Appendix C: Calibration Certificates # **Table of Contents** | 1 | PROBE EX3DV4 – SN: 3957 | 2 | |---|------------------------------|------------| | 2 | 750 MHZ DIPOLE, SN: 0702102 | 11 | | 3 | 835 MHZ DIPOLE, SN: 0802101 | 19 | | 4 | 900 MHZ DIPOLE, SN: 0902101 | 27 | | 5 | 1750 MHZ DIPOLE, SN: 1702101 | 35 | | 6 | 1900 MHZ DIPOLE, SN: 1902103 | 43 | | 7 | 2450 MHZ DIPOLE, SN: 2402103 | 51 | # 1 Probe EX3DV4 - SN: 3957 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DSPR (Auden) Certificate No: EX3-3957_Mar19 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3957 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: March 28, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | DAE4 | SN: 660 | 19-Dec-18 (No. DAE4-660_Dec18) | Dec-19 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | Calibrated by: Name Function Signature Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 2, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3957_Mar19 Page 1 of 9 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system # Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: - NORMx, y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). EX3DV4 - SN:3957 March 28, 2019 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3957 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.45 | 0.43 | 0.46 | ± 10.1 % | | DCP (mV) ^B | 105.3 | 104.3 | 103.6 | 2 1011 70 | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 175.4 | ±3.5 % | ± 4.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 177.0 | | | | | | Y | 0.0 | 0.0 | 1.0 | | 183.2 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the EX3DV4- SN:3957 March 28, 2019 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3957 # **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -18.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3957_Mar19 Page 4 of 9 EX3DV4- SN:3957 March 28, 2019 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3957 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 43.5 | 0.87 | 11.23 | 11.23 | 11.23 | 0.14 | 1.25 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.89 | 10.89 | 10.89 | 0.47 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.23 | 10.23 | 10.23 | 0.26 | 1.16 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.83 | 8.83 | 8.83 | 0.37 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.72 | 8.72 | 8.72 | 0.37 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.44 | 8.44 | 8.44 | 0.36 | 0.80 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 8.19 | 8.19 | 8.19 | 0.33 | 0.80 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.99 | 7.99 | 7.99 | 0.33 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.80 | 7.80 | 7.80 | 0.35 | 0.80 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.49 | 7.49 | 7.49 | 0.35 | 0.89 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.33 | 7.33 | 7.33 | 0.25 | 1.25 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.81 | 6.81 | 6.81 | 0.25 | 1.25 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.92 | 6.92 | 6.92 | 0.30 | 1.35 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 6.57 | 6.57 | 6.57 | 0.30 | 1.35 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.34 | 5.34 | 5.34 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.21 | 5.21 | 5.21 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.10 | 5.10 | 5.10 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.97 | 4.97 | 4.97 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (a and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated farcet tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3957 March 28, 2019 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3957_Mar19 Page 6 of 9 EX3DV4- SN:3957 March 28, 2019 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4- SN:3957 March 28, 2019 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3957 March 28, 2019 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Certificate No: EX3-3957_Mar19 Page 9 of 9 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) # 750 MHz Dipole, SN: 0702102 Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland **TuV Rheinland USA** Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: diSARA750-0702102_Oct18 ### **CALIBRATION CERTIFICATE** Object diSARA750 - SN:0702102 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 15, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Apr-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 7349 30-Dec-17 (No. EX3-7349_Dec17) Dec-18 DAE4 SN: 601 04-Oct-18 (No. DAE4-601_Oct18) Oct-19 Secondary Standards Check Date (in house) Scheduled Check SN: GB37480704 Power meter EPM-442A 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-18) In house check: Oct-19 Name Function Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 15, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: diSARA750-0702102 Oct18 Page 1 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: diSARA750-0702102_Oct18 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.51 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.54 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.1 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.75 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.44 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.75 W/kg ± 16.5 % (k=2) | Certificate No: diSARA750-0702102_Oct18 # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $54.2 \Omega + 2.7 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 26.4 dB | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 52.1 Ω - 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.8 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.295 ns | |----------------------------------|-----------| | , , | 11200 110 | Dipole designed and manufactured by IMST. Please see details on http://www.imst.com ## **Additional EUT Data** | Manufactured by | IMST | | |-----------------|---------|--| | Manufactured on | Unknown | | Certificate No: diSARA750-0702102_Oct18 ### **DASY5 Validation Report for Head TSL** Date: 15.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: IMST Dipole; Serial: diSARA750 - SN: 0702102 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.02 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.24 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.87 W/kg 0 dB = 2.87 W/kg = 4.58 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 12.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: IMST Dipole; Serial: diSARA750 - SN: 0702102 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\varepsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.35 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.92 W/kg 0 dB = 2.92 W/kg = 4.65 dBW/kg ## Impedance Measurement Plot for Body TSL Certificate No: diSARA750-0702102_Oct18 # 3 835 MHz Dipole, SN: 0802101 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TuV Rheinland USA Accreditation No.: SCS 0108 Certificate No: diSARA835-0802101_Oct18 ### **CALIBRATION CERTIFICATE** Object diSARA835 - SN:0802101 QA CAL-05.v10 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz October 15, 2018 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration SN: 104778 Power meter NRP 04-Apr-18 (No. 217-02672/02673) Apr-19 Power sensor NRP-Z91 SN: 103244 Apr-19 04-Apr-18 (No. 217-02672) Power sensor NRP-791 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 7349 30-Dec-17 (No. EX3-7349_Dec17) Dec-18 DAE4 SN: 601 04-Oct-18 (No. DAE4-601_Oct18) Oct-19 Secondary Standards Check Date (in house) Scheduled Check SN: GB37480704 07-Oct-15 (in house check Oct-18) in house check: Oct-20 Power meter EPM-442A Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-18) In house check: Oct-19 Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 15, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: diSARA835-0802101_Oct18 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: diSARA835-0802101_Oct18 Page 2 of 8