

RADIO TEST REPORT FCC ID: 2ATVQ-U9000

Product: Handheld terminal

Trade Mark: N/A

Model No.: U9000

N40, N40L, N40H, N40P, N40A, N40B, N41U, N45, N50, N50L, N50H, N50P, N55, N55L, N55H, N55P, N60, N60L, N60H, N60P, N60A,

Family Model: N60B, BlovedreamN60, N65, N70, N80P,

N80H, S40, P50, P60, P70, P80, P90, N90, U8000S, U8000T, U8000P, U9000S, U9000T,

U9000P, U9100T, IPDA030, IPDA036

Report No.: S22022500402001

Issue Date: 22 Mar. 2022

Prepared for

SHENZHEN BLOVEDREAM TECHNOLOGY CO.,LTD

4th Floor, A-Building, Fenghuang Zhigu Building, Tiezai Rd, Xixiang Street, Bao'an District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090

Website: http://www.ntek.org.cn

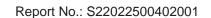

Version.1.3 Page 1 of 78

TABLE OF CONTENTS

1	TE	ST RESULT CERTIFICATION	3
2	SU	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
	3.1	FACILITIES	
	3.2	LABORATORY ACCREDITATIONS AND LISTINGS	5
	3.3	MEASUREMENT UNCERTAINTY	
4	GE	ENERAL DESCRIPTION OF EUT	6
5		ESCRIPTION OF TEST MODES	
6		TUP OF EQUIPMENT UNDER TEST	
·		BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	6.1 6.2		
	6.3	SUPPORT EQUIPMENTEQUIPMENTS LIST FOR ALL TEST ITEMS	10 11
7		ST REQUIREMENTS	
,			
	7.1	CONDUCTED EMISSIONS TEST	
	7.2	RADIATED SPURIOUS EMISSION	
	7.3	NUMBER OF HOPPING CHANNELHOPPING CHANNEL SEPARATION MEASUREMENT	
	7.4 7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
	7.5 7.6	20DB BANDWIDTH TEST	
	7.0 7.7	PEAK OUTPUT POWER	
	7.7	CONDUCTED BAND EDGE MEASUREMENT	
	7.8 7.9	SPURIOUS RF CONDUCTED EMISSION	
	7.10	ANTENNA APPLICATION	
	7.10	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8	TE	ST RESULTS	35
	8.1	DWELL TIME	35
	8.2	MAXIMUM CONDUCTED OUTPUT POWER.	
	8.3	OCCUPIED CHANNEL BANDWIDTH	
	8.4	CARRIER FREQUENCIES SEPARATION	
	8.5	NUMBER OF HOPPING CHANNEL	
	8.6	BAND EDGE	
	8.7	CONDUCTED RF SPURIOUS EMISSION	69

1 TEST RESULT CERTIFICATION

Applicant's name	SHENZHEN BLOVEDREAM TECHNOLOGY CO.,LTD
Address:	4th Floor,A-Building,Fenghuang Zhigu Building,Tiezai Rd,Xixiang Street,Bao'an District, Shenzhen, China
Manufacturer's Name:	SHENZHEN BLOVEDREAM TECHNOLOGY CO.,LTD
Address:	4th Floor,A-Building,Fenghuang Zhigu Building,Tiezai Rd,Xixiang Street,Bao'an District, Shenzhen, China
Product description	
Product name:	Handheld terminal
Model and/or type reference:	U9000
Family Model	N40, N40L, N40H, N40P, N40A, N40B, N41U, N45, N50, N50L, N50H, N50P, N55, N55L, N55H, N55P, N60, N60L, N60H, N60P, N60A, N60B, Blovedream N60, N65, N70, N80P, N80H, S40, P50, P60, P70, P80, P90, N90, U8000S, U8000T, U8000P, U9000S, U9000T, U9000P, U9100T, IPDA030, IPDA036

Measurement Procedure Used:

	mode are more in recording events		
APPLICABLE STANDARDS			
STANDARD/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	· :	25 Feb. 2022 ~22 Mar, 2022	
Testing Engineer	:	Lang. Hu	
3 3 3	-	(Mary Hu)	_
Authorized Signatory		Alex	
Adition2cd Oignatory		(Alex Li)	_

Version.1.3 Page 3 of 78

SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

- "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

Version.1.3 Page 4 of 78

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Certificate Registration Number is L5516. IC-Registration
The Certificate Registration Number is 9270A.

CAB identifier:CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

Version.1.3 Page 5 of 78

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification	
Equipment	Handheld terminal
Trade Mark	N/A
FCC ID	2ATVQ-U9000
Model No.	U9000
Family Model	N40, N40L, N40H, N40P, N40A, N40B, N41U, N45, N50, N50L, N50H, N50P, N55, N55L, N55H, N55P, N60, N60L, N60H, N60P, N60A, N60B, BlovedreamN60, N65, N70, N80P, N80H, S40, P50, P60, P70, P80, P90, N90, U8000S, U8000T, U8000P, U9000S, U9000T, U9000P, U9100T, IPDA030, IPDA036
Model Difference	All models are the same circuit and RF module, except the Model name and appearance.
Operating Frequency	2402MHz~2480MHz
Modulation	GFSK, π/4-DQPSK, 8-DPSK
Number of Channels	79 Channels
Antenna Type	PIFI Antenna
Antenna Gain	1.3dBi
Power supply	DC 3.7V 4800mAh from battery or DC 5V from Type - C port.
Adapter	N/A
HW Version	U9000T_MB_V1.2
SW Version	21.0.2.315

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Version.1.3 Page 6 of 78

Revision History

Version	Description	Issued Date
Rev.01	Initial issue of report	21 Mar, 2022

Version.1.3 Page 7 of 78

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for $\pi/4$ -DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
•••	•••
39	2441
40	2442
	•••
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Final Test Mode Description	
Mode 1 normal link mode		

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases	
Final Test Mode	Description
Mode 1	normal link mode
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases	
Final Test Mode	Description
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)
Mode 5	Hopping mode

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Version.1.3 Page 8 of 78

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For AC Conducted Emission Mode

C-1

AE-1

Adapter

Adapter

For Radiated Test Cases

EUT

Measurement Instrument

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

2. EUT built-in battery-powered, the battery is fully-charged.

Version.1.3 Page 9 of 78

6.2 **SUPPORT EQUIPMENT**

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	DC Cable	YES	YES	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Version.1.3 Page 10 of 78

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

<u>Radiatio</u>	adiation& Conducted Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.07.01	2022.06.30	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.07.01	2022.06.30	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Version.1.3 Page 11 of 78

ΔC	Conduction	Test	equipment
AC	Conduction	TEST	edulpillelli

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

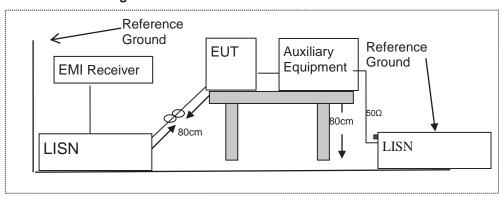
Version.1.3 Page 12 of 78

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Fraguanay/MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

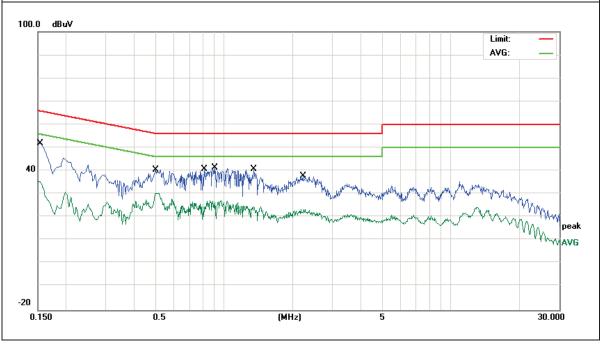
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

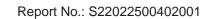
7.1.5 Test Results

Pass

Version.1.3 Page 13 of 78


7.1.6 Test Results

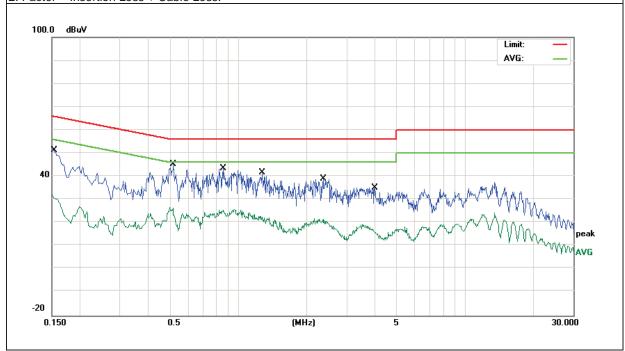
EUT:	Handheld terminal	Model Name:	U9000
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage:	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1


Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1548	41.80	9.72	51.52	65.73	-14.21	QP
0.1548	25.80	9.72	35.52	55.73	-20.21	AVG
0.4980	30.95	9.64	40.59	56.03	-15.44	QP
0.4980	20.69	9.64	30.33	46.03	-15.70	AVG
0.8139	30.89	9.74	40.63	56.00	-15.37	QP
0.8139	15.88	9.74	25.62	46.00	-20.38	AVG
0.9060	31.67	9.75	41.42	56.00	-14.58	QP
0.9060	17.52	9.75	27.27	46.00	-18.73	AVG
1.3500	31.10	9.75	40.85	56.00	-15.15	QP
1.3500	14.89	9.75	24.64	46.00	-21.36	AVG
2.2139	28.05	9.75	37.80	56.00	-18.20	QP
2.2139	13.58	9.75	23.33	46.00	-22.67	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.3 Page 14 of 78



EUT:	Handheld terminal	Model Name:	U9000
Temperature:	24 °C	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage:	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demont
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	41.24	9.63	50.87	65.78	-14.91	QP
0.1539	21.77	9.63	31.40	55.78	-24.38	AVG
0.5180	35.42	9.73	45.15	56.00	-10.85	QP
0.5180	16.91	9.73	26.64	46.00	-19.36	AVG
0.8580	33.62	9.69	43.31	56.00	-12.69	QP
0.8580	15.88	9.69	25.57	46.00	-20.43	AVG
1.2740	31.81	9.72	41.53	56.00	-14.47	QP
1.2740	13.12	9.72	22.84	46.00	-23.16	AVG
2.3699	29.19	9.68	38.87	56.00	-17.13	QP
2.3699	11.88	9.68	21.56	46.00	-24.44	AVG
4.0060	25.39	9.77	35.16	56.00	-20.84	QP
4.0060	8.19	9.77	17.96	46.00	-28.04	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.3 Page 15 of 78

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Dootriotod	\		
Restricted	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
Frequency(MHz)	Tield Strength (pv/iii)	Tield Strength (dbpv/iii)	Weasurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Elimic of readaced Elimodoff Weadarement(Noove Tederminz)							
Frequency(MHz)	Class B (dBuV/m) (at 3M)						
1 Tequency(IVII I2)	PEAK	AVERAGE					
Above 1000	74	54					

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

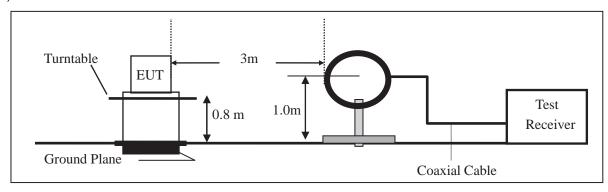
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

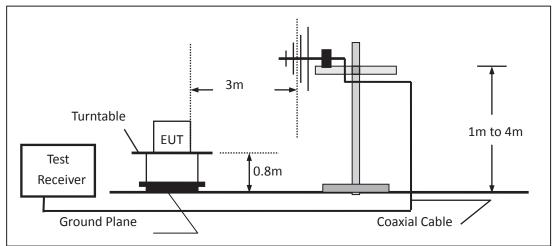
Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

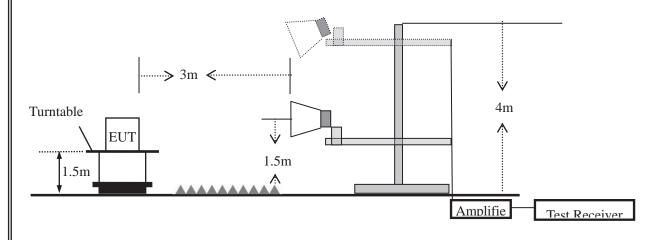
Version.1.3 Page 16 of 78



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

Version.1.3 Page 17 of 78

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Version.1.3 Page 18 of 78

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth	
30 to 1000	QP	120 kHz	300 kHz	
Ab 2112 4000	Peak	1 MHz	1 MHz	
Above 1000	Average	1 MHz	1 MHz	

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

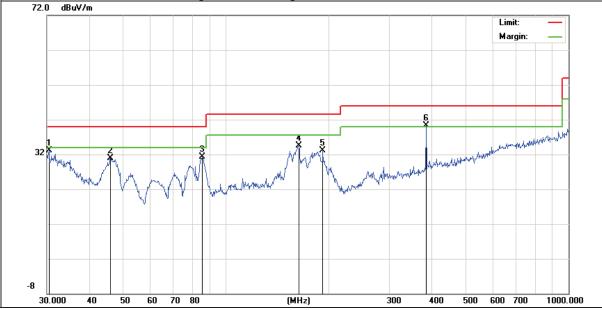
■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Version.1.3 Page 19 of 78


■ Spurious Emission below 1GHz (30MHz to 1GHz)
All the modulation modes have been tested, and the worst result was report as below:

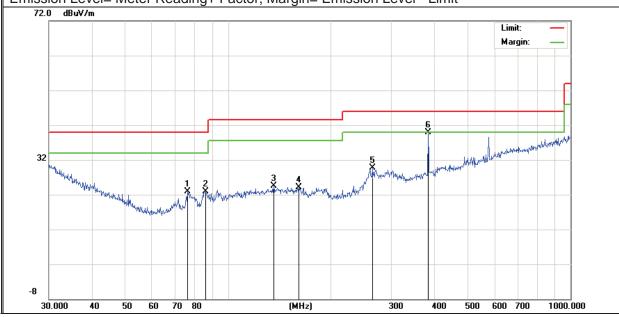
7 111 1110 1110 0101011	Till the meddiater medde have been teeted, and the wellet recall has report de belein							
EUT:	Handheld terminal	Model Name:	U9000					
Temperature:	24 ℃	Relative Humidity:	53%					
Pressure:	1010hPa	Test Mode:	Mode 1					
Test Voltage:	DC 5V							

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.4238	8.22	24.84	33.06	40.00	-6.94	QP
V	46.0164	14.57	16.41	30.98	40.00	-9.02	QP
V	85.2980	16.76	14.63	31.39	40.00	-8.61	QP
V	163.1818	17.22	17.26	34.48	43.50	-9.02	QP
V	191.7450	17.75	15.32	33.07	43.50	-10.43	QP
V	383.9318	17.87	22.51	40.38	46.00	-5.62	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Version.1.3 Page 20 of 78



Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	76.2442	9.75	13.08	22.83	40.00	-17.17	QP
Н	86.2001	8.05	14.84	22.89	40.00	-17.11	QP
Н	135.9822	6.31	18.11	24.42	43.50	-19.08	QP
Н	160.9089	6.54	17.57	24.11	43.50	-19.39	QP
Н	263.8190	9.59	20.04	29.63	46.00	-16.37	QP
Н	383.9318	17.45	22.51	39.96	46.00	-6.04	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Version.1.3 Page 21 of 78

Spurious Emission Above 1GHz (1GHz to 25GHz)

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
		•	Low Cha	nnel (2402 N	/Hz)(GFSK)/	Above 1G			•
4804.55	68.64	5.21	35.59	44.30	65.14	74.00	-8.86	Pk	Vertical
4804.55	43.06	5.21	35.59	44.30	39.56	54.00	-14.44	AV	Vertical
7206.04	62.90	6.48	36.27	44.60	61.05	74.00	-12.95	Pk	Vertical
7206.04	42.34	6.48	36.27	44.60	40.49	54.00	-13.51	AV	Vertical
4804.66	63.20	5.21	35.55	44.30	59.66	74.00	-14.34	Pk	Horizontal
4804.66	40.36	5.21	35.55	44.30	36.82	54.00	-17.18	AV	Horizontal
7206.86	62.87	6.48	36.27	44.52	61.10	74.00	-12.90	Pk	Horizontal
7206.86	40.87	6.48	36.27	44.52	39.10	54.00	-14.90	AV	Horizontal
			Mid Cha	nnel (2441 N	1Hz)(GFSK)A	Above 1G			
4882.92	66.27	5.21	35.66	44.20	62.94	74.00	-11.06	Pk	Vertical
4882.92	43.57	5.21	35.66	44.20	40.24	54.00	-13.76	AV	Vertical
7323.44	63.12	7.10	36.50	44.43	62.29	74.00	-11.71	Pk	Vertical
7323.44	43.30	7.10	36.50	44.43	42.47	54.00	-11.53	AV	Vertical
4882.42	60.61	5.21	35.66	44.20	57.28	74.00	-16.72	Pk	Horizontal
4882.42	42.11	5.21	35.66	44.20	38.78	54.00	-15.22	AV	Horizontal
7324.31	61.25	7.10	36.50	44.43	60.42	74.00	-13.58	Pk	Horizontal
7324.31	43.22	7.10	36.50	44.43	42.39	54.00	-11.61	AV	Horizontal
			High Cha	nnel (2480 M	MHz)(GFSK)	Above 1G			
4959.74	65.59	5.21	35.52	44.21	62.11	74.00	-11.89	Pk	Vertical
4959.74	43.11	5.21	35.52	44.21	39.63	54.00	-14.37	AV	Vertical
7439.50	64.77	7.10	36.53	44.60	63.80	74.00	-10.20	Pk	Vertical
7439.50	42.34	7.10	36.53	44.60	41.37	54.00	-12.63	AV	Vertical
4960.44	61.66	5.21	35.52	44.21	58.18	74.00	-15.82	Pk	Horizontal
4960.44	43.10	5.21	35.52	44.21	39.62	54.00	-14.38	AV	Horizontal
7440.32	60.95	7.10	36.53	44.60	59.98	74.00	-14.02	Pk	Horizontal
7440.32	43.67	7.10	36.53	44.60	42.70	54.00	-11.30	AV	Horizontal

Note:

- (1) Emission Level= Antenna Factor + Cable Loss + Read Level Preamp Factor
- (2)All other emissions more than 20dB below the limit.

Version.1.3 Page 22 of 78

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

EUT:	Handheld terminal	Model No.:	U9000					
Temperature:	20 ℃	Relative Humidity:	48%					
Test Mode:	Mode2/ Mode4	Test By:	Mary Hu					

All the modulation modes have been tested, and the worst result was report as below:

All the mot	Meter	Cable	Antenna		ne worst res	Suit was re	JUIT AS DE	low.	
Frequency	Reading	Loss	Factor	Preamp Factor	Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
				1Mbps(GFS	K)- Non-hop	ping			
2310.00	52.46	2.97	27.80	43.80	39.43	74	-34.57	Pk	Horizontal
2310.00	42.61	2.97	27.80	43.80	29.58	54	-24.42	AV	Horizontal
2310.00	51.22	2.97	27.80	43.80	38.19	74	-35.81	Pk	Vertical
2310.00	43.20	2.97	27.80	43.80	30.17	54	-23.83	AV	Vertical
2390.00	52.26	3.14	27.21	43.80	38.81	74	-35.19	Pk	Vertical
2390.00	43.68	3.14	27.21	43.80	30.23	54	-23.77	AV	Vertical
2390.00	51.68	3.14	27.21	43.80	38.23	74	-35.77	Pk	Horizontal
2390.00	41.06	3.14	27.21	43.80	27.61	54	-26.39	AV	Horizontal
2483.50	52.51	3.58	27.70	44.00	39.79	74	-34.21	Pk	Vertical
2483.50	40.93	3.58	27.70	44.00	28.21	54	-25.79	AV	Vertical
2483.50	53.93	3.58	27.70	44.00	41.21	74	-32.79	Pk	Horizontal
2483.50	44.96	3.58	27.70	44.00	32.24	54	-21.76	AV	Horizontal
				1Mbp	s hopping				
2310.00	56.51	2.97	27.80	43.80	43.48	74.00	-30.52	Pk	Vertical
2310.00	43.33	2.97	27.80	43.80	30.30	54.00	-23.70	AV	Vertical
2310.00	50.69	2.97	27.80	43.80	37.66	74.00	-36.34	Pk	Horizontal
2310.00	42.07	2.97	27.80	43.80	29.04	54.00	-24.96	AV	Horizontal
2390.00	54.17	3.14	27.21	43.80	40.72	74.00	-33.28	Pk	Vertical
2390.00	43.91	3.14	27.21	43.80	30.46	54.00	-23.54	AV	Vertical
2390.00	53.89	3.14	27.21	43.80	40.44	74.00	-33.56	Pk	Horizontal
2390.00	42.07	3.14	27.21	43.80	28.62	54.00	-25.38	AV	Horizontal
2483.50	53.08	3.58	27.70	44.00	40.36	74.00	-33.64	Pk	Vertical
2483.50	42.99	3.58	27.70	44.00	30.27	54.00	-23.73	AV	Vertical
2483.50	53.07	3.58	27.70	44.00	40.35	74.00	-33.65	Pk	Horizontal
2483.50	41.56	3.58	27.70	44.00	28.84	54.00	-25.16	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

Version.1.3 Page 23 of 78

■ Spurious Emission in Restricted Band 3260MHz-18000MHz

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/ Mode4	Test By:	Mary Hu

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	62.69	4.04	29.57	44.70	51.60	74	-22.40	Pk	Vertical
3260	45.73	4.04	29.57	44.70	34.64	54	-19.36	AV	Vertical
3260	57.41	4.04	29.57	44.70	46.32	74	-27.68	Pk	Horizontal
3260	45.68	4.04	29.57	44.70	34.59	54	-19.41	AV	Horizontal
3332	63.06	4.26	29.87	44.40	52.79	74	-21.21	Pk	Vertical
3332	47.27	4.26	29.87	44.40	37.00	54	-17.00	AV	Vertical
3332	62.27	4.26	29.87	44.40	52.00	74	-22.00	Pk	Horizontal
3332	44.31	4.26	29.87	44.40	34.04	54	-19.96	AV	Horizontal
17797	51.08	10.99	43.95	43.50	62.52	74	-11.48	Pk	Vertical
17797	35.40	10.99	43.95	43.50	46.84	54	-7.16	AV	Vertical
17788	53.40	11.81	43.69	44.60	64.30	74	-9.70	Pk	Horizontal
17788	36.82	11.81	43.69	44.60	47.72	54	-6.28	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

Version.1.3 Page 24 of 78

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

Test data reference attachment.

Version.1.3 Page 25 of 78

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 **Applicable Standard**

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 **Measuring Instruments**

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

 $VBW \ge RBW$ Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Version.1.3 Page 26 of 78

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW ≥ 1MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Measure the maximum time duration of one single pulse.

Set the EUT for DH5, DH3 and DH1 packet transmitting.

Measure the maximum time duration of one single pulse.

Version.1.3 Page 27 of 78

7.5.6 Test Results

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number)
DH3 Dwell time: Reading * (1600/4)*31.6/(channel number)
DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Version.1.3 Page 28 of 78

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.6.6 Test Results

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Version.1.3 Page 29 of 78

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ the 20 dB bandwidth of the emission being measured

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

7.7.6 Test Results

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Version.1.3 Page 30 of 78

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Handheld terminal	Model No.:	U9000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

Test data reference attachment.

Version.1.3 Page 31 of 78

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

Version.1.3 Page 32 of 78

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFI anter	na (Gain: 1.3dBi). It comply with the standard
requirement.	, , , , ,

Version.1.3 Page 33 of 78

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmister be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

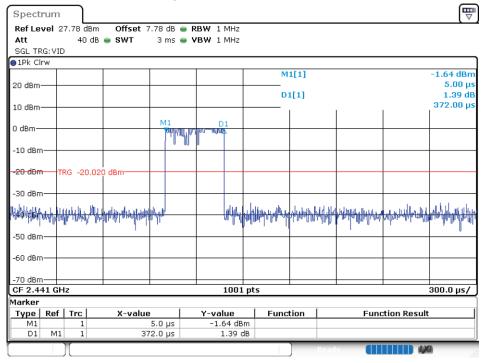
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Version.1.3 Page 34 of 78



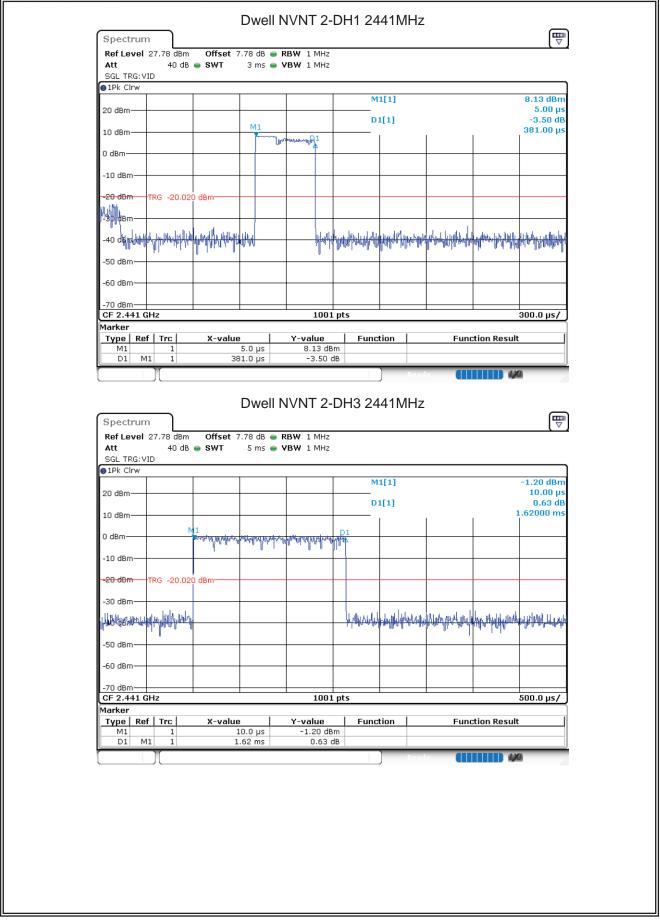
8 TEST RESULTS

8.1 DWELLTIME

Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	1-DH3	2441	1.625	260	31600	400	Pass
NVNT	1-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	2-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	2-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	3-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	3-DH3	2441	1.625	260	31600	400	Pass
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass

Dwell NVNT 1-DH1 2441MHz

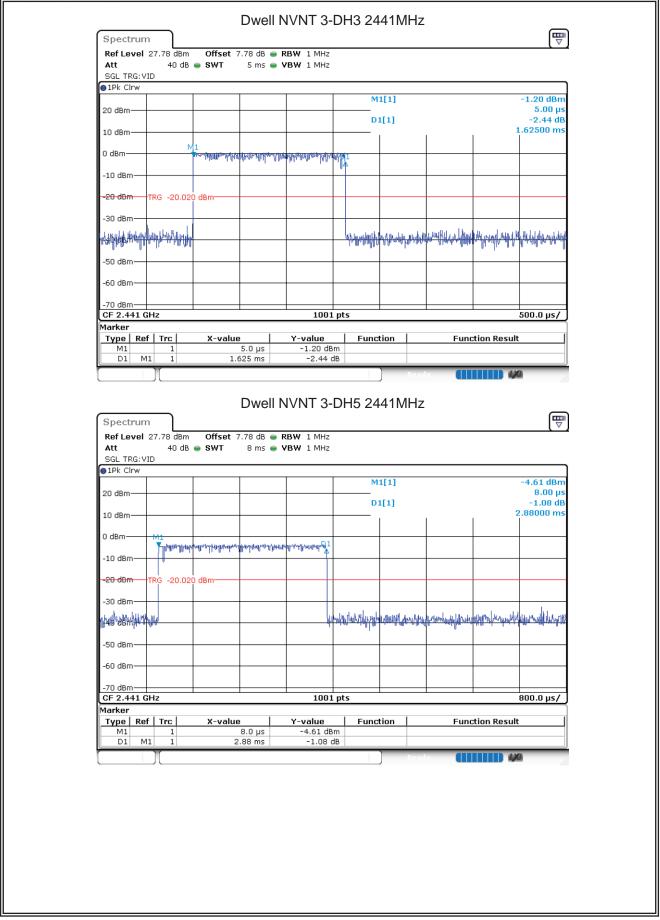
Version.1.3 Page 35 of 78



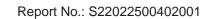
Dwell NVNT 1-DH3 2441MHz Spectrum Offset 7.78 dB @ RBW 1 MHz Ref Level 27.78 dBm 40 dB 🅌 SWT 5 ms 🍅 VBW 1 MHz Att SGL TRG: VID ●1Pk Clrw M1[1] 1.79 dBm 20 dBm-5.00 µs D1[1] 0.64 dB .62500 ms 10 dBm 0 dBm -10 dBm TRG -20.020 dBm المار طعوي والمدار أأولي والموامد والمرعوب والموارث والمرور والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع و -50 dBm -60 dBm -70 dBm 1001 pts 500.0 μs/ CF 2.441 GHz Type | Ref | Trc Y-value Function **Function Result** X-value 5.0 µs М1 1.625 ms -0.64 dB Dwell NVNT 1-DH5 2441MHz Spectrum Ref Level 27.78 dBm Offset 7.78 dB • RBW 1 MHz Att 40 dB 🅌 SWT 8 ms 🍙 VBW 1 MHz SGL TRG: VID ●1Pk Clrw M1[1] 4.14 dBn 8.00 µs 20 dBm D1[1] -0.08 dB 2.87200 ms 10 dBm D1 0 dBm -10 dBm -20.020 dBm مورك المرابط المرابط والمرابط والمرابط والمرافع المرابط والمرابط و -50 dBm -60 dBm--70 dBm 800.0 µs/ 1001 pts CF 2.441 GHz Marker Type | Ref | Trc | Y-value Function **Function Result** X-value 4.14 dBm 8.0 µs М1 2.872 ms D1 -0.08 dB

Version.1.3 Page 36 of 78

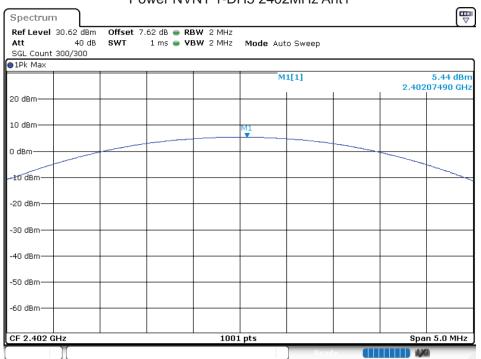
Version.1.3 Page 37 of 78



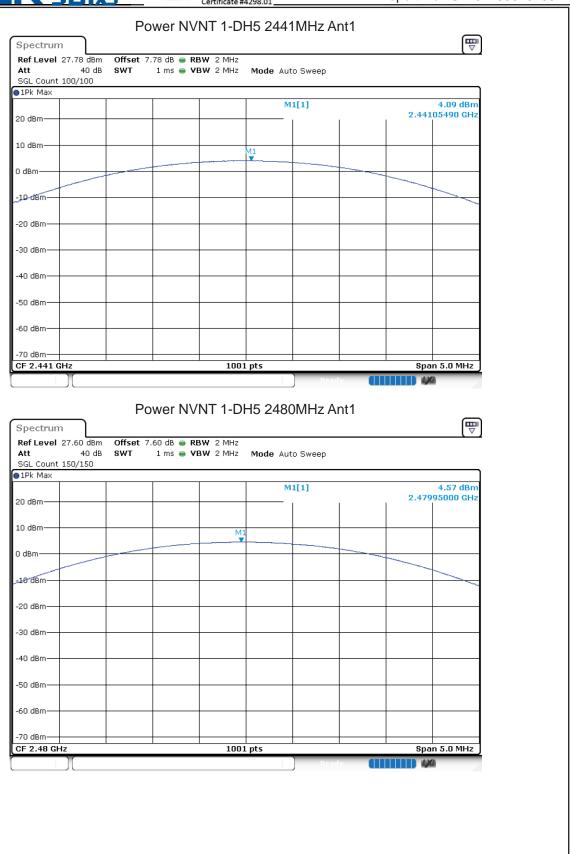
Dwell NVNT 2-DH5 2441MHz Spectrum Offset 7.78 dB • RBW 1 MHz Ref Level 27.78 dBm 40 dB 🅌 SWT 8 ms 🍅 VBW 1 MHz Att SGL TRG: VID ●1Pk Clrw M1[1] 4.54 dBm 20 dBm-8.00 µs D1[1] 1.42 dB 2.88000 ms 10 dBm 0 dBm ÷")(|ppp-i-t-s,i-lif-rigippp-st-s,i-lifesidjourd/t-s,i-lifesidjourd-t-s,i-lifesidjourd-t-s,i-lifesidjourd-t-s -10 dBm TRG -20.020 dBm ունույթույթույթությունը հանդիրի իրավագությանը հարարական ակարարից անդարական անդրական հանդարանական և -50 dBm -60 dBm 1001 pts 800.0 µs/ CF 2.441 GHz Type | Ref | Trc Function **Function Result** X-value Y-value 8.0 µs М1 2.88 ms -1.42 dB Dwell NVNT 3-DH1 2441MHz Spectrum Ref Level 27.78 dBm Offset 7.78 dB • RBW 1 MHz Att 40 dB 🅌 SWT 3 ms 🍅 VBW 1 MHz SGL TRG: VID 1Pk Clrw M1[1] 5.00 µs 20 dBm D1[1] -2.70 dB 381.00 µs 10 dBm Josephan James 0 dBm -10 dBm TRG -20.020 dBm -50 dBm -60 dBm -70 dBm 300.0 µs/ 1001 pts CF 2.441 GHz Marker Type | Ref | Trc | Y-value Function **Function Result** X-value 5.0 µs 8.13 dBm М1 D1 381.0 µs -2.70 dB


Version.1.3 Page 38 of 78

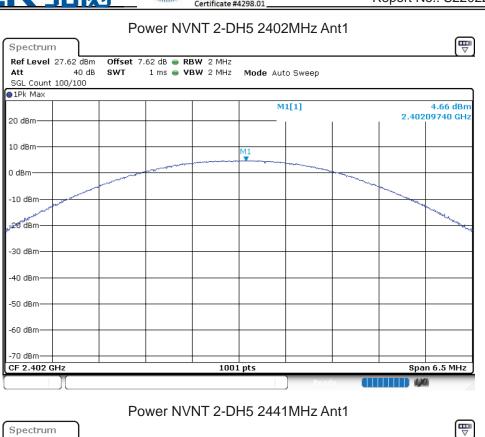
Version.1.3 Page 39 of 78

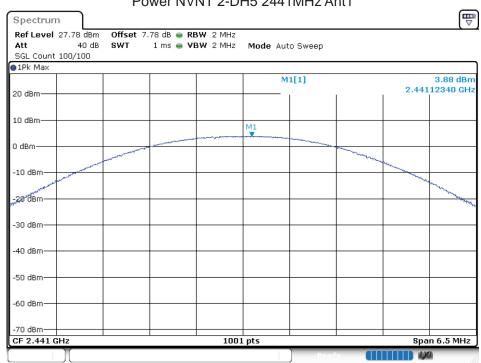


8.2 MAXIMUM CONDUCTED OUTPUT POWER

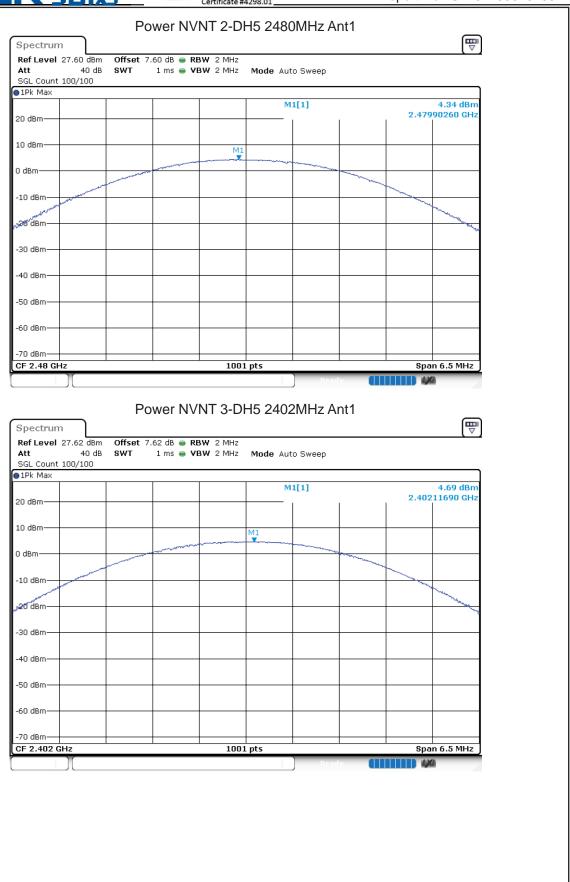

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	5.44	30	Pass
NVNT	1-DH5	2441	Ant 1	4.09	30	Pass
NVNT	1-DH5	2480	Ant 1	4.57	30	Pass
NVNT	2-DH5	2402	Ant 1	4.66	20.97	Pass
NVNT	2-DH5	2441	Ant 1	3.88	20.97	Pass
NVNT	2-DH5	2480	Ant 1	4.34	20.97	Pass
NVNT	3-DH5	2402	Ant 1	4.69	20.97	Pass
NVNT	3-DH5	2441	Ant 1	3.97	20.97	Pass
NVNT	3-DH5	2480	Ant 1	4.36	20.97	Pass

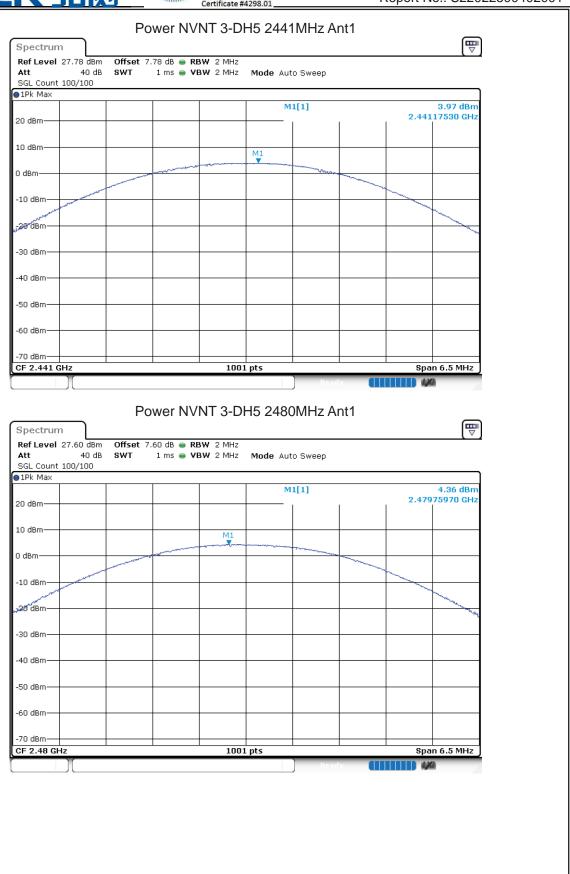
Power NVNT 1-DH5 2402MHz Ant1


Version.1.3 Page 40 of 78



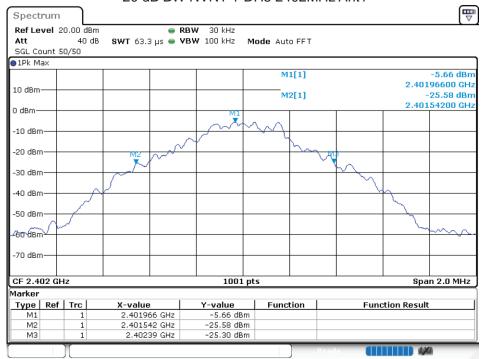
Version.1.3 Page 41 of 78




Version.1.3 Page 42 of 78

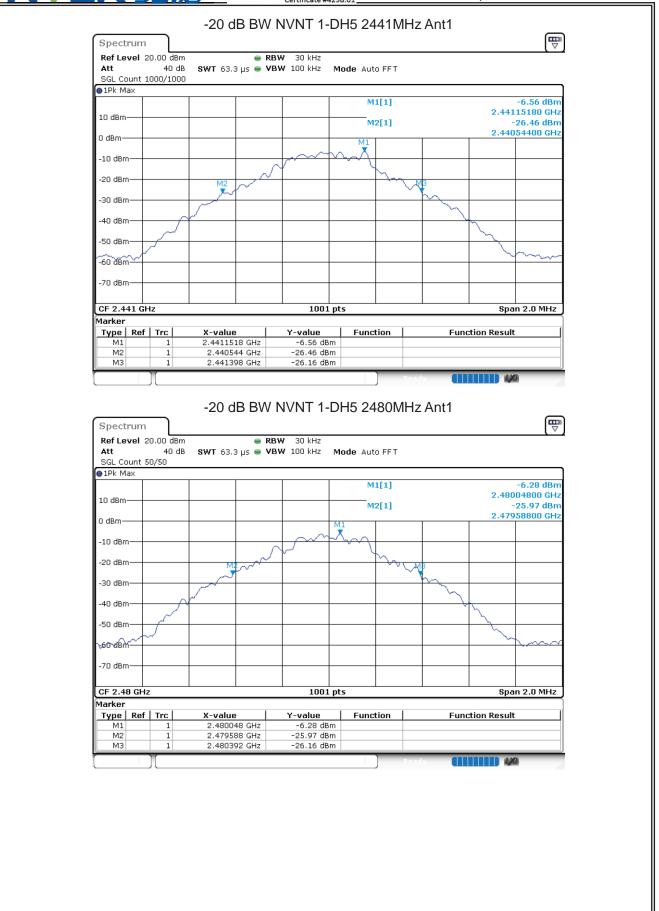
Version.1.3 Page 43 of 78

Version.1.3 Page 44 of 78

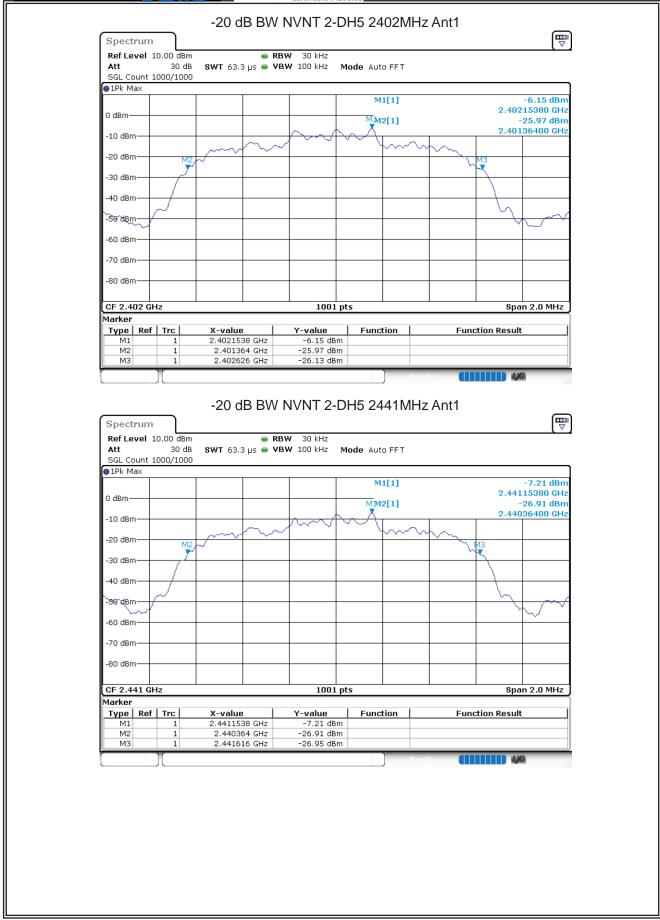


8.3 OCCUPIED CHANNEL BANDWIDTH

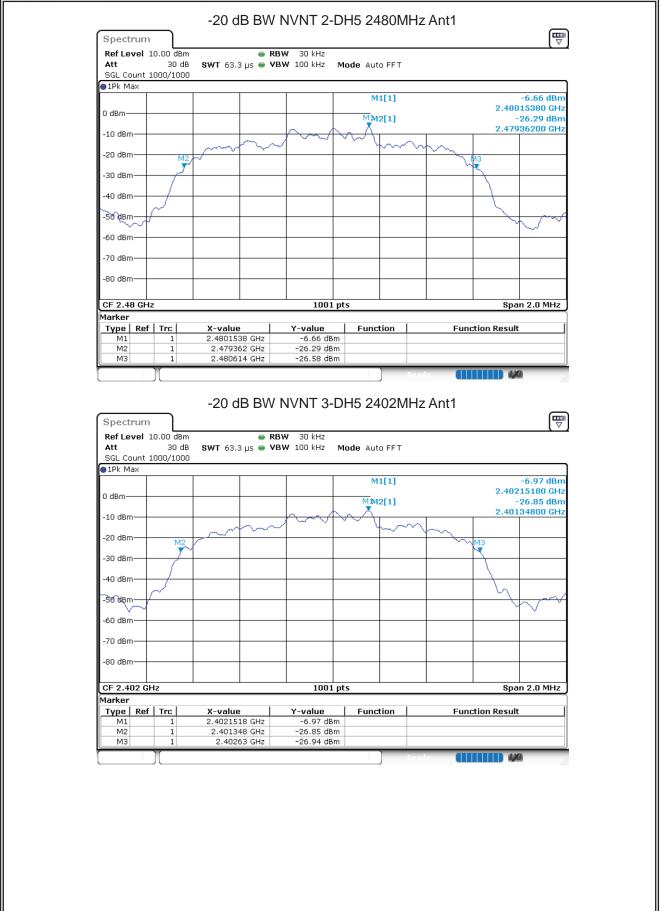
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.848	Pass
NVNT	1-DH5	2441	Ant 1	0.854	Pass
NVNT	1-DH5	2480	Ant 1	0.804	Pass
NVNT	2-DH5	2402	Ant 1	1.262	Pass
NVNT	2-DH5	2441	Ant 1	1.252	Pass
NVNT	2-DH5	2480	Ant 1	1.252	Pass
NVNT	3-DH5	2402	Ant 1	1.282	Pass
NVNT	3-DH5	2441	Ant 1	1.254	Pass
NVNT	3-DH5	2480	Ant 1	1.252	Pass


-20 dB BW NVNT 1-DH5 2402MHz Ant1

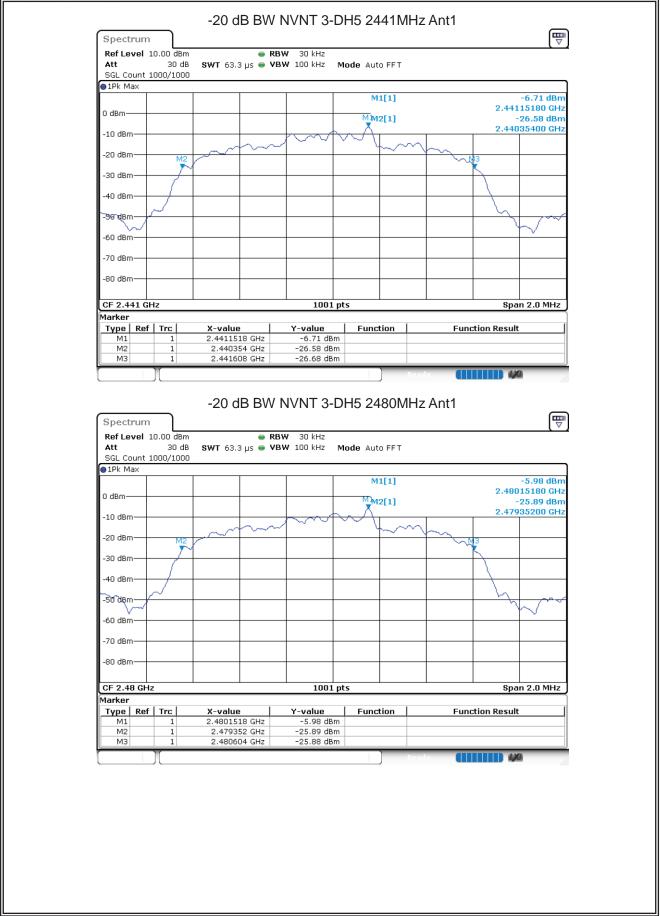
Version.1.3 Page 45 of 78



Version.1.3 Page 46 of 78

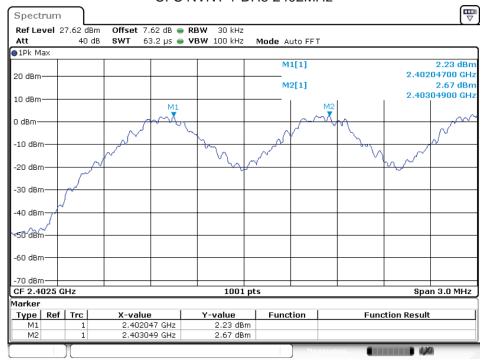


Version.1.3 Page 47 of 78



Version.1.3 Page 48 of 78

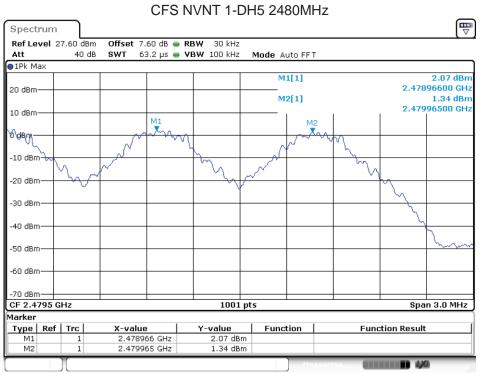
Version.1.3 Page 49 of 78



8.4 CARRIER FREQUENCIES SEPARATION

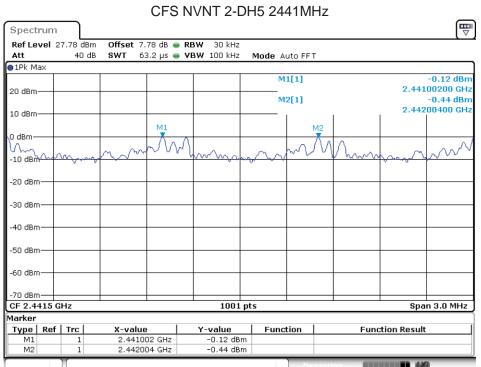
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.047	2403.049	1.002	0.848	Pass
NVNT	1-DH5	2441.047	2442.049	1.002	0.854	Pass
NVNT	1-DH5	2478.966	2479.965	0.999	0.804	Pass
NVNT	2-DH5	2402.152	2403.154	1.002	0.841	Pass
NVNT	2-DH5	2441.002	2442.004	1.002	0.835	Pass
NVNT	2-DH5	2479.152	2480.154	1.002	0.835	Pass
NVNT	3-DH5	2402.152	2403.154	1.002	0.855	Pass
NVNT	3-DH5	2441.152	2442.151	0.999	0.836	Pass
NVNT	3-DH5	2479.152	2480.154	1.002	0.835	Pass

CFS NVNT 1-DH5 2402MHz



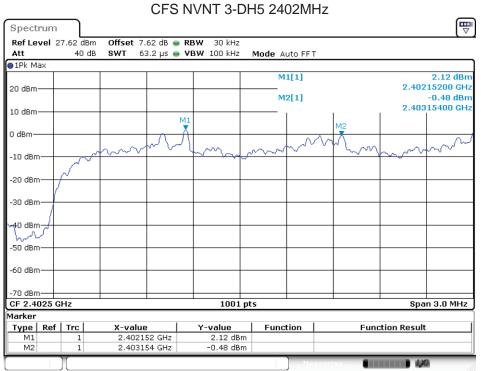
Version.1.3 Page 50 of 78

CFS NVNT 1-DH5 2441MHz Spectrum Offset 7.78 dB • RBW 30 kHz Ref Level 27.78 dBm 40 dB SWT 63.2 µs ● VBW 100 kHz Att Mode Auto FFT ●1Pk Max M1[1] 0.84 dBn 2.44104700 GHz 20 dBm M2[1] 1.22 dBn 2.44204900 GHz 10 dBm Ø\dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Span 3.0 MHz CF 2.4415 GHz 1001 pts Type | Ref | Trc Y-value Function **Function Result** X-value 2.441047 GHz М2 2.442049 GHz 1.22 dBm



Version.1.3 Page 51 of 78

CFS NVNT 2-DH5 2402MHz Spectrum Offset 7.62 dB • RBW 30 kHz Ref Level 27.62 dBm 40 dB SWT 63.2 µs ● VBW 100 kHz Att Mode Auto FFT ●1Pk Max M1[1] 0.62 dBn 20 dBm 2.40215200 GHz M2[1] 1.91 dBm 2.40315400 GHz 10 dBm 0 dBm--10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Span 3.0 MHz CF 2.4025 GHz 1001 pts Type | Ref | Trc Y-value Function **Function Result** X-value 2.402152 GHz 0.62 dBm М2 2.403154 GHz 1.91 dBm CFS NVNT 2-DH5 2441MHz Spectrum



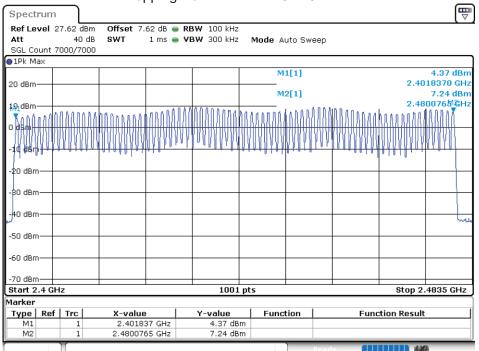
Version.1.3 Page 52 of 78

CFS NVNT 2-DH5 2480MHz Spectrum Offset 7.60 dB • RBW 30 kHz Ref Level 27.60 dBm 40 dB SWT 63.2 µs ● VBW 100 kHz Att Mode Auto FFT ●1Pk Max M1[1] 1.60 dBn 20 dBm 2.47915200 GHz M2[1] 0.59 dBm 2.48015400 GHz 10 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Span 3.0 MHz CF 2.4795 GHz 1001 pts Type | Ref | Trc Y-value Function **Function Result** X-value 2.479152 GHz 1.60 dBm М2 2.480154 GHz 0.59 dBm CFS NVNT 3-DH5 2402MHz

Version.1.3 Page 53 of 78

CFS NVNT 3-DH5 2441MHz Spectrum Offset 7.78 dB • RBW 30 kHz Ref Level 27.78 dBm 40 dB SWT 63.2 µs ● VBW 100 kHz Att Mode Auto FFT ●1Pk Max M1[1] 0.32 dBn 2.44115200 GHz 20 dBm M2[1] -0.09 dBm 2.44215100 GHz 10 dBm O dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Span 3.0 MHz CF 2.4415 GHz 1001 pts Type | Ref | Trc Y-value Function **Function Result** X-value 2.441152 GHz 0.32 dBm М2 2.442151 GHz -0.09 dBm CFS NVNT 3-DH5 2480MHz Spectrum Ref Level 27.60 dBm Offset 7.60 dB • RBW 30 kHz 63.2 μs 🎃 **VBW** 100 kHz Att Mode Auto FFT ●1Pk Max M1[1] 2.30 dBm 2.47915200 GHz 20 dBm-M2[1] 1.11 dBm 2.48015400 GHz 10 dBm--10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm Span 3.0 MHz CF 2.4795 GHz 1001 pts Marker Type | Ref | Trc | Y-value Function **Function Result** X-value 2.479152 GHz 2.30 dBm M2 2.480154 GHz 1.11 dBm

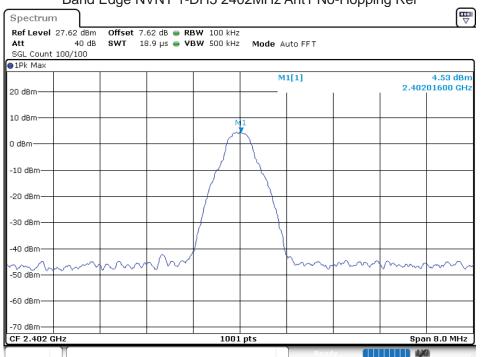
Version.1.3 Page 54 of 78



8.5 NUMBER OF HOPPING CHANNEL

Condition Mode		Hopping Number	Limit	Verdict	
NVNT	1-DH5	79	15	Pass	

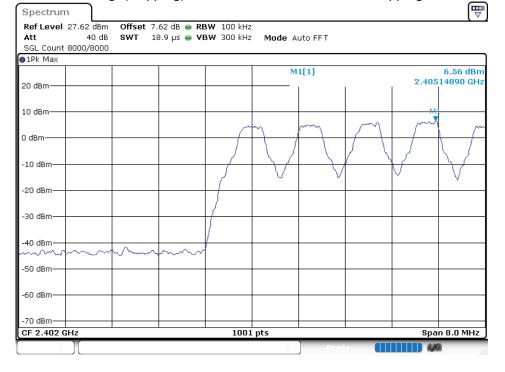
Version.1.3 Page 55 of 78

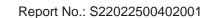


8.6 BAND EDGE

Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-46.08	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.76	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-46.78	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-46.99	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-45.35	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-46	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-46.28	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-46.89	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-45.27	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-45.17	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-47.52	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-48.19	-20	Pass

Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Ref

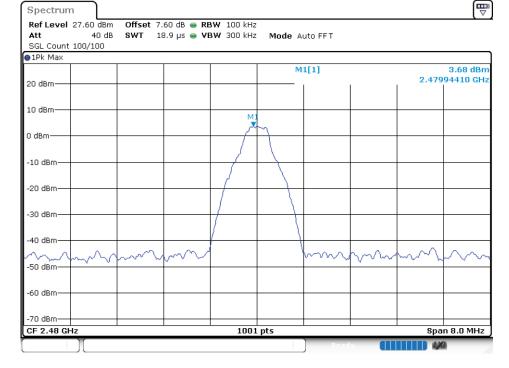

Version.1.3 Page 56 of 78



Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Emission Spectrum Offset 7.62 dB ● RBW 100 kHz Ref Level 27.62 dBm **SWT** 227.5 µs **● VBW** 500 kHz 40 dB Att Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 4.88 dBn 20 dBm 2.40215000 GHz M2[1] -45.79 dBm 10 dBm 2.40000000MGHz 0 dBm--10 dBm-D1 -15.467 dBm -30 dBm -50 dBm -60 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type | Ref | Trc X-value Y-value Function **Function Result** 2.40215 GHz 4.88 dBm М2 -45.79 dBm 2.4 GHz 2.39 GHz Μ4 2.3492 GHz -41.55 dBm

Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref

Version.1.3 Page 57 of 78



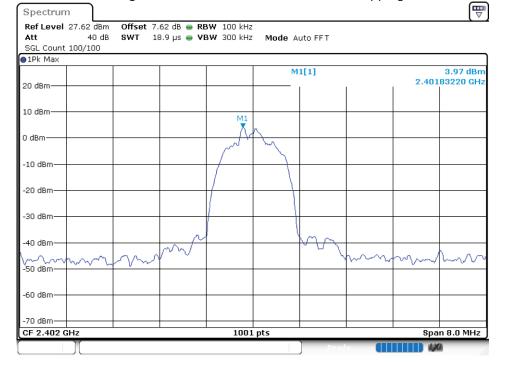
Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Emission Spectrum Offset 7.62 dB • RBW 100 kHz Ref Level 27.62 dBm 40 dB **SWT** 227.5 µs **● VBW** 300 kHz Att Mode Auto FFT SGL Count 1200/1200 ●1Pk Max M1[1] 6.28 dBn 20 dBm 2.40495000 GHz M2[1] -44.53 dBm 2.40000000 GA 10 dBm-0 dBm--10 dBm-D1 -13.436 dBm--30 dBm -50 dBm -60 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type | Ref | Trc X-value Y-value Function **Function Result** 2.40495 GHz 6.28 dBm М2 -44.53 dBm 2.4 GHz 2.387 GHz Μ4 2.3431 GHz -40.21 dBm

Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref

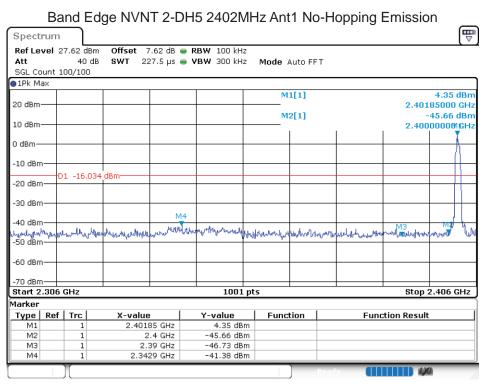
Version.1.3 Page 58 of 78

Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Emission Spectrum Offset 7.60 dB • RBW 100 kHz Ref Level 27.60 dBm **SWT** 227.5 µs **● VBW** 300 kHz 40 dB Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 3.68 dBm 20 dBm 2.48005000 GHz M2[1] -44.50 dBm 2.48350000 GHz 10 dBm-0 dBm -10 dBm D1 -16.322 dBm -30 dBm was a soully frame from the factor from the following from the soully facility was a factor of the f -50 dBm -60 dBm Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type | Ref | Trc X-value Y-value Function **Function Result** 2.48005 GHz 3.68 dBm М2 -44.50 dBm 2.4835 GHz 2.5 GHz -45.57 dBm 2.4919 GHz Μ4 -43.11 dBm

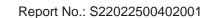
Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref


Version.1.3 Page 59 of 78

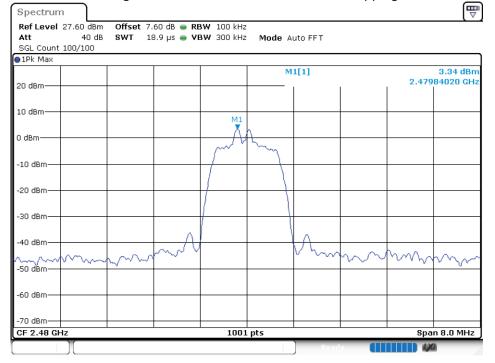
Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Emission Spectrum Offset 7.60 dB • RBW 100 kHz Ref Level 27.60 dBm **SWT** 227.5 µs **● VBW** 300 kHz 40 dB Att Mode Auto FFT SGL Count 1000/1000 ●1Pk Max M1[1] 4.80 dBm 20 dBm 2.47605000 GHz M2[1] -44.16 dBm 2.48350000 GHz 110 dBm D1 -14.579 dBm -30 dBm مرسمه والإراميين بالفريد الألبارية لامس -50 dBm -60 dBm Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type | Ref | Trc X-value Y-value Function **Function Result** 2.47605 GHz 4.80 dBm М2 2.4835 GHz -44.16 dBm -43.93 dBm 2.4916 GHz Μ4 -41.58 dBm


Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Ref

Version.1.3 Page 60 of 78

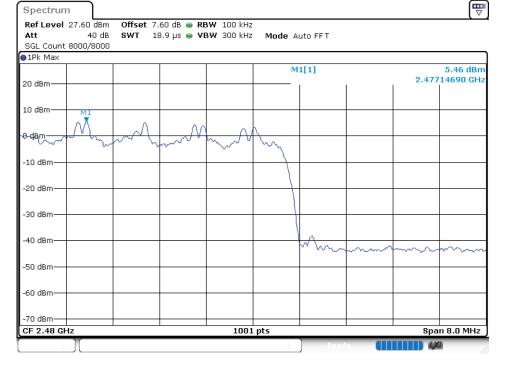


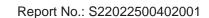
Version.1.3 Page 61 of 78



Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Emission Spectrum Offset 7.62 dB • RBW 100 kHz Ref Level 27.62 dBm 40 dB **SWT** 227.5 µs **● VBW** 300 kHz Att Mode Auto FFT SGL Count 1000/1000 ●1Pk Max M1[1] 20 dBm 2.40295000 GHz -42.85 dBm 2.40000000_MHz M2[1] 10 dBm-0 dBm--10 dBm-D1 -14.104 dBm -50 dBm -60 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type | Ref | Trc X-value Y-value Function **Function Result** 2.40295 GHz 2.71 dBm М2 -42.85 dBm 2.4 GHz 2.39 GHz -45.15 dBm Μ4 2.3482 GHz -40.10 dBm

Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref

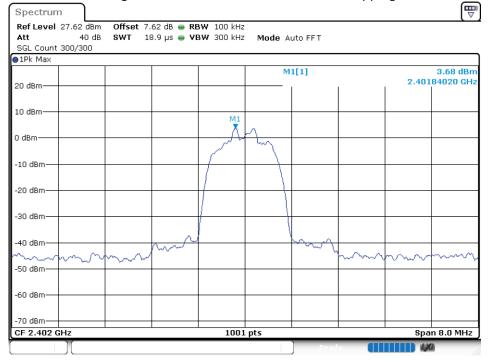

Version.1.3 Page 62 of 78



Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Emission Spectrum Offset 7.60 dB • RBW 100 kHz Ref Level 27.60 dBm **SWT** 227.5 µs **● VBW** 300 kHz 40 dB Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 3.13 dBm 20 dBm 2.47995000 GHz M2[1] -46.84 dBm 2.48350000 GHz 10.dBm -10 dBm -30 -50 dBm -60 dBm Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type | Ref | Trc X-value Y-value 3.13 dBm Function **Function Result** 2.47995 GHz М2 2.4835 GHz -46.84 dBm 2.498 GHz Μ4 -42.95 dBm

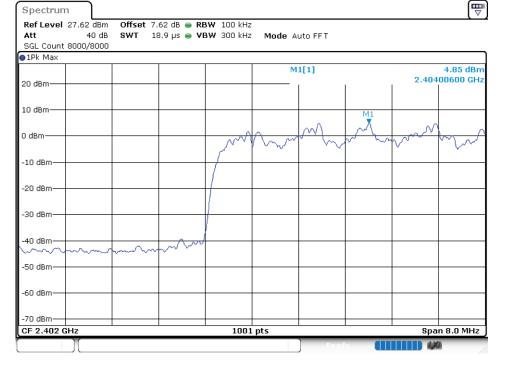
Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref

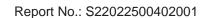
Version.1.3 Page 63 of 78



Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Emission Spectrum Offset 7.60 dB • RBW 100 kHz Ref Level 27.60 dBm **SWT** 227.5 µs **● VBW** 300 kHz 40 dB Att Mode Auto FFT SGL Count 1000/1000 ●1Pk Max M1[1] 2.48 dBm 20 dBm 2.47795000 GHz M2[1] -44.16 dBm 2.48350000 GHz 10 dBm--10 dBm-D1 -14.543 dBm -30 dBm استراتعه برخسان بالهنائد في سيرا بالماس المساور والماد وال -50 dBm -60 dBm Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type | Ref | Trc X-value Y-value Function **Function Result** 2.47795 GHz 2.48 dBm М2 -44.16 dBm 2.4835 GHz -43.98 dBm 2.4961 GHz Μ4 -41.44 dBm

Band Edge NVNT 3-DH5 2402MHz Ant1 No-Hopping Ref

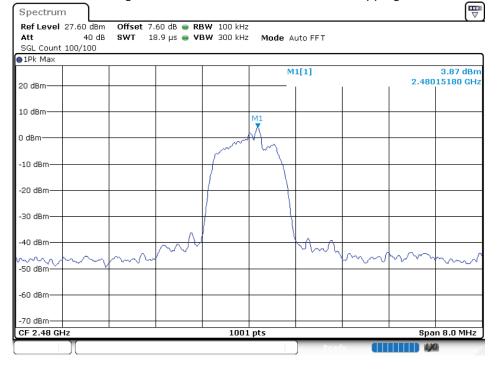

Version.1.3 Page 64 of 78



Band Edge NVNT 3-DH5 2402MHz Ant1 No-Hopping Emission Spectrum Offset 7.62 dB ● RBW 100 kHz Ref Level 27.62 dBm **SWT** 227.5 µs **● VBW** 300 kHz 40 dB Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 3.93 dBm 20 dBm 2.40215000 GHz M2[1] -46.18 dBm 2.40000000@AGHz 10 dBm 0 dBm--10 dBm D1 -16.318 dBm -30 dBm me retrieval and service and s -60 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type | Ref | Trc X-value Y-value 3.93 dBm Function **Function Result** 2.40215 GHz М2 -46.18 dBm 2.4 GHz 2.39 GHz Μ4 2.3553 GHz -41.59 dBm

Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Ref

Version.1.3 Page 65 of 78



Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Emission Spectrum Offset 7.62 dB • RBW 100 kHz Ref Level 27.62 dBm 40 dB **SWT** 227.5 µs **● VBW** 300 kHz Att Mode Auto FFT SGL Count 1000/1000 ●1Pk Max M1[1] 2.67 dBm 20 dBm 2.40295000 GHz M2[1] -44.26 dBm 2.40000000₆Hz 10 dBm-0 dBm--10 dBm-D1 -15.147 dBm -50 dBm -60 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type | Ref | Trc X-value Y-value Function **Function Result** 2.40295 GHz 2.67 dBm М2 -44.26 dBm 2.4 GHz 2.39 GHz Μ4 2.3481 GHz -40.32 dBm

Band Edge NVNT 3-DH5 2480MHz Ant1 No-Hopping Ref


Version.1.3 Page 66 of 78

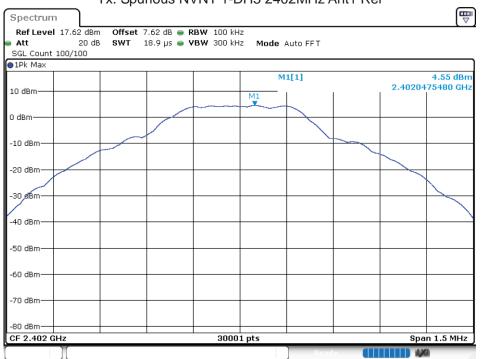
Band Edge NVNT 3-DH5 2480MHz Ant1 No-Hopping Emission Spectrum Offset 7.60 dB • RBW 100 kHz Ref Level 27.60 dBm **SWT** 227.5 µs **● VBW** 300 kHz 40 dB Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 3.94 dBm 20 dBm 2.48015000 GHz M2[1] -45.30 dBm 2.48350000 GHz 10 dBm--10 dBm 01 -16.134 dBm -30 Marshall 4mmmonophiliphen -50 dBm -60 dBm Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type | Ref | Trc X-value Y-value 3.94 dBm Function **Function Result** 2.48015 GHz М2 -45.30 dBm 2.4835 GHz 2.5 GHz 2.4879 GHz Μ4 -43.66 dBm

Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Ref

Version.1.3 Page 67 of 78

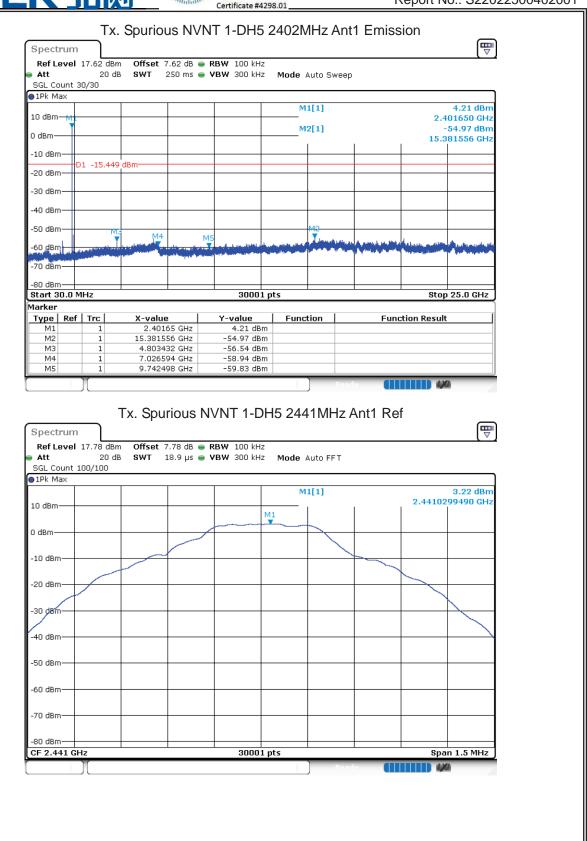
Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Emission Spectrum Ref Level 27.60 dBm Offset 7.60 dB • RBW 100 kHz 40 dB SWT 227.5 µs ● VBW 300 kHz Att Mode Auto FFT SGL Count 1000/1000 ●1Pk Max M1[1] 2.71 dBm 20 dBm 2.47615000 GHz -43.16 dBm 2.48350000 GHz M2[1] 10 dBm--10 dBm-D1 -14.326 dBm--20 dBm -30 dBm Markett Way by what have been by the figure hall problem blanch -50 dBm -60 dBm -70 dBm-Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Y-value 2.71 dBm -43.16 dBm Type | Ref | Trc X-value Function **Function Result** 2.47615 GHz M1 M2 2.4835 GHz 2.5 GHz 2.4898 GHz МЗ -44.79 dBm Μ4 -42.52 dBm

Version.1.3 Page 68 of 78

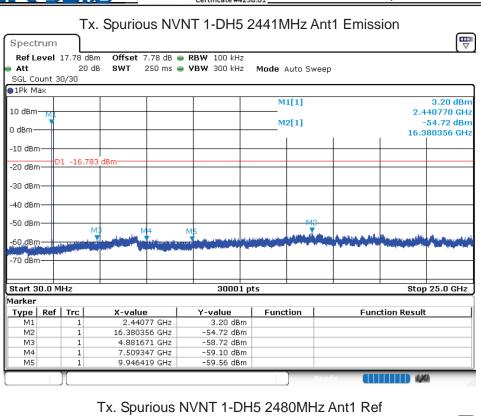


8.7 CONDUCTED RF SPURIOUS EMISSION

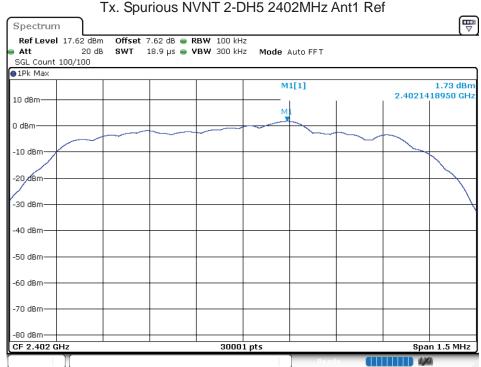
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-59.51	-20	Pass
NVNT	1-DH5	2441	Ant 1	-57.94	-20	Pass
NVNT	1-DH5	2480	Ant 1	-59.78	-20	Pass
NVNT	2-DH5	2402	Ant 1	-57.52	-20	Pass
NVNT	2-DH5	2441	Ant 1	-53.92	-20	Pass
NVNT	2-DH5	2480	Ant 1	-56.88	-20	Pass
NVNT	3-DH5	2402	Ant 1	-59.75	-20	Pass
NVNT	3-DH5	2441	Ant 1	-56.1	-20	Pass
NVNT	3-DH5	2480	Ant 1	-58.42	-20	Pass



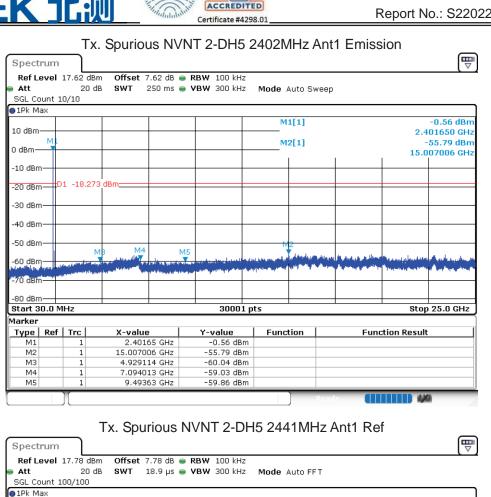
Version.1.3 Page 69 of 78

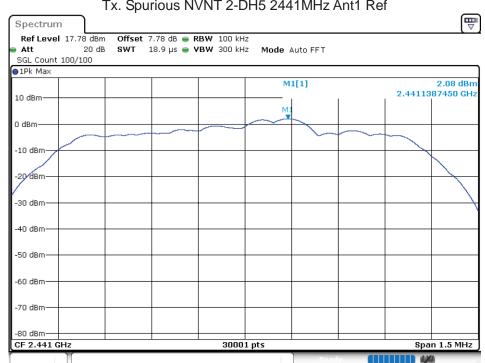


Version.1.3 Page 70 of 78

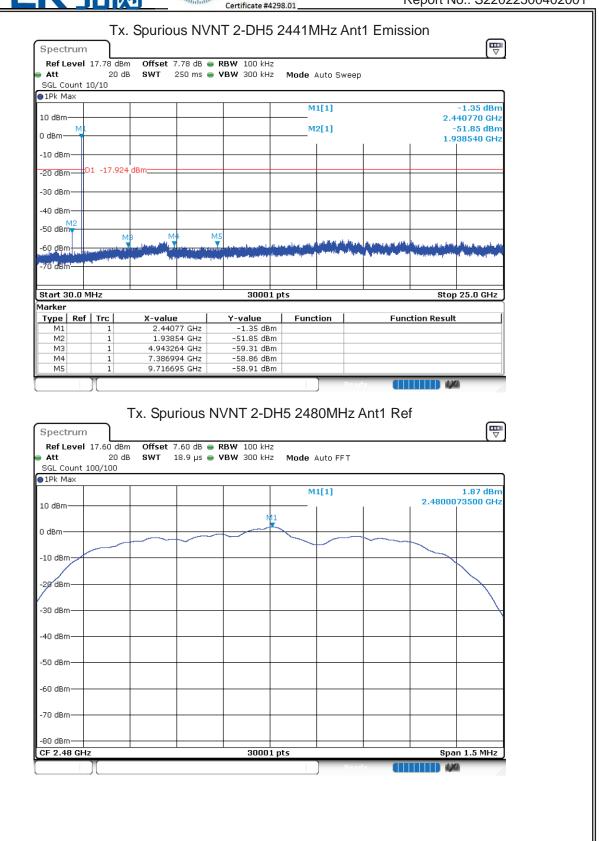


Version.1.3 Page 71 of 78

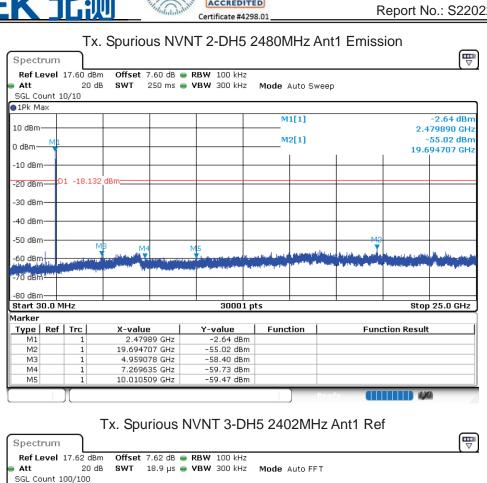

Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Emission Spectrum Offset 7.60 dB • RBW 100 kHz Ref Level 17.60 dBm **SWT** 250 ms • **VBW** 300 kHz Att 20 dB Mode Auto Sweep SGL Count 10/10 ●1Pk Max M1[1] 3.57 dBm 10 dBm-2.479890 GHz M2[1] -56.09 dBm 0 dBm 22.873388 GHz D1 -16.313 dBm⁻ -20 dBm -30 dBm -50 dBm -60 dBm Start 30.0 MHz 30001 pts Stop 25.0 GHz Marker Type | Ref | Trc X-value Y-value 3.57 dBm Function **Function Result** 2.47989 GHz М2 22.873388 GHz -56.09 dBm 4.95991 GHz -58.57 dBm МЗ 7.279623 GHz -60.33 dBm М5 10.087916 GHz -60.29 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dBm Offset 7.62 dB • RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 ●1Pk Max

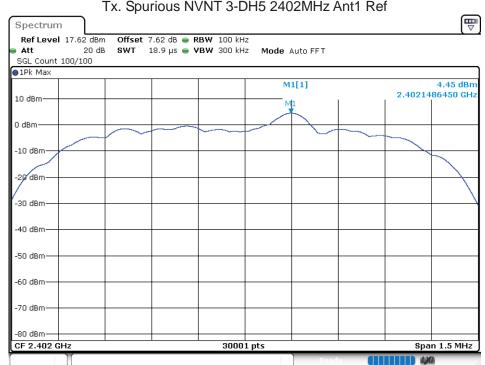


Version.1.3 Page 72 of 78

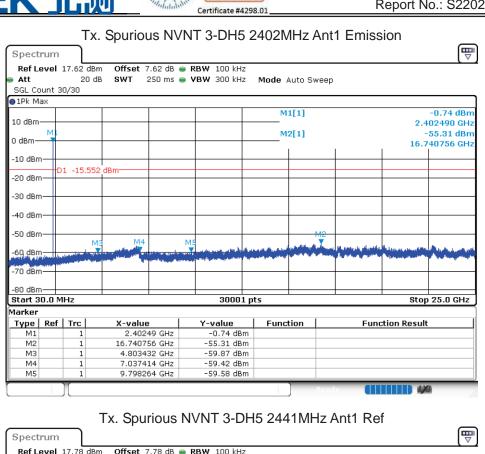


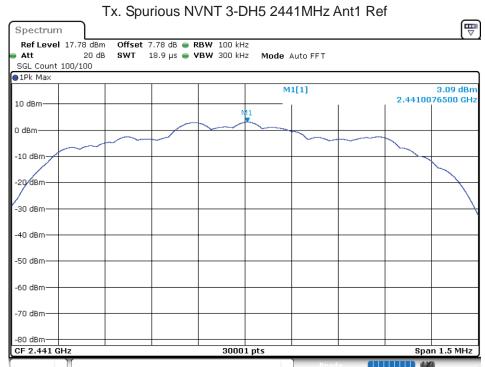
Version.1.3 Page 73 of 78



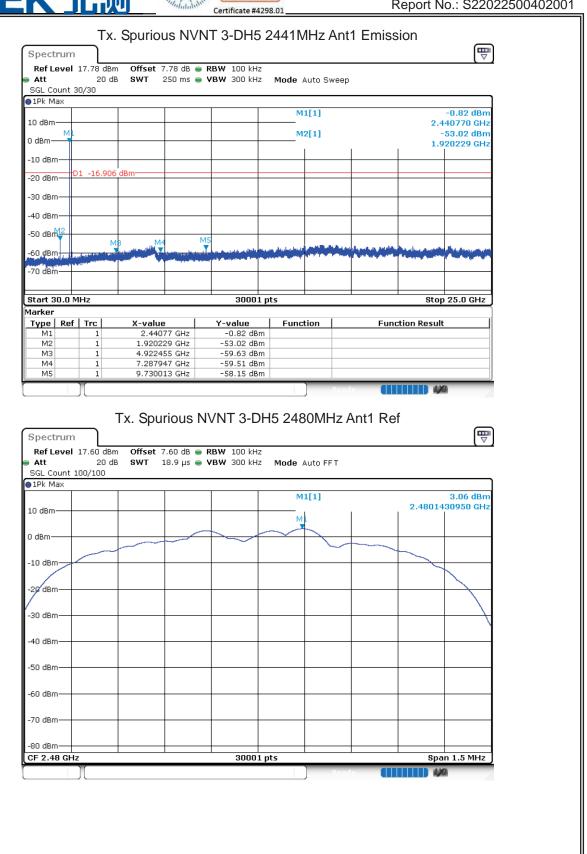


Version.1.3 Page 74 of 78

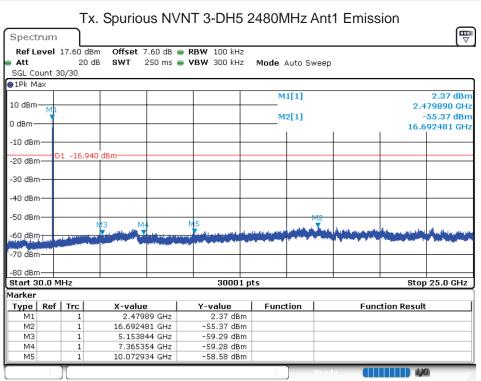




Version.1.3 Page 75 of 78



Version.1.3 Page 76 of 78



Version.1.3 Page 77 of 78

END OF REPORT

Version.1.3 Page 78 of 78