

FCC SAR TEST REPORT

Applicant: Shenzhen Xinguodu Technology Co.,Ltd.

Address: 17B JinSong Mansion, Terra Industrial & Trade Park Chegongmiao, Futian District, Shenzhen, Guangdong, China.

Product Name: POS terminal

FCC ID: XDQN86PRO-01

Standard(s): 47 CFR Part 2(2.1093)

Report Number: 2502Q44141E-20

Report Date: 2025/03/26

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Mark Jong

Reviewed By: Mark Dong Title: SAR Engineer

Browe LU

Approved By: Brave Lu Title: SAR Supervisor

Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

> Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked \blacktriangle is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with \bigstar . This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

SAR TEST RESULTS SUMMARY

Body SAR:

Mod	e	Max. Reported SAR Level(s) (W/kg)	Limit (W/kg)
GSM 850	1g Body SAR	0.38	
GSM 1900	1g Body SAR	0.08	
WCDMA Band 2	1g Body SAR	0.11	
WCDMA Band 5	1g Body SAR	0.13	
LTE Band 2	1g Body SAR	0.15	
LTE Band 4	1g Body SAR	0.24	
LTE Band 5	1g Body SAR	0.13	
LTE Band 7	1g Body SAR	0.43	1.6
LTE Band 38	1g Body SAR	0.35	
WLAN 2.4G	1g Body SAR	0.31	
WLAN 5.2G	1g Body SAR	0.34	
WLAN 5.3G	1g Body SAR	0.56	
WLAN 5.6G	1g Body SAR	0.66	
WLAN 5.8G	1g Body SAR	0.45	
Simultaneous	1g Body SAR	1.09	

Limb SAR:

Mode		Max. Reported SAR Level(s) (W/kg)	Limit (W/kg)
GSM 850	10g Extremity SAR	1.28	
GSM 1900	10g Extremity SAR	1.46	
WCDMA Band 2	10g Extremity SAR	1.90	
WCDMA Band 5	10g Extremity SAR	0.56	
LTE Band 2	10g Extremity SAR	1.97	
LTE Band 4	10g Extremity SAR	1.72	
LTE Band 5	10g Extremity SAR	0.52	
LTE Band 7	10g Extremity SAR	1.02	4.0
LTE Band 38	10g Extremity SAR	0.66	
WLAN 2.4G	10g Extremity SAR	0.67	
WLAN 5.2G	10g Extremity SAR	0.56	
WLAN 5.3G	10g Extremity SAR	0.55	
WLAN 5.6G	10g Extremity SAR	0.69	
WLAN 5.8G	10g Extremity SAR	0.40	
Simultaneous	10g Extremity SAR	2.66	

	FCC 47 CFR part 2.1093Radiofrequency radiation exposure evaluation: portable devicesIEEE 1528:2013IEEE Recommended Practice for Determining the Peak Spatial-Average SpecificAbsorption Rate (SAR) in the Human Head from Wireless Communications Devices:
Applicable Standards	Measurement TechniquesKDB proceduresKDB 447498 D01 General RF Exposure Guidance v06KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04KDB 865664 D02 RF Exposure Reporting v01r02
	KDB 941225 D01 3G SAR Procedures v03r01 KDB 941225 D05 SAR for LTE Devices v02r05 KDB 248227 D01 802.11 Wi-Fi SAR v02r02
Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been	

(SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

CONTENTS

SAR TEST RESULTS SUMMARY2DOCUMENT REVISION HISTORY61. GENERAL INFORMATION7
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)······7
1.2 EUT INFORMATION: ·····8
1.3 ACCESSORY INFORMATION 8
2. REFERENCE, STANDARDS, AND GUIDELINES
2.1 SAR LIMITS
2.2 TEST FACILITY
3. DESCRIPTION OF TEST SYSTEM114. EQUIPMENT LIST AND CALIBRATION16
4.1 EQUIPMENTS LIST & CALIBRATION INFORMATION ······ 16
5. SAR MEASUREMENT SYSTEM VERIFICATION 17
5.1 Liquid Verification 17
5.2 LIQUID VERIFICATION RESULTS ······ 17
5.3 System Accuracy Verification ····· 20
5.4 System Accuracy Check Results······ 20
5.5 SAR SYSTEM VALIDATION DATA ······ 22
6. EUT TEST STRATEGY AND METHODOLOGY
6.1 TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS ····································
6.2TEST DISTANCE FOR SAR EVALUATION
7. CONDUCTED OUTPUT POWER MEASUREMENT
7.1 TEST PROCEDURE
7.2 RADIO CONFIGURATION ····································
7.3 MAXIMUM TARGET OUTPUT POWER ······ 37
7.4 TEST RESULTS: 39
8. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS
8.1 ANTENNAS LOCATION:
8.2 ANTENNA DISTANCE TO EDGE ······ 57
8.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS ······ 57
8.4 STANDALONE SAR ESTIMATION: 59
8.5 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT
9. SAR MEASUREMENT RESULTS
9.1 SAR TEST DATA
10. MEASUREMENT VARIABILITY7911. DUT HOLDER PERTURBATIONS80

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: 2502Q44141E-20
12. SAR SIMULTANEOUS TRANSMISSION DESCRIPTI	ON
12.1 SIMULTANEOUS TRANSMISSION: ·····	
12.2 SIMULTANEOUS SAR TEST EXCLUSION CONSIDERATIONS: ·	
APPENDIX A - MEASUREMENT UNCERTAINTY ·······	
APPENDIX B - SAR PLOTS ······	
APPENDIX C - EUT TEST POSITION PHOTOS	
APPENDIX D - PROBE CALIBRATION CERTIFICATES	85 85
APPENDIX E - DIPOLE CALIBRATION CERTIFICATE	S ····· 86

Report No.: 2502Q44141E-20

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2502Q44141E-20	Original Report	2025/03/26

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	POS terminal	
EUT Model:		
Device Type:		
	Population / Uncontrolled	
Antenna Type(s):		
Body-Worn Accessories:		
Proximity Sensor:		
Carrier Aggregation:	None	
Operation Modes:	GPRS/EGPRS Data, WCDMA(R99 (Data), HSUPA/HSDPA/HSPA+), FDD-LTE, TDD-LTE,WLAN, Bluetooth, BLE, NFC	
	GSM 850: 824-849 MHz(TX); 869-894 MHz(RX)	
	PCS 1900: 1850-1910 MHz(TX); 1930-1990 MHz(RX)	
	WCDMA Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX)	
	WCDMA Band 5: 824-849 MHz(TX); 869-894 MHz(RX)	
	LTE Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX)	
	LTE Band 4: 1710-1755 MHz(TX); 2110-2155 MHz(RX)	
	LTE Band 5: 824-849 MHz(TX); 869-894 MHz(RX)	
	LTE Band 7: 2500-2570 MHz(TX); 2620-2690 MHz(RX)	
Frequency Band:	LTE Band 38: 2570-2620 MHz(TX); 2570-2620 MHz (RX)	
	Wi-Fi 2.4G: 2412-2462 MHz/2422-2452 MHz (TX/RX)	
	Wi-Fi 5.2G: 5150-5250 MHz(TX/RX)	
	Wi-Fi 5.3G: 5250-5350 MHz(TX/RX)	
	Wi-Fi 5.6G: 5470-5725 MHz(TX/RX)	
	Wi-Fi 5.8G: 5725-5850 MHz(TX/RX)	
	Bluetooth: 2402-2480MHz(TX/RX)	
	BLE 1M:2402-2480MHz(TX/RX)	
	NFC:13.56MHz	
Dimensions (L*W*H):	195mm (L) *77mm (W) *71mm (H)	
Rated Input Voltage:	DC 7.2V from Rechargeable Battery	
Serial Number:	2VIH-1 (Sample 1#)	
Normal Operation:		
EUT Received Date:	2025/02/17	
Test Date:	2025/02/24~2025/03/21	
EUT Received Status:	Good	

1.2 EUT Information:

Sample	Parameters
Samula 1#	(1GB RAM+8GB ROM) +Front camera 2MP+Back camera 2MP+Double SIM+
Sample 1#	Screen 1# (Tianshan)
Samula 2#	(2GB RAM+32GB ROM)+Front camera 2MP+Back camera 5MP+Single ESIM+Single SIM
Sample 2#	+ Screen 2#(Hongzhan) + Flash lamp

1.3 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
Battery 1#	Zhengzhou BAK Battery Co.,Ltd.	GX11	Nominal Voltage: 7.2V Typical Capacity: 2600mAh Rated Capacity: 2500mAh Typical Energy: 18.72Wh Nominal Energy: 18Wh
Battery 2#	Zhengzhou BAK Battery Co.,Ltd.	GX12	Nominal Voltage: 7.2V Typical Capacity: 3300mAh Rated Capacity: 3200mAh Typical Energy: 23.76Wh Nominal Energy: 23.04Wh

2. REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

2.1 SAR Limits

FCC Limit

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population /	(Occupational /	
	Uncontrolled Exposure	Controlled Exposure	
	Environment)	Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.6	8	
Spatial Peak			
(hands/wrists/feet/ankles	4	20	
averaged over 10 g)			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

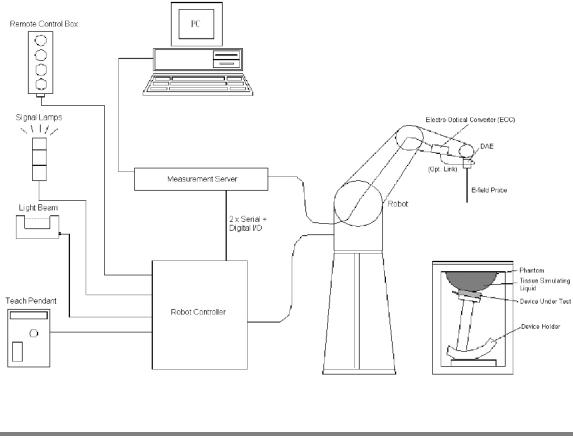
Occupational/Controlled Environments are defined as locations where there is exposure that maybe incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6 W/kg(FCC) for 1g Body SAR , limit 4 W/kg(FCC) for 10g Extremity SAR applied to the EUT.

2.2 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. :829273, the FCC Designation No. : CN5044.


3. DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	4 MHz–10 GHz Linearity: ± 0.2 dB (30 MHz–10 GHz)
Directivity(typical)	\pm 0.1 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	$ \begin{array}{l} 10 \ \mu W/g \ -> \ 100 \ m W/g \\ \text{Linearity:} \ \pm \ 0.2 \ dB \ (noise: \ typically \ < 1 \ \mu W/g) \end{array} $
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Applications	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52, DASY6, DASY8, EASY6, EASY4/MRI

ES3DV3 E-Field Probes

Frequency	10 MHz – 4 GHz; Linearity: ± 0.2 dB (30 MHz – 4 GHz)	
Directivity	\pm 0.2 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μ W/g - >100 mW/g; Linearity: \pm 0.2 dB	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from the probe tip to dipole centers: 2.0 mm	
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones	
Compatibility	DASY3, DASY4, DASY52, DASY6, DASY8, EASY6, EASY4/MRI	

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness

increases to 6 mm). The phantom has three measurement areas:

- _ Left Head
- _ Right Head
- _ Flat phantom

The phantom table for the DASY systems based on the robots have the size of $100 \times 50 \times 85$ cm (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the

Report No.: 2502Q44141E-20

standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids)

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible.

Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

Robots

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS7MB robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

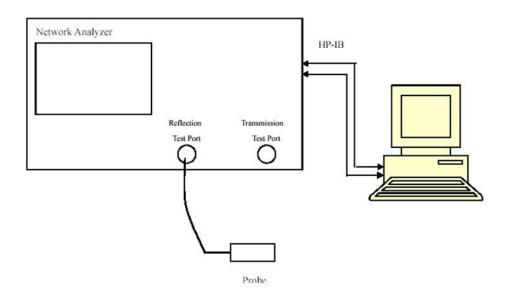
The head tissue dielectric parameters recommended by the IEEE 1528:2013

Recommended Tissue Dielectric Parameters for Head liquid

Frequency	Relative permittivity	Conductivity (a)
(MHz)	(ɛ'r)	(S/m)
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1500	40.4	1.23
1640	40.2	1.31
1750	40.1	1.37
1800	40.0	1.40
1900	40.0	1.40
2000	40.0	1.40
2100	39.8	1.49
2300	39.5	1.67
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27
6000	35.1	5.48

Table 3—Target dielectric properties of head tissue-equivalent material in the 300 MHz to 6000 MHz frequency range

NOTE—For convenience, permittivity and conductivity values at some frequencies that are not part of the original data from Drossos et al. [B60] or the extension to 5800 MHz are provided (i.e., the values shown in italics). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6000 MHz that were linearly extrapolated from the values at 3000 MHz and 5800 MHz.


4. EQUIPMENT LIST AND CALIBRATION

4.1 Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52.10	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 4.5.12	1470	NCR	NCR
Data Acquisition Electronics	DAE4	772	2025/2/17	2026/2/16
E-Field Probe	ES3DV3	3220	2024/10/15	2025/10/14
E-Field Probe	EX3DV4	7441	2024/3/4	2025/3/3
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
Twin SAM	Twin SAM V5.0	1874	NCR	NCR
Dipole, 750 MHz	D750V3	1167	2022/10/31	2025/10/30
Dipole, 1750 MHz	D1750V2	1141	2024/6/17	2027/6/16
Dipole, 1900 MHz	D1900V2	543	2022/11/2	2025/11/1
Dipole, 2450 MHz	D2450V2	971	2024/6/15	2027/6/14
Dipole, 2600 MHz	D2600V2	1132	2022/11/1	2025/10/31
Dipole, 5 GHz	D5GHzV2	1246	2022/11/1	2025/10/31
Simulated Tissue Liquid Head	HBBL600-10000V6	SL AAH U16 BC (Batch:220809-1)	Each Time	/
Network Analyzer	8753C +85047A	3029A01355 +3033A02857	2024/5/9	2025/5/9
Dielectric assessment kit	1253	SM DAK 040 CA	NCR	NCR
synthesized signal generator	8665B	3438a00584	2024/10/18	2025/10/17
EPM Series Power Meter	E4419B	MY45103907	2024/10/18	2025/10/17
Power Sensor	8482A	US37296108	2024/10/19	2025/10/18
Power Meter	EPM-441A	GB37481494	2024/10/19	2025/10/18
USB Power Sensor	U2001H	MY50000432	2024/4/1	2025/3/31
USB Wideband Power Sensor	U2022XA	MY54170006	2024/10/18	2025/10/17
Power Amplifier	ZHL-5W-202-S+	416402204	NCR	NCR
Power Amplifier	ZVE-6W-83+	637202210	NCR	NCR
Directional Coupler	441493	520Z	NCR	NCR
Attenuator	20dB, 100W	LN749	NCR	NCR
Attenuator	6dB, 150W	2754	NCR	NCR
Thermometer	DTM3000	3635	2024/8/12	2025/8/11
Hygrothermograph	HTC-2	EM072	2024/11/4	2025/11/3
Wireless communication tester	8960	MY50266471	2024/9/5	2025/9/4
Wideband Radio Communication Tester	CMW500	147473	2024/9/5	2025/9/4
Spectrum Analyzer	FSV40	101461	2024/9/5	2025/9/4

5. SAR MEASUREMENT SYSTEM VERIFICATION

5.1 Liquid Verification

5.2 Liquid Verification Results

Frequency	Liouid Tuno	Liq Paran		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	ε _r	0 (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
750	Simulated Tissue Liquid Head	42.858	0.902	41.9	0.89	2.29	1.35	±5
824.2	Simulated Tissue Liquid Head	41.952	0.922	41.55	0.9	0.97	2.44	±5
826.4	Simulated Tissue Liquid Head	41.918	0.923	41.54	0.9	0.91	2.56	±5
829	Simulated Tissue Liquid Head	41.877	0.925	41.53	0.9	0.84	2.78	±5
836.5	Simulated Tissue Liquid Head	41.771	0.931	41.5	0.9	0.65	3.44	±5
836.6	Simulated Tissue Liquid Head	41.769	0.931	41.5	0.9	0.65	3.44	±5
844	Simulated Tissue Liquid Head	41.618	0.932	41.5	0.91	0.28	2.42	±5
846.6	Simulated Tissue Liquid Head	41.55	0.938	41.5	0.91	0.12	3.08	±5
848.8	Simulated Tissue Liquid Head	41.493	0.941	41.5	0.91	-0.02	3.41	±5

*Liquid Verification above was performed on 2025/03/20.

Report No.: 2502Q44141E-20

Frequency	I inuid Tuma	Liquid Parameter		Target	t Value		lta 6)	Tolerance
(MHz)	Liquid Type	E r	0' (S/m)	E r	0' (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
1720	Simulated Tissue Liquid Head	39.307	1.349	40.13	1.35	-2.05	-0.07	±5
1732.5	Simulated Tissue Liquid Head	39.295	1.365	40.12	1.36	-2.06	0.37	±5
1745	Simulated Tissue Liquid Head	39.231	1.37	40.1	1.37	-2.17	0	±5
1750	Simulated Tissue Liquid Head	39.175	1.377	40.1	1.37	-2.31	0.51	±5

*Liquid Verification above was performed on 2025/03/21.

Frequency (MHz)	Linuid Turna	Liq Parar		Target Value		Delta (%)		Tolerance
	Liquid Type	ε _r	0 (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
1850.2	Simulated Tissue Liquid Head	39.56	1.427	40.00	1.40	-1.1	1.93	±5
1852.4	Simulated Tissue Liquid Head	39.496	1.427	40.00	1.40	-1.26	1.93	±5
1860	Simulated Tissue Liquid Head	39.276	1.429	40.00	1.40	-1.81	2.07	±5
1880	Simulated Tissue Liquid Head	39.195	1.425	40.00	1.40	-2.01	1.79	±5
1900	Simulated Tissue Liquid Head	39.27	1.437	40.00	1.40	-1.82	2.64	±5
1907.6	Simulated Tissue Liquid Head	39.121	1.429	40.00	1.40	-2.2	2.07	±5
1909.8	Simulated Tissue Liquid Head	39.077	1.427	40.00	1.40	-2.31	1.93	±5

*Liquid Verification above was performed on 2025/03/20.

Frequency	I inuid Tuma	Liq Parar		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	E r	0 (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
2412	Simulated Tissue Liquid Head	40.514	1.792	39.28	1.77	3.14	1.24	±5
2437	Simulated Tissue Liquid Head	40.394	1.827	39.23	1.79	2.97	2.07	±5
2450	Simulated Tissue Liquid Head	40.411	1.847	39.2	1.8	3.09	2.61	±5
2462	Simulated Tissue Liquid Head	40.315	1.863	39.18	1.81	2.9	2.93	±5
2510	Simulated Tissue Liquid Head	40.156	1.908	39.12	1.86	2.65	2.58	±5
2535	Simulated Tissue Liquid Head	Ilated Tissue Liquid Head 40.028 1.917 39.09 1.89		2.4	1.43	±5		

*Liquid Verification above was performed on 2025/03/21.

Report No.: 2502Q44141E-20

Liouid Trues	-		Target	t Value			Tolerance
Liquid Type	E r	0 (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
Simulated Tissue Liquid Head	40.158	1.999	39.05	1.92	2.84	4.11	±5
Simulated Tissue Liquid Head	40.005	1.996	39.03	1.94	2.5	2.89	±5
Simulated Tissue Liquid Head	40.049	2.021	39.01	1.95	2.66	3.64	±5
Simulated Tissue Liquid Head	40.036	2.025	39	1.96	2.66	3.32	±5
Simulated Tissue Liquid Head	40.041	2.048	048 38.99 1.97		2.7	3.96	±5
	Simulated Tissue Liquid Head Simulated Tissue Liquid Head Simulated Tissue Liquid Head	Liquid Type Parametric Liquid Type εr Simulated Tissue Liquid Head 40.158 Simulated Tissue Liquid Head 40.005 Simulated Tissue Liquid Head 40.049 Simulated Tissue Liquid Head 40.036	εrσ (S/m)Simulated Tissue Liquid Head40.1581.999Simulated Tissue Liquid Head40.0051.996Simulated Tissue Liquid Head40.0492.021Simulated Tissue Liquid Head40.0362.025	ParameterTargetLiquid TypeParameterTarget \mathcal{E}_r \mathcal{O} (S/m) \mathcal{E}_r Simulated Tissue Liquid Head40.1581.99939.05Simulated Tissue Liquid Head40.0051.99639.03Simulated Tissue Liquid Head40.0492.02139.01Simulated Tissue Liquid Head40.0362.02539	Parameter Target value Liquid Type $O \\ \epsilon_r$ $O \\ (S/m)$ ϵ_r $O \\ (S/m)$ $O \\ (S/m)$ Simulated Tissue Liquid Head 40.158 1.999 39.05 1.92 Simulated Tissue Liquid Head 40.005 1.996 39.03 1.94 Simulated Tissue Liquid Head 40.049 2.021 39.01 1.95 Simulated Tissue Liquid Head 40.036 2.025 39 1.96	Parameter Parameter Parameter Paraget value (9 Liquid Type $O' C' O' C' O' C' O' C' O' C' O' C' $	Target value (%) Liquid Type \overrightarrow{O}

*Liquid Verification above was performed on 2025/03/21.

I invid Turns	Liquid Parameter		Target	Value		lta 6)	Tolerance
Liquid Type	E r	0 (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
Simulated Tissue Liquid Head	36.815	4.898	35.99	4.67	2.29	4.88	±5
Simulated Tissue Liquid Head	36.672	4.934	35.95	4.71	2.01	4.76	±5
Simulated Tissue Liquid Head	36.433	4.976	35.92	4.74	1.43	4.98	±5
Simulated Tissue Liquid Head	36.184	4.992	35.88	4.78	0.85	4.44	±5
	Simulated Tissue Liquid Head Simulated Tissue Liquid Head Simulated Tissue Liquid Head	Liquid Type Parametric Σimulated Tissue Liquid Head 36.815 Simulated Tissue Liquid Head 36.672 Simulated Tissue Liquid Head 36.433	Liquid TypeParameterCircleOCircleOCircleOCircleOCircle <td>Liquid TypeParameterTarget\mathcal{L}_{iquid} Type$\mathcal{O}_{ist}$$\mathcal{O}_{ist}$$\mathcal{O}_{ist}$$\mathcal{S}_{ist}$$\mathcal{O}_{ist}$$\mathcal{O}_{ist}$$\mathcal{O}_{ist}$Simulated Tissue Liquid Head$36.815$$4.898$$35.99$Simulated Tissue Liquid Head$36.433$$4.976$$35.92$Simulated Tissue Liquid Head$36.184$$4.992$$35.88$</td> <td>ParameterTarget ValueLiquid TypeO' $\epsilon_r$$O'$ (S/m)$e_r$$O'$ (S/m)Simulated Tissue Liquid Head36.8154.89835.994.67Simulated Tissue Liquid Head36.6724.93435.954.71Simulated Tissue Liquid Head36.4334.97635.924.74Simulated Tissue Liquid Head36.1844.99235.884.78</td> <td>ParameterTarget value(%Liquid Type<math>O'$C'$$O'$$C'$$O'$$C'$$O'$$A\epsilon_r$Simulated Tissue Liquid Head36.8154.89835.994.672.29Simulated Tissue Liquid Head36.6724.93435.954.712.01Simulated Tissue Liquid Head36.4334.97635.924.741.43Simulated Tissue Liquid Head36.1844.99235.884.780.85</math></td> <td>Iarget value (%) Liquid Type $O \\ \epsilon_r$ $O \\ (S/m)$ ϵ_r $O \\ (S/m)$ $\Delta \epsilon_r$ $\Delta O \\ (S/m)$ Simulated Tissue Liquid Head 36.815 4.898 35.99 4.67 2.29 4.88 Simulated Tissue Liquid Head 36.672 4.934 35.95 4.71 2.01 4.76 Simulated Tissue Liquid Head 36.433 4.976 35.92 4.74 1.43 4.98 Simulated Tissue Liquid Head 36.184 4.992 35.88 4.78 0.85 4.44</td>	Liquid TypeParameterTarget \mathcal{L}_{iquid} Type \mathcal{O}_{ist} \mathcal{O}_{ist} \mathcal{O}_{ist} \mathcal{S}_{ist} \mathcal{O}_{ist} \mathcal{O}_{ist} \mathcal{O}_{ist} Simulated Tissue Liquid Head 36.815 4.898 35.99 Simulated Tissue Liquid Head 36.433 4.976 35.92 Simulated Tissue Liquid Head 36.184 4.992 35.88	ParameterTarget ValueLiquid Type O' ϵ_r O' (S/m) e_r O' (S/m)Simulated Tissue Liquid Head36.8154.89835.994.67Simulated Tissue Liquid Head36.6724.93435.954.71Simulated Tissue Liquid Head36.4334.97635.924.74Simulated Tissue Liquid Head36.1844.99235.884.78	ParameterTarget value(%Liquid Type $O'C'O'C'O'C'O'A\epsilon_rSimulated Tissue Liquid Head36.8154.89835.994.672.29Simulated Tissue Liquid Head36.6724.93435.954.712.01Simulated Tissue Liquid Head36.4334.97635.924.741.43Simulated Tissue Liquid Head36.1844.99235.884.780.85$	Iarget value (%) Liquid Type $O \\ \epsilon_r$ $O \\ (S/m)$ ϵ_r $O \\ (S/m)$ $\Delta \epsilon_r$ $\Delta O \\ (S/m)$ Simulated Tissue Liquid Head 36.815 4.898 35.99 4.67 2.29 4.88 Simulated Tissue Liquid Head 36.672 4.934 35.95 4.71 2.01 4.76 Simulated Tissue Liquid Head 36.433 4.976 35.92 4.74 1.43 4.98 Simulated Tissue Liquid Head 36.184 4.992 35.88 4.78 0.85 4.44

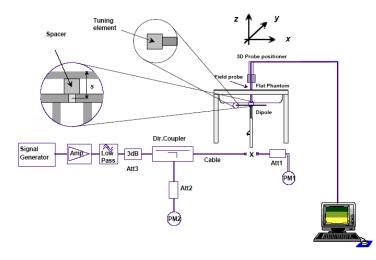
*Liquid Verification above was performed on 2025/02/24.

I iquid Tumo	-		Target	t Value			Tolerance
Liquid Type	E r	0 (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
Simulated Tissue Liquid Head	36.847	4.752	35.61	5	3.47	-4.96	±5
Simulated Tissue Liquid Head	36.523	4.869	35.5	5.07	2.88	-3.96	±5
Simulated Tissue Liquid Head	36.507	4.885	35.49	5.08	2.87	-3.84	±5
Simulated Tissue Liquid Head	36.459	4.919	35.41	5.16	2.96	-4.67	±5
	Simulated Tissue Liquid Head Simulated Tissue Liquid Head	Liquid Type Parametric Σimulated Tissue Liquid Head 36.847 Simulated Tissue Liquid Head 36.523 Simulated Tissue Liquid Head 36.507	εrσSimulated Tissue Liquid Head36.8474.752Simulated Tissue Liquid Head36.5234.869Simulated Tissue Liquid Head36.5074.885	ParameterTargetLiquid Type O ϵ_r O (S/m) Simulated Tissue Liquid Head36.8474.75235.61Simulated Tissue Liquid Head36.5234.86935.5Simulated Tissue Liquid Head36.5074.88535.49	ParameterTarget ValueLiquid Type $O \\ \epsilon_r$ $O \\ (S/m)$ e_r $O \\ (S/m)$ Simulated Tissue Liquid Head36.8474.75235.615Simulated Tissue Liquid Head36.5234.86935.55.07Simulated Tissue Liquid Head36.5074.88535.495.08	ParameterTarget value(%Liquid Type $\overrightarrow{Parameter}$ \overrightarrow{O} (S/m) \overleftarrow{r} \overrightarrow{O} (S/m) $\overleftarrow{\Delta\epsilon_r}$ Simulated Tissue Liquid Head36.8474.75235.6153.47Simulated Tissue Liquid Head36.5234.86935.55.072.88Simulated Tissue Liquid Head36.5074.88535.495.082.87	ParameterTarget Value(%)Liquid Type \overrightarrow{O} $\epsilon_r\overrightarrow{O}(S/m)\overleftarrow{O}(S/m)\overleftarrow{O}(S/m)\overleftarrow{\Delta}\epsilon_r\overleftarrow{\Delta}O(S/m)Simulated Tissue Liquid Head36.8474.75235.6153.47-4.96Simulated Tissue Liquid Head36.5234.86935.55.072.88-3.96Simulated Tissue Liquid Head36.5074.88535.495.082.87-3.84$

*Liquid Verification above was performed on 2025/02/24.

Frequency	I inuid Tuma	Liq Parar		Target	t Value		lta 6)	Tolerance
(MHz)	Liquid Type	ε _r	0' (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔΟ΄ (S/m)	(%)
5745	Simulated Tissue Liquid Head	36.623	5.136	35.36	5.22	3.57	-1.61	±5
5750	Simulated Tissue Liquid Head	36.476	5.298	35.35	5.22	3.19	1.49	±5
5785	Simulated Tissue Liquid Head	36.429	5.367	35.32	5.26	3.14	2.03	±5
5825	Simulated Tissue Liquid Head	36.317	5.485	35.28	5.3	2.94	3.49	±5

*Liquid Verification above was performed on 2025/02/24.


5.3 System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1$ 000 MHz; b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz $< f \leq 3$ 000 MHz;
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz < f ≤ 6 000 MHz.

System Verification Setup Block Diagram

5.4 System Accuracy Check Results

Date	Frequency Band (MHz)	Liquid Type	Input Power (mW)	SAR		to 1W	Target Value (W/Kg)	Delta (%)	Tolerance (%)
2025/03/20	750	Simulated Tissue Liquid Head	100	lg	0.806	8.06	8.48	-4.95	±10
2025/03/21	1750	Simulated Tissue Liquid Head	100	1g	3.48	34.8	36.1	-3.6	±10
2025/03/20	1900	Simulated Tissue Liquid Head	100	1g	4.26	42.6	40.2	5.97	±10
2025/03/21	2450	Simulated Tissue Liquid Head	100	1g	5.04	50.4	52.7	-4.36	±10
2025/03/21	2600	Simulated Tissue Liquid Head	100	1g	5.23	52.3	55.8	-6.27	±10
2025/02/24	5250	Simulated Tissue Liquid Head	100	1g	7.82	78.2	77.5	0.9	±10
2025/02/24	5600	Simulated Tissue Liquid Head	100	1g	8.65	86.5	80.7	7.19	±10
2025/02/24	5750	Simulated Tissue Liquid Head	100	1g	7.37	73.7	78.4	-5.99	±10

Date	Frequency Band (MHz)	Liquid Type	Input Power (mW)	er SAR		to 1W	Target Value (W/Kg)	Delta (%)	Tolerance (%)
2025/03/20	750	Simulated Tissue Liquid Head	100	10g	0.537	5.37	5.63	-4.62	±10
2025/03/21	1750	Simulated Tissue Liquid Head	100	10g	1.77	17.7	19.4	-8.76	±10
2025/03/20	1900	Simulated Tissue Liquid Head	100	10g	2.27	22.7	20.9	8.61	±10
2025/03/21	2450	Simulated Tissue Liquid Head	100	10g	2.56	25.6	24.8	3.23	±10
2025/03/21	2600	Simulated Tissue Liquid Head	100	10g	2.31	23.1	25.4	-9.06	±10
2025/02/24	5250	Simulated Tissue Liquid Head	100	10g	2.28	22.8	22	3.64	±10

Report Template Version: FCC SAR-V1.0

Bay A	rea Complia	nce Laboratories Corp. (Donggua	Re	Report No.: 2502Q44141E-20					
Date	Frequency Band (MHz)	Liquid Type	Input Power (mW)	SAR	Normalized to 1W (W/kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)	
2025/02/24	5600	Simulated Tissue Liquid Head	100	10g 2.11	21.1	22.8	-7.46	±10	
2025/02/24	5750	Simulated Tissue Liquid Head	100	10g 2.15	21.5	22	-2.27	±10	

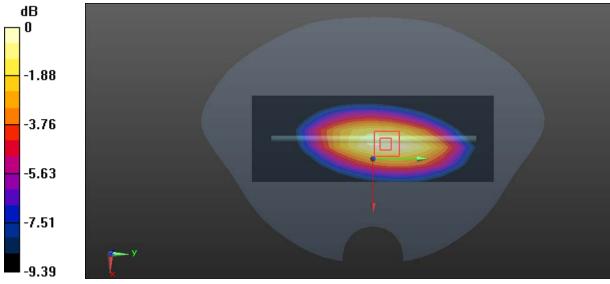
Note:

All the SAR values are normalized to 1Watt forward power.

5.5 SAR SYSTEM VALIDATION DATA

System Performance 750 MHz Head

DUT: D750V3; Type: 750 MHz; Serial: 1167


Communication System: CW (0); Frequency: 750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.902 S/m; ϵ_r =42.858; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe:ES3DV3 SN3220; ConvF(6.68, 6.68, 6.68) @750 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

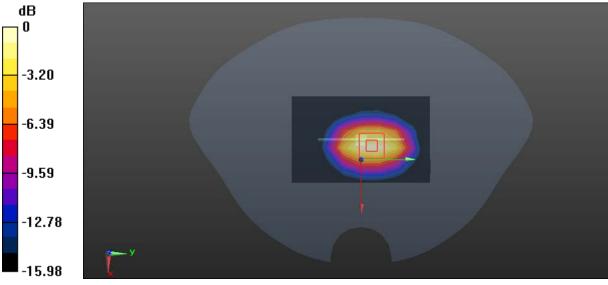
Area Scan(6x15x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.858 W/kg

Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value =31.61 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.806 W/kg; SAR(10 g) = 0.537 W/kg Maximum value of SAR (measured) = 0.902 W/kg

0 dB = 0.902 W/kg = -0.45 dBW/kg

System Performance 1750 MHz Head

DUT: D1750V2; Type: 1750 MHz; Serial: 1141


Communication System: CW (0); Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.377$ S/m; $\epsilon_r = 39.175$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe:ES3DV3 SN3220; ConvF(5.53, 5.53, 5.53) @1750 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(6x9x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.69 W/kg

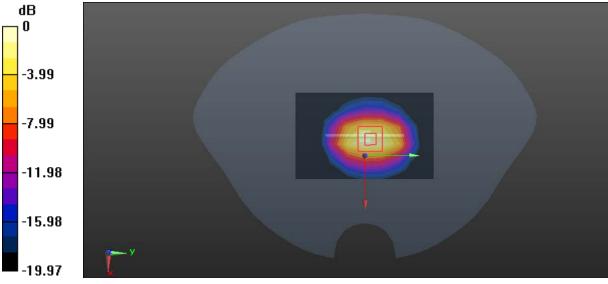
Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value =44.28 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 5.06 W/kg SAR(1 g) = 3.48 W/kg; SAR(10 g) = 1.77 W/kg Maximum value of SAR (measured) = 3.93 W/kg

 $^{0 \}text{ dB} = 3.93 \text{ W/kg} = 5.94 \text{ dBW/kg}$

Page 23 of 86

System Performance 1900 MHz Head

DUT: D1900V2; Type: 1900 MHz; Serial: 543


Communication System: CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.437$ S/m; $\epsilon_r = 39.27$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe:ES3DV3 SN3220; ConvF(5.24, 5.24, 5.24) @1900 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(6x9x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.51 W/kg

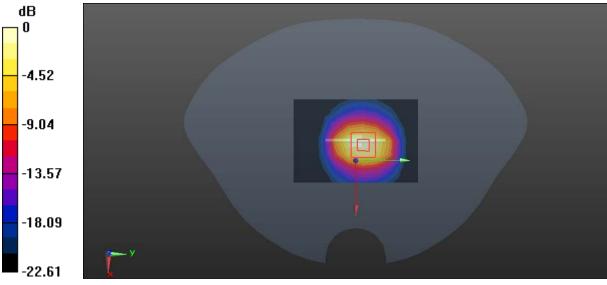
Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value =54.83 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 8.39 W/kg SAR(1 g) = 4.26 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 5.47 W/kg

0 dB = 5.47 W/kg = 7.38 dBW/kg

Page 24 of 86

System Performance 2450 MHz Head

DUT: D2450V2; Type: 2450 MHz; Serial: 971


Communication System: CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.847$ S/m; $\epsilon_r = 40.411$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe:ES3DV3 SN3220; ConvF(4.83, 4.83, 4.83) @2450 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x10x1):Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 6.25 W/kg

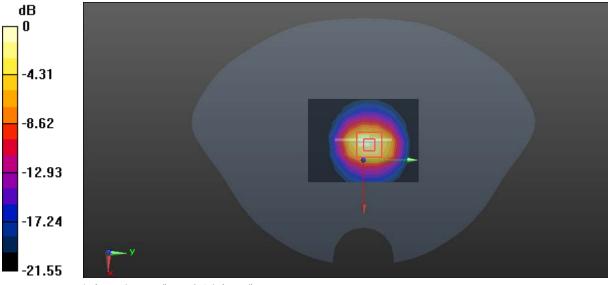
Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value =64.81 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 9.57 W/kg SAR(1 g) = 5.04 W/kg; SAR(10 g) = 2.56 W/kg Maximum value of SAR (measured) = 6.34 W/kg

 $^{0 \}text{ dB} = 6.34 \text{ W/kg} = 8.02 \text{ dBW/kg}$

Page 25 of 86

System Performance 2600 MHz Head

DUT: D2600V2; Type: 2600 MHz; Serial: 1132


Communication System: CW (0); Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.025$ S/m; $\epsilon_r = 40.036$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe:ES3DV3 SN3220; ConvF(4.66, 4.66, 4.66) @2600 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x9x1):Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 6.34 W/kg

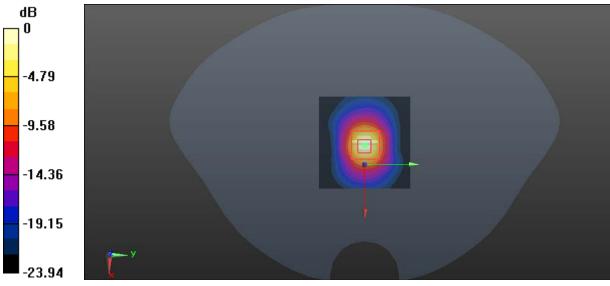
Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value =53.86 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.23 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 6.55 W/kg

0 dB = 6.55 W/kg = 8.16 dBW/kg

Page 26 of 86

System Performance 5250 MHz Head

DUT: D5GHzV2; Type: 5250 MHz; Serial: 1246


Communication System: CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.934$ S/m; $\epsilon_r = 36.672$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe:EX3DV4 SN7441; ConvF(5.43, 5.43, 5.43) @5250 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

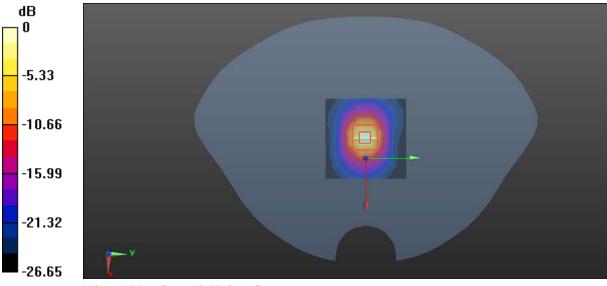
Area Scan(9x10x1):Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.6 W/kg

Zoom Scan (7x7x12)/Cube 0:Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value =47.92 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg

System Performance 5600 MHz Head

DUT: D5GHzV2; Type: 5600 MHz; Serial: 1246


Communication System: CW (0); Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 4.869$ S/m; $\epsilon_r = 36.523$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe:EX3DV4 SN7441; ConvF(4.71, 4.71, 4.71) @5600 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(8x8x1):Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.4 W/kg

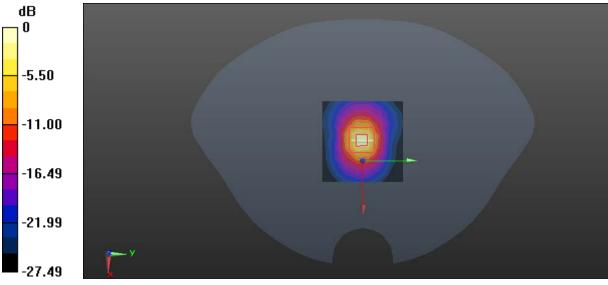
Zoom Scan (8x8x15)/Cube 0:Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value =43.82 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 8.65 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 19.2 W/kg

 $^{0 \}text{ dB} = 19.2 \text{ W/kg} = 12.83 \text{ dBW/kg}$

Page 28 of 86

System Performance 5750 MHz Head

DUT: D5GHzV2; Type: 5750 MHz; Serial: 1246


Communication System: CW (0); Frequency: 5750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.298$ S/m; $\epsilon_r = 36.476$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe:EX3DV4 SN7441; ConvF(4.84, 4.84, 4.84) @5750 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(8x8x1):Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.1 W/kg

Zoom Scan (8x8x15)/Cube 0:Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value =44.65 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 7.37 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

6. EUT TEST STRATEGY AND METHODOLOGY

6.1 Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

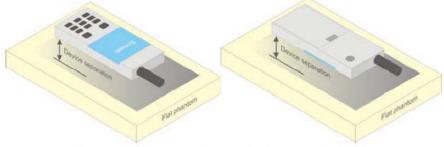
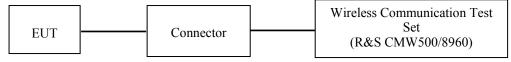


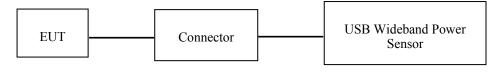
Figure 5 – Test positions for body-worn devices

6.2Test Distance for SAR Evaluation


For Body mode(1g Body SAR) the EUT(Equipment Under Test) is set 5mm away from the phantom, the test distance is 5mm;

For Limb mode(10g Extremity SAR) the EUT is set 0mm away from the phantom, the test distance is 0mm.

7. CONDUCTED OUTPUT POWER MEASUREMENT


7.1 Test Procedure

The RF output of the transmitter was connected to the input of the Wireless Communication Test Set through Connector.

GSM/WCDMA/LTE

The RF output of the transmitter was connected to the input port of the USB Wideband Power Sensor through Connector.

WLAN/BT

7.2 Radio Configuration

The power measurement was configured by the Wireless Communication Test Set.

GPRS/EGPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900 Press Connection control to choose the different menus Press RESET > choose all the reset all settings Connection Press Signal Off to turn off the signal and change settings Network Support > GSM + GPRS or GSM + EGSM Main Service > Packet Data Service selection > Test Mode A – Auto Slot Config. off MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting > Slot configuration > Uplink/Gamma > 33 dBm for GPRS 850 > 30 dBm for GPRS 1900 > 27 dBm for EGPRS 850 > 26 dBm for EGPRS 1900 BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel Frequency Offset > + 0 Hz Mode > BCCH and TCH BCCH Level > -85 dBm (May need to adjust if link is not stabe) BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test channel) and BCCH channel] Channel Type > Off P0 > 4 dBSlot Config >Unchanged (if already set under MS signal) TCH > choose desired test channel Hopping > Off Main Timeslot > 3Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS) Bit Stream >2E9-1 PSR Bit Stream AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection Press Signal on to turn on the signal and change settings

WCDMA Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP

TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

	Loopback Mode	Test Mode 1
WCDMA	Rel99 RMC	12.2kbps RMC
General Settings	Power Control Algorithm	Algorithm2
	β_c/β_d	8/15

HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP

TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA						
	Subset	1	2	3	4						
	Loopback Mode	Test Mode 1									
	Rel99 RMC	12.2kbps RMC									
	HSDPA FRC	HSDPA FRC H-Set1									
WCDMA	Power Control Algorithm			Algorithm2	2						
General	β _c	2/15	12/15	15/15	15/15						
Settings	β_d	15/15	15/15	8/15	4/15						
	$\beta_d(SF)$	64									
	β_c/β_d	2/15	12/15	15/8	15/4						
	β_{hs}	4/15	24/15	30/15	30/15						
	MPR(dB)	0	0	0.5	0.5						
	DACK			8							
	DNAK			8							
HSDPA	DCQI			8							
Specific	Ack-Nack repetition factor	3									
Settings	CQI Feedback			4ms							
	CQI Repetition Factor			2							
	Ahs= β hs/ β c			30/15							

HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA						
	Subset	1	2	3	4	5						
	Loopback Mode			Test Mode 1								
			1	1	C							
			HS	UPA Loopba	ack							
WCDMA				Algorithm2								
General	v	11/15	6/15	15/15	2/15	15/15						
Settings					15/15	0						
a de la compañía					2/15	5/15						
					2/15	-						
	· · ·				4/15	5/15						
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3.0	1.0									
					2	0						
	DACK 8											
	DNAK			8								
	DCQI											
HSDPA												
Specific	repetition factor											
Settings												
	Factor	Factor										
	Ahs= $\beta_{\rm hs}/\beta_{\rm c}$ 30/15											
	DE-DPCCH		8	8	5	7						
	DHARQ	0			0	0						
					17	21						
		75	67	92	71	81						
		242-1	174 9	482.8	205.8	308.9						
	UL Data Rate kbps	272.1	174.7	402.0	205.0	500.7						
HSUPA Specific Settings	Reference E_FCls	E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC	I PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26 CI 81	11 E-TFCI PO4 E-TFCI 92 E-TFCI	E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC	CI 11 E CI PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26 CI 81 I PO 27						

HSPA+

Sub- test	β _c (Note3)	β _d	β _{нs} (Note1)	β _{ec} β _{ed} (2xSF2) (Note 4)		β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	E-TFCI (Note 5)	E-TFCI (boost)
1									105		
Note 1 Note 2 Note 3 Note 4 Note 5	:: CM = : DPD :: β _{ed} c : All th DPD	= 3.5 a CH is an not e sub CH ca	and the MF not config t be set dir -tests requ ategory 7.	PR is bas jured, the rectly; it is uire the U E-DCH T	with $\beta_{hs} = 30/15$ ed on the relative refore the β_c is so so set by Absolute E to transmit 2SI TI is set to 2ms ⁻¹ allocated. The UI	e CM difference, et to 1 and β _d = Grant Value. F2+2SF4 16QAI ITI and E-DCH	0 by defau M EDCH a table index	It. nd they a (= 2. To s	pply for l support th	nese E-D(

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

FDD-LTE

For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Modulation	Cha	Channel bandwidth / Transmission bandwidth (N_{RB})										
	1.4	3.0	5	10	15	20						
	MHz	MHz	MHz	MHz	MHz	MHz						
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1					
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1					
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2					

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

For UE Power Class 1 and 3 the specific requirements and identified sub clauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in sub clause 6.2.3.

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤ 1
		2 4 40 22 25	5	>6	≤1
NS_03	66221	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1
		55, 50	15	>8	≤1
			20	>10	≤ 1
NS_04	6.6.2.2.2	41	5	>6	≤ 1
	0.0.2.2.2	41	10, 15, 20		6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table	6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤1 ≤2
NS_10		20	15, 20	Table	6.2.4-3
NS_11	6.6.2.2.1	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5
NS 12	6.6.3.3.5	26	1.4, 3, 5	Table	6.2.4-6
NS_13	6.6.3.3.6	26	5	Table	6.2.4 7
NS_14	6.6.3.3.7	26	10, 15	Table	6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15		6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10		, Table 6.2.4-12, 6.2.4-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_18	6.6.3.3.11	28	5 10, 15, 20	≥2 ≥1	≤ 1 ≤ 4
NS_19	6.6.3.3.12	44	10, 15, 20		6.2.4-14
NS_20	6.2.2 6.6.2.2.1 6.6.3.2	23	5, 10, 15, 20		6.2.4-15
NS_32	-	-	-	-	-

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

TDD-LTE

LTE TDD Band 41 supports 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

	N	lormal cyclic prefix in de	ownlink	Extended cyclic prefix in downlink					
Special subframe	DwPTS	UpF	PTS	DwPTS	UpF	PTS			
configuration		Normal cyclic prefix	Extended cyclic		Normal cyclic	Extended cyclic			
		in uplink	prefix in uplink		prefix in uplink	prefix in uplink			
0	$6592 \cdot T_s$			$7680 \cdot T_s$					
1	$19760 \cdot T_s$			$20480 \cdot T_s$	$2192 \cdot T_{e}$	2560 · T			
2	$21952 \cdot T_s$	$2192 \cdot T_s$	$2560 \cdot T_s$	$23040 \cdot T_s$	2172.15				
3	$24144 \cdot T_s$			$25600 \cdot T_s$					
4	$26336 \cdot T_s$			$7680 \cdot T_{\rm s}$					
5	$6592 \cdot T_s$			$20480 \cdot T_s$	4384 · T.	5120.7			
6	$19760 \cdot T_s$			$23040 \cdot T_s$	4304 · 1 ₈	5120-1			
7	$21952 \cdot T_s$	$4384 \cdot T_s$	$5120 \cdot T_s$	$12800 \cdot T_{s}$					
8	$24144 \cdot T_s$			-	-	-			
9	$13168 \cdot T_{s}$			-	-	-			

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink					Subframe number										
configuration	nfiguration Uplink Switch- point periodicity		1	2	3	4	5	6	7	8	9				
0	5 ms	D	S	U	U	U	D	S	U	U	U				
1	5 ms	D	s	U	U	D	D	S	υ	U	D				
2	5 ms	D	S	U	D	D	D	S	U	D	D				
3	10 ms	D	S	U	U	U	D	D	D	D	D				
4	10 ms	D	S	U	U	D	D	D	D	D	D				
5	10 ms	D	S	U	D	D	D	D	D	D	D				
6	5 ms	D	S	U	U	U	D	S	U	U	D				

Calculated Duty Cycle

Uplink-	Downlink-to-				Subframe Number							Calculated
Downlink Configuration	Uplink Switch- point Periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

We used configuration 0 for LTE Band 38 SAR test, that is 63.33%(1:1.58) for duty cycle.

7.3 Maximum Target Output Power

Max Target Power(dBm)						
	Channel					
Mode/Band	Low	Middle	High			
GPRS 850 1 TX Slot	33	33	33			
GPRS 850 2 TX Slot	32.5	32.5	32.5			
GPRS 850 3 TX Slot	30.5	30.5	30.5			
GPRS 850 4 TX Slot	29.5	29.5	29.5			
EDGE 850 1 TX Slot	28	28	28			
EDGE 850 2 TX Slot	27	27	27			
EDGE 850 3 TX Slot	25	25	25			
EDGE 850 4 TX Slot	24	24	24			
GPRS 1900 1 TX Slot	30	30	30			
GPRS 1900 2 TX Slot	29.5	29.5	29.5			
GPRS 1900 3 TX Slot	27.5	27.5	27.5			
GPRS 1900 4 TX Slot	26.5	26.5	26.5			
EDGE 1900 1 TX Slot	26	26	26			
EDGE 1900 2 TX Slot EDGE 1900 3 TX Slot	25 23	25 23	25			
EDGE 1900 3 TX Slot	23	23	23			
WCDMA Band 2	22.5	22.5	22.5			
HSDPA	19	19	19			
HSUPA	19	19	19			
HSPA+	19	19	19			
WCDMA Band 5	23.5	23.5	23.5			
HSDPA	20	20	20			
HSUPA	20	20	20			
HSPA+	20	20	20			
LTE Band 2(20M, 1RB)	22	22	22			
LTE Band 2(20M, 50%&100%RB)	21	21	21			
LTE Band 4(20M, 1RB)	22.5	22.5	22.5			
LTE Band 4(20M, 50%&100%RB)	21.5	21.5	21.5			
LTE Band 5(10M, 1RB)	23.5	23.5	23.5			
LTE Band 5(10M, 50%&100%RB)	22.5	22.5	22.5			
LTE Band 7(20M, 1RB)	23	23	23			
LTE Band 7(20M, 50%&100%RB)	22	22	22			
LTE Band 38(20M, 1RB)	23.5	23.5	23.5			
LTE Band 38(20M, 50%&100%RB)	22	22	22			
WLAN 2.4G(802.11b)	11	11	11			
WLAN 2.4G(802.11g)	13	13	13			
WLAN 2.4G(802.11n ht20)	12	12	12			
WLAN 2.4G(802.11n ht40)	9	9	9			
WLAN 5.2G(802.11a)	12	12	12.5			
WLAN 5.2G(802.11n20)	12	12	12.4			
WLAN 5.2G(802.11n40) WLAN 5.2G(802.11ac80)	12	13	12			
WLAN 5.3G(802.11a)	12.5	12.5	12.5			
WLAN 5.3G(802.11a) WLAN 5.3G(802.11n20)	12.3	12.3	12.3			
WLAIN 5.50(802.111120)	12.4	12.4	12.4			

Report Template Version: FCC SAR-V1.0

Page 37 of 86

Report No.: 2502Q44141E-20

Max Target Power(dBm)						
Mada/Dand		Channel				
Mode/Band	Low	Middle	High			
WLAN 5.3G(802.11n40)	12.4	/	12.4			
WLAN 5.3G(802.11ac80)	/	12.4	/			
WLAN 5.6G(802.11a)	12.5	12.5	12.5			
WLAN 5.6G(802.11n20)	12	12	12			
WLAN 5.6G(802.11n40)	12	12	12			
WLAN 5.6G(802.11ac80)	13	13	13			
WLAN 5.8G(802.11a)	12.5	12.5	12			
WLAN 5.8G(802.11n20)	12.4	12.4	12.4			
WLAN 5.8G(802.11n40)	12.4	/	12.4			
WLAN 5.8G(802.11ac80)	/	12.4	/			
BT BDR(GFSK)	2.5	2.5	3			
BT EDR(π /4-DQPSK)	2	2	2			
BT EDR(8DPSK)	2	2	2			
BLE 1Mbps	0.5	0.5	0.5			

Note: The Maximum Target Power for LTE bands corresponds to their maximum power in QPSK modes with maximum bandwidth.

Bay Area Compliance Laboratories Corp. (Dongguan) 7.4 Test Results:

GPRS:

Dand	Channel	annel Frequency RF Output Power				1)
Danu	Band No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	32.88	32.14	30.46	29.32
GSM 850	190	836.6	32.73	31.99	30.25	29.34
	251	848.8	32.64	31.98	30.18	29.24
	512	1850.2	29.65	28.92	27.09	25.91
GSM 1900	661	1880	29.61	28.94	27.05	26.00
	810	1909.8	29.76	29.13	27.25	26.17

EDGE:

Band	Channel	Frequency	R	ower (dBm)		
	No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	27.81	26.82	24.68	23.62
GSM 850	190	836.6	27.55	26.46	24.33	23.34
	251	848.8	27.38	26.34	24.19	23.10
	512	1850.2	25.68	24.48	22.16	21.05
GSM 1900	661	1880	25.62	24.28	22.15	21.06
	810	1909.8	25.75	24.64	22.52	21.42

For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal.

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.25 dB	-3 dB
Crest Factor	8	4	2.66	2

Band	Channel	Frequency	R	Power (dBn	wer (dBm)	
Dallu	No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	23.88	26.14	26.21	26.32
GSM 850	190	836.6	23.73	25.99	26	26.34
	251	848.8	23.64	25.98	25.93	26.24
	512	1850.2	20.65	22.92	22.84	22.91
GSM 1900	661	1880	20.61	22.94	22.8	23
	810	1909.8	20.76	23.13	23	23.17

The time based average power for GPRS

The time based average power for EDGE

Band	Channel	Frequency	RF Output Power (dBm)			
	No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	18.81	20.82	20.43	20.62
GSM 850	190	836.6	18.55	20.46	20.08	20.34
	251	848.8	18.38	20.34	19.94	20.1
	512	1850.2	16.68	18.48	17.91	18.05
GSM 1900	661	1880	16.62	18.28	17.9	18.06
	810	1909.8	16.75	18.64	18.27	18.42

Note:

1. Agilent Technologies Communication Tester (8960) was used for the measurement of GSM peak and average output power for active timeslots.

2 .For GPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 3(850 MHz band) and 3(1900 MHz band).

3 .For EGPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 6(850 MHz band) and 5(1900 MHz band).

4. According to KDB941225D01-SAR for EGPRS mode are not required when the source-based time-averaged output power for data mode is lower than that in the normal GPRS mode.

WCDMA Band 2:

Test Mode	Conducted Average Output Power(dBm)					
Test Widde	Lowest Channel	Middle Channel	Highest Channel			
WCDMA	22.45	22.34	22.43			
HSDPA Subset 1	18.39	18.44	18.68			
HSDPA Subset 2	18.35	18.33	18.58			
HSDPA Subset 3	18.34	18.24	18.50			
HSDPA Subset 4	18.43	18.33	18.56			
HSUPA Subset 1	18.51	18.48	18.62			
HSUPA Subset 2	18.28	18.24	18.52			
HSUPA Subset 3	18.26	18.37	18.39			
HSUPA Subset 4	18.23	18.45	18.58			
HSUPA Subset 5	18.16	18.36	18.57			
HSPA+	18.35	18.31	18.66			

WCDMA Band 5:

Test Mode	Conducted Average Output Power(dBm)					
Test Widde	Lowest Channel	Middle Channel	Highest Channel			
WCDMA	23.33	23.48	23.45			
HSDPA Subset 1	19.54	19.49	19.41			
HSDPA Subset 2	19.59	19.56	19.57			
HSDPA Subset 3	19.43	19.37	19.58			
HSDPA Subset 4	19.45	19.51	19.54			
HSUPA Subset 1	19.50	19.56	19.37			
HSUPA Subset 2	19.47	19.46	19.42			
HSUPA Subset 3	19.45	19.70	19.56			
HSUPA Subset 4	19.55	19.46	19.45			
HSUPA Subset 5	19.52	19.68	19.59			
HSPA+	19.40	19.59	19.49			

Note:

1. The default test configuration is to measure SAR with an established radio link between the EUT and a

communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in all 1. 2. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA/HSPA+ when the maximum average output of each RF channel is less than $\frac{1}{4}$ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

LTE Band 2:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	21.78	21.15	21.08
		1@3	21.99	21.36	21.37
		1@5	21.74	21.08	21.06
	QPSK	3@0	21.75	21.18	21.32
		3@1	21.75	21.21	21.3
		3@3	21.64	21.15	21.22
1.4M		6@0	20.65	20.25	20.24
1.41 VI		1@0	20.54	19.98	20.04
		1@3	20.6	20.07	20.2
		1@5	20.49	19.97	20.09
	16-QAM	3@0	20.37	20.33	20.21
		3@1	20.39	20.44	20.44
		3@3	20.41	20.45	20.4
		6@0	19.22	19.44	19.47
		1@0	21.56	21.18	21.3
	QPSK	1@8	21.17	21.34	21.47
		1@14	21.11	21.31	21.33
		8@0	20.23	20.37	20.2
		8@4	20.17	20.27	20.27
		8@7	20.18	20.23	20.31
2) (15@0	20.26	20.33	20.16
3M		1@0	20.08	20.31	20.45
		1@8	19.89	20.17	20.66
		1@14	19.85	20.12	20.62
	16-QAM	8@0	19.09	19.38	19.42
		8@4	19.28	19.38	19.33
		8@7	19.11	19.33	19.3
		15@0	19.15	19.28	19.16
		1@0	21.12	21.09	21.01
		1@12	21.35	21.42	21.38
		1@24	21.14	21.2	21.18
	QPSK	12@0	20.17	20.31	20.14
		12@7	20.28	20.26	20.3
		12@13	20.31	20.27	20.1
514		25@0	20.1	20.19	20.12
5M		1@0	20.12	20.21	20.63
		1@12	20.39	20.54	20.87
		1@24	20	20.14	20.64
	16-QAM	12@0	19.28	19.36	19.18
		12@7	19.32	19.33	19.33
		12@13	19.29	19.27	19.27
		25@0	19.23	19.26	19.25

Report Template Version: FCC SAR-V1.0

Page 42 of 86

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channe (dBm)
		1@0	21.19	21.29	21.49
		1@25	21.23	21.42	21.53
		1@49	20.98	21.17	21.3
	QPSK	25@0	20.28	20.39	20.32
		25@12	20.29	20.42	20.18
		25@25	20.18	20.34	20.24
1014		50@0	20.21	20.27	20.31
10M		1@0	19.86	20.15	20.65
		1@25	20.11	20.45	20.73
		1@49	19.84	20.2	20.58
	16-QAM	25@0	19.24	19.42	19.28
		25@12	19.26	19.31	19.19
		25@25	19.27	19.33	19.36
		50@0	19.21	19.24	19.17
		1@0	21.27	21.23	21.35
	QPSK	1@37	21.49	21.37	21.46
		1@74	21.27	21.16	21.31
		36@0	20.18	20.44	20.41
		36@20	20.3	20.36	20.36
		36@39	20.18	20.31	20.26
15M		75@0	20.33	20.39	20.42
1.511		1@0	20.1	20.16	20.53
		1@37	20.37	20.34	20.58
		1@74	20.2	20.08	20.54
	16-QAM	36@0	19.09	19.42	19.25
		36@20	19.32	19.3	19.32
		36@39	19.19	19.24	19.3
		75@0	19.25	19.3	19.35
		1@0	20.84	20.99	21.03
		1@49	21.13	21.44	21.16
		1@99	20.82	21.05	20.89
	QPSK	50@0	20.14	20.33	20.19
		50@24	20.29	20.37	20.26
		50@50	20.25	20.37	20.32
20M		100@0	20.22	20.25	20.38
20111		1@0	20.27	20.59	20.3
		1@49	20.54	20.88	20.6
		1@99	20.25	20.59	20.23
	16-QAM	50@0	19.18	19.24	19.38
		50@24	19.1	19.27	19.19
		50@50	19.23	19.23	19.31

LTE Band 4:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	21.66	21.23	21.2
		1@3	21.71	21.47	21.36
		1@5	21.45	21.16	21.13
	QPSK	3@0	21.5	21.31	21.43
		3@1	21.57	21.33	21.46
		3@3	21.46	21.3	21.23
1 414		6@0	20.48	20.43	20.34
1.4M		1@0	20.82	20.09	20.1
		1@3	20.82	20.14	20.25
		1@5	20.71	20.08	20.11
	16-QAM	3@0	20.77	20.33	20.53
		3@1	20.71	20.44	20.55
		3@3	20.77	20.46	20.4
		6@0	19.33	19.44	19.44
		1@0	21.84	21.9	21.93
	QPSK	1@8	21.65	21.79	22
		1@14	21.81	21.96	22.04
		8@0	20.86	20.86	20.83
		8@4	20.94	20.92	20.83
		8@7	20.85	20.81	20.89
		15@0	20.61	20.75	20.75
3M		1@0	20.76	20.79	21.18
		1@8	20.77	20.77	21.24
		1@14	20.69	20.88	21.2
	16-QAM	8@0	19.92	19.87	20.06
		8@4	19.87	19.9	19.93
		8@7	19.91	19.85	19.96
		15@0	19.98	19.95	19.77
		1@0	21.76	21.8	21.65
		1@12	22.01	22.13	21.86
		1@24	21.83	21.83	21.62
	QPSK	12@0	21.05	20.82	20.85
	·	12@7	20.98	20.87	20.71
		12@13	20.97	20.94	20.81
		25@0	20.99	20.95	20.76
5M		1@0	20.96	20.89	21.33
		1@12	21.05	21.05	21.26
		1@24	20.85	20.84	21.01
	16-QAM	12@0	20.07	19.86	19.75
		12@7	20.07	19.9	19.62
		12@13	20.11	19.85	19.64
		25@0	19.98	19.79	19.57

Page 44 of 86

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channe (dBm)
		1@0	21.88	21.51	21.54
		1@25	22.08	21.51	21.69
		1@49	21.78	21.33	21.58
	QPSK	25@0	21.05	20.34	20.33
		25@12	20.96	20.4	20.4
		25@25	20.43	20.39	20.31
1014		50@0	20.49	20.35	20.33
10M		1@0	20.26	20.4	20.62
		1@25	20.37	20.41	20.78
		1@49	20.24	20.28	20.72
	16-QAM	25@0	19.54	19.55	19.36
		25@12	19.66	19.48	19.4
		25@25	19.59	19.4	19.31
		50@0	19.54	19.34	19.27
	QPSK	1@0	21.87	21.91	21.88
		1@37	22.11	21.97	22.26
		1@74	21.99	21.76	22
		36@0	21.03	20.96	20.96
		36@20	20.99	20.92	20.94
		36@39	20.95	20.94	20.91
15M		75@0	21.1	20.87	20.81
1,3101		1@0	20.85	20.85	21.14
		1@37	21.22	20.88	21.35
		1@74	21.03	20.74	21.1
	16-QAM	36@0	19.99	19.98	19.77
		36@20	19.97	20.06	20
		36@39	19.83	20.05	19.9
		75@0	19.9	19.97	19.92
		1@0	21.69	21.61	21.5
		1@49	22.01	21.93	21.86
		1@99	21.67	21.57	21.58
	QPSK	50@0	21.15	20.9	20.88
		50@24	20.95	20.91	20.93
		50@50	20.99	20.93	20.91
20M		100@0	20.95	20.97	20.9
20101		1@0	21.26	20.95	20.84
		1@49	21.58	21.21	21.22
		1@99	21.18	21.01	20.85
	16-QAM	50@0	20.11	19.95	19.87
		50@24	19.97	19.92	19.82
		50@50	19.96	19.88	19.74

LTE Band 5:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	23.05	22.66	22.69
		1@3	23.1	22.77	22.62
		1@5	23.05	22.66	22.68
	QPSK	3@0	22.79	22.82	22.84
		3@1	22.94	22.9	22.69
		3@3	23.01	22.84	22.76
1 414		6@0	21.85	21.77	21.69
1.4M		1@0	22.16	21.41	21.42
		1@3	22.16	21.56	21.62
		1@5	22.18	21.42	21.55
	16-QAM	3@0	22.11	21.79	21.9
		3@1	22.11	21.89	21.92
		3@3	22.19	21.8	21.89
		6@0	20.7	20.91	20.88
		1@0	22.83	22.76	22.93
	QPSK	1@8	22.84	22.77	22.83
		1@14	22.71	22.79	22.94
		8@0	21.94	21.83	21.73
		8@4	21.99	21.75	21.8
		8@7	21.96	21.72	21.65
		15@0	21.75	21.69	21.69
3M		1@0	21.63	21.75	22.04
		1@8	21.63	21.64	22.03
		1@14	21.59	21.55	22.09
	16-QAM	8@0	20.77	20.83	20.67
		8@4	20.88	20.74	20.85
		8@7	20.85	20.75	20.89
		15@0	20.77	20.81	20.74
		1@0	22.77	22.65	22.6
		1@12	22.95	22.84	22.87
		1@24	22.8	22.59	22.57
	QPSK	12@0	21.86	21.72	21.77
		12@7	21.94	21.9	21.73
		12@13	21.92	21.74	21.62
		25@0	21.89	21.75	21.67
5M		1@0	21.73	21.78	22.25
		1@12	21.92	21.82	22.37
		1@24	21.84	21.66	22.27
	16-QAM	12@0	20.97	20.76	20.75
	-	12@7	20.85	20.84	20.73
		12@13	20.82	20.82	20.74
		25@0	20.91	20.67	20.88

Page 46 of 86

Bay Area Complianc	y Area Compliance Laboratories Corp. (Dongguan)				
Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	22.76	22.84	23.06
		1@25	22.87	22.86	23.24
	QPSK	1@49	22.67	22.74	22.97
		25@0	22.03	21.74	21.92
		25@12	21.94	21.8	21.94
		25@25	21.89	21.74	21.83
1014		50@0	22.05	21.68	21.8
10M		1@0	21.6	21.69	22.31
		1@25	21.84	21.83	22.4
		1@49	21.5	21.64	22.11
	16-QAM	25@0	21.02	20.75	20.92
		25@12	20.92	20.91	20.99
		25@25	20.96	21.04	20.79
		50@0	20.96	21.04	20.91

LTE Band 7:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	21.45	21.45	21.51
		1@12	21.83	21.84	21.89
		1@24	21.53	21.51	21.5
	QPSK	12@0	20.67	20.76	20.74
		12@7	20.76	20.74	20.81
		12@13	20.68	20.63	20.71
514		25@0	20.61	20.59	20.76
5M		1@0	21.09	20.43	20.58
		1@12	21.37	20.71	20.89
		1@24	21.09	20.48	20.58
	16-QAM	12@0	19.74	19.71	19.66
		12@7	19.8	19.73	19.71
		12@13	19.8	19.74	19.66
		25@0	19.67	19.57	19.7
		1@0	21.47	21.92	21.48
	QPSK	1@25	21.65	21.86	21.6
		1@49	21.53	21.81	21.51
		25@0	20.51	20.71	20.52
		25@12	20.69	20.75	20.68
		25@25	20.69	20.59	20.69
		50@0	20.72	20.58	20.54
10M		1@0	20.53	21.04	20.37
		1@25	20.66	21.19	20.48
		1@49	20.43	20.98	20.34
	16-QAM	25@0	19.71	19.83	19.77
		25@12	19.75	19.74	19.68
		25@25	19.77	19.7	19.8
		50@0	19.65	19.61	19.71
		1@0	21.62	21.45	21.83
		1@37	21.71	21.72	21.86
		1@74	21.53	21.49	21.75
	QPSK	36@0	20.59	20.78	20.58
		36@20	20.59	20.68	20.72
		36@39	20.62	20.67	20.66
		75@0	20.68	20.6	20.59
15M		1@0	20.49	20.52	20.85
		1@37	20.85	20.72	21.18
		1@74	20.52	20.37	20.83
	16-QAM	36@0	19.43	19.62	19.66
	~	36@20	19.57	19.65	19.64
		36@39	19.52	19.55	19.74
		75@0	19.59	19.61	19.75

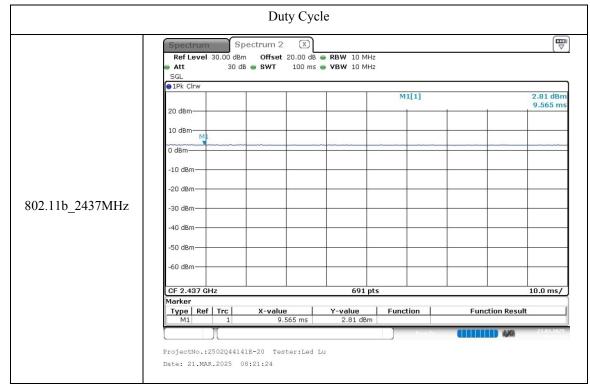
Page 48 of 86

Bay Area Complianc	Report No.: 2	2502Q44141E-20			
Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	22.15	22.35	22.37
		1@49	22.57	22.75	22.73
		1@99	22.19	22.38	22.4
	QPSK	50@0	21.49	21.51	21.58
		50@24	21.44	21.55	21.63
		50@50	21.47	21.51	21.69
2014		100@0	21.38	21.52	21.63
20M		1@0	21.38	21.49	21.65
		1@49	21.92	21.82	21.87
		1@99	21.48	21.53	21.62
	16-QAM	50@0	20.46	20.52	20.51
		50@24	20.58	20.61	20.51
		50@50	20.57	20.59	20.59
		100@0	20.54	20.6	20.62

LTE Band 38:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	22.74	22.9	22.82
		1@12	22.9	23.17	23.13
		1@24	22.65	22.85	22.84
	QPSK	12@0	21.7	21.87	21.79
		12@7	21.7	21.95	21.72
		12@13	21.71	21.93	21.8
7) (25@0	21.59	21.93	21.83
5M		1@0	21.87	22.21	21.83
		1@12	22.21	22.5	22.19
		1@24	21.7	22.2	21.91
	16-QAM	12@0	20.57	20.85	20.79
		12@7	20.52	20.89	20.88
		12@13	20.53	20.97	20.84
		25@0	20.55	20.85	20.76
		1@0	22.83	22.72	22.84
	QPSK	1@25	22.97	23.1	23.22
		1@49	22.78	22.74	22.81
		25@0	21.62	21.99	21.78
		25@12	21.75	21.97	21.81
		25@25	21.71	21.96	21.77
		50@0	21.72	21.95	21.84
10M		1@0	21.85	21.93	22.19
		1@25	22.04	22.34	22.44
		1@49	21.93	21.97	22.11
	16-QAM	25@0	20.67	20.78	20.77
		25@12	20.6	20.81	20.73
		25@25	20.77	20.74	20.77
		50@0	20.7	20.94	20.76
		1@0	22.52	22.78	22.81
		1@37	22.86	23.05	23.18
		1@74	22.56	22.69	22.84
	QPSK	36@0	21.8	21.91	21.81
	Q. 511	36@20	21.78	22	21.84
		36@39	21.69	21.99	21.86
		75@0	21.8	21.99	21.88
15M		1@0	21.74	22.12	22.07
		1@37	21.98	22.39	22.39
		1@74	21.84	22.01	22.02
	16-QAM	36@0	20.65	20.82	20.94
		36@20	20.66	20.82	20.94
		36@39	20.00	20.82	20.97
		75@0	20.72	20.81	20.67

Report Template Version: FCC SAR-V1.0


Page 50 of 86

Bay Area Complianc	y Area Compliance Laboratories Corp. (Dongguan)				
Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	22.48	22.69	22.59
		1@49	22.85	23.18	22.86
	QPSK	1@99	22.69	22.87	22.54
		50@0	21.66	21.86	21.8
		50@24	21.71	21.94	21.83
		50@50	21.8	21.97	21.81
2014		100@0	21.78	21.89	21.79
20M		1@0	21.57	21.87	21.71
		1@49	21.95	22.17	22.02
		1@99	21.75	21.97	21.76
	16-QAM	50@0	20.56	20.76	20.73
		50@24	20.62	20.79	20.76
		50@50	20.84	20.85	20.84
		100@0	20.65	20.76	20.85

WLAN: 2.4G

Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)
	2412			10.45
802.11b	2437	1Mbps	100	10.99
	2462			10.35
	2412			12.50
802.11g	2437	6Mbps	/	12.74
	2462			12.32
	2412			11.23
802.11n ht20	2437	MCS0	/	11.59
	2462			11.19
	2422			8.68
802.11n ht40	2437	MCS0	/	8.68
	2452			8.47

Test Modes	Ton	Ton+off	Duty cycle	Scaled Factor
	(ms)	(ms)	(%)	(1/duty cycle)
802.11b_2437MHz	100	100	100	1

Note: The duty cycle was measured under radiation method.

WLAN: 5.2G

Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)		
	5180			11.64		
802.11a	5200	6Mbps	/	11.61		
	5240	-		12.10		
	5180			11.36		
802.11n20	5200	MCS0	MCS0	MCS0	/	11.49
	5240			12.01		
802.11n40	5190	MCSO	1	11.53		
802.11n40	302.11n40 5230 MCS0	/	11.93			
802.11ac80	5210	MCS0	88.1	12.70		

WLAN: 5.3G

Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)			
	5260			12.13			
802.11a	5280	6Mbps	96	12.29			
	5320			12.26			
	5260	MCS0		12.12			
802.11n20	5280		MCS0	MCS0	MCS0	/	12.37
	5320			12.35			
802.11n40	5270	MCCO	/	12.16			
002.111140	5310	MCS0	/	12.26			
802.11ac80	5290	MCS0	/	12.02			

WLAN: 5.6G

Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)	
	5500			12.19	
202 11-	5580	() (here	/	11.96	
802.11a	5700	- 6Mbps	/	11.83	
	5720			12.01	
	5500			11.96	
002 11 20	5580	MCS0	MCSO	1	11.64
802.11n20	5700		/	11.48	
	5720			11.81	
	5510			11.85	
802 11 - 40	5590	MCSO	1	11.66	
802.11n40	5670	- MCS0	/	11.37	
	5710			11.35	
	5530			12.63	
802.11ac80	5610	MCS0	88.1	12.27	
	5690			12.06	

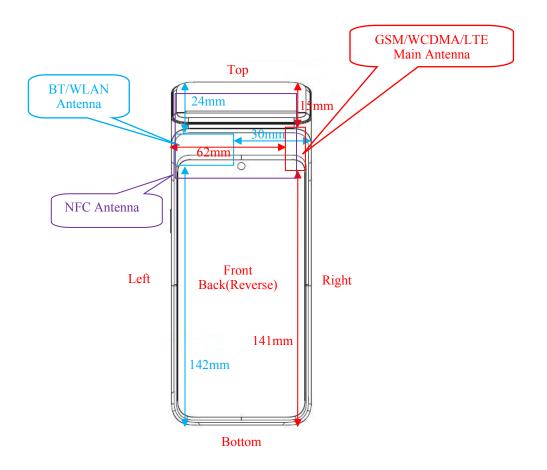
WLAN: 5.8G

Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)	
	5745			12.29	
802.11a	5785	6Mbps 96	12.22		
	5825			11.99	
	5745	MCS0		12.12	
802.11n20	5785		MCS0	MCS0	/
	5825			11.86	
802 11-40	5755	MCSO	1	12.11	
802.11n40	5795	MCS0	/	11.93	
802.11ac80	5775	MCS0	/	12.03	

Report No.: 2502Q44141E-20

Test Modes	Ton (ms)	Ton+off (ms)	Duty cycle (%)	Scaled Factor (1/duty cycle)
802.11a_5200MHz	1.406	1.464	96%	1.04
802.11ac80_5210MHz	0.326	0.370	88.1%	1.14

	Spectrum	ectrum 2 🛛 🕅				
	SGL		 RBW 10 MHz VBW 10 MHz 			
	1Pk Clrw			D2[1]		4.01 dB 1.4638 ms
	20 dBm			M1[1]	1 1	-0.89 dBm 1.9565 ms
	0 dBm -10 dBm -20 dBm	alou who and	monorana providence	an many papers	www.weiters	
802.11a_5200MHz	-30 dBm					
	-50 dBm					
	CF 5.2 GHz Marker		691 pts			1.0 ms/
	Type Ref Trc M1 1 D1 M1 1 D2 M1 1	X-value 1.9565 ms 1.4058 ms 1.4638 ms	Y-value I -0.89 dBm -0.24 dB 4.01 dB	Function	Function	Result
	ProjectNo.:2502Q44143 Date: 24.FEB.2025 10		Lu	Ready		24.02.2025
	Date: 24.FEB.2025 10 Spectrum Sp Ref Level 30.00 dBm	0:24:28 pectrum 2 🛞 n Offset 20.00 dB) Ready		21.02.2025
	Date: 24.FEB.2025 10 Spectrum Sp Ref Level 30.00 dBm Att 30 dB SGL Ink Clrw 20 dBm 20 dBm	0:24:28 pectrum 2 🛞 n Offset 20.00 dB	RBW 10 MHz	D1[1] M1[1]		21022025 21022025 21022025 3.61 dB 326.09 µ5 -2.96 dBm 427.54 µ5
	Date: 24.FEB.2025 10 Spectrum Sp Ref Level 30.00 dBm Att 30 dB SGL 10 dBm 10 dBm -10 dBm <t< td=""><td>0:24:28 pectrum 2 🛞 n Offset 20.00 dB</td><td>RBW 10 MHz VBW 10 MHz</td><td></td><td>And and a second a</td><td>3.61 dB 326.09 µs -2.96 dBm</td></t<>	0:24:28 pectrum 2 🛞 n Offset 20.00 dB	RBW 10 MHz VBW 10 MHz		And and a second a	3.61 dB 326.09 µs -2.96 dBm
02.11ac80_5210MHz	Date: 24.FEB.2025 10 Spectrum Sp Ref Level 30.00 dbm Att 30 dB SGL OIPk Clrw 20 dBm 10 dBm 10 dBm D dbgh-blid-dbm 20 dBm 10 dBm 10 dBm 10 dBm - 20 dBm - 30 dBm <t< td=""><td>0:24:28 Dectrum 2 X 0 Offset 20.00 dB 3 SWT 2 ms</td><td>RBW 10 MHz VBW 10 MHz</td><td></td><td></td><td>3.61 dB 326.09 µs -2.96 dBm 427.54 µs</td></t<>	0:24:28 Dectrum 2 X 0 Offset 20.00 dB 3 SWT 2 ms	RBW 10 MHz VBW 10 MHz			3.61 dB 326.09 µs -2.96 dBm 427.54 µs
02.11ac80_5210MHz	Date: 24.FEB.2025 10 Spectrum Sp Ref Level 30.00 dBm Ref Level 30.00 dBm 30 dB SGL 1Pk Clrw 20 dBm 10 dBm 10 dBm 0 dBm 10 dBm 10 dBm 40 dBm 40 dBm	0:24:28 Dectrum 2 X 0 Offset 20.00 dB 3 SWT 2 ms	RBW 10 MHz VBW 10 MHz			3.61 dB 326.09 µs -2.96 dBm 427.54 µs
02.11ac80_5210MHz	Date: 24.FEB.2025 11 Spectrum Sp Ref Level 30.00 dbm Att 30 dB SGL 9 10 dbm 0 dbm 10 dbm<	0:24:28 Dectrum 2 X 0 Offset 20.00 dB 3 SWT 2 ms	RBW 10 MHz VBW 10 MHz			3.61 dB 326.09 µs -2.96 dBm 427.54 µs
02.11ac80_5210MHz	Date: 24.FEB.2025 10 Spectrum Sp Ref Level 30.00 dbm 30 db SGL 30 db IPk Clrw 20 dbm 10 dbm 10 dbm -0 dbm 10 dbm -10 dbm 10 dbm -30 dbm -30 dbm -60 dbm -50 dbm -60 dbm -50 dbm -70 dbm -70 dbm	0:24:28 Pectrum 2 (X) Offset 20.00 dB SWT 2 ms M1, h, ms, m,	RBW 10 MHz VBW 10 MHz VBW 10 MHz Optimized a state of the state		Function	3.61 dB 326.09 -2.96 dBm 427.54 µs
02.11ac80_5210MHz	Date: 24.FEB.2025 10 Spectrum Sp Ref Level 30.00 dBm Att 30 dB SGL 1Pk Clrw 20 dBm 10 dBm 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm	0:24:28	RBW 10 MHz VBW 10 MHz	M1[1]		3.61 dB 326.09 -2.96 dBm 427.54 µs


Note: The duty cycle was measured under radiation method.

Bluetooth:

Mode	Channel frequency (MHz)	RF Output Power (dBm)
	2402	2.18
BDR(GFSK)	2441	2.4
	2480	2.73
	2402	1.47
EDR(π /4-DQPSK)	2441	1.61
	2480	1.97
	2402	1.56
EDR(8DPSK)	2441	1.81
	2480	1.88
	2402	-0.16
BLE 1Mbps	2440	0.02
	2480	0.2

8. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS

8.1 Antennas Location:

8.2 Antenna Distance To Edge

Antenna Distance To Edge(mm)						
Antenna	Back	Front	Left	Right	Тор	Bottom
WWAN Antenna(GSM/WCDMA/LTE)	< 5	< 5	62	< 5	15	141
WLAN/BT Antenna	< 5	< 5	< 5	30	24	142

8.3 Standalone SAR test exclusion considerations

Body

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Calculated value	Threshold (1-g)	SAR Test Exclusion
WLAN 2.4G	2462	13	19.95	5	6.3	3.0	NO
WLAN 5.2G	5240	13	19.95	5	9.1	3.0	NO
WLAN 5.3G	5320	12.5	17.78	5	8.2	3.0	NO
WLAN 5.6G	5720	13	19.95	5	9.5	3.0	NO
WLAN 5.8G	5825	12.5	17.78	5	8.6	3.0	NO
Bluetooth	2480	3	2.00	5	0.6	3.0	YES

Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Calculated value	Threshold (10-g)	SAR Test Exclusion
2462	13	19.95	0	6.3	7.5	YES
5240	13	19.95	0	9.1	7.5	NO
5320	12.5	17.78	0	8.2	7.5	NO
5720	13	19.95	0	9.5	7.5	NO
5825	12.5	17.78	0	8.6	7.5	NO
2480	3	2.00	0	0.6	7.5	YES
	(MHz) 2462 5240 5320 5720 5825	Frequency (MHz) Power (dBm) 2462 13 5240 13 5320 12.5 5720 13 5825 12.5	Frequency (MHz) Power (dBm) Power (mW) 2462 13 19.95 5240 13 19.95 5320 12.5 17.78 5720 13 19.95 5825 12.5 17.78	Frequency (MHz) Power (dBm) Power (mW) Distance (mm) 2462 13 19.95 0 5240 13 19.95 0 5320 12.5 17.78 0 5720 13 19.95 0 5825 12.5 17.78 0	Frequency (MHz) Power (dBm) Power (mW) Distance (mm) Calculated value 2462 13 19.95 0 6.3 5240 13 19.95 0 9.1 5320 12.5 17.78 0 8.2 5720 13 19.95 0 9.5 5825 12.5 17.78 0 8.6	Frequency (MHz)Power (dBm)Power (mW)Distance (mm)Calculated valueInfestion (10-g)24621319.9506.37.552401319.9509.17.5532012.517.7808.27.557201319.9509.57.5582512.517.7808.67.5

Limb

Note:

1. The WLAN based average power for calculation. and bluetooth based peak output power for calculation. 2. The Limb SAR of WLAN 2.4G was selected to test.

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

According to KDB447498 D01 General RF Exposure Guidance v06: 4.3. General SAR test exclusion guidance

c) For frequencies below 100 MHz, the following may be considered for SAR test exclusion (also illustrated in Appendix C):

1) For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by $[1 + \log(100/f(MHz))]$

2) For test separation distances \leq 50 mm, the power threshold determined by the equation in c) 1) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$

3) SAR measurement procedures are not established below 100 MHz

Measurement Result:

For NFC, the power of EUT: E Field@3m is 73.07dBuV/m =-22.13 dBm (0.006mW) Note: E[dB μ V/m] = EIRP[dBm] + 95.2 for d = 3 m.

SAR test exclusion threshold for NFC(13.56MHz) separation distance < 50mm

 $=[474*(1 + \log(100/f(MHz)))]/2$

= 443mW

>0.006mW

Conclusion:

The NFC SAR evaluation can be exempted.

Note:

1. The E Field value of NFC, please refer to the report: 2502Q44141E-RF-00G, which was issued by Bay Area Compliance Laboratories Corp. (Dongguan).

Report Template Version: FCC SAR-V1.0

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Estimated (W/kg)
BT Body	2480	3	2.00	5	0.08@1-g
BT Limb	2480	3	2.00	0	0.03@10-g

Note: The bluetooth based peak power for calculation.

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)] ·

 $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When the minimum test separation distance is \leq 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion

8.5 SAR test exclusion for the EUT edge considerations Result

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Test Exclusion Distance (mm)
GSM 850	848.8	26.5	446.68	57.0
PCS 1900	1909.8	23.5	223.87	41.2
WCDMA Band 2	1907.6	22.5	177.83	32.7
WCDMA Band 5	846.6	23.5	223.87	27.4
LTE Band 2	1900	22	158.49	29.1
LTE Band 4	1745	22.5	177.83	31.3
LTE Band 5	844	23.5	223.87	27.4
LTE Band 7	2560	23	199.53	42.5
LTE Band 38	2610	23.5	223.87	48.2
WLAN 2.4G	2462	13	19.95	4.1
WLAN 5.2G	5240	13	19.95	6.0
WLAN 5.3G	5320	12.5	17.78	5.4
WLAN 5.6G	5720	13	19.95	6.3
WLAN 5.8G	5825	12.5	17.78	5.7

Note: The GSM 850/PCS1900 based average power for calculation.

Mode	Back	Front	Left	Right	Тор	Bottom
BT	Exclusion*	Exclusion*	Exclusion*	Exclusion*	Exclusion*	Exclusion*
WLAN	Required	Required	Required	Exclusion	Required	Exclusion
WWAN(GSM/WCDMA/LTE)	Required	Required	Exclusion	Required	Required	Exclusion

Note:

Required:	The distance is less than Test Exclusion Distance, the SAR test is required.
Exclusion:	The distance is large than Test Exclusion Distance, SAR test is not required.
Exclusion*	SAR test exclusion evaluation has been done above.

SAR test exclusion for the EUT edge considerations detail:

Distance< 50mm(To Edges)

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

5. The Time based average Power is used for calculation

Distance> 50mm(To Edges)

At 100 MHz to 6 \hat{G} Hz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following:

a) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) \cdot (f(MHz)/150)] mW, at 100 MHz to 1500 MHz

b) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz.

9. SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

9.1 SAR Test Data

Environmental Conditions

Environmental Temperature:	21.6-22.2 °C	22.1-22.9℃	20.7-21.4 °C
Relative Humidity:	41%	41%	39%
ATM Pressure:	102.4 kPa	101.9 kPa	101.8 kPa
Test Date:	2025/02/24	2025/03/20	2025/03/21

Testing was performed by Lily Yang, Musk Huang, Led Lu.

GSM 850:

Body Mode:

, i i i i i i i i i i i i i i i i i i i				Max. Max.		1g SAR (W/kg)				
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	824.2	GPRS	/	/	/	/	/	/		
Body Back (5mm)	836.6	GPRS	29.34	29.5	1.038	0.368	0.38	1#		
(511111)	848.8	GPRS	/	/	/	/	/	/		

Limb Mode:

			Max.	Max.		10g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	824.2	GPRS	/	/	/	/	/	/
Limb Front (0mm)	836.6	GPRS	29.34	29.5	1.038	0.332	0.34	/
	848.8	GPRS	/	/	/	/	/	/
Limb Back (0mm)	824.2	GPRS	/	/	/	/	/	/
	836.6	GPRS	29.34	29.5	1.038	0.857	0.89	/
(omm)	848.8	GPRS	/	/	/	/	/	/
L' 1 D' 1/	824.2	GPRS	/	/	/	/	/	/
Limb Right (0mm)	836.6	GPRS	29.34	29.5	1.038	1.23	1.28	2#
(omm)	848.8	GPRS	/	/	/	/	/	/
T' 1 T	824.2	GPRS	/	/	/	/	/	/
Limb Top (0mm)	836.6	GPRS	29.34	29.5	1.038	0.140	0.15	/
	848.8	GPRS	/	/	/	/	/	/

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. The EUT transmit and receive through the same GSM antenna while testing SAR.

3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

4. When the maximum output power variation across the required test channels is > 0.5 dB, instead of the middle channel, the highest output power channel must be used.

5. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worst case.

GSM 1900:

Body Mode:

*				Max.	1g SAR (W/kg)				
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1850.2	GPRS	/	/	/	/	/	/	
Body Back	1880	GPRS	26.00	26.5	1.122	0.072	0.08	3#	
(5mm)	1909.8	GPRS	/	/	/	/	/	/	

Limb Mode:

			Max.	Max.		10g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1850.2	GPRS	/	/	/	/	/	/
Limb Front (0mm)	1880	GPRS	26.00	26.5	1.122	0.183	0.21	/
	1909.8	GPRS	/	/	/	/	/	/
Limb Deels	1850.2	GPRS	/	/	/	/	/	/
Limb Back (0mm)	1880	GPRS	26.00	26.5	1.122	0.325	0.36	/
(omm)	1909.8	GPRS	/	/	/	/	/	/
I' 1 D' 14	1850.2	GPRS	/	/	/	/	/	/
Limb Right (0mm)	1880	GPRS	26.00	26.5	1.122	1.3	1.46	4#
(omm)	1909.8	GPRS	/	/	/	/	/	/
Lind Ten	1850.2	GPRS	/	/	/	/	/	/
Limb Top (0mm)	1880	GPRS	26.00	26.5	1.122	0.034	0.04	/
(omm)	1909.8	GPRS	/	/	/	/	/	/

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. The EUT transmit and receive through the same GSM antenna while testing SAR.

3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

4. When the maximum output power variation across the required test channels is > 0.5 dB, instead of the middle channel, the highest output power channel must be used.

5. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worst case.

WCDMA Band 2:

Body Mode:

*				Max.	1g SAR (W/kg)				
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1852.4	RMC	/	/	/	/	/	/	
Body Back	1880	RMC	22.34	22.5	1.038	0.107	0.11	5#	
(5mm)	1907.6	RMC	/	/	/	/	/	/	

			Max.	Max.		10g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1852.4	RMC	/	/	/	/	/	/
Limb Front (0mm)	1880	RMC	22.34	22.5	1.038	0.300	0.31	/
	1907.6	RMC	/	/	/	/	/	/
	1852.4	RMC	/	/	/	/	/	/
Limb Back (0mm)	1880	RMC	22.34	22.5	1.038	0.205	0.21	/
(UIIIII)	1907.6	RMC	/	/	/	/	/	/
I' 1 D' 14	1852.4	RMC	/	/	/	/	/	/
Limb Right (0mm)	1880	RMC	22.34	22.5	1.038	1.83	1.90	6#
(UIIIII)	1907.6	RMC	/	/	/	/	/	/
	1852.4	RMC	/	/	/	/	/	/
Limb Top (0mm)	1880	RMC	22.34	22.5	1.038	0.073	0.08	/
	1907.6	RMC	/	/	/	/	/	/

WCDMA Band 5:

Body Mode:

		Max. N		Max.		1g SAR (W/kg)				
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	826.4	RMC	/	/	/	/	/	/		
Body Back	836.6	RMC	23.48	23.5	1.005	0.130	0.13	7#		
(5mm)	846.6	RMC	/	/	/	/	/	/		

Limb Mode:

			Max.	Max.		10g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	826.4	RMC	/	/	/	/	/	/
Limb Front	836.6	RMC	23.48	23.5	1.005	0.134	0.13	/
(0mm)	846.6	RMC	/	/	/	/	/	/
	826.4	RMC	/	/	/	/	/	/
Limb Back (0mm)	836.6	RMC	23.48	23.5	1.005	0.204	0.21	/
(omm)	846.6	RMC	/	/	/	/	/	/
T' 1 D' 14	826.4	RMC	/	/	/	/	/	/
Limb Right (0mm)	836.6	RMC	23.48	23.5	1.005	0.562	0.56	8#
(omm)	846.6	RMC	/	/	/	/	/	/
Lind Ten	826.4	RMC	/	/	/	/	/	/
Limb Top (0mm)	836.6	RMC	23.48	23.5	1.005	0.079	0.08	/
(omm)	846.6	RMC	/	/	/	/	/	/

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. The EUT transmit and receive through the same antenna while testing SAR.

3. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC(reference measurement Channel) Configured in Test Loop Model. 4. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA/HSPA+ when the maximum average output of each RF channel is less than ¹/₄ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested

LTE Band 2:

Body Mode:

, i i i i i i i i i i i i i i i i i i i				Max. N	Max.		1g SAR (W/kg)		
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1860	20	1RB	/	/	/	/	/	/
Body Back	1880	20	1RB	21.44	22	1.138	0.130	0.15	9 #
(5mm)	1900	20	1RB	/	/	/	/	/	/
	1880	20	50%RB	20.37	21	1.156	0.108	0.12	/

				Max.	Max.	1	0g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1860	20	1RB	/	/	/	/	/	/
Limb Front	1880	20	1RB	21.44	22	1.138	0.229	0.26	/
(0mm)	1900	20	1RB	/	/	/	/	/	/
	1880	20	50%RB	20.37	21	1.156	0.206	0.24	/
	1860	20	1RB	/	/	/	/	/	/
Limb Back	1880	20	1RB	21.44	22	1.138	0.166	0.19	/
(0mm)	1900	20	1RB	/	/	/	/	/	/
	1880	20	50%RB	20.37	21	1.156	0.158	0.18	/
	1860	20	1RB	/	/	/	/	/	/
Limb Right	1880	20	1RB	21.44	22	1.138	1.73	1.97	10#
(0mm)	1900	20	1RB	/	/	/	/	/	/
	1880	20	50%RB	20.37	21	1.156	1.38	1.60	/
	1860	20	1RB	/	/	/	/	/	/
Limb Top	1880	20	1RB	21.44	22	1.138	0.050	0.06	/
(0mm)	1900	20	1RB	/	/	/	/	/	/
	1880	20	50%RB	20.37	21	1.156	0.045	0.05	/

LTE Band 4:

				Max. Max	Max.	1g SAR (W/kg)			
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1720	20	1RB	/	/	/	/	/	/
Body Back	1732.5	20	1RB	21.93	22.5	1.14	0.213	0.24	11#
(5mm)	1745	20	1RB	/	/	/	/	/	/
	1732.5	20	50%RB	20.93	21.5	1.14	0.175	0.20	/

Body Mode:

				Max.	Max.	1	0g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1720	20	1RB	/	/	/	/	/	/
Limb Front	1732.5	20	1RB	21.93	22.5	1.14	0.274	0.31	/
(0mm)	1745	20	1RB	/	/	/	/	/	/
	1732.5	20	50%RB	20.93	21.5	1.14	0.222	0.25	/
	1720	20	1RB	/	/	/	/	/	/
Limb Back	1732.5	20	1RB	21.93	22.5	1.14	0.188	0.21	/
(0mm)	1745	20	1RB	/	/	/	/	/	/
	1732.5	20	50%RB	20.93	21.5	1.14	0.154	0.18	/
	1720	20	1RB	/	/	/	/	/	/
Limb Right	1732.5	20	1RB	21.93	22.5	1.14	1.51	1.72	12#
(0mm)	1745	20	1RB	/	/	/	/	/	/
	1732.5	20	50%RB	20.93	21.5	1.14	1.29	1.47	/
	1720	20	1RB	/	/	/	/	/	/
Limb Top	1732.5	20	1RB	21.93	22.5	1.14	0.045	0.05	/
(0mm)	1745	20	1RB	/	/	/	/	/	/
	1732.5	20	50%RB	20.93	21.5	1.14	0.040	0.05	/

LTE Band 5:

Body	Mode:	

				Max.	Max.		1g SAR (W/kg)				
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	829	10	1RB	/	/	/	/	/	/		
Body Back	836.5	10	1RB	22.86	23.5	1.159	0.113	0.13	13#		
(5mm)	844	10	1RB	/	/	/	/	/	/		
	836.5	10	50%RB	21.8	22.5	1.175	0.085	0.10	/		

				Max.	Max.	1	Og SAR	(W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	829	10	1RB	/	/	/	/	/	/
Limb Front	836.5	10	1RB	22.86	23.5	1.159	0.113	0.13	/
(0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	21.8	22.5	1.175	0.087	0.10	/
	829	10	1RB	/	/	/	/	/	/
Limb Back	836.5	10	1RB	22.86	23.5	1.159	0.151	0.18	/
(0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	21.8	22.5	1.175	0.116	0.14	/
	829	10	1RB	/	/	/	/	/	/
Limb Right	836.5	10	1RB	22.86	23.5	1.159	0.452	0.52	14#
(0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	21.8	22.5	1.175	0.351	0.41	/
	829	10	1RB	/	/	/	/	/	/
Limb Top	836.5	10	1RB	22.86	23.5	1.159	0.062	0.07	/
(0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	21.8	22.5	1.175	0.051	0.06	/

LTE Band 7:

				Max.	Max.		1g SAR (W/kg)				
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	2510	20	1RB	/	/	/	/	/	/		
Body Back	2535	20	1RB	22.75	23	1.059	0.405	0.43	15#		
(5mm)	2560	20	1RB	/	/	/	/	/	/		
	2535	20	50%RB	21.55	22	1.109	0.331	0.37	/		

Body Mode:

				Max.	Max.	1	0g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	2510	20	1RB	/	/	/	/	/	/
Limb Front	2535	20	1RB	22.75	23	1.059	0.097	0.10	/
(0mm)	2560	20	1RB	/	/	/	/	/	/
	2535	20	50%RB	21.55	22	1.109	0.067	0.07	/
	2510	20	1RB	/	/	/	/	/	/
Limb Back	2535	20	1RB	22.75	23	1.059	0.338	0.36	/
(0mm)	2560	20	1RB	/	/	/	/	/	/
	2535	20	50%RB	21.55	22	1.109	0.295	0.33	/
	2510	20	1RB	/	/	/	/	/	/
Limb Right	2535	20	1RB	22.75	23	1.059	0.963	1.02	16#
(0mm)	2560	20	1RB	/	/	/	/	/	/
	2535	20	50%RB	21.55	22	1.109	0.902	1.00	/
	2510	20	1RB	/	/	/	/	/	/
Limb Top	2535	20	1RB	22.75	23	1.059	0.092	0.10	/
(0mm)	2560	20	1RB	/	/	/	/	/	/
	2535	20	50%RB	21.55	22	1.109	0.080	0.09	/

LTE Band 38:

				Max.	Max.		1g SAR (W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	2580	20	1RB	/	/	/	/	/	/
Body Back	2595	20	1RB	23.18	23.5	1.076	0.327	0.35	17#
(5mm)	2610	20	1RB	/	/	/	/	/	/
	2595	20	50%RB	21.97	22	1.007	0.254	0.26	/

Body Mode:

Limb Mode:

				Max.	Max.	1	0g SAR	(W/kg)	N/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	2580	20	1RB	/	/	/	/	/	/	
Limb Front	2595	20	1RB	23.18	23.5	1.076	0.070	0.08	/	
(0mm)	2610	20	1RB	/	/	/	/	/	/	
	2595	20	50%RB	21.97	22	1.007	0.068	0.07	/	
	2580	20	1RB	/	/	/	/	/	/	
Limb Back	2595	20	1RB	23.18	23.5	1.076	0.211	0.23	/	
(0mm)	2610	20	1RB	/	/	/	/	/	/	
	2595	20	50%RB	21.97	22	1.007	0.187	0.19	/	
	2580	20	1RB	/	/	/	/	/	/	
Limb Right	2595	20	1RB	23.18	23.5	1.076	0.610	0.66	18#	
(0mm)	2610	20	1RB	/	/	/	/	/	/	
	2595	20	50%RB	21.97	22	1.007	0.472	0.48	/	
	2580	20	1RB	/	/	/	/	/	/	
Limb Top	2595	20	1RB	23.18	23.5	1.076	0.071	0.08	/	
(0mm)	2610	20	1RB	/	/	/	/	/	/	
	2595	20	50%RB	21.97	22	1.007	0.063	0.06	/	

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02.

3. KDB941225D05-SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is > 0.5 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg

4. KDB941225D05-For QPSK with 100% RB allocation, when the reported SAR measured for the Highest output power channel is <1.45 W/kg, tests for the remaining required test channels are optional.

5.KDB941225D05- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg.

6. KDB941225D05- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offset the upper edge, middle and lower edge of each required test channel.

7. KDB941225D05- other channel bandwidths SAR test is required when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > 0.5 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

WLAN 2.4G:

Body Mode:

*			Max.	Max.	1g SAR (W/kg)				
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
	2412	802.11b	/	/	/	/	/	/	/
Body Back	2437	802.11b	10.99	11	1.002	1	0.313	0.31	19#
(5mm)	2462	802.11b	/	/	/	/	/	/	/

Limb Mode:

			Max.	Max.		10g S	AR (W/k	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
T'IF (2412	802.11b	/	/	/	/	/	/	/
Limb Front (0mm)	2437	802.11b	10.99	11	1.002	1	0.024	0.02	/
(UIIIII)	2462	802.11b	/	/	/	/	/	/	/
	2412	802.11b	/	/	/	/	/	/	/
Limb Back (0mm)	2437	802.11b	10.99	11	1.002	1	0.671	0.67	20#
(omm)	2462	802.11b	/	/	/	/	/	/	/
1.11.0	2412	802.11b	/	/	/	/	/	/	/
Limb Left (0mm)	2437	802.11b	10.99	11	1.002	1	0.044	0.04	/
(omm)	2462	802.11b	/	/	/	/	/	/	/
I'IT	2412	802.11b	/	/	/	/	/	/	/
Limb Top (0mm)	2437	802.11b	10.99	11	1.002	1	0.033	0.03	/
	2462	802.11b	/	/	/	/	/	/	/

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2.When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

3. According to KDB 248227 D01, for SAR testing of WLAN with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

Body Mode:

Mode	Target Output Power (dBm)	Target Output Power (mW)	Reported SAR(W/kg)	Adjusted SAR(W/kg)	Limit(W/kg)	SAR Test Exclusion
802.11b(DSSS)	11	12.59	0.31	/	/	/
802.11g(OFDM)	13	19.95	/	0.49	1.2	Yes
802.11n ht20(OFDM)	12	15.85	/	0.39	1.2	Yes
802.11n ht40(OFDM)	9	7.94	/	0.20	1.2	Yes

Limb Mode:

Mode	Target Output Power (dBm)	Target Output Power (mW)	Reported SAR(W/kg)	Adjusted SAR(W/kg)	Limit(W/kg)	SAR Test Exclusion
802.11b(DSSS)	11	12.59	0.67	/	/	/
802.11g(OFDM)	13	19.95	/	1.06	1.2	Yes
802.11n ht20(OFDM)	12	15.85	/	0.84	1.2	Yes
802.11n ht40(OFDM)	9	7.94	/	0.42	1.2	Yes

Per KDB 248227 D01, When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (see 5.3, including subclauses). SAR is not required for the following 2.4 GHz OFDM conditions.

a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.

b) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

WLAN 5.2G:

Body Mode:

			Max.	Max.		1g S A	AR (W/kg	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	kg) Scaled SAR 0.34	Plot
Body Back (5mm)	5210	802.11ac80	12.70	13	1.072	1.14	0.279	0.34	21#

Limb Mode:

			Max.	Max.		10g S	AR (W/k	(g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
Limb Front (0mm)	5210	802.11ac80	12.70	13	1.072	1.14	< 0.01	0.01	/
Limb Back (0mm)	5210	802.11ac80	12.70	13	1.072	1.14	0.461	0.56	22#
Limb Left (0mm)	5210	802.11ac80	12.70	13	1.072	1.14	0.015	0.02	/
Limb Top (0mm)	5210	802.11ac80	12.70	13	1.072	1.14	0.013	0.02	/

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

3.For 802.11ac80 mode power is the largest among 802.11a/n/ac, 802.11ac80 mode as initial test configuration is selected to test.

4. According to KDB 248227 D01, for SAR testing of WLAN with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

WLAN 5.3G:

Body Mode:

		quency Test MHz) Mode	Max.	Max.		1g S A	AR (W/kg	g)	
EUT Position	Frequency (MHz)		Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
	5260	802.11a	/	/	/	/	/	/	/
Body Back	5280	802.11a	12.29	12.5	1.05	1.04	0.510	0.56	23#
(5mm)	5320	802.11a	/	/	/	/	/	/	/

Limb Mode:

			Max.	Max.		10g S	AR (W/k	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
Lint Front	5260	802.11a	/	/	/	/	/	/	/
Limb Front	5280	802.11a	12.29	12.5	1.05	1.04	0.015	0.02	/
(0mm)	5320	802.11a	/	/	/	/	/	/	/
	5260	802.11a	/	/	/	/	/	/	/
Limb Back (0mm)	5280	802.11a	12.29	12.5	1.05	1.04	0.501	0.55	24#
(omm)	5320	802.11a	/	/	/	/	/	/	/
1.11.0	5260	802.11a	/	/	/	/	/	/	/
Limb Left (0mm)	5280	802.11a	12.29	12.5	1.05	1.04	0.018	0.02	/
(omm)	5320	802.11a	/	/	/	/	/	/	/
L' 1 T	5260	802.11a	/	/	/	/	/	/	/
Limb Top (0mm)	5280	802.11a	12.29	12.5	1.05	1.04	0.017	0.02	/
	5320	802.11a	/	/	/	/	/	/	/

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

3.For 802.11a mode power is the largest among 802.11a/n/ac, 802.11a mode as initial test configuration is selected to test.

4. According to KDB 248227 D01, for SAR testing of WLAN with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

WLAN 5.6G:

Body Mode:

			Max.	Max.		1g S A	AR (W/kg	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	(g) Scaled SAR / 0.66	Plot
	5530	802.11ac80	/	/	/	/	/	/	/
Body Back	5610	802.11ac80	12.27	13	1.183	1.14	0.488	0.66	25#
(5mm)	5690	802.11ac80	/	/	/	/	/		/

Limb Mode:

			Max.	Max.		10g S	AR (W/k	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
T' 1 F (5530	802.11ac80	/	/	/	/	/	/	/
Limb Front	5610	802.11ac80	12.27	13	1.183	1.14	0.044	0.06	/
(0mm)	5690	802.11ac80	/	/	/	/	/	/	/
	5530	802.11ac80	/	/	/	/	/	/	/
Limb Back (0mm)	5610	802.11ac80	12.27	13	1.183	1.14	0.514	0.69	26#
(omm)	5690	802.11ac80	/	/	/	/	/	/	/
1.11.0	5530	802.11ac80	/	/	/	/	/	/	/
Limb Left (0mm)	5610	802.11ac80	12.27	13	1.183	1.14	0.062	0.08	/
(omm)	5690	802.11ac80	/	/	/	/	/	/	/
1.1.7	5530	802.11ac80	/	/	/	/	/	/	/
Limb Top (0mm)	5610	802.11ac80	12.27	13	1.183	1.14	0.027	0.04	/
(omm)	5690	802.11ac80	/	/	/	/	/	Scaled SAR / 0.06 / / / 0.69 / / / 0.08 / / /	/

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

3.For 802.11ac80 mode power is the largest among 802.11a/n/ac, 802.11ac80 mode as initial test configuration is selected to test.

4.According to KDB 248227 D01, for SAR testing of WLAN with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

WLAN 5.8G:

Body Mode:

			Max.	Max.		1g S A	AR (W/kg	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
	5745	802.11a	/	/	/	/	/	/	/
Body Back	5785	802.11a	12.22	12.5	1.067	1.04	0.407	0.45	27#
(5mm)	5825	802.11a	/	/	/	/	/	/	/

Limb Mode:

			Max.	Max.		10g S	AR (W/k	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
	5745	802.11a	/	/	/	/	/	/	/
Limb Front	5785	802.11a	12.22	12.5	1.067	1.04	< 0.01	0.01	/
(0mm)	5825	802.11a	/	/	/	/	/	/	/
	5745	802.11a	/	/	/	/	/	/	/
Limb Back (0mm)	5785	802.11a	12.22	12.5	1.067	1.04	0.361	0.40	28#
(omm)	5825	802.11a	/	/	/	/	/	/	/
1.11.0	5745	802.11a	/	/	/	/	/	/	/
Limb Left (0mm)	5785	802.11a	12.22	12.5	1.067	1.04	0.105	0.12	/
(omm)	5825	802.11a	/	/	/	/	/	/	/
L' 1 T	5745	802.11a	/	/	/	/	/	/	/
Limb Top (0mm)	5785	802.11a	12.22	12.5	1.067	1.04	0.030	0.03	/
	5825	802.11a	/	/	/	/	/	/	/

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

3.For 802.11a mode power is the largest among 802.11a/n/ac, 802.11a mode as initial test configuration is selected to test.

4. According to KDB 248227 D01, for SAR testing of WLAN with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

Spot Check for Batteries:

The device have two kind of batteries, the Battery 2(the highest rated voltage) was selected to full test, Spot check was performed for the Battery 1#.

Body Mode:

LTE Band 7:

EUT Position		Battom: Frequency		Test	Max. Meas.	Max. Rated	1g SAR (W/kg)				
	Battery	(MHz)	Bandwidth (MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	Battery 1#	2510	20	1RB	/	/	/	/	/	/	
Body Back (5mm)		2535	20	1RB	22.75	23	1.059	0.331	0.35	/	
(Jinni)		2560	20	1RB	/	/	/	/	/	/	

Limb Mode:

LTE Band 2

EUT Position	Battery	Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	IUE SAN (W/KE)				
		(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
1 · 1 D · 1	Battery 1#	1860	20	1RB	/	/	/	/	/	/	
Limb Right (0mm)		1880	20	1RB	21.44	22	1.138	1.34	1.52	/	
(omm)		1900	20	1RB	/	/	/	/	/	/	

Spot Check for Samples:

The device have two kind of samples, the parameters refer to it as below, the Sample 1# was selected to full test, Spot check was performed for the Sample 2#.

Sample	Parameters
Sample 1#	(1GB RAM+8GB ROM) +Front camera 2MP+Back camera 2MP+Double SIM+
Sample 1#	Screen 1# (Tianshan)
Sample 2#	(2GB RAM+32GB ROM)+Front camera 2MP+Back camera 5MP+Single ESIM+Single SIM
Sample 2#	+ Screen 2#(Hongzhan) + Flash lamp

Body Mode:

LTE Band 7:

EUT Position	Sample	Frequency	Bandwidth (MHz)	Test	Max. Meas.	Max. Rated	1g SAR (W/kg)				
		(MHz)		Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	Sample 2#	2510	20	1RB	/	/	/	/	/	/	
Body Back (5mm)		2535	20	1RB	22.75	23	1.059	0.307	0.33	/	
		2560	20	1RB	/	/	/	/	/	/	

Limb Mode:

LTE Band 2

EUT		Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	10g SAR (W/kg)			
Position	Sample	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
T . 1 D . 1/		1860	20	1RB	/	/	/	/	/	/
Limb Right (0mm)	Sample 2#	1880	880 20 1RB 21.44 2	22	1.138	1.58	1.80	/		
		1900	20	1RB	/	/	/	/	/	/

10. MEASUREMENT VARIABILITY

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Body

SAR probe	Frequency Band	quency Band Freq.(MHz)		Meas. SA	Largest to Smallest		
calibration point	Trequency Dana	1104.(11112)	EUT Position	Original	Repeated	SAR Ratio	
/	/	/	/	/	/	/	

Note:

1. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

2. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.

11. DUT HOLDER PERTURBATIONS

In accordance with TCB workshop October 2016:

- 1) SAR perturbation due to test device holders, depending on antenna locations, buttons locations on phones or device, form factor (e.g. dongles etc.), the measured SAR could be influenced by the relative positions of the test device and its holder
- 2) SAR measurement standards have included protocols to evaluate this with a flat phantom, with and without the device holder
- 3) When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bands in the same exact device and holder positions used for head and body SAR measurements; i.e. same device/button locations in the holder

Per IEEE 1528: 2013/Annex E/E.4.1.1: Device holder perturbation tolerance for a specific test device: Type B

When it is unknown if a device holder perturbs the fields of a test device, the SAR uncertainty shall be assessed with a flat phantom (see Clause 5) by comparing the SAR with and without the device holder according to the following tests:

The SAR tolerance for device holder disturbance is computed using Equation (E.21) and entered in the corresponding row of the appropriate uncertainty table with an assumed rectangular probability distribution and $vi = \infty$ degrees of freedom:

$$SAR_{\text{tolerance}} \left[\% \right] = 100 \times \left(\frac{SAR_{\text{w/ holder}} - SAR_{\text{w/o holder}}}{SAR_{\text{w/o holder}}} \right)$$
(E.21)

The Highest Measured SAR Configuration among all applicable Frequency Band

European en Dourd		FUT Desidier	Meas. S	SAR (W/kg)	The Device holder perturbation uncertainty	
Frequency Band	Freq.(MHz)	EUT Position	With holder	Without holder		
/	/	/	/	/	/	

12. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

12.1 Simultaneous Transmission:

Description of Simultaneous Transmit Capabilities							
Transmitter Combination	Simultaneous?	Hotspot?					
WWAN(GSM/WCDMA/LTE) + WLAN 2.4G + NFC	\checkmark	×					
WWAN(GSM/WCDMA/LTE) + WLAN 5G + NFC	\checkmark	×					
WWAN(GSM/WCDMA/LTE) + Bluetooth + NFC	\checkmark	×					
WLAN 2.4G+ Bluetooth + NFC	×	×					
WLAN 5G + Bluetooth + NFC	×	×					
WLAN 2.4G + WLAN 5G + NFC	×	×					

Note:

1. For the EIRP of NFC is 0.006mW, per KDB447498 D01 clause 4.3, the estimated SAR is so lower, so the NFC almost have no influence on the results of simultaneous transmission.

12.2 Simultaneous SAR test exclusion considerations:

Body SAR:

Mode(SAD1+SAD2)	Position	Reported S	AR(W/kg)	$\Sigma S A D < 1 (W/ba$	
Mode(SAR1+SAR2)	Position	SAR1	SAR2	Σ SAR < 1.6W/kg	
WWAN(GSM/WCDMA/LTE) + WLAN 2.4G	Body	0.43	0.31	0.74	
WWAN(GSM/WCDMA/LTE) + WLAN 5G	Body	0.43	0.66	1.09	
WWAN(GSM/WCDMA/LTE) + Bluetooth	Body	0.43	0.08	0.51	

Conclusion:

Sum of SAR: Σ SAR \leq 1.6 W/kg therefore simultaneous transmission SAR with Volume Scans is not required.

Limb SAR:

$M_{odo}(S \land D1 + S \land D2)$	Position	Reported S	SAR(W/kg)	$- \Sigma SAR < 4.0 W/kg$	
Mode(SAR1+SAR2)	POSITION	SAR1	SAR2		
WWAN(GSM/WCDMA/LTE) + WLAN 2.4G	Limb	1.97	0.67	2.64	
WWAN(GSM/WCDMA/LTE) + WLAN 5G	Limb	1.97	0.69	2.66	
WWAN(GSM/WCDMA/LTE) + Bluetooth	Limb	1.97	0.03	2.00	

Conclusion:

Sum of SAR: Σ SAR \leq 4.0 W/kg therefore simultaneous transmission SAR with Volume Scans is not required.

APPENDIX A - MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

|--|

Uncertainty component	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)		
Measurement system									
Probe calibration(k=1)	6.55	N	1	1	1	6.6	6.6		
Axial isotropy	4.7	R	√3	√0.5	√0.5	1.9	1.9		
Hemispherical isotropy	9.6	R	√3	√0.5	√0.5	3.9	3.9		
Boundary effect	1.0	R	√3	1	1	0.6	0.6		
Linearity	4.7	R	√3	1	1	2.7	2.7		
System detection limits	1.0	R	√3	1	1	0.6	0.6		
Modulation response	0.0	R	√3	1	1	0.0	0.0		
Readout electronics	0.3	Ν	1	1	1	0.3	0.3		
Response time	0.0	R	√3	1	1	0.0	0.0		
Integration time	0.0	R	√3	1	1	0.0	0.0		
RF ambient conditions-noise	1.0	R	√3	1	1	0.6	0.6		
RF ambient conditions-reflections	1.0	R	√3	1	1	0.6	0.6		
Probe positioner mech tolerance	0.8	R	√3	1	1	0.5	0.5		
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9		
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	2.0	R	√3	1	1	1.2	1.2		
		Test sample r	elated						
Test sample positioning	3.3	N	1	1	1	3.3	3.3		
Device holder uncertainty	2.8	N	1	1	1	2.8	2.8		
Output power variation –SAR draft measurement	5.0	R	√3	1	1	2.9	2.9		
SAR scaling	2.8	R	√3	1	1	1.6	1.6		
	Phan	tom and tissue	e paramete	rs					
Phantom shell uncertainty– shape, thickness and permittivity	4.0	R	√3	1	1	2.3	2.3		
Uncertainty in SAR correction for deviations in permittivity and conductivity	1.9	N	1	1	0.84	1.9	1.6		
Liquid conductivity meas.	2.5	N	1	0.78	0.71	2.0	1.8		
Liquid permittivity meas.	2.5	N	1	0.23	0.26	0.6	0.7		
Liquid conductivity – temperature uncertainty	1.7	R	√3	0.78	0.71	0.8	0.7		
Liquid permittivity – temperature uncertainty	0.3	R	√3	0.23	0.26	0.0	0.0		
Combined standard uncertainty		RSS				12.1	12.0		
Expanded uncertainty (95 % confidence interval)		k=2				24.2	24.0		

Report Template Version: FCC SAR-V1.0

Report No.: 2502Q44141E-20

APPENDIX B - SAR PLOTS

Please refer to the attachment.

APPENDIX C - EUT TEST POSITION PHOTOS

Please refer to the attachment.

APPENDIX D - PROBE CALIBRATION CERTIFICATES

Please refer to the attachment.

Report No.: 2502Q44141E-20

APPENDIX E - DIPOLE CALIBRATION CERTIFICATES

Please refer to the attachment.

*****END OF REPORT*****

Report Template Version: FCC SAR-V1.0