

FCC&IC RF Test Report

Product Name: Smart Phone

Model Number: LDN-L01

Report No.: SYBH(Z-RF)014122017-2005

FCC ID: QISLDN-L01

Reliability Laboratory of Huawei Technologies Co., Ltd.

(Global Compliance and Testing Center of Huawei Technologies Co., Ltd)

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

- 1. The laboratory has passed the accreditation by China National Accreditation Service for Conformity Assessment (CNAS). The accreditation number is L0310.
- 2. The laboratory has passed the accreditation by The American Association for Laboratory Accreditation (A2LA). The accreditation number is 2174.01.
- 3. The laboratory has been recognized by the US Federal Communications Commission (FCC) to perform compliance testing subject to the Commission's Certification rules. The Designation Number is CN1173, and the Test Firm Registration Number is 294140.
- 4. The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 6369A-1.
- 5. The laboratory (Reliability Lab of Huawei Technologies Co., Ltd) is also named "Global Compliance and Testing Center of Huawei Technologies Co., Ltd", the both names have coexisted since 2009.
- 6. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 7. The test report is invalid if there is any evidence of erasure and/or falsification.
- 8. The test report is only valid for the test samples.
- 9. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

Address:		Administration Building, Headq	uarters of Huawei
		Technologies Co., Ltd., Bantiar	n, Longgang District,
		Shenzhen, 518129, P.R.C	
Date of Receipt Test It	tem:	2018-01-03	
Start Date of Test:		2018-01-04	
End Date of Test:		2018-02-10	
Test Result:		Pass	
Approved by Senior	2018-02-10	Roger Zhang	Roger Zhang
Engineer:	Date	Name	Signature
Prepared by:	2018-02-10	Mao Wenli	M aowenli
	Date	Name	Signature

Contents

1 <u>G</u>	General Information	5
1.1		
1.2	TEST LOCATION	5
1.3	TEST ENVIRONMENTAL CONDITION	5
2 <u>S</u>	Summary	6
3 <u>F</u>	Product Description	7
3.1	PRODUCT INFORMATION	7
3.2	EUT IDENTITY	7
4 <u>N</u>	Main Test Instruments	8
5 <u>T</u>	<u>Fest Results</u>	9
5.1		
5.2	In-Band Radiated Spurious Emission Measurements	11
5.3		
5.4	FREQUENCY STABILITY	16
5.5	AC Power Line Conducted Emissions	17

1 **General Information**

1.1 Applied Standard	
Applied Rules:	47 CFR FCC Part 02 FCC Part 15 Subpart C (15.225)
1.2 Test Location	
Test Location 1:	Reliability Laboratory of Huawei Technologies Co., Ltd.
Address:	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C
1.3 Test Environmental Co	ndition
Ambient Temperature:	20 – 25 °C
Ambient Relative Humidity:	45 – 55 %
Atmospheric Pressure:	101 kPa

2 Summary

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result	Reference		
TRANSMIT	TRANSMITTER MODE						
15.225 (a)	In-Band Emissions	15,848µV/m @ 30m 13.553 – 13.567 MHz		Pass	Section 5.2		
2.1049	20 dB Bandwidth	N/A		Pass	Section 5.1		
15.225(b)	In-Band Emissions	334µV/m @ 30m 13.410 – 13.553 MHz 13.567 – 13.710 MHz		Pass	Section 5.2		
15.225(c)	In-Band Emissions	106µV/m @ 30m 13.110 – 13.410 MHz 13.710 – 14.010 MHz	RADIATED	Pass	Section 5.2		
15.225(d) 15.209	Out-of-Band Emissions	Emissions outside of the specified band (13.110 – 14.010 MHz) must meet the radiated limits detailed in 15.209		Pass	Section 5.3		
15.225(e)	Frequency Stability Tolerance	± 0.01% of Operating Frequency	Temperature Chamber	Pass	Section 5.4		
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	Pass	Section 5.5		

3 Product Description

3.1 Product Information

3.1.1 General Description

LDN-L01 is subscriber equipment in the GSM/WCDMA/LTE system. The GSM frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900. The UMTS frequency band is B1 and B2 and B5 and B8. The LTE frequency band is B1 and B3 and B5 and B7 and B8 and B20. The Mobile Phone implements such functions as RF signal receiving/transmitting, LTE/HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS, AGPS, NFC, WIFI etc. Externally it provides one micro SD card (it can also used as SIM card interface), earphone port (to provide voice service) and one SIM card interface. LDN-L01 is single SIM smart phone. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices. Note: Only NFC test data included in this report.

3.2 EUT Identity

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

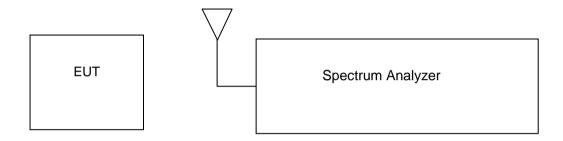
3.2.1 Board

Board					
Description	Hardware Version	Software Version			
Main Board	HL1LDNM	LDN-L01 5.0.1.37(C900)			

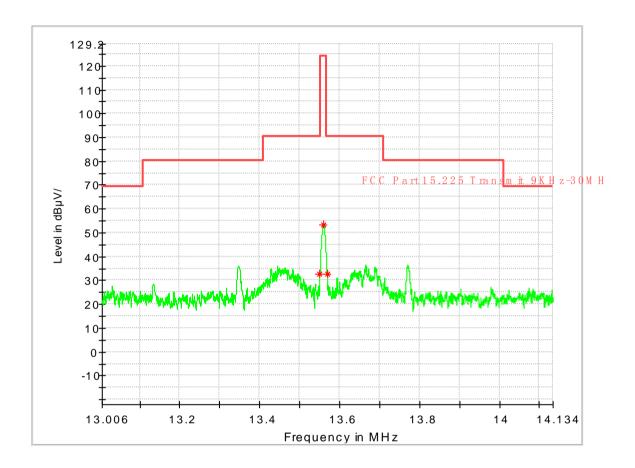
3.2.2 Sub-Assembly

Sub-Assembly			
Sub-Assembly Name	Model	Manufacturer	Description
Adapter	HW-050100U01	Huawei Technologies Co., Ltd.	Input Voltage: ~100-240V 50/60Hz 0.5A
		CO., Liu.	Output Voltage: 5V === 1A
.			Rated capacity: 2900mAh
Rechargeable Li-ion	HB366481ECW-11	Huawei Technologies Co., Ltd.	Nominal Voltage: === +3.82V
2, 1011		OO., Ltd.	Charging Voltage: === +4.35V

4 Main Test Instruments

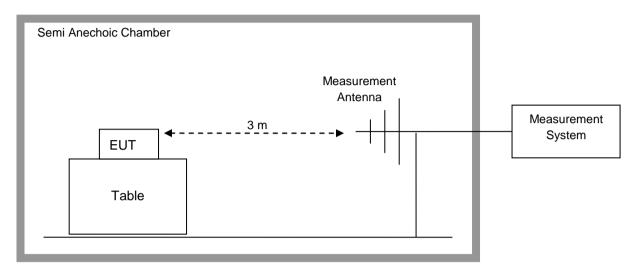

Main Test Equipments						
Equipment Name	Manufacturer	Model	Serial Number	Cal Date	Cal- Due	
Power supply	KEITHLEY	2303	000500E	2017/5/31	2018/5/30	
Wireless Communication Test set	Agilent	N4010A	MY49081592	2017/7/31	2018/7/30	
Universal Radio Communication Tester	R&S	CMU200	110932	2017/5/2	2018/5/1	
Spectrum Analyzer	Agilent	N9020A	MY52090652	2017/7/10	2018/7/9	
Universal Radio Communication Tester	R&S	CMW500	126854	2017/10/19	2018/10/18	
Signal Analyzer	R&S	FSQ31	200021	2017/7/31	2018/7/30	
Spectrum Analyzer	Agilent	N9030A	MY49431698	2017/7/31	2018/7/30	
Temperature Chamber	WEISS	WKL64	5624600294001 0	2017/12/13	2018/12/12	
Signal generator	Agilent	E8257D	MY49281095	2017/7/31	2018/7/30	
Vector Signal Generator	R&S	SMU200A	104162	2017/7/31	2018/7/30	
Test receiver	R&S	ESU26	100387	2017/2/21	2018/2/20	
Test receiver	R&S	ESCI	101163	2017/2/21	2018/2/20	
Spectrum analyzer	R&S	FSU3	200474	2017/2/21	2018/2/20	
Spectrum analyzer	R&S	FSU43	100144	2017/2/21	2018/2/20	
LOOP Antennas(9kHz- 30MHz)	R&S	HFH2-Z2	100262	2017/4/25	2019/4/25	
LOOP Antennas(9kHz- 30MHz)	R&S	HFH2-Z2	100263	2017/4/25	2019/4/25	
Trilog Broadband Antenna (30M~3GHz)	SCHWARZBE CK	VULB 9163	9163-490	2017/3/29	2019/3/29	
Trilog Broadband Antenna (30M~3GHz)	SCHWARZBE CK	VULB 9163	9163-521	2017/4/9	2019/4/9	
Double-Ridged Waveguide Horn Antenna (1G~18GHz)	R&S	HF907	100304	2017/5/27	2019/5/27	
Pyramidal Horn Antenna(18GHz- 26.5GHz)	ETS-Lindgren	3160-09	206665	2017/3/24	2018/3/23	
Artificial Main Network	R&S	ENV4200	100134	2017/5/15	2018/5/14	
Line Impedance Stabilization Network	R&S	ENV216	100382	2017/5/15	2018/5/14	
Power Detecting & Sampling Unit	R&S	OSP-B157	100914	2017/7/31	2018/7/30	
	So	ftware Inform	mation			
Test Item	Software N	lame	Manufact	urer	Version	
RE	EMC32	2	R&S		V9.25.0	
CE	EMC32	2	R&S		V9.25.0	

5 Test Results

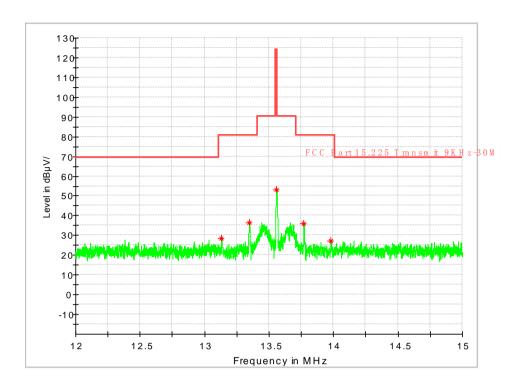

5.1 20dB Bandwidth Measurement

The 20dB bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

5.1.1 Test Setup


5.1.2 Test Result

OBW (KHz)	FL@OBW (MHz)	FH@OBW (MHz)	Verdict
18.19	13.550813	13.569000	PASS

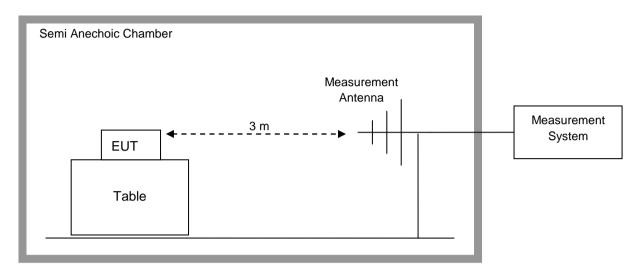

5.2 In-Band Radiated Spurious Emission Measurements

5.2.1 Test Setup

Measurement parameters			
Detector:	Quasi Peak		
Sweep time:	-/-		
Resolution bandwidth:	10 kHz		
Video bandwidth:	10 kHz		
Span:	-/-		
Trace-Mode:	Max Hold		

5.2.2 Test Result

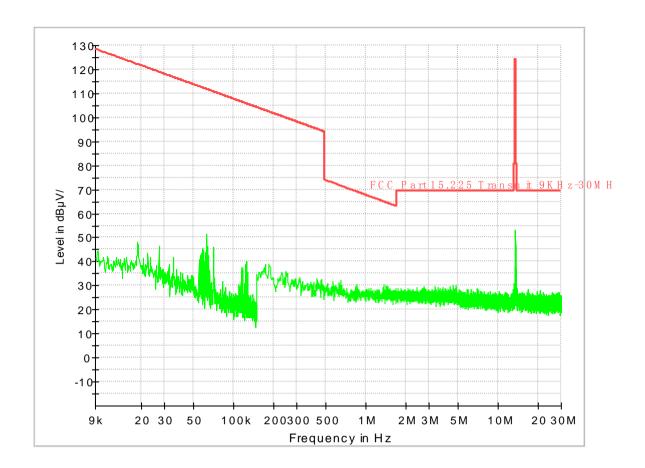
MEASUREMENT RESULT: QP Detector

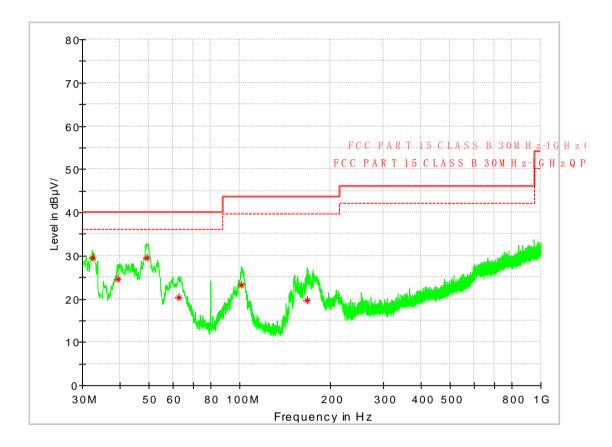

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Azimuth (deg)	Transd (dB)
13.131950	28.68	80.50	51.82	V	347.0	-51.4
13.344563	36.25	80.50	44.25	V	92.0	-51.4
13.558950	54.34	124.00	69.66	V	255.0	-51.4
13.770750	35.52	80.50	44.97	V	358.0	-51.4
13.963850	26.79	80.50	53.74	V	129.0	-51.4

NOTES:

- 1. All measurements were performed using a loop antenna. The antenna was positioned in three orthogonal positions (X front, Y side, Z top) and the position with the highest emission level was recorded.
- 2. Measurements were performed at 3m and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in $\S15.31(f)(2)$. Extrapolation Factor = $20 \log 10(30/3)2 = 40 dB$
- 3. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector.
- 4. Level =Reading level by receiver + Transd (Antenna factor + cable loss preamplifier gain). The reading level is calculated by software which is not shown in the sheet.
- 5. Margin=Limit Level

5.3 Radiated Spurious Emission Measurements, Out-of-Band


5.3.1 Test Setup


Measurement parameters			
Detector:	Quasi Peak		
Sweep time:	Auto		
Resolution bandwidth:	9 kHz – 150 kHz: 200 Hz 150 kHz – 30 MHz: 9 kHz 30 MHz – 1000 MHz: 100 kHz		
Video bandwidth:	9 kHz – 150 kHz: 200 Hz 150 kHz – 30 MHz: 9 kHz 30 MHz – 1000 MHz: 100 kHz		
Span:	See Plots		
Trace-Mode:	Max Hold		

5.3.2 Test Result

9k~30MHz

30M~1GHz

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarisation	Azimuth (deg)	Transd (dB)
32.5919	29.61	40	10.39	100	V	213	14.2
39.4778	24.69	40	15.31	106	V	70	15.1
49.22295	29.47	40	10.53	100	V	58	15.5
62.602	20.24	40	19.76	124	V	290	12.5
101.32725	23.22	43.5	20.28	125	V	302	13.7
167.51015	19.77	43.5	23.73	117	V	292	11

NOTES:

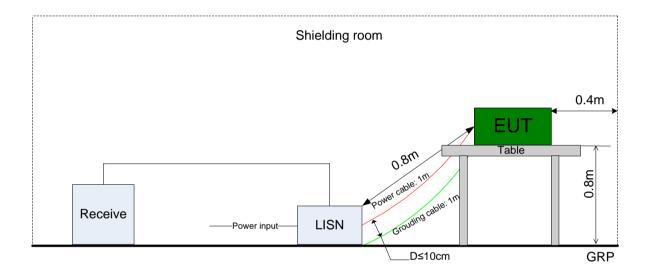
- 1. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector for emissions below 960MHz.
- 2. Both Vertical and Horizontal polarities of the receive antenna were evaluated with the worst case emissions being reported. Below 30MHz the Loop antenna was positioned in 3 separate radials.
- 3. The EUT is supplied with nominal AC voltage and/or a new/fully-recharged battery.
- 4. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.
- 5. Level =Reading level by receiver + Transd (Antenna factor + cable loss preamplifier gain). The reading level is calculated by software which is not shown in the sheet.

5.4 Frequency Stability

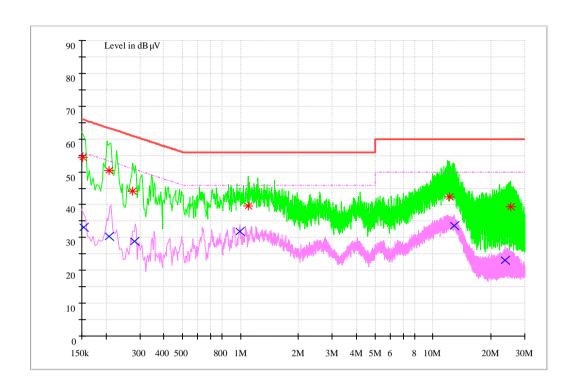
5.4.1 Test Setup

The EUT was placed in a Climatic Chamber. A small whip antenna was placed close to the EUT, and connected to the measuring Spectrum Analyzer. Measurement performed without modulation on TX.

5.4.2 Test Result


VOLTAGE (%)	POWER Battery	TEMP (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)
100%	_	-20	13559991	9	-0.0000663716
100%		-10	13559983	17	-0.000125368
100%		0	13560006	-6	-0.0000442478
100%		10	13560013	-13	0.0000958702
100%		20	13560011	-11	0.0000081120
100%		30	13560005	-5	0.0000368731
100%		40	13560015	-15	0.0001106194
100%		50	13560009	-9	-0.0000663716
Battery End Point	3.6	20	13559990	10	0.0000737463
115%	4.35	20	13560008	-8	-0.0000589970

5.5 AC Power Line Conducted Emissions


5.5.1 Test Setup

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

5.5.2 Test Result

MEASUREMENT RESULT: QP Detector

Frequency MHz	Level dBµV	Limit dBµV	Transd dB	Margin dB	Line	PE
0.151434	54.52	65.93	9.7	11.41	N	FLO
0.206889	50.51	63.33	9.7	12.82	N	FLO
0.275775	44.16	60.95	9.7	16.79	N	FLO
1.094715	39.6	56	9.7	16.4	N	FLO
12.142104	42.26	60	10	17.74	N	FLO
25.327973	39.34	60	10.2	20.66	L1	FLO

MEASUREMENT RESULT: AV Detector

Frequency	Level	Limit	Transd	Margin	Line	PE
MHz	dΒμV	dΒμV	dB	dB		PC
0.153675	33.05	55.80	9.7	22.75	N	FLO
0.206939	30.32	53.33	9.7	23.01	L1	FLO
0.281686	28.87	50.77	9.7	21.90	L1	FLO
0.989866	31.90	46	9.7	14.10	L1	FLO
12.886685	33.68	50	10	16.32	L1	FLO
12.232647	25.86	50	10	24.14	N	FLO

Note:

1, Level =Reading level by receiver + Transd (Antenna factor + cable loss - preamplifier gain)

The reading level is calculated by software which is not shown in the sheet.

2, Margin=Limit - Level

The result of the measurement is passed.

-----The END------