Radio Test Report

Report No.: CTA231114011W02

Issued for

Buddi Limited

Talbot House 17 Church Street Rickmansworth, WD3 1DE United Kingdom

Product Name: Smart ID

Brand Name: Buddi Limited

Model Name: S10-BUD-A-TEEU-SID

Series Model(s): 7630001

FCC ID: ZDLST9

Test Standards: FCC Part 15.249

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from CTA, all test data presented in this report is only applicable to presented test sample.

TEST REPORT

	Applicant's Name	Buddi Limited
	Address	Talbot House 17 Church Street Rickmansworth, WD3 1DE United Kingdom
	Manufacturer's Name	Buddi Limited
	Address:	Talbot House 17 Church Street Rickmansworth, WD3 1DE United Kingdom
	Product Description	
CTATE	Product Name	Smart ID
	Brand Name:	Buddi Limited
	Model Name:	S10-BUD-A-TEEU-SID
	Series Model(s)	7630001
	Test Standards	7630001 FCC Part 15.249
	Test Procedure:	ANSI C63.10-2013
	under test (EUT) is in compliance sample identified in the report. This report shall not be reproduc	been tested by CTA, the test results show that the equipment with the FCC requirements. And it is applicable only to the tested ed except in full, without the written approval of CTA, this document A, personal only, and shall be noted in the revision of the document.
	Date of Test	TESTIN
	Date of receipt of test item:	20 Oct. 2023
	Date of performance of tests:	20 Oct. 2023 ~ 27 Dec. 2023
	Date of Issue:	27 Dec. 2023
CTATE	Test Result:	Pass
	CTATEST	TESTING
	Testing Engine	eer: Zoey Con

Testing Engineer :	Zoey Coro	CTATESTING
	(Zoey Cao)	CIP CIP
Technical Manager :	Anny Won	
	(Amy Wen)	
Authorized Signatory :	Eric Wang	ESTING
Car	(Eric Wang)	

Table of C	Contents Pa	age
CTA		
1. SUMMARY OF TEST RESULTS	ING	5
1.1 TEST FACTORY	TESTIN	6
1.2 MEASUREMENT UNCERTAINTY	CTATESTING	6
2. GENERAL INFORMATION		7
2.1 GENERAL DESCRIPTION OF TH	E EUT	7
2.2 DESCRIPTION OF THE TEST MO	DDES	8
2.3 TEST SOFTWARE AND POWER	LEVEL 8	8
	.NG	9
	ACCESSORIES AND SUPPORT UNITS 10	
2.6 EQUIPMENTS LIST FOR ALL TES	ST ITEMS 1°	1
3. EMC EMISSION TEST	CTAT1	3
3.1 CONDUCTED EMISSION MEASU		3
3.2 RADIATED EMISSION MEASURE	EMENT 17	7
4. BANDWIDTH TEST	30	0
4.1 TEST PROCEDURE	30	0
4.2 TEST SETUP	STINE 30	
4.3 EUT OPERATION CONDITIONS	STING 30	
4.4 TEST RESULTS	3CTATESTING 3C	1
5. ANTENNA REQUIREMENT	33	3
5.1 STANDARD REQUIREMENT	33	3
5.2 EUT ANTENNA	33	3
APPENDIX- PHOTOS OF TEST SETUP	34	4
APPENDIX- PHOTOS OF TEST SETUP		
APPENDIX- PHOTOS OF TEST SETUP	CTATESTING	
	TATES	

Page 4 of 34

Report No.: CTA231114011W02

Revision History

	ESTING	Revision Hi	story	
Rev.	Issue Date	Report No.	Effect Page	Contents
00	27 Dec. 2023	CTA231114011W02	ALL	Initial Issue
	,		Com C	TA
				\'\

Report No.: CTA231114011W02

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

E	FCC Part 15.249 , Subpart C						
	Standard Section	Test Item	Judgment	Remark			
	15.207	Conducted Emission	PASS	(C) 112			
oT\\	15.203	Antenna Requirement	PASS				
CTATESTI	15.249	Radiated Spurious Emission	PASS				
Ì	15.249	Radiated Band Edge Emission	PASS				
	15.249	Field Strength of fundamental	PASS				
	15.215(c)	20dB Bandwidth	PASS	CTATES!			

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

Page 6 of 34 Report No.: CTA231114011W02

1.1 TEST FACTORY

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an CTATESTING

District, Shenzhen, China

FCC test Firm Registration Number: 517856 IC test Firm Registration Number: 27890

A2LA Certificate No.: 6534.01

IC CAB ID: CN0127

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Range	Measurement Uncertainty	
Radiated Emission	30~1000MHz	4.06 dB	TESTING
Radiated Emission	1~18GHz	5.14 dB	TE
Radiated Emission	18-40GHz	5.38 dB	
Conducted Disturbance	0.15~30MHz	2.14 dB	
Output Peak power	30MHz~18GHz	0.55 dB	
Power spectral density	/	0.57 dB	
Spectrum bandwidth	/	1.1%	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Smart ID	
Brand Name	Buddi Limited	
Model Name	S10-BUD-A-TEEU-SID	
Series Model(s)	7630001	K CTA.
Model Difference	The difference only in the model name.	
Product Description	The EUT is a Smart ID. Operation Frequency: 914.5-921.0Mhz Modulation Type: ASK Antenna Designation: FPC Antenna Gain(Peak): 1.33dBi Based on the application, features, or specification exhibited in User Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User Manual.	
Adapter	Smart ID Dock (without battery): Input: DC 5V, 1.2A Output: DC 5V, 1.2A Charging head: Input:100-240V~, 50/60Hz, 0.3A Output:DC 5V 1.2A	
Battery	Rated Voltage: 3.7V Charge Limit Voltage: 4.2V Capacity: 2650mAh	
Rating	Input:DC 5V 1.2A	
Connecting I/O Port(s)	Please refer to the Note 1.	CTATES
Hardware version number	V14.0	
Software version number	1.41.2	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

∠.									
	Town Hills	Channel List							
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
	1	014 50	2	017.50	2	021.00			

3.						
	Test channel List					
	Test Channel	EUT Channel	Test Frequency (MHz)			
P	lowest	CH01	914.50			
	middle	CH02	917.50			
	highest	CH03	921.00			

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

		H.C. T.		_
	Pretest Mode	Description	Data/Modulation	-69
	Mode 1	TX/CH01	ASK	CTATE
CTING	Mode 2	TX/CH02	ASK	
CTATESII	Mode 3	TX/CH03	ASK	
	Note:	ESI		1

Note:

(1) All above mode have been measurement, only worst data was reported.

For AC Conducted Emission

For AC Conducted Emission	CTATES	TING
	Test Case	CTATESI
AC Conducted Emission	Mode 4 : Keeping TX	

2.3 TEST SOFTWARE AND POWER LEVEL

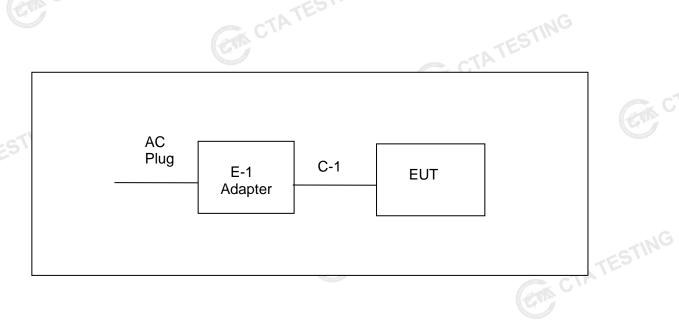
During testing channel & power controlling software provided by the customer was used to control the

operating channel as well as the output power level.

(0)	RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing	
	Other SRD	915MHz	ASK	1.33	Default	The EUT has signal transmission when it is powered on	CTATES
CTATEST	ING.	TESTING					•

Report No.: CTA231114011W02 Page 9 of 34

STING


2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of on; the final end product power parameters.

Radiated Spurious Emission Test

EUT

Conducted Emission Test

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

				to occurry at occupant	<u> </u>	_71 11 7	_
	Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note	
	N/A	N/A	N/A	N/A	N/A	N/A	TATES
	. (3					EM	CAL
	Wo						
CTATEST			ESTING				
	1	< A	1	1	16		1

		.63.			
	CTA		Support units	STING	
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-1	Adapter	HUAWEI	HW-050450C00	N/A	N/A
C-1	USB Cable	N/A	N/A	100cm	NO
	TING				
	ATESI		,s\G		
W.			ATESTIN		.6
Note	e:	EW CT			STING

(1) For detachable type I/O cable should be specified the length in cm in Length column. CTATES

Report No.: CTA231114011W02

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
CTATES	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
CTATES	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
	Test Equipment	Manufacturer	Model No.	Version number	Calibration	Calibration Due Date

Page 12 of 34 Report No.: CTA231114011W02

TESTING	·			Date		
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
5111	CTING					
	TATESTING		resting			

Page 13 of 34 Report No.: CTA231114011W02

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

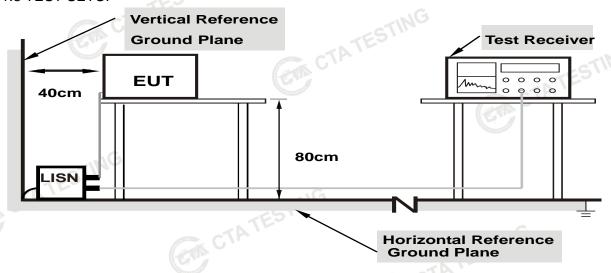
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

CTATESTING Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

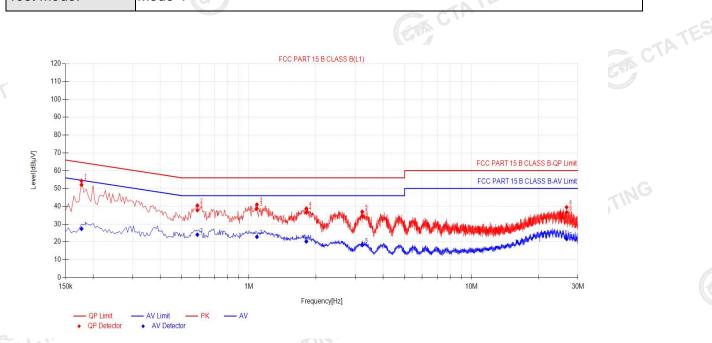
The following table is the setting of the receiver	
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz
GTA CTA	CTATESTING CTATESTING

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN.


2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support.

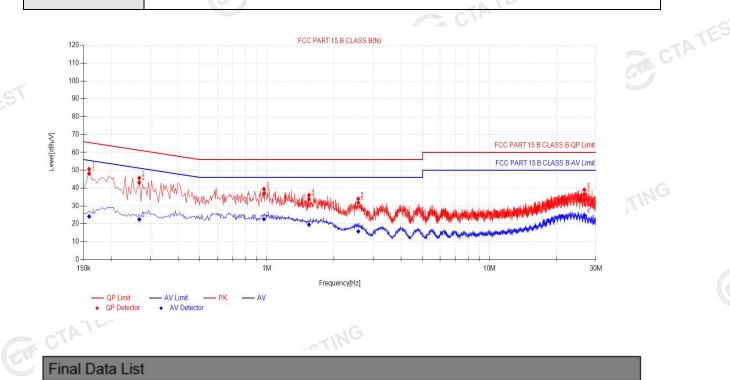
3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

Temperature:	23.5(C)	Relative Humidity:	62%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		TESTIN

Fina	Final Data List										
NO.	Freq. [MHz]	Factor (dB)	QP Reading(dB,	QP Value IdBuVJ	QP Limit IdBUVQ	QP Margin [dB]	AV Reading IdBuVQ	AV Value IdBu\Q	AV Limit IdBUVJ	AV Margin (dB)	Verdict
1	0.177	10.50	41.61	52.11	64.63	12.52	16.89	27.39	54.63	27.24	PASS
2	0.5865	10.50	27.36	37.86	56.00	18.14	13.58	24.08	46.00	21.92	PASS
3	1.086	10.50	28.27	38.77	56.00	17.23	12.41	22.91	46.00	23.09	PASS
4	1.8105	10.50	28.03	38.53	56.00	19.47	9.78	20.28	46.00	25.72	PASS
5	3.228	10.50	23.96	34.46	56.00	21.54	7.76	18.26	46.00	27.74	PA88
6	26.7045	10.50	26.15	36.65	60.00	23.35	11.27	21.77	50.00	28.23	PA88


Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)
2). Factor (dB)=insertion less ($dB\mu V$)+ $dB\mu V$

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Report No.: CTA231114011W02 Page 16 of 34

CTATES"

Temperature:	26.2(C)	Relative Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 4	1	ESTIN

	Final Data List												
	NO.	Freq. [MHz]	Factor (dB)	QP Reading(dB,	QP Value IdBUVJ	QP Limit IdBUSQ	QP Margin [dB]	AV Reading IdBuVJ	AV Value IgBuVJ	AV Limit IdBUSQ	AV Margin [dB]	Verdict	C.
ſ	1	0.159	10.50	37.61	48.11	65.52	17.41	13.61	24.11	55.52	31.41	PA88	TES
	2	0.267	10.50	32.60	43.10	61.21	18.11	11.98	22.48	51.21	28.73	PASS	CTA
	3	0.969	10.50	28.44	38.94	56.00	19.06	12.14	22.64	46.00	23.36	PASS	. 0
	4	1.545	10.50	23.47	33.97	56.00	22.03	9.04	19.54	46.00	26.46	PASS	1
	5	2.571	10.50	21.35	31.85	56.00	24.15	5.27	15.77	46.00	30.23	PASS	
	6	26.61	10.50	26.07	36.57	60.00	23.43	14.21	24.71	50.00	25.29	PASS	

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). QPMarqin(dB) = QPL imit (dPL) (2000) Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)

- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

Page 17 of 34 Report No.: CTA231114011W02

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on Part 15.249 and the Part 15.209(a) limit in the table below has to be followed.

Standard FCC 15.209

	Otaridara i OO 10.200			-
	Frequencies	Field Strength	Measurement Distance	
	(MHz)	(micorvolts/meter)	(meters)	CTATES
	0.009~0.490	2400/F(KHz)	300	
ESTING	0.490~1.705	24000/F(KHz)	30	Talling of the last of the las
CTATESTING	1.705~30.0	NG 30	30	1
	30~88	100	3	1
	88~216	150	3	1
	216~960	200	3	ING
	960~1000	500	3 TES	1,
	Above 1000	Other:74.0 dB(µV)/m (Peak)	3	1
		54.0 dB(μV)/m (Average)	S. S	

Standard FCC 15.249

i	412 '	- 46.4		
(en	Frequency of Emission (MHz)	Field Strength of fundamental (millivolts /meter)	Field Strength of Harmonics (microvolts/meter)	
	900~928	50	500	TES
	2400~2483.5	50	500	CTA
GTIN	5725~5875	50	500	
CTATESTIN	24000~242500	250	2500	
	Notes:			•

Notes:

- (1) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser
- (2) Emission level (dBuV/m) =20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
Ltd .	0.495-0.505 16.69475-16.69525 2.1735-2.1905 16.80425-16.80475		608-614	5.35-5.46		
			960-1240	7.25-7.75		
3 88	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		

Page 18 of 34 Report No.: CTA231114011W02

6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	Above 38.6		
13.36-13.41					

	12.5/6/5-12.5/725	322-335.4	3600-4400	Above 38.6				
	13.36-13.41	_						
CTATEST	ING							
TATES	Spectrum Parame	ter	Setting					
CAL	Detector	STIN	Peak/A\	/				
	Attenuation		Auto					
	Start Frequency	,	1000 MHz					
	Stop Frequency		10th carrier ha	armonic				
	RB (emission in restricted	band)	>20BW					
G	VB (emission in restricted	band)	=3xRB	GW.				

	Receiver Parameter	Setting				
	Attenuation	Auto				
C	Attenuation Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV				
The state of the s	C.T	90kHz~110kHz / RB 200Hz for QP				
	Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV				
		490kHz~30MHz / RB 9kHz for QP				
		30MHz~1000MHz / RB 120kHz for QP				
G		Co				
ESTING						

STING

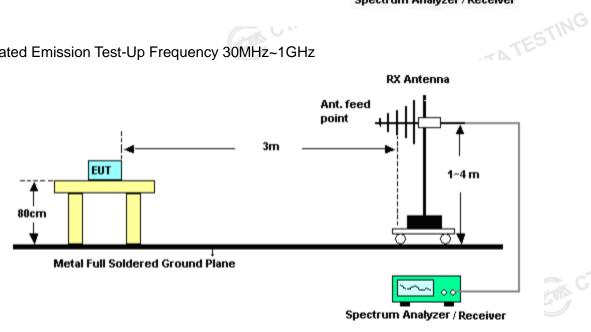
Page 19 of 34 Report No.: CTA231114011W02

3.2.2 TEST PROCEDURE

a. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of arotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)

- b. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- C. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a receive peak detector mode.
 Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform (Below 1GHz)
- f. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak & AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.3 DEVIATION FROM TEST STANDARD
No deviation


Report No.: CTA231114011W02 Page 20 of 34

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

CTATESTING (C) Radiated Emission Test-Up Frequency Above 1GHz Ant. feed point 1-4 m EUT 1.5m Metal Full Soldered Ground Plane Spectrum Analyzer / Receiver System Simulator

CTATES" Page 21 of 34 Report No.: CTA231114011W02

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic CTATESTING equation with a sample calculation is as follows:

Margin=PL-PK L or AL- AV L; Margin only shown the worst case.

Where

PR = Peak Reading

AR = Average Reading

PL = Peak Level

AL = Average Level

AF = Antenna Fac PK L = Peak Limit AV L = AV I AF = Antenna Factor

AV L = Peak AV L = AV Li For example	imit	TESTING	5		-iN/	G		
Frequency	PR	AR	AF	PL	AL	PK L	AV L	Margin
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
2178	40.23	30.31	9.83	50.06	40.14	74.00	54.00	-13.86

Page 22 of 34 Report No.: CTA231114011W02

3.2.6 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Below 30 MHz

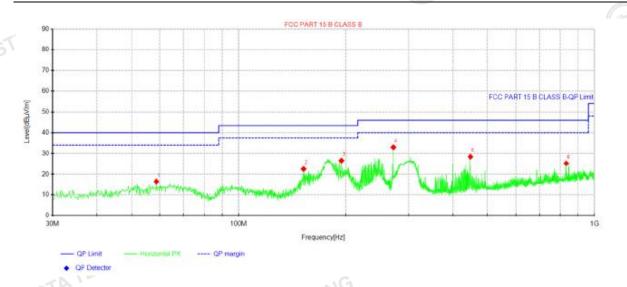
2300	CTATESI	,,,,,	
Below 30 MHz			ESTIN
Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 3.7V	Polarization:	
Test Mode:	TX Mode	William Committee	10.14

	TOST WOOD.	7 WOOC			
	C				CV
FEST	Freq.	Reading	Limit	Margin	State
CTATL	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
1		TATES.		, NG	PASS
	- EVA			ESTIN	PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);


Limit line = specific limits(dBuv) + distance extrapolation factor. CTATESTING

ENT CTATES"

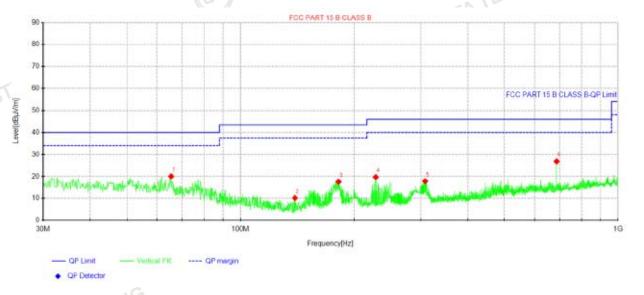
Report No.: CTA231114011W02

Between 30MHz - 1000 MHz Radiation Spurious

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 3.7V	Phase:	Horizontal
Test Mode:	Mode 1/2/3 (wost mode1)	CTP	

Susp	ected Data	List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevite	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	58.7362	34.32	16.38	-17.94	40.00	23.62	100	253	Horizontal	
2	152.341	44.24	22.52	-21.72	43.50	20.98	100	179	Horizontal	
3	194.536	46.14	26.51	-19.63	43.50	16.99	100	204	Horizontal	
4	272.015	50.66	32.97	-17.69	46.00	13.03	100	0	Horizontal	
- 5	448.07	43.47	28.37	-15.10	46.00	17.63	100	1	Horizontal	
6	832.796	35.44	25.19	-10.25	46.00	20.81	100	146	Horizontal	

35.44 25.19 -15.10 46.00
Note:1).Level (dBμV/m)= Reading (dBμV)+ Factor (dB/m)


- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 24 of 34

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 3.7V	Phase:	Vertical
Test Mode:	Mode 1/2/3 (wost mode1)		CTING

ENT CTATES"

Report No.: CTA231114011W02

ı	Suspe	ected Data	List								
	NO	Freq. Reading		Level	Factor	Limit	Margin	Height	Angle	5.1.7	
4	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
	1	65.5262	39.74	20.05	-19.69	40.00	19.95	100	51	Vertical	
	2	139.367	31.93	10.17	-21.76	43.50	33.33	100	34	Vertical	
	3	181.805	37.98	17.55	-20.43	43.50	25.95	100	207	Vertical	
	4	228.243	38.23	19.70	-18.53	46.00	26.30	100	157	Vertical	
	5	308.511	35.06	17.83	-17.23	46.00	28.17	100	141	Vertical	TATES
	6	687.538	38.62	26.88	-11.74	46.00	19.12	100	223	Vertical	-TA'
e:	1).Le	vel (dBu\	//m)= Read	ing (dBµV)+ Facto	r (dB/m)					
	,	` '	,	J \ 1	,	` '					

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTA TESTING

Report No.: CTA231114011W02 Page 25 of 34

Above 1G Radiation Spurious

914.5MHz

		Mater					0	Compated			RX
	Frequency	Meter	Detector	Amplifier	Loss	Antenna Factor	Orrected	Corrected	Limit	Margin	Antenna
		Reading					Factor	Amplitude			Polar
	(MHz)	(dBµV/m)	(PK/QP/AV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(H/V)
	1829.14	65.92	PK	45.10	4.91	25.00	-15.19	50.73	74	-23.27	CAH
	1829.14	64.93	PK	45.10	4.91	25.00	-15.19	49.74	74	-24.26	V
CTATES	2743.44	56.42	PK	44.10	5.03	25.80	-13.27	43.15	74	-30.85	Н
CAL	2743.44	54.75	PK	44.10	5.03	25.80	-13.27	41.48	74	-32.52	V
	3658.17	38.99	PK	43.80	6.72	33.40	-3.68	35.31	74	-38.69	Н
	3658.17	38.81	PK	43.80	6.72	33.40	-3.68	35.13	74	-38.87	V

917.5MHz

3658.17	38.81	PK	43.80	6.72	33.40	-3.68	35.13	74	-38.87	V
				917.	5MHz			STAT	ESTIN	
Frequency	Meter Reading	Detector	Amplifier	Loss	Antenna Factor	Orrected	Corrected	Limit	Margin	RX Antenna
	Reading					Factor	7			Polar
(MHz)	(dBµV/m)	(PK/QP/AV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(H/V)
1835.06	64.55	PK	45.10	4.91	25.00	-15.19	49.36	74	-24.64	Н
1835.06	63.45	PK	45.10	4.91	25.00	-15.19	48.26	74	-25.74	V
2752.67	55.35	PK	44.10	5.03	25.80	-13.27	42.08	74	-31.92	Н
2752.67	53.62	PK	44.10	5.03	25.80	-13.27	40.35	74	-33.65	V
3670.00	37.61	PK	43.80	6.72	33.40	-3.68	33.93	74	-40.07	Н
3670.00	37.44	PK	43.80	6.72	33.40	-3.68	33.76	74	-40.24	V

921.0MHz

	3670.00	37.44	PK	43.80	6.72	33.40	-3.68	33.76	74	-40.24	V
CTATES	TIME			.sIG	921.	0MHz				(7) may (1)	
	Frequency	Meter Reading	Detector	Amplifier	Loss	Antenna Factor	Orrected Factor		Limit	Margin	RX Antenna Polar
	(MHz)	(dBµV/m)	(PK/QP/AV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m) (dBμV/m)	(dB)	(H/V)
	1842.02	64.86	PK	45.10	4.91	25.00	-15.19	49.67	74	-24.33	Н
G	1842.02	63.62	PK	45.10	4.91	25.00	-15.19	48.43	74	-25.57	V
	2762.98	55.28	PK	44.10	5.03	25.80	-13.27	42.01	74	-31.99	н
	2762.98	53.42	PK	44.10	5.03	25.80	-13.27	40.15	74	-33.85	V
	3683.89	37.90	PK	43.80	6.72	33.40	-3.68	34.22	74	-39.78	Н
	3683.89	37.59	PK	43.80	6.72	33.40	-3.68	33.91	74	-40.09	V

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

CTATES" Page 26 of 34 Report No.: CTA231114011W02

Duty cycle

	Ton (µs)	Tp (µs)	Duty Factor
	100	100	0.00
Note: Duty I	Factor=20*LOG10(1/(Ton	/Tp))	CTATESTING

Page 27 of 34

CTATES"

Report No.: CTA231114011W02

(Radiation Band edge)

914.5MHz Horizontal

No.	Frequency	Reading			Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	901.1300	35.08	-0.42	34.66	46.00	-11.34	peak
2	902.0000	26.71	-0.40	26.31	46.00	-19.69	peak

Fundamental Frequency

	No.	Frequency	Reading	Correct	Duty cycle	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
CTAT	3	914.5000	90.48	-0.11	-	90.73	114.00	-23.27	peak
	4	914.5000	90.48	-0.11	0	90.73	94.00	-3.27	AVG
7			-1A	1		NG			

Vertical

	01110000	.0110	0		0011	0 1100	0.2.	, ,, ,
	(En	CTA		Vertical				
No.	Frequency	Reading	Cor	Correct Result Limit		Margin	Remark	
	(MHz)	(dBuV)	Factor	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	899.1350	29.20	-0.	47	28.73	46.00	-17.27	peak
2	902.0000	27.89	-0.	40	27.49	46.00	-18.51	peak

Fundamental Frequency

No.	Frequency	Reading	Correct	Duty cycle	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
3	914.5000	90.18	-0.11	CTING	90.07	114.00	-23.93	peak
4	914.5000	90.18	-0.11	0.00	90.07	94.00	-3.93	AVG
EM CIA						ATESTIN		CTA.

Page 28 of 34

CTATES" Report No.: CTA231114011W02

917.5MHz Horizontal

CTATESTING **Fundamental Frequency**

			Honzoniai		CTATE		
					Frequency	Fundamental	
Margin Rem	Limit N	Result	Duty cycle	Correct	Reading	Frequency	No.
(dB)	dBuV/m)	(dBuV/m)	Factor(dB/m)	Factor(dB/m)	(dBuV)	(MHz)	
-23.58 pe	114 -	90.42	-	-0.06	90.48	917.5000	1
-3.58 AV	94	90.42	0	-0.06	90.48	917.5000	2
_		H-C-41	0 Vortical				2

Vertical

Fundamental Frequency

No.	Frequency	Reading	Correct	Duty cycle	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	917.5000	89.54	-0.06		89.48	114	-24.52	peak
2	917.5000	89.54	-0.06	0	89.48	94	-4.52	AVG
							TATES	

Page 29 of 34

CTATED!" Report No.: CTA231114011W02

921MHz Horizontal

	TESTIN		921M Horizo				
No.	Frequency	Reading	Correct Result		Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
2	928.0000	26.97	0.43	27.40	46.00	-18.60	peak
3	933.2500	28.67	0.82	29.49	46.00	-16.51	peak

Fundamental Frequency

No.	Frequency	Reading	Correct	Duty cycle	Result	Limit	Margin	Remark		
	(MHz)	(dBuV)	Factor(dB/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
1	921.00	90.28	0.04	-	90.32	114.00	-23.68	peak		
4	921.00	90.28	0.04	0.00	90.32	94.00	-3.68	AVG		
Vertical										
No	Frequen	cy Rea	ding Cor	rect Re	sult	l imit	Margin	Remark		

Vertical

		CTATL	Vertic				
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
2	928.0000	26.61	0.43	27.04	46.00	-18.96	peak
3	936.0250	29.10	1.05	30.15	46.00	-15.85	peak

Fundamental Frequency

No.	Frequency	Reading	Correct	Duty cycle	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	921.00	82.99	0.04	-	83.03	114	-30.97	peak
4	921.00	82.99	0.04	03	83.03	94	-10.97	AVG
			CTAT			ATESTING		CTA

Page 30 of 34 Report No.: CTA231114011W02

4. BANDWIDTH TEST

- 4.1 TEST PROCEDURE
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting : RBW= 1% to 5% OBW, VBW≧RBW, Sweep time = Auto.
- 4.2 TEST SETUP

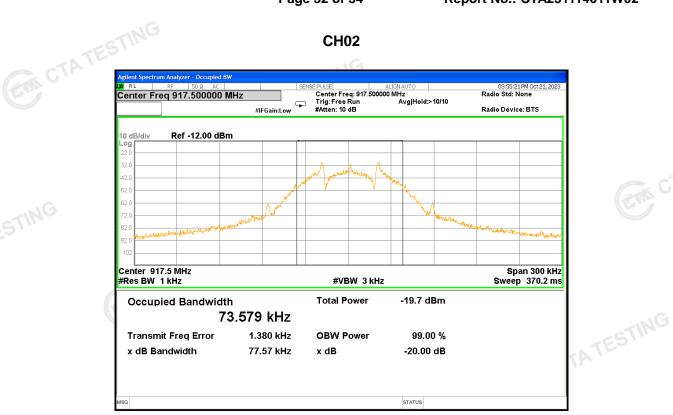
EUT		SPECTRUM ANALYZER
EUT OPERATION CONDITIONS mode.	CTATESTI"	CTATES

4.3 EUT OPERATION CONDITIONS TX mode.

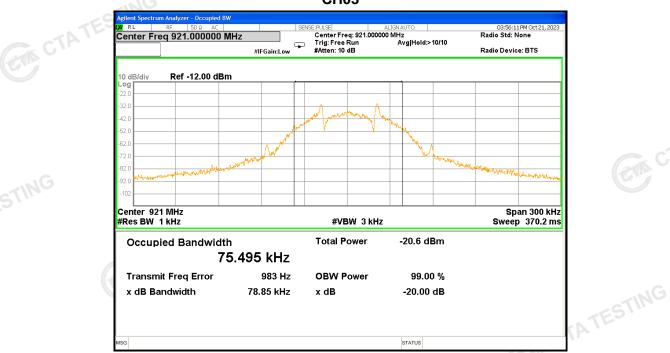

Page 31 of 34 Report No.: CTA231114011W02

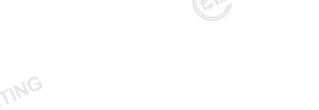
4.4 TEST RESULTS

Temperature:	25℃	Relative Humidity:	50%
Test Voltage:	DC 3.7V		-1G


Test Channel	Frequency(MHz)	20 dB Bandwidth(KHz)	99% Bandwidth(KHz)		
CH01	914.5	78.01	74.9391		
CH02	917.5	77.57	73.579		
CH03	921.0	78.85	75.495		

CH01




Page 32 of 34 Report No.: CTA231114011W02

CH02

CH03

Page 33 of 34 Report No.: CTA231114011W02

5. ANTENNA REQUIREMENT

5.1 STANDARD REQUIREMENT

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2 EUT ANTENNA

The EUT antenna is FPC Antenna. It conforms to the standard requirements.

CTATED' Report No.: CTA231114011W02 Page 34 of 34

APPENDIX- PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment. CTA TESTING

* * * * END OF THE REPORT * * * * *