26	-6.96	34.30	54.00	-19.70	AVG	

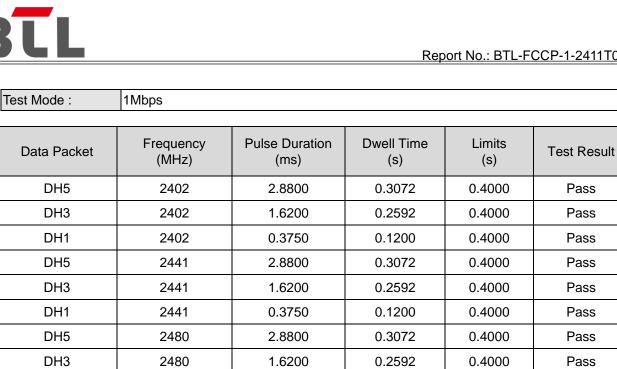

APPENDIX E NUMBER OF HOPPING CHANNEL

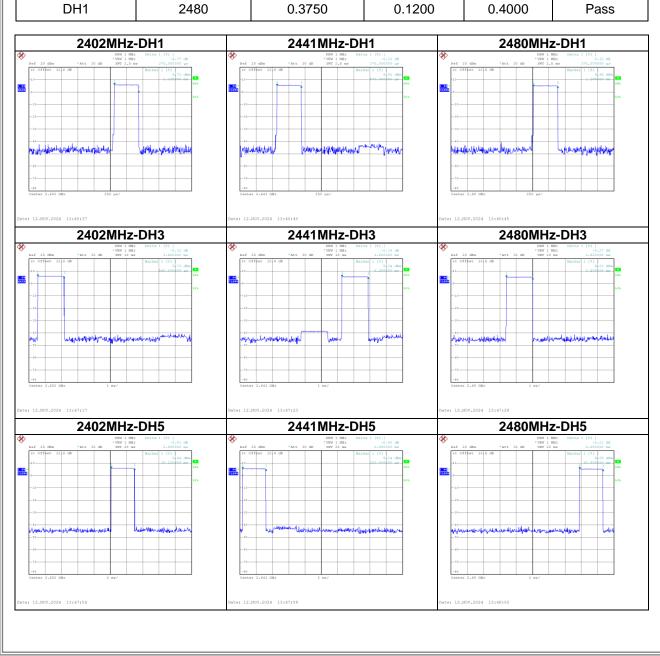
APPENDIX F AVERAGE TIME OF OCCUPANCY

Pass

Pass

Pass

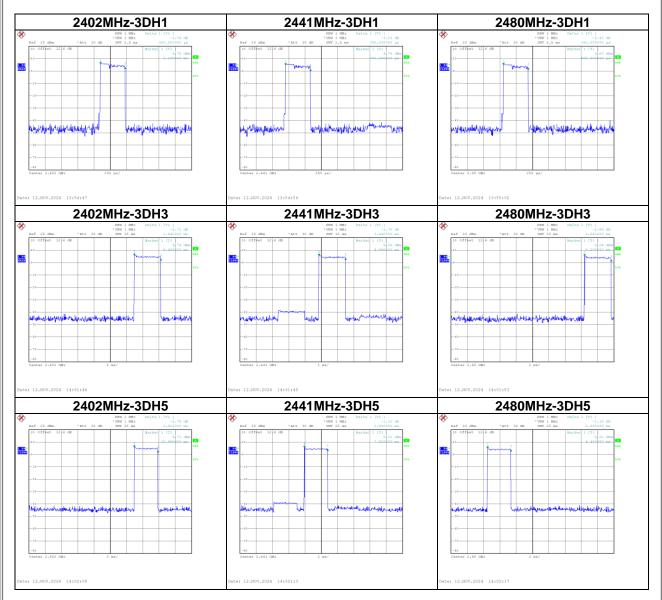

Pass


Pass

Pass

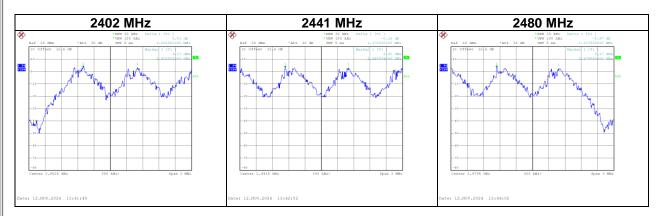
Pass

Pass



Test Mode : 3Mbps

Pulse Data Packet Frequency Dwell Time(s) Limits(s) **Test Result** Duration(ms) 3DH5 2402 2.9200 0.3115 0.4000 Pass 3DH3 2402 0.2624 0.4000 Pass 1.6400 3DH1 2402 0.3800 0.1216 0.4000 Pass 3DH5 2441 2.8800 0.3072 0.4000 Pass 3DH3 2441 1.6400 0.2624 0.4000 Pass 3DH1 2441 0.3850 0.1232 0.4000 Pass 3DH5 2480 2.8800 0.3072 0.4000 Pass 3DH3 2480 1.6400 0.2624 0.4000 Pass 3DH1 2480 0.3800 0.1216 0.4000 Pass



APPENDIX G HOPPING CHANNEL SEPARATION MEASUREMENT



Test Mode : Hopping on _1Mbps									
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result						
2402	1.002	0.625	Pass						
2441	1.170	0.618	Pass						
2480	1.138	0.628	Pass						

Test Mode : Hopping on _3Mbps									
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result						
2402	0.997	0.839	Pass						
2441	0.841	0.839	Pass						
2480	0.834	0.801	Pass						

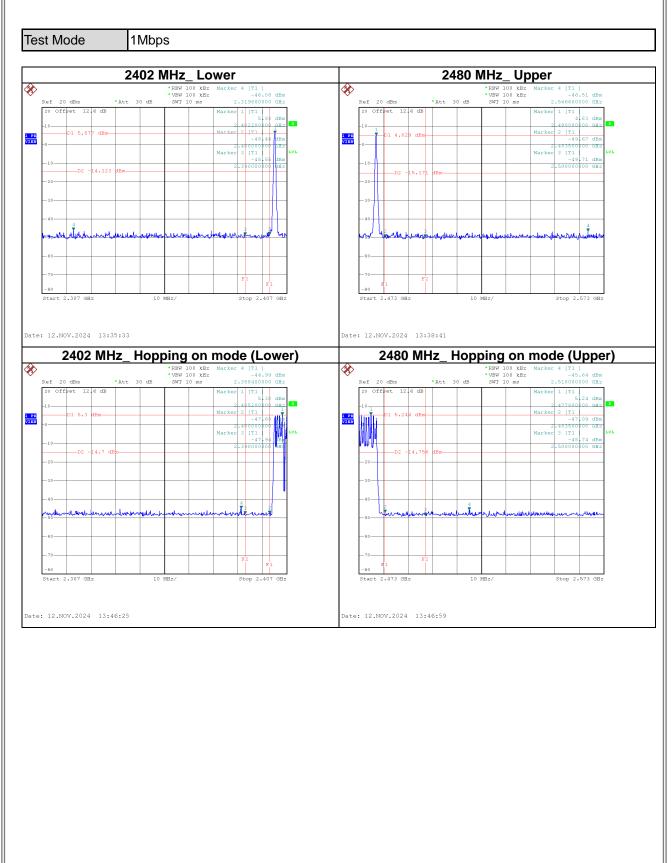


APPENDIX H BANDWIDTH

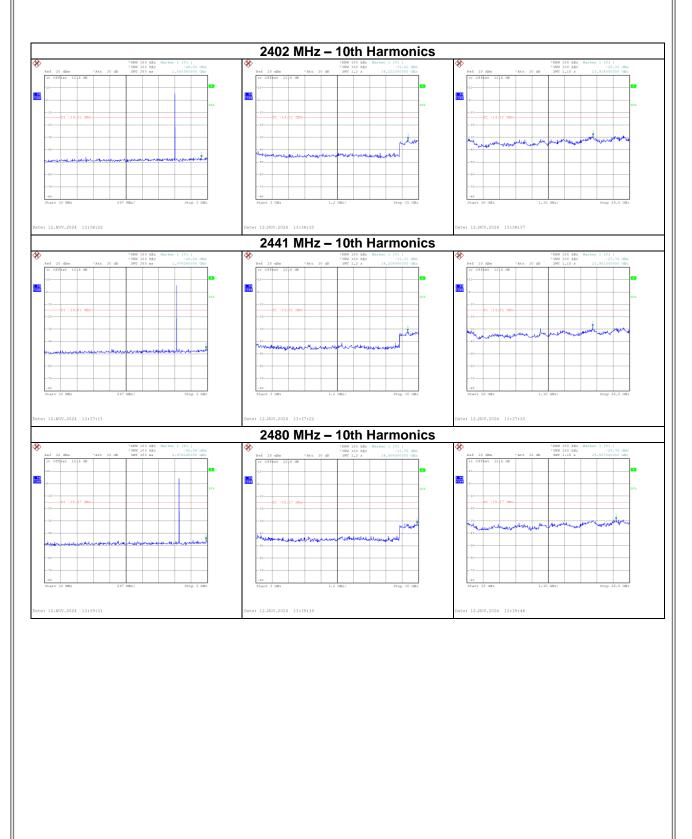
Test Mode : 1Mbps									
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result						
2402	0.938	0.852	Pass						
2441	0.927	0.852	Pass						
2480	0.942	0.860	Pass						

Test Mode : 3Mbps						
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result			
2402	1.258	1.168	Pass			
2441	1.258	1.144	Pass			
2480	1.202	1.152	Pass			

APPENDIX I	OUTPUT POWER	



Test Mode : 1Mbps			Tested Date 2024/11/12~11/13				
6			-	-			
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result		
2402	6.58	0.0045	20.97	0.1250	Pass		
2441	6.28	0.0042	20.97	0.1250	Pass		
2480	5.88	0.0039	20.97	0.1250	Pass		
Test Mode :	Test Mode :2MbpsTested Date2024/11/12~11/1						
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result		
2402	6.56	0.0045	20.97	0.1250	Pass		
2441	6.25	0.0042	20.97	0.1250	Pass		
2480	5.85	0.0038	20.97	0.1250	Pass		
Test Mode : 3Mbps Tested Date 2024/11/12~11/13							
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result		
2402	6.87	0.0049	20.97	0.1250	Pass		
2441	6.56	0.0045	20.97	0.1250	Pass		
2480	6.12	0.0041	20.97	0.1250	Pass		



APPENDIX J ANTENNA CONDUCTED SPURIOUS EMISSION

