

FCC PART 15.407

TEST REPORT

For

SZ DJI TECHNOLOGY CO., LTD

14th floor, West Wing, Skyworth Semiconductor Design Building NO.18 Gaoxin South 4th Ave, Nanshan, Shenzhen, Guangdong, China

FCC ID: SS3-WM334R1801

Report Type:		Product Name:		
Original Report		Phantom 4 RTK		
Report Number:	RDG1801	18004-00C		
Report Date:	Report Date: <u>2018-02-0</u>			
	Jerry Zhan	ıg	Jerry	Zhang
Reviewed By:	EMC Man	ager	Jung)
Test Laboratory:	Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn		ongguan)	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology Measurement Uncertainty	4
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications EUT Exercise Software	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
Applicable Standard	10
FCC §15.203 - ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.209, §15.205 , §15.407(b)-UNWANTED EMISSION	12
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Corrected Amplitude & Margin Calculation	
Test Equipment List and Details	
TEST DATA	
FCC §15.407(a) §6.2– EMISSION BANDWIDTH	25
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	
FCC §15.407(a)- MAXIMUM CONDUCTED OUTPUT POWER	
Applicable Standard	
Test Equipment List and Details Test Procedure	
TEST PROCEDURE	
FCC §15.407(a) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
Test Procedure	
Test Equipment List and Details	
TEST DATA	
FCC §15.407(b) – OUT- OF-BAND EMISSIONS	44
APPLICABLE STANDARD	
TEST PROCEDURE	44

Page 2 of 51

Report No.: RDG180118004-00C

50

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:	Phantom 4 RTK
EUT Model:	WM334R
FCC ID:	SS3-WM334R1801
Rated Input Voltage:	DC 15.2V from rechargeable battery
External Dimension:	29 cm (L) x 29 cm (W) x 21 cm (H)
Serial Number:	180101004
EUT Received Date:	2018.01.01

Objective

This type approval report is prepared on behalf of *SZ DJI TECHNOLOGY CO., LTD* in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communications Commission's rules.

The tests were performed in order to determine compliance with FCC Rules Part 15, Subpart E, section 15.203, 15.205, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC submissions with Part 15B JAB and Part 15C DTS, FCC ID: SS3-WM334R1801. Part of system submissions with FCC ID: SS3-GL300N1801.

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices". And KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
	30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical
Unwanted Emissions, radiated	200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical
	1G~6GHz: 4.45 dB, 6G~40GHz: 5.23 dB
Unwanted Emissions, Conducted	±1.5 dB
Temperature	±1℃
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

The device employs 1.4MHz, 10 MHz modes. And the EUT has 2 antennas, the system configure 1T1R depending on better performance by the system automatically recognizes.

For 1.4MHz mode,60 channels are employed:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	5728.5	31	5788.5	
2	5730.5	32	5790.5	
3	3 5732.5		5792.5	
28	5782.5	58	5842.5	
29	5784.5	59	5844.5	
30	5786.5	60	5846.5	

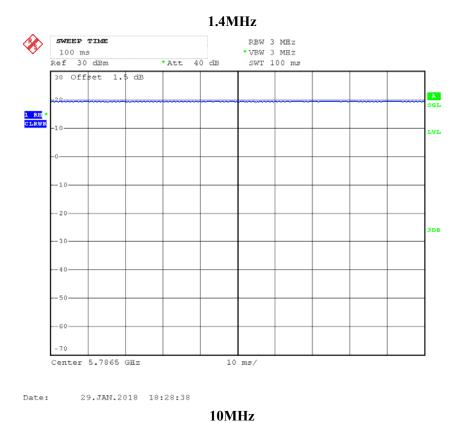
Test was performed with Channel: 1, 30 and 60.

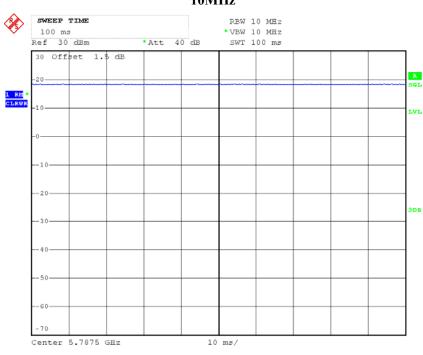
For 10MHz mode, 115 channels are are employed:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	5730.5	59	5788.5	
2	5731.5			
		114	5843.5	
		115	5844.5	
58	5787.5	/	/	

Test was performed with Channel: 1, 58 and 116

Equipment Modifications


No modification was made to the EUT tested.


EUT Exercise Software

The software "DjiRfCertConsole_V1.3.0.51" was used for testing, which was provided by manufacturer. The maximum power with maximum duty cycle was configured as default setting,

The duty cycle as below:

Mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)	
1.4MHz	100	100	100	
10MHz	100	100	100	

Date: 25.JAN.2018 10:50:51

Report No.: RDG180118004-00C

Block Diagram of Test Setup

	EUT	1.0 Meter
Non-conductive table 80/150 cm above Ground	1.5 Meter	

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
§15.407 (f) & §1.1310 & §2.1091	Maximum Permissable Exposure (MPE)	Compliance
FCC§15.203	Antenna Requirement	Compliance
FCC§15.207 (a)	AC Line Conducted Emissions	Not Applicable
FCC§15.205& §15.209 &§15.407(b)	Undesirable Emission& Restricted Bands	Compliance
FCC§15.407(b) (1),(2),(3),(4)	Out Of Band Emissions	Compliance
FCC§15.407(a)	Emission Bandwidth	Compliance
FCC§15.407(a)	Conducted Transmitter Output Power	Compliance
FCC§15.407 (a)	Power Spectral Density	Compliance
FCC§15.407(g)	Frequency stability	Compliance

Note:

Not Applicable: the device powered by battery.

FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.407(f)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)				
0.3-1.34	614	1.63	*(100)	30				
1.34–30	824/f	2.19/f	*(180/f ²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/	/	f/1500	30				
1500-100,000	/	/	1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

	Frequency Band	Antenna Gain		Max. Target Power including Tolerance		Evaluation Distance (cm)	Power Density (W/m ²)	MPE Limit (W/m ²)
		(dBi)	(numeric)	(dBm)	(mW)	(cm)	(•••/ш)	(w/m)
ſ	2.4GHz Band	3	2.00	28	630.96	20.00	0.25	1.0
	5.8GHz Band	3	2.00	23	199.53	20.00	0.08	1.0

Note: the Max. Target Power including Tolerance was declared by manufacturer. The 2.4GHz band and 5.8GHz band can't transmit simultaneously

Result: Compliance, The device meets MPE requirement for Devices Used by the General Public (Uncontrolled Environment) at distance ≥ 20 cm.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has 2 antennas permanently attached to the unit, and the antennas gain is 3.0 dBi in 2.4 GHz band and 3.0dBi in 5.8 GHz band, fulfill the requirement of the item. Please refer to the internal photos.

Result: Compliance.

FCC §15.209, §15.205, §15.407(b)–UNWANTED EMISSION

Applicable Standard

According to FCC §15.407; §15.209; §15.205;

(b) *Undesirable emission limits*. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

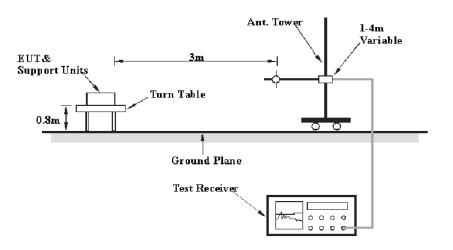
(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2018.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.


(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.


(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-40GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
A vo	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m. Distance extrapolation factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.02 dB

All emissions under the average limit and under the noise floor have not recorded in the report.

Corrected Amplitude & Margin Calculation

For the range 30MHz-1GHz, the Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

For the range 1GHz-40GHz, Test performed at 1.5m, the Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading and the Distance extrapolation factor. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain-Distance extrapolation factor

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude -Limit

Page 14 of 51

Report No.: RDG180118004-00C

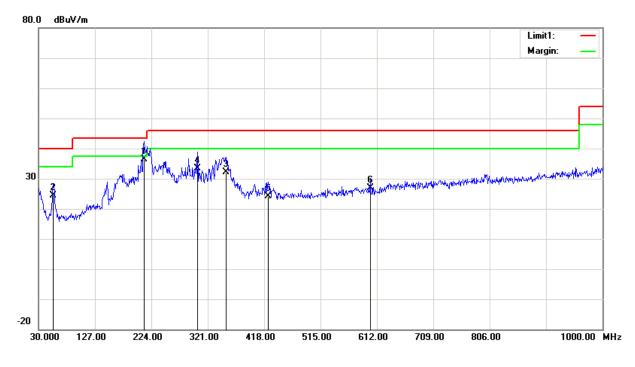
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2017-12-11	2018-12-11
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
HP	Amplifier	8447D	2727A05902	2017-09-05	2018-09-05
N/A	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
N/A	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
N/A	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
Agilent	Spectrum Analyzer	E4440A	SG43360054	2017-12-08	2018-12-08
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-05
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2017-09-05	2018-09-05
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-02 1304	2017-06-16	2020-06-15
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-01 1302	2016-11-18	2019-11-18
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2017-06-27	2018-06-27
R&S	Spectrum Analyzer	FSP 38	100478	2017-12-08	2018-12-08
N/A	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
Chengdu OuLi	Bandrejector Filter	5725-5850	005	2017-09-05	2018-09-05
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

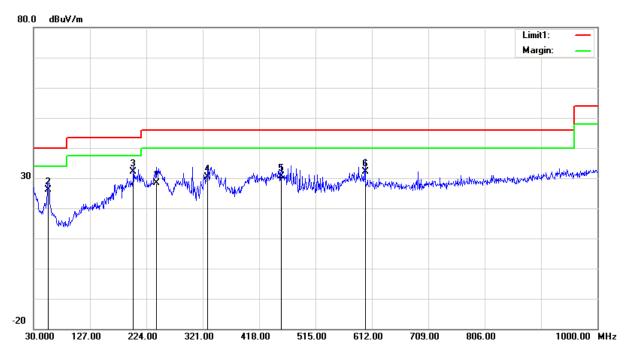
Environmental Conditions


Temperature:	22.6~23.4 °C
Relative Humidity:	39~ 41 %
ATM Pressure:	101.1 ~ 102.1 kPa

The testing was performed by Steven Zuo & Eric Xiao on 2018-01-23& 2018-01-28.

Test Mode: Transmitting

1) 30MHz-1GHz(10MHz Chain 0 High channel was the worst):


Horizontal:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
211.3900	43.87	QP	-7.37	36.50	43.50	7.00
55.2200	36.72	QP	-12.42	24.30	40.00	15.70
352.0400	35.21	QP	-3.11	32.10	46.00	13.90
303.5400	37.93	QP	-4.43	33.50	46.00	12.50
424.7900	26.03	QP	-1.93	24.10	46.00	21.90
600.3600	26.70	QP	0.20	26.90	46.00	19.10

Vertical:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
241.4600	34.55	QP	-6.25	28.30	46.00	17.70
55.2200	38.62	QP	-12.42	26.20	40.00	13.80
201.6900	38.26	QP	-6.16	32.10	43.50	11.40
329.7300	34.24	QP	-3.74	30.50	46.00	15.50
455.8300	31.85	QP	-1.25	30.60	46.00	15.40
600.3600	31.90	QP	0.20	32.10	46.00	13.90

Report No.: RDG180118004-00C

2) 1-40GHz: 1.4MHz Mode: Chain 0:

	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	.	. .
Frequency (MHz)	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit (dBµV/m)	Margin (dB)
(11112)	(dBµV)	(PK/QP/AV)	(H/V)	(dB)	(dB)	(dB)	(dBµV/m)	()	("")
			Lov	v Channel	: 5728.5 N	ИНz			
5728.50	68.63	PK	Н	34.19	3.69	0.00	100.49	N/A	N/A
5728.50	58.49	AV	Н	34.19	3.69	0.00	90.35	N/A	N/A
5728.50	80.15	PK	V	34.19	3.69	0.00	112.01	N/A	N/A
5728.50	70.33	AV	V	34.19	3.69	0.00	102.19	N/A	N/A
5725.00	32.64	PK	V	34.19	3.69	0.00	64.50	122.20	57.70
5720.00	28.26	PK	V	34.19	3.69	0.00	60.12	110.80	50.68
5700.00	27.32	PK	V	34.18	3.68	0.00	59.16	105.20	46.04
5650.00	27.03	PK	V	34.16	3.63	0.00	58.80	68.20	9.40
11457.00	49.21	РК	V	38.96	6.59	37.33	51.41	74.00	22.59
11457.00	37.42	AV	V	38.96	6.59	37.33	39.62	54.00	14.38
17185.50	46.62	РК	V	41.28	8.77	38.64	52.01	74.00	21.99
17185.50	35.59	AV	V	41.28	8.77	38.64	40.98	54.00	13.02
8956.00	45.68	РК	V	37.67	5.46	36.95	45.84	74.00	28.16
8956.00	34.49	AV	V	37.67	5.46	36.95	34.65	54.00	19.35
		•	Mide	ile Channe	el: 5786.5	MHz		•	
5786.50	69.76	РК	Н	34.21	3.71	0.00	101.66	N/A	N/A
5786.50	59.84	AV	Н	34.21	3.71	0.00	91.74	N/A	N/A
5786.50	78.95	РК	V	34.21	3.71	0.00	110.85	N/A	N/A
5786.50	68.45	AV	V	34.21	3.71	0.00	100.35	N/A	N/A
11573.00	49.24	РК	V	39.00	6.61	37.44	51.39	74.00	22.61
11573.00	37.74	AV	V	39.00	6.61	37.44	39.89	54.00	14.11
17359.50	45.37	РК	V	42.29	8.81	38.52	51.93	74.00	22.07
17359.50	34.36	AV	V	42.29	8.81	38.52	40.92	54.00	13.08
			Hig	h Channel	: 5846.5 N	MHz			
5846.50	68.45	РК	Н	34.24	3.75	0.00	100.42	N/A	N/A
5846.50	58.73	AV	Н	34.24	3.75	0.00	90.70	N/A	N/A
5846.50	78.64	РК	V	34.24	3.75	0.00	110.61	N/A	N/A
5846.50	68.54	AV	V	34.24	3.75	0.00	100.51	N/A	N/A
5850.00	30.35	РК	V	34.24	3.75	0.00	62.32	122.20	59.88
5855.00	28.19	РК	V	34.24	3.75	0.00	60.16	110.80	50.64
5875.00	27.45	РК	V	34.25	3.77	0.00	59.45	105.20	45.75
5925.00	26.57	РК	V	34.27	3.80	0.00	58.62	68.20	9.58
11693.00	49.83	РК	V	39.00	6.65	37.58	51.88	74.00	22.12
11693.00	37.36	AV	V	39.00	6.65	37.58	39.41	54.00	14.59
17539.50	45.20	РК	V	43.34	8.85	38.38	52.99	74.00	21.01
17539.50	34.01	AV	V	43.34	8.85	38.38	41.80	54.00	12.20

Report No.: RDG180118004-00C

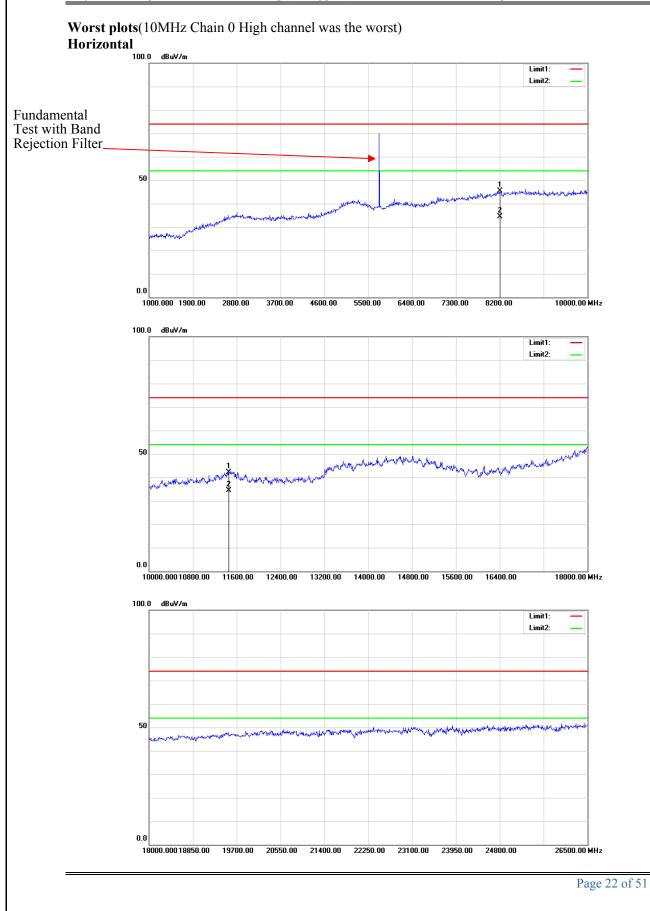
Chain 1:

Chain I:	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Lov	w Channel	: 5728.5 N	MHz			
5728.50	76.33	РК	Н	34.19	3.69	0.00	108.19	N/A	N/A
5728.50	66.48	AV	Н	34.19	3.69	0.00	98.34	N/A	N/A
5728.50	85.62	РК	V	34.19	3.69	0.00	117.48	N/A	N/A
5728.50	75.43	AV	V	34.19	3.69	0.00	107.29	N/A	N/A
5725.00	32.54	РК	V	34.19	3.69	0.00	64.40	122.20	57.80
5720.00	28.38	РК	V	34.19	3.69	0.00	60.24	110.80	50.56
5700.00	27.46	РК	V	34.18	3.68	0.00	59.30	105.20	45.90
5650.00	26.85	РК	V	34.16	3.63	0.00	58.62	68.20	9.58
11457.00	50.31	РК	V	38.96	6.59	37.33	52.51	74.00	21.49
11457.00	39.45	AV	V	38.96	6.59	37.33	41.65	54.00	12.35
17185.50	46.58	РК	V	41.28	8.77	38.64	51.97	74.00	22.03
17185.50	35.49	AV	V	41.28	8.77	38.64	40.88	54.00	13.12
8956.00	45.48	РК	V	37.67	5.46	36.95	45.64	74.00	28.36
8956.00	34.62	AV	V	37.67	5.46	36.95	34.78	54.00	19.22
			Mide	ile Channe	el: 5786.5	MHz		•	
5786.50	75.69	РК	Н	34.21	3.71	0.00	107.59	N/A	N/A
5786.50	65.45	AV	Н	34.21	3.71	0.00	97.35	N/A	N/A
5786.50	84.83	РК	V	34.21	3.71	0.00	116.73	N/A	N/A
5786.50	74.78	AV	V	34.21	3.71	0.00	106.68	N/A	N/A
11573.00	50.16	PK	V	39.00	6.61	37.44	52.31	74.00	21.69
11573.00	38.62	AV	V	39.00	6.61	37.44	40.77	54.00	13.23
17359.50	45.39	РК	V	42.29	8.81	38.52	51.95	74.00	22.05
17359.50	34.18	AV	V	42.29	8.81	38.52	40.74	54.00	13.26
			Hig	h Channel	: 5846.5 1	MHz		•	
5846.50	74.96	РК	Н	34.24	3.75	0.00	106.93	N/A	N/A
5846.50	64.88	AV	Н	34.24	3.75	0.00	96.85	N/A	N/A
5846.50	84.63	PK	V	34.24	3.75	0.00	116.60	N/A	N/A
5846.50	74.53	AV	V	34.24	3.75	0.00	106.50	N/A	N/A
5850.00	30.26	PK	V	34.24	3.75	0.00	62.23	122.20	59.97
5855.00	28.15	PK	V	34.24	3.75	0.00	60.12	110.80	50.68
5875.00	27.58	PK	V	34.25	3.77	0.00	59.58	105.20	45.62
5925.00	26.39	PK	V	34.27	3.80	0.00	58.44	68.20	9.76
11693.00	50.03	PK	V	39.00	6.65	37.58	52.08	74.00	21.92
11693.00	38.16	AV	V	39.00	6.65	37.58	40.21	54.00	13.79
17539.50	45.22	PK	V	43.34	8.85	38.38	53.01	74.00	20.99
17539.50	34.06	AV	V	43.34	8.85	38.38	41.85	54.00	12.15

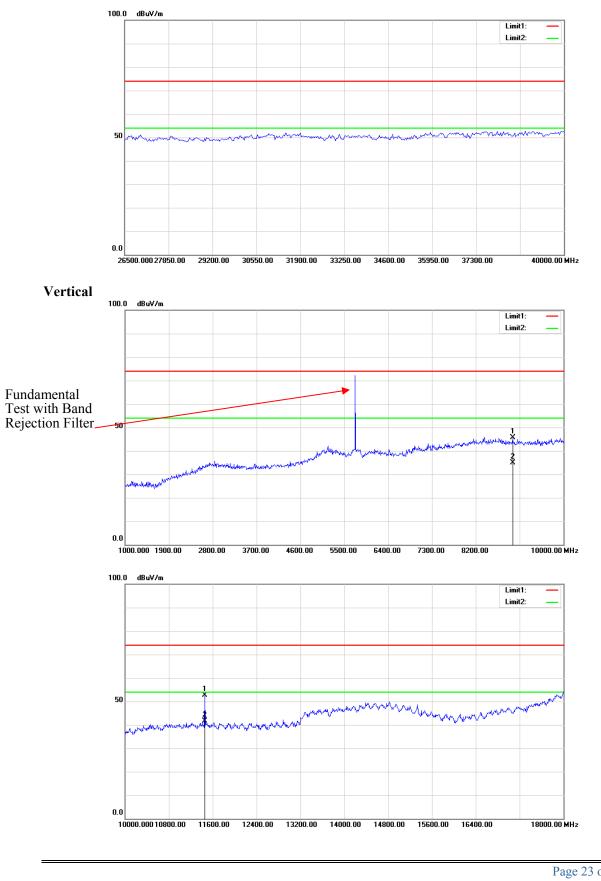
Report No.: RDG180118004-00C

10MHz mode,

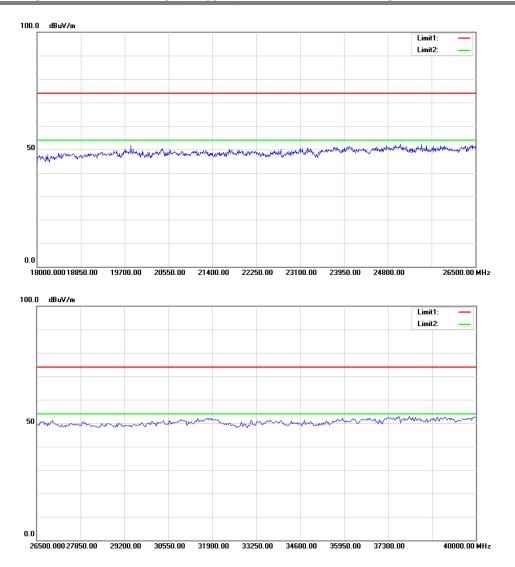
Chain 0:


	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Lov	v Channel	: 5730.5 N	ИНz			
5730.50	62.64	PK	Н	34.19	3.69	0.00	94.50	N/A	N/A
5730.50	52.85	AV	Н	34.19	3.69	0.00	84.71	N/A	N/A
5730.50	72.92	PK	V	34.19	3.69	0.00	104.78	N/A	N/A
5730.50	62.87	AV	V	34.19	3.69	0.00	94.73	N/A	N/A
5725.00	56.35	PK	V	34.19	3.69	0.00	88.21	122.20	33.99
5720.00	34.04	РК	V	34.19	3.69	0.00	65.90	110.80	44.90
5700.00	26.54	РК	V	34.18	3.68	0.00	58.38	105.20	46.82
5650.00	26.21	РК	V	34.16	3.63	0.00	57.98	68.20	10.22
11461.00	48.48	РК	V	38.96	6.59	37.34	50.67	74.00	23.33
11461.00	35.25	AV	V	38.96	6.59	37.34	37.44	54.00	16.56
17191.50	46.61	РК	V	41.31	8.77	38.64	52.03	74.00	21.97
17191.50	34.67	AV	V	41.31	8.77	38.64	40.09	54.00	13.91
Middle Channel: 5787.5 MHz									
5787.50	62.69	PK	Н	34.22	3.71	0.00	94.60	N/A	N/A
5787.50	52.45	AV	Н	34.22	3.71	0.00	84.36	N/A	N/A
5787.50	72.73	PK	V	34.22	3.71	0.00	104.64	N/A	N/A
5787.50	62.58	AV	V	34.22	3.71	0.00	94.49	N/A	N/A
11575.00	48.10	РК	V	39.00	6.61	37.45	50.24	74.00	23.76
11575.00	35.57	AV	V	39.00	6.61	37.45	37.71	54.00	16.29
17362.50	46.40	РК	V	42.30	8.81	38.52	52.97	74.00	21.03
17362.50	34.08	AV	V	42.30	8.81	38.52	40.65	54.00	13.35
			Hig	h Channel	:5844.5 N	ИНz		•	
5844.50	62.89	РК	Н	34.24	3.75	0.00	94.86	N/A	N/A
5844.50	52.67	AV	Н	34.24	3.75	0.00	84.64	N/A	N/A
5844.50	72.96	РК	V	34.24	3.75	0.00	104.93	N/A	N/A
5844.50	62.59	AV	V	34.24	3.75	0.00	94.56	N/A	N/A
5850.00	43.92	РК	V	34.24	3.75	0.00	75.89	122.20	46.31
5855.00	28.64	РК	V	34.24	3.75	0.00	60.61	110.80	50.19
5875.00	27.28	РК	V	34.25	3.77	0.00	59.28	105.20	45.92
5925.00	26.32	РК	V	34.27	3.80	0.00	58.37	68.20	9.83
11689.00	47.67	РК	V	39.00	6.65	37.58	49.72	74.00	24.28
11689.00	35.21	AV	V	39.00	6.65	37.58	37.26	54.00	16.74
17533.50	46.39	РК	V	43.31	8.85	38.39	54.14	74.00	19.86
17533.50	34.28	AV	V	43.31	8.85	38.39	42.03	54.00	11.97

Report No.: RDG180118004-00C


Chain 1:

	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Lov	w Channel	: 5730.5 N	ИНz			
5730.50	72.16	PK	Н	34.19	3.69	0.00	104.02	N/A	N/A
5730.50	62.28	AV	Н	34.19	3.69	0.00	94.14	N/A	N/A
5730.50	78.95	PK	V	34.19	3.69	0.00	110.81	N/A	N/A
5730.50	68.82	AV	V	34.19	3.69	0.00	100.68	N/A	N/A
5725.00	56.37	PK	V	34.19	3.69	0.00	88.23	122.20	33.97
5720.00	34.12	PK	V	34.19	3.69	0.00	65.98	110.80	44.82
5700.00	26.49	PK	V	34.18	3.68	0.00	58.33	105.20	46.87
5650.00	26.35	PK	V	34.16	3.63	0.00	58.12	68.20	10.08
11461.00	48.63	PK	V	38.96	6.59	37.34	50.82	74.00	23.18
11461.00	35.42	AV	V	38.96	6.59	37.34	37.61	54.00	16.39
17191.50	46.57	PK	V	41.31	8.77	38.64	51.99	74.00	22.01
17191.50	34.82	AV	V	41.31	8.77	38.64	40.24	54.00	13.76
Middle Channel: 5787.5 MHz									
5787.50	72.07	PK	Н	34.22	3.71	0.00	103.98	N/A	N/A
5787.50	62.13	AV	Н	34.22	3.71	0.00	94.04	N/A	N/A
5787.50	78.76	PK	V	34.22	3.71	0.00	110.67	N/A	N/A
5787.50	68.53	AV	V	34.22	3.71	0.00	100.44	N/A	N/A
11575.00	47.96	PK	V	39.00	6.61	37.45	50.10	74.00	23.90
11575.00	35.37	AV	V	39.00	6.61	37.45	37.51	54.00	16.49
17362.50	46.42	PK	V	42.30	8.81	38.52	52.99	74.00	21.01
17362.50	34.28	AV	V	42.30	8.81	38.52	40.85	54.00	13.15
			Hig	h Channel	:5844.5 N	ИНz		•	
5844.50	71.01	РК	Н	34.24	3.75	0.00	102.98	N/A	N/A
5844.50	61.43	AV	Н	34.24	3.75	0.00	93.40	N/A	N/A
5844.50	78.99	РК	V	34.24	3.75	0.00	110.96	N/A	N/A
5844.50	68.85	AV	V	34.24	3.75	0.00	100.82	N/A	N/A
5850.00	43.84	РК	V	34.24	3.75	0.00	75.81	122.20	46.39
5855.00	28.65	РК	V	34.24	3.75	0.00	60.62	110.80	50.18
5875.00	27.13	РК	V	34.25	3.77	0.00	59.13	105.20	46.07
5925.00	26.35	РК	V	34.27	3.80	0.00	58.40	68.20	9.80
11689.00	47.76	РК	V	39.00	6.65	37.58	49.81	74.00	24.19
11689.00	35.18	AV	V	39.00	6.65	37.58	37.23	54.00	16.77
17533.50	46.59	РК	V	43.31	8.85	38.39	54.34	74.00	19.66
17533.50	34.37	AV	V	43.31	8.85	38.39	42.12	54.00	11.88



Report No.: RDG180118004-00C

Page 23 of 51

Report No.: RDG180118004-00C

Page 24 of 51

FCC §15.407(a) §6.2– EMISSION BANDWIDTH

Applicable Standard

15.407(a),

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2017-12-11	2018-12-11
N/A	Coaxial Cable	C-SJ00-0010	C0010/04	Each Time	/

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

Test Data

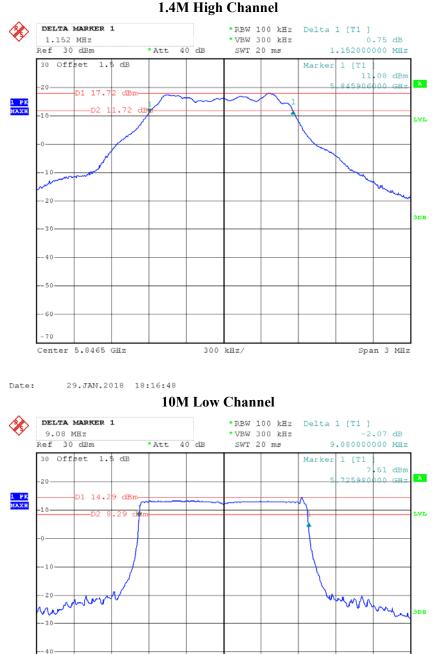
Environmental Conditions

Temperature:	24.1~24.3 °C
Relative Humidity:	42~44 %
ATM Pressure:	101.1~102.1 kPa

The testing was performed by Andy Huang from 2018-01-25 to 2018-02-04.

Test Result: Pass.

Please refer to the following tables and plots.


Test mode: Transmitting (Test was performed at chain 0)

Mode	Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
1.4MHz	Low	5728.5	1.158	1.236
	Middle	5786.5	1.146	1.224
	High	5846.5	1.152	1.224
10MHz	Low	5730.5	9.08	9.098
	Middle	5787.5	9.04	9.138
	High	5844.5	9.04	9.018

6dB Bandwidth:

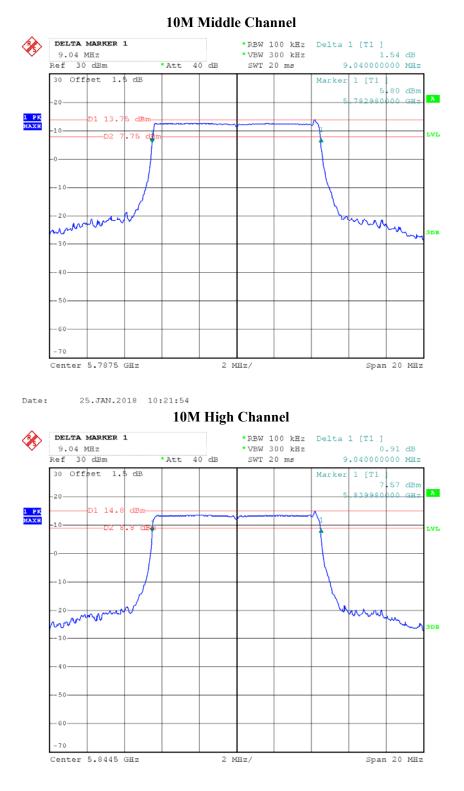
1.4M Low Channel *RBW 100 kHz Delta 1 [T1] DELTA MARKER 1 1.158 MHz Ref 30 dBm *VBW 300 kHz SWT 20 ms *Att 40 dB 1.158000000 MHz 30 Offset 1.5 dB Marker 12.90 dBn A. 727906000 GH2 2.0 1 PK Maxh -D2 13.03 d 10 VL. 20 SDB - 50 60 70 Span 3 MHz Center 5.7285 GHz 300 kHz/ 29.JAN.2018 18:14:32 Date: 1.4M Middle Channel *RBW 100 kHz Delta 1 [T1] *VBW 300 kHz 0.16 dB DELTA MARKER 1 ×> 1.146 MHz Ref 30 dBm *Att 40 dB SWT 20 ms 1.146000000 MHz 30 Offset 1.5 dB Marker 1 [T1 75 dBr 12 A. 785912000 GHz 20 1 PK MAXH -D2 .85 d 10 20 SDB - 30 40 50 60 70 Center 5.7865 GHz 300 kHz/ Span 3 MHz 4.FEB.2018 10:28:22 Date:

Page 26 of 51

2 MHz/

Page 27 of 51

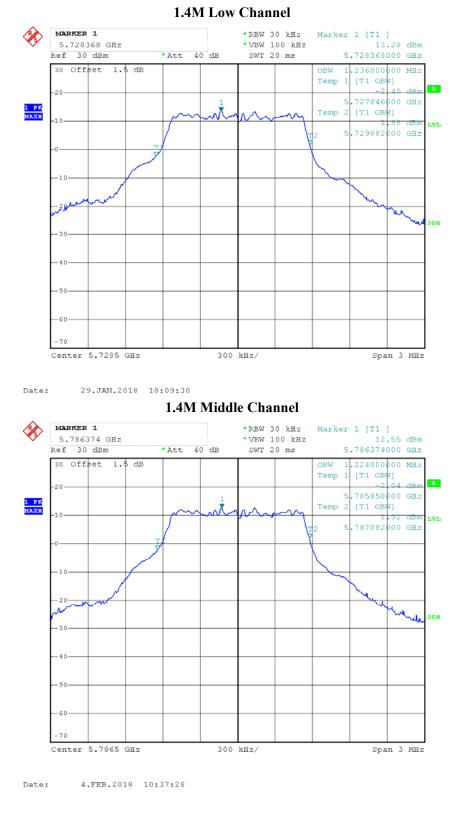
25.JAN.2018 10:19:36

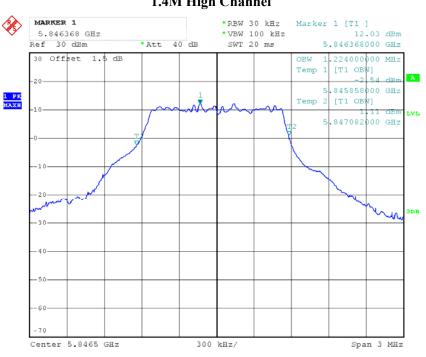

Center 5.7305 GHz

50

- 60 -70

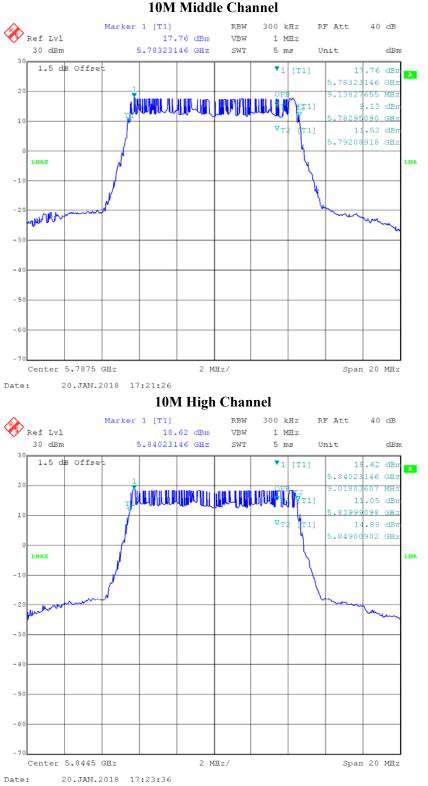
Date:


Span 20 MHz


Date: 25.JAN.2018 10:24:15

Page 28 of 51

99% Occupied Bandwidth:


Page 29 of 51

1.4M High Channel

29.JAN.2018 18:11:03 Date:

FCC §15.407(a)– MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.407(a)

(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54210016	2017-11-03	2018-11-03
Agilent	P-Series Power Meter	N1912A	MY5000448	2017-11-03	2018-11-03
N/A	Coaxial Cable	C-SJ00-0010	C0010/04	Each Time	/

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

Test Data

Environmental Conditions

Temperature:	24.8 °C	
Relative Humidity:	46 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Andy Huang on 2018-01-25.

Test Mode: Transmitting

Mode	Frequency (MHz)	Conducted Average Output Power (dBm)		Limit (dBm)	Result
		Chain 0	Chain 1		
	5728.5	20.77	22.15	30	PASS
1.4MHz	5786.5	20.98	21.47	30	PASS
	5846.5	20.19	20.99	30	PASS
10MHz	5730.5	18.29	18.61	30	PASS
	5787.5	18.17	17.85	30	PASS
	5844.5	18.88	18.18	30	PASS

FCC §15.407(a) - POWER SPECTRAL DENSITY

Applicable Standard

According to FCC §15.407(a)

(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2017-12-08	2018-12-08
N/A	Coaxial Cable	C-SJ00-0010	C0010/04	Each Time	/

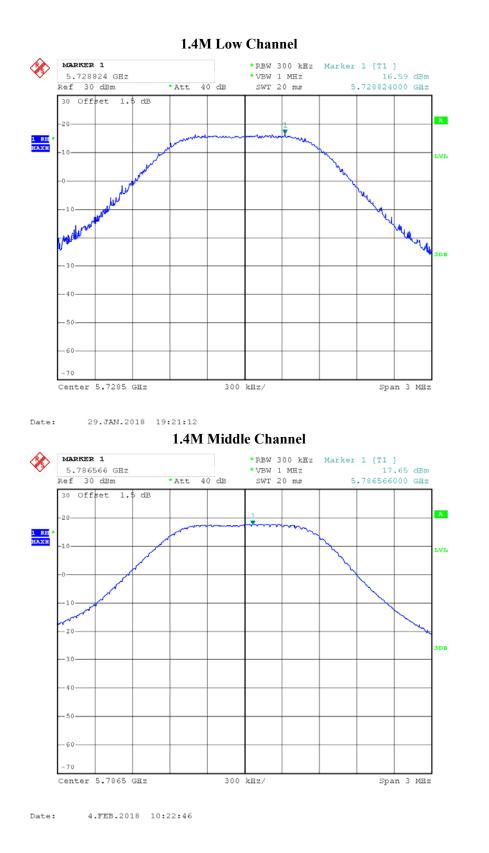
Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

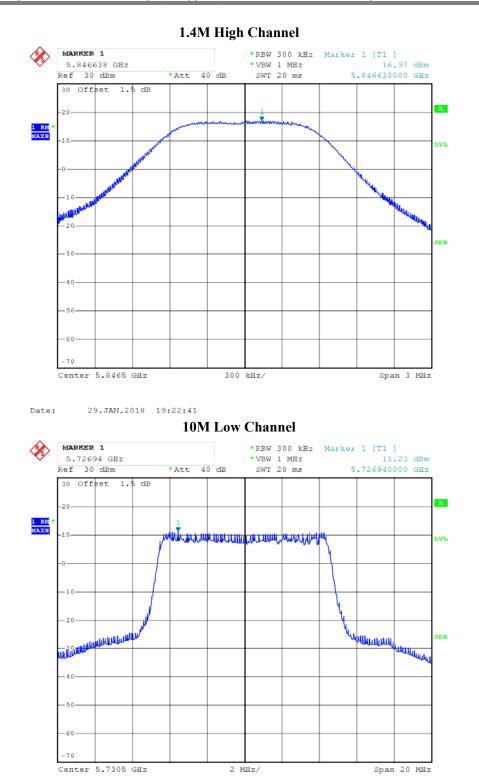
Test Data

Environmental Conditions

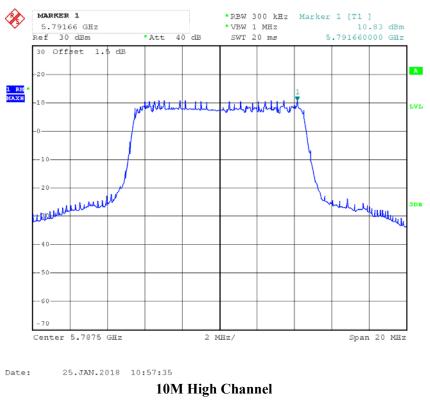
Temperature:	24.1~24.3 °C
Relative Humidity:	42~44 %
ATM Pressure:	101.1~102.1 kPa


The testing was performed by Andy Huang from 2018-01-25 to 2018-02-04.

Test Mode: Transmitting

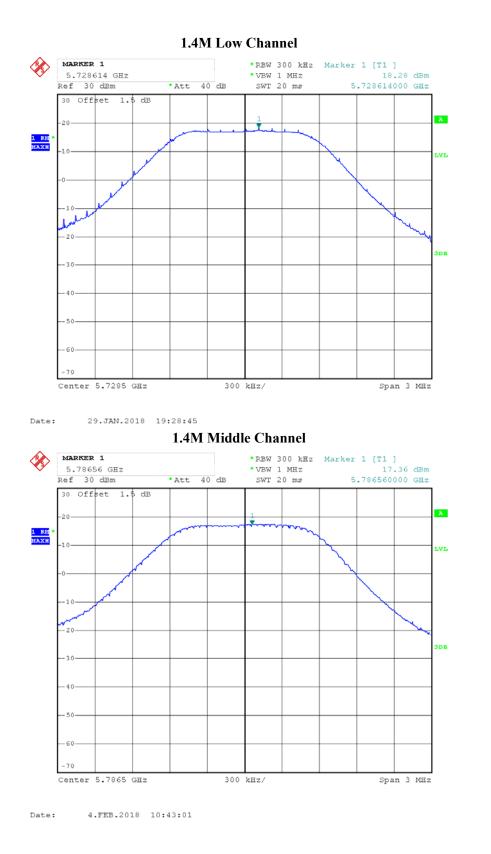

Test Result: Compliance. Please refer to the following table and plot.

Mode	Frequency	Reading (dBm/300kHz)		Result (dBm/500kHz)		Limit (dBm/
	(MHz)	Chain 0	Chain 1	Chain 0	Chain 1	500kHz)
	5728.5	16.59	18.28	18.81	20.5	30
1.4MHz	5786.5	17.65	17.36	19.87	19.58	30
	5846.5	16.97	16.74	19.19	18.96	30
	5730.5	11.23	12.79	13.45	15.01	30
10MHz	5787.5	10.83	12.26	13.05	14.48	30
	5844.5	12.09	12.74	14.31	14.96	30

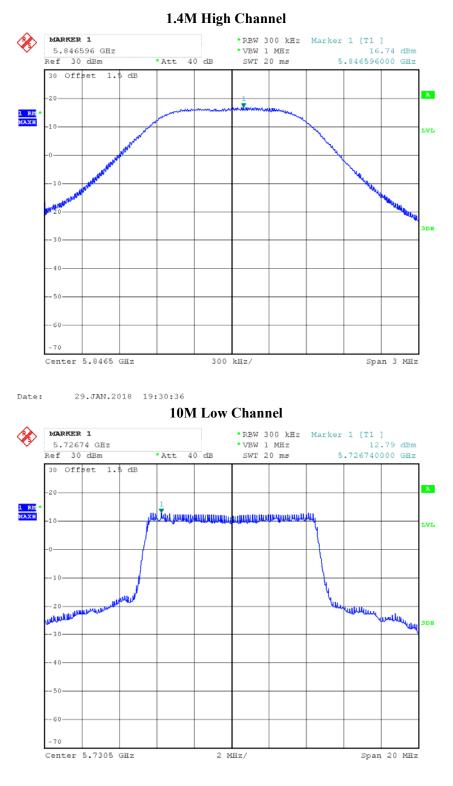

Chain 0:

Page 38 of 51

Date: 25.JAN.2018 10:56:27

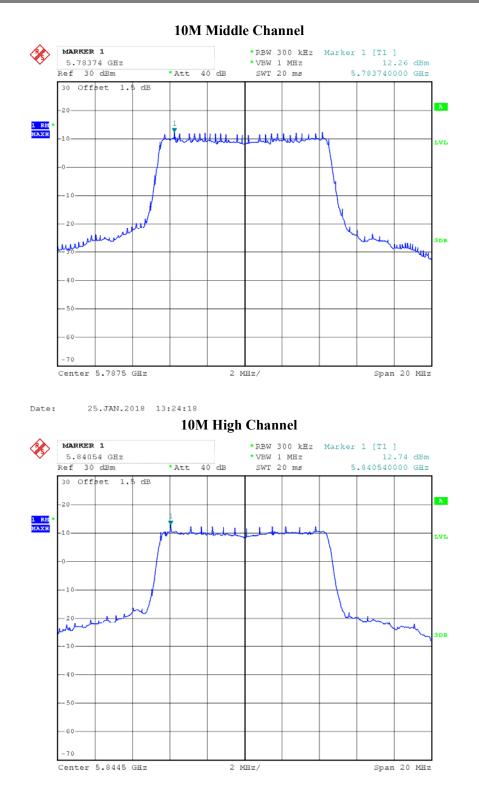

10M Middle Channel

*RBW 300 kHz Marker 1 [T1] 12.09 dBm MARKER 1 ×, 5.8411 GHz Ref 30 dBm *Att 40 dB SWT 20 ms 5.841100000 GHz 30 Offset 1.5 dB A. 1 RM MAXH Î 1.0 +++ + LVI. Hard V. SDB 40 50 - 60 70 Span 20 MHz Center 5.8445 GHz 2 MHz/


Date: 25.JAN.2018 10:59:09

Page 40 of 51

Chain 1:



Page 41 of 51

Date: 25.JAN.2018 13:22:41

Page 42 of 51

Date: 25.JAN.2018 13:26:13

Page 43 of 51

FCC §15.407(b) – OUT- OF-BAND EMISSIONS

Applicable Standard

FCC §15.407

(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Bay Area Compliance Laboratories Corp. (Dongguan)

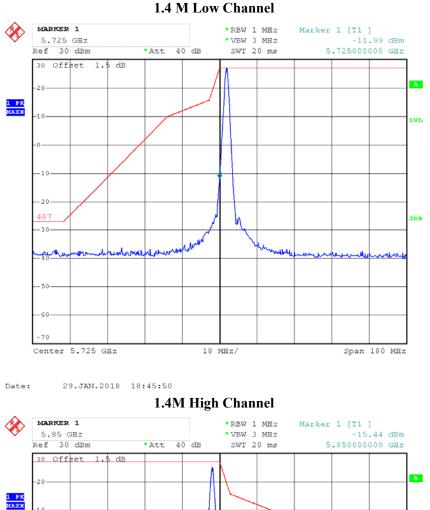
Test Equipment List and Details

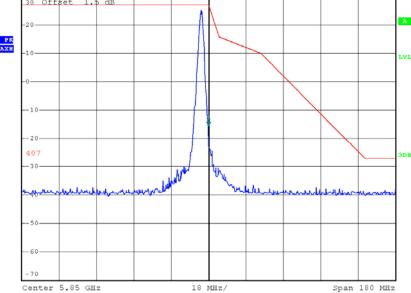
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2017-12-11	2018-12-11
N/A	Coaxial Cable	C-SJ00-0010	C0010/04	Each Time	/

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

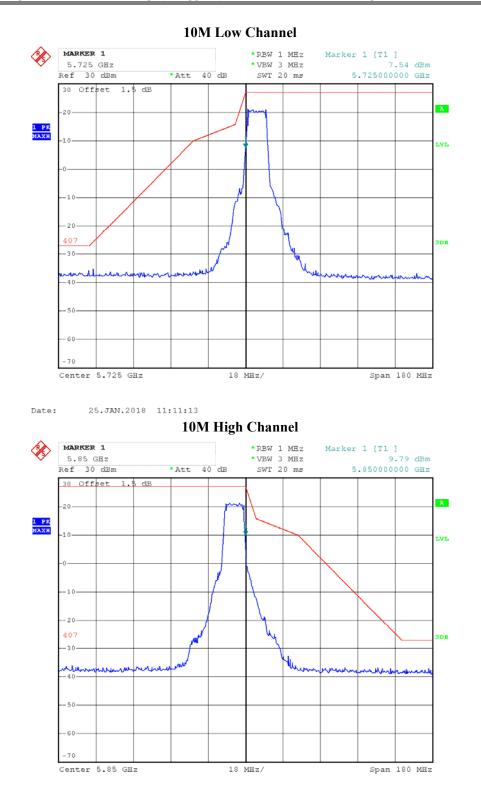
Environmental Conditions

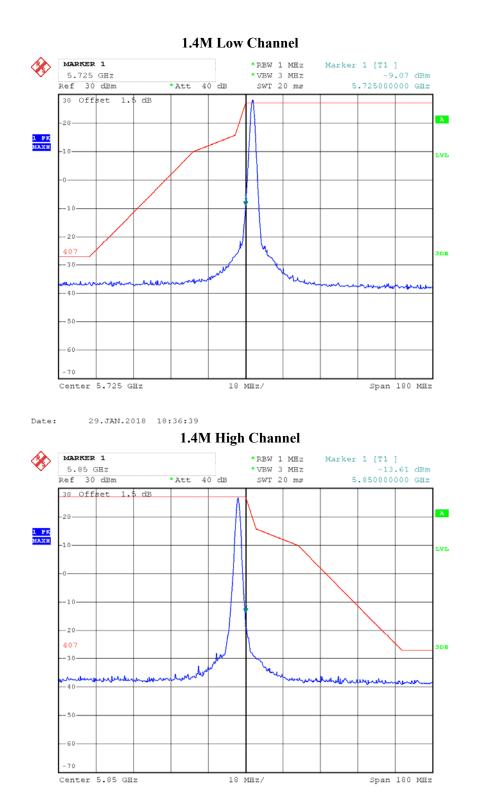

Temperature:	22.7~24.3 °C
Relative Humidity:	40~44 %
ATM Pressure:	101.1~102.2kPa


The testing was performed by Andy Huang from 2018-01-25 to 2018-01-29.

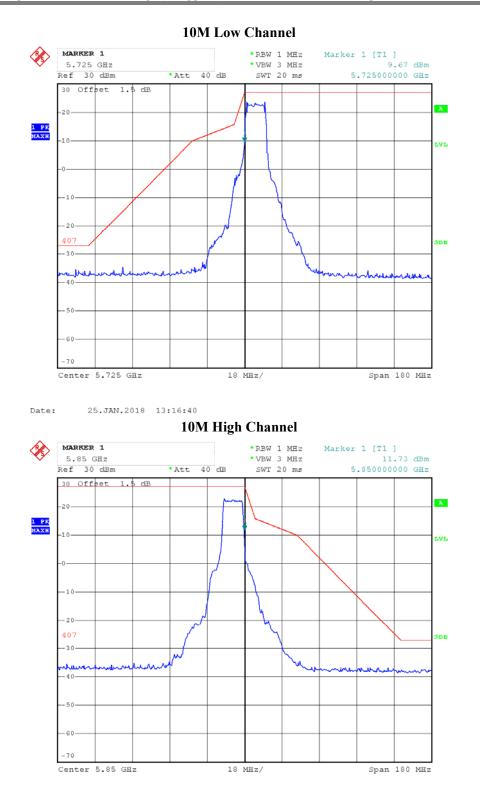
Test Result: Pass.

All emission under limit more than 2dB(Antenna gain 2dBi). Please refer to the following plots.


Chain 0:


Date: 29.JAN.2018 18:46:48

Page 46 of 51


Date: 25.JAN.2018 11:10:17

Chain 1:

Date: 29.JAN.2018 18:38:01

Page 48 of 51

Date: 25.JAN.2018 13:19:17

Page 49 of 51

FCC §15.407(g) – FREQUENCY STABILITY

Applicable Standard

FCC §15.407

(g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Test Procedure

According to C63.10-2013 clause 6.8.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2017-12-11	2018-12-11
N/A	Coaxial Cable	C-SJ00-0010	C0010/04	Each Time	/
UNI-T	Multimeter	UT39A	M130199938	2017-05-09	2018-05-09
Dongzhixu	High Temperature Test Chamber	DP1000	201105083-4	2017-09-10	2018-09-09

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.3 °C
Relative Humidity:	44 %
ATM Pressure:	101.1kPa

The testing was performed by Andy Huang on 2018-01-25.

Test mode: Transmitting

Test Result: Compaint

1.4MHz:

Temperature	Voltage	f _L at Low Test Channel	F _H at High Test Channel	Limit
C	V _{DC}	MHz	MHz	
0		5727.846	5847.082	
10		5727.843	5847.087	
20	15.2	5727.842	5847.065	$f_{\rm L}$ and $f_{\rm H}$ Within
30		5727.843	5847.076	5725~5850MHz
40		5727.845	5847.067	range
25	13.68	5727.832	5847.075]
25	16.72	5727.834	5847.077	

10MHz:

Temperature	Voltage	f _L at Low Test Channel	F _H at High Test Channel	Limit
°C	V _{DC}	MHz	MHz	
0		5726.152	5849.009	
10		5726.154	5849.014	
20	15.2	5726.157	5849.023	$f_{\rm L}$ and $f_{\rm H}$ Within
30		5726.154	5849.012	5725~5850MHz
40		5726.165	5849.013	range
25	13.68	5726.154	5849.014	
25	16.72	5726.166	5849.015	

Note: the f_L and f_H determined by 99% Occupied bandwidth low edge at Low test channel and High edge at High test channel.

***** END OF REPORT *****