

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Headphone

MODEL NUMBER: ACTV200BT

FCC ID: 2ARUDACTV200BT

IC: 24579-ACTV200BT

REPORT NUMBER: 4789210087.2-1

ISSUE DATE: November 01, 2019

Prepared for

TCL Entertainment Solutions Limited 7/F, building 22E, 22 science park east avenue, Hong Kong science park, SHATIN, N.T. ,Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	11/01/2019	Initial Issue	

Summary of Test Results				
Clause	Test Items	FCC/ISED Rules	Test Results	
1	20dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass	
2	Conducted Output Power	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass	
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass	
4	Number of Hopping Frequency	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass	
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass	
6	Conducted Bandedge	FCC 15.247 (d) RSS-247 Clause 5.5	Pass	
7	Radiated Bandedge and Spurious	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass	
8	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Pass	
9	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	Pass	
This test report is only published to and used by the applicant, and it is not for evidence purpose in China				

TABLE OF CONTENTS

1.	AT	ESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FAG	CILITIES AND ACCREDITATION	7
4.		LIBRATION AND UNCERTAINTY	Q
4.	4.1.	MEASURING INSTRUMENT CALIBRATION	-
	4.2.	MEASUREMENT UNCERTAINTY	
~			
5.		UIPMENT UNDER TEST DESCRIPTION OF EUT	
	5.1.		
	5.2.	MAXIMUM OUTPUT POWER	
	5.3.	PACKET TYPE CONFIGURATION	
	5.4.	CHANNEL LIST	
	5.5.	TEST CHANNEL CONFIGURATION	
	5.6.	THE WORSE CASE POWER SETTING PARAMETER	
	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	
	5.8.	WORST-CASE CONFIGURATIONS	
	5.9.		
	5.10.	DESCRIPTION OF TEST SETUP	
	5.11.	MEASURING INSTRUMENT AND SOFTWARE USED	13
6.	AN	TENNA PORT TEST RESULTS	15
	6.1.	ON TIME AND DUTY CYCLE	15
	6.2.	20dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	6.2. 6.2.		
	6.3.	CONDUCTED OUTPUT POWER	
	6.3.	1. GFSK MODE	23
	6.3.		
	<i>6.4.</i> 6.4.		
	6.4.		
	6.5.	NUMBER OF HOPPING FREQUENCY	27
	6.5. 6.5.		
	6.6.	Z. 8DPSK MODE TIME OF OCCUPANCY (DWELL TIME)	-
	6.6.		

	<u> </u>		
	6.6.2.	8DPSK MODE	35
(6.7. CO	NDUCTED SPURIOUS EMISSION	37
	6.6.3.	GFSK MODE	38
	6.6.4.	8DPSK MODE	42
7.	RADIAT	TED TEST RESULTS	46
	7.1. LIM	IITS AND PROCEDURE	46
·	7.2. RE	STRICTED BANDEDGE	51
	7.2.1.	GFSK MODE	
	7.2.2.	8DPSK MODE	
	7.3. SP	URIOUS EMISSIONS (1~3GHz)	59
	7.3.1.	GFSK MODE	59
	7.3.2.	8DPSK MODE	65
	7.4. SP	URIOUS EMISSIONS (3~18GHz)	71
	7.4.1.	GFSK MODE	
	7.4.2.	8DPSK MODE	77
	7.5. SP	URIOUS EMISSIONS 18G ~ 26GHz	83
	7.5.1.	8DPSK MODE	83
	7.6. SPI	URIOUS EMISSIONS 30M ~ 1 GHz	85
	7.6.1.	8DPSK MODE	
	7.7. SPI	URIOUS EMISSIONS BELOW 30M	87
	7.7.1.		
8.			
	8.1.1.	8DPSK MODE	91
9.	ANTEN	NA REQUIREMENTS	93

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	TCL Entertainment Solutions Limited 7/F, building 22E, 22 science park east avenue, Hong Kong science park, SHATIN, N.T. ,Hong Kong
Manufacturer Information Company Name: Address:	TCL Entertainment Solutions Limited 7/F, building 22E, 22 science park east avenue, Hong Kong science park, SHATIN, N.T. ,Hong Kong
EUT Description Product Name Brand Name:	Headphone TCL

FIULULINAIII	rieaupriorie
Brand Name:	TCL
Model Name	ACTV200BT
Sample Status	Normal
Sample ID	2629616
Sample Received date	October 18, 2019
Date Tested	October 23~November 01, 2019

APPLICABLE STANDARDS		
STANDARD	TEST RESULTS	
CFR 47 FCC PART 15 SUBPART C	PASS	
ISED RSS-247 Issue 2	PASS	
ISED RSS-GEN Issue 5	PASS	

Prepared By:

Checked By:

Kebo. zhong.

Kebo Zhang Engineer Project Associate

Approved By:

Aephenbus

Stephen Guo Laboratory Manager

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

,

Shemalien

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note:

- 1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China.
- The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62dB	
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB	
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB	
Radiation Emission test	5.78dB (1GHz-18Gz)	
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26Gz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	Headphone		
Model	ACTV200BT		
	Operation Frequency 2402 MHz ~ 2480 MHz		z ~ 2480 MHz
Product	Modulation Type		Data Rate
Description	GFSK		1Mbps
(Bluetooth)	∏/4-DQPSK		2Mbps
	8DPSK		3Mbps
Power Supply	DC 3.7V		

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max PEAK Output Power (dBm)	EIRP (dBm)
GFSK	2402-2480	0-78[79]	2.899	5.309
8DPSK	2402-2480	0-78[79]	-1.46	0.95

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting(Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2-DH1	54
∏/4-DQPSK	2-DH3	367
	2-DH5	679
	3-DH1	83
8DPSK	3-DH3	552
	3-DH5	1021

5.4. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	Low, Middle, High/	2402MHz, 2441MHz, 2480MHz
	CH00, CH39, CH78	
∏/4-DQPSK	Low, Middle, High/ CH00, CH39, CH78	2402MHz, 2441MHz, 2480MHz
8DPSK	Low, Middle, High/	2402MHz, 2441MHz, 2480MHz
	CH00, CH39, CH78	

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test So	oftware	Blue Test3			
Modulation Type	Transmit Antenna	Test Software Setting value			
woodlation Type	Number	CH 00	CH 39	CH 78	
GFSK	1	-4	-4	-4	
8DPSK	1	1 1 1			

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	Ceramic Antenna	2.41

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
∏/4-DQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.8. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	∏/4-DQPSK	2Mbit/s
EDR	FHSS	8-DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

5.9. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests			
Relative Humidity	45 ~ 70%			
Atmospheric Pressure:	1025Pa			
Temperature	TN	22 ~ 28 °C		
	VL	N/A		
Voltage:	VN	DC 3.7V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage.

VH= Upper Extreme Test Voltage

TN= Normal Temperature

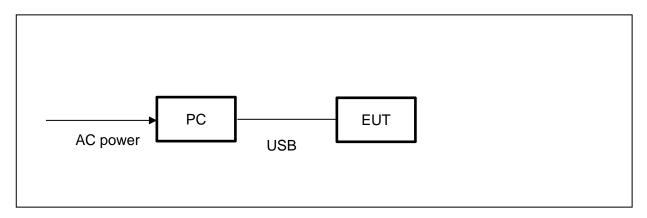
5.10. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	PC	Dell	Vostro 3902	8KNDDB2
2	AC ADAPTER	Lenovo	ADLX45NLC3A	INPUT:100~240V~1.3A,50/60Hz OUTPUT:20Vdc,2.25A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

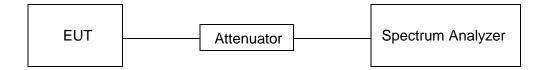
The EUT can work in an engineer mode with software through a Laptop.

SETUP DIAGRAM FOR TESTS

5.11. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions							
			Instru	ment				
Used	Equipment	Manufacturer	Mode	el No.	Seri	al No.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	ES	ESR3		1961	Dec.10,2018	Dec.10,2019
V	Two-Line V- Network	R&S	EN	/216	10 ⁻	1983	Dec.10,2018	Dec.10,2019
\checkmark	Artificial Mains Networks	Schwarzbeck	NSLK	K 8126	812	6465	Dec.10,2018	Dec.10,2019
			Softv	vare				
Used	Des	cription		Manu	ufactu	urer	Name	Version
\checkmark	Test Software for C	Conducted distu	rbance	F	arad		EZ-EMC	Ver. UL-3A1
		Rad	iated E	missio	ns			
	Instrument							
Used	Equipment	Manufacturer	Mod	el No.	Seri	al No.	Last Cal.	Next Cal.
	MXE EMI Receiver	KESIGHT	N90	N9038A		56400 36	Dec.10,2018	Dec.10,2019
V	Hybrid Log Periodic Antenna	TDK	HLP-	HLP-3003C		0960	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	HP	84	8447D		4A090 99	Dec.10,2018	Dec.10,2019
\checkmark	EMI Measurement Receiver	R&S	ES	R26	10 ⁻	1377	Dec.10,2018	Dec.10,2019
\checkmark	Horn Antenna	TDK	HRN	-0118	130	0939	Sep.17, 2018	Sep.17, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBH/	A-9170	6	91	Aug.11, 2018	Aug.11, 2021
\checkmark	Preamplifier	TDK	PA-02	2-0118		S-305- 1066	Dec.10,2018	Dec.10,2019
\checkmark	Preamplifier	TDK	PA-	02-2		S-307- 003	Dec.10,2018	Dec.10,2019
\checkmark	Loop antenna	Schwarzbeck	15	19B	00	800	Jan.07,2019	Jan.07, 2022
V	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS			4	Dec.10,2018	Dec.10,2019
V	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS		2	23	Dec.10,2018	Dec.10,2019
			Softv	vare				
Used	Descr	iption	N	Manufacturer			Name	Version
\checkmark	Test Software for Ra	adiated disturba	ince	Farac	k		EZ-EMC	Ver. UL-3A1

	Other instruments							
Used	ed Equipment Manufacturer Model No. Serial No. Last Cal. Next C							
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.10,2019		
\checkmark	Power Meter	Keysight	N1911A	MY55416024	Dec.10,2018	Dec.10,2019		
\checkmark	Power Sensor	Keysight	U2021XA	MY5100022	Dec.10,2018	Dec.10,2019		


6. ANTENNA PORT TEST RESULTS

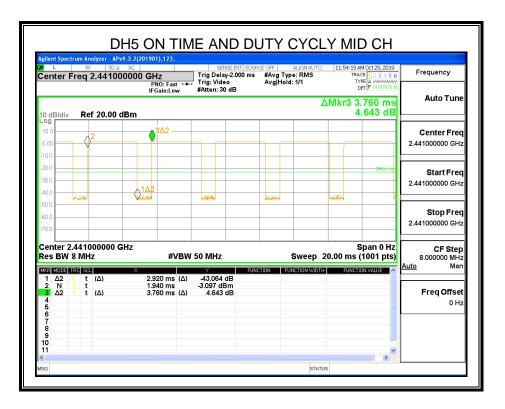
6.1. ON TIME AND DUTY CYCLE

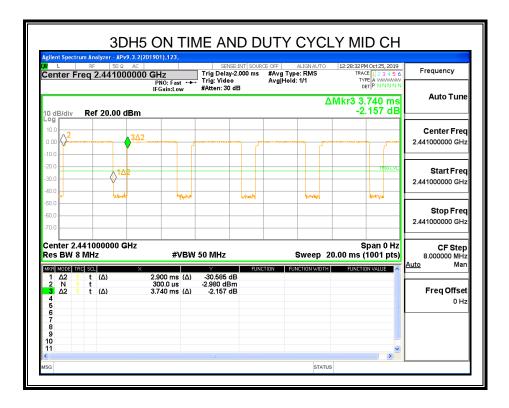
<u>LIMITS</u>

None; for reporting purposes only

TEST SETUP

TEST ENVIRONMENT


Temperature	25.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V


RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
GFSK	2.920	3.760	0.777	77.7%	1.10	0.34	0.5
8DPSK	2.900	3.740	0.775	77.5%	1.11	0.34	0.5

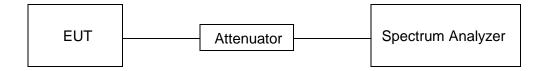
Note:

Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time If that calculated VBW is not available on the analyzer then the next higher value should be used.

6.2. 20dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20dB Occupied Bandwidth	/	2400-2483.5	
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	1	2400-2483.5	


TEST PROCEDURE

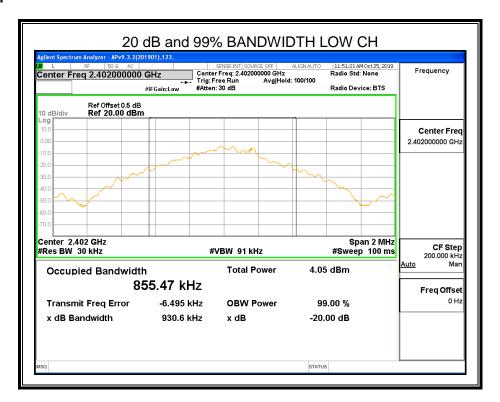
Connect the UUT to the spectrum analyser and use the following settings:

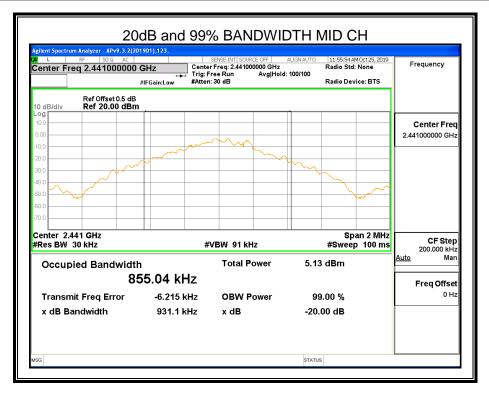
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 20dB:Occupied Bandwidth:1% to 5% of the 20 dB bandwidth For 99%:Occupied Bandwidth: 1% to 5% of the occupied bandwidth
VBW	approximately three times RBW
Span	For 20dB: between 2 times and 5 times the OBW.
	For 99dB: between 1.5 times and 5.0 times the OBW.
Trace	Max hold
Sweep	Auto couple

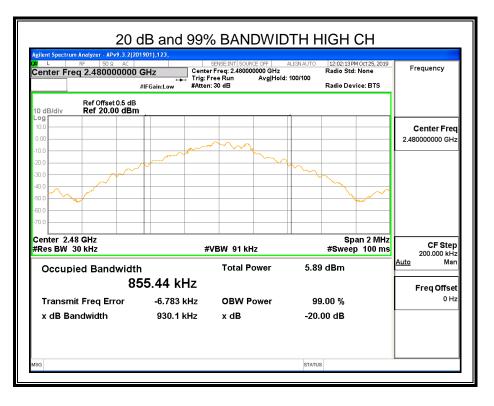
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

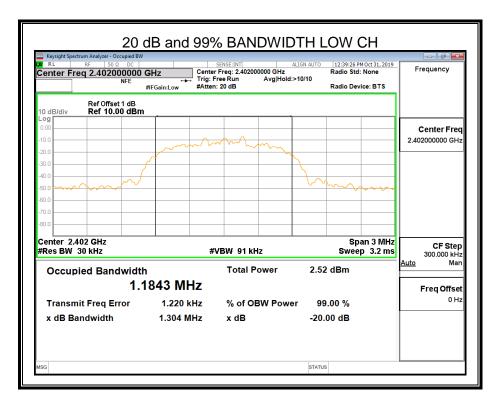

Temperature	25.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

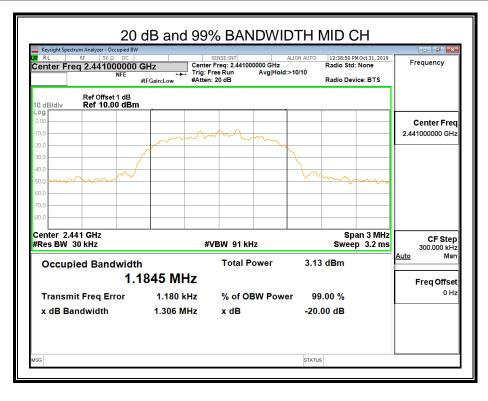

RESULTS

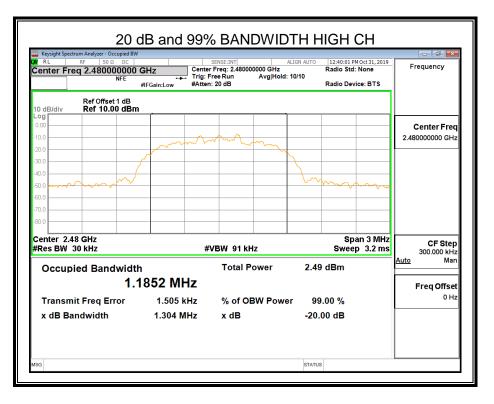

6.2.1. GFSK MODE

Channel	Frequency (MHz)	20dB Occupied bandwidth (MHz)	99% Occupied bandwidth (MHz)	Result
Low	2402	0.9306	0.85547	PASS
Middle	2441	0.9311	0.85504	PASS
High	2480	0.9301	0.85544	PASS

Test Graph







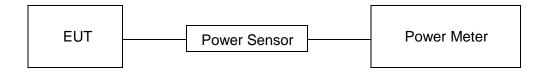
6.2.2. 8DPSK MODE

Channel	Frequency (MHz)	20dB Occupied bandwidth (MHz)	99% Occupied bandwidth (MHz)	Result
Low	2402	1.304	1.1843	PASS
Middle	2441	1.306	1.1845	PASS
High	2480	1.304	1.1852	PASS

6.3. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	 Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel : 1 watt or 30dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel : 125 mW or 21dBm 	2400-2483.5


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power of each channel.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

6.3.1. GFSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2402	1.060	3.470	30	Pass
Middle	2441	2.114	4.524	30	Pass
High	2480	2.899	5.309	30	Pass

Note: EIRP= Maximum Conducted Output Power + Antenna Gain

Note: The channel separation is 1MHz and the 20dB Bandwidth is less than 1MHz.

6.3.2. 8DPSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2402	-2.55	-0.14	21	Pass
Middle	2441	-1.84	0.57	21	Pass
High	2480	-1.46	0.95	21	Pass

Note: EIRP= Maximum Conducted Output Power + Antenna Gain

Note: The channel separation is 1MHz and the 20dB Bandwidth is bigger than 1MHz.

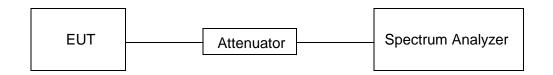
6.4. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

	CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Hopping Channel Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5		

TEST PROCEDURE

Connect the UUT to the spectrum Analyzer and use the following settings:

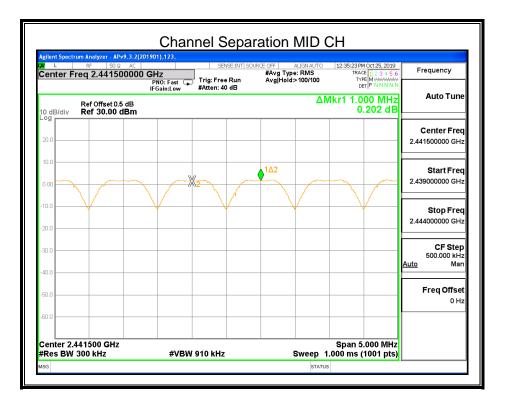

Center Frequency	The center frequency of the channel under test		
Span	vide enough to capture the peaks of two adjacent channels		
Detector	Peak		
RBW	Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.		
VBW	≥RBW		
Trace	Max hold		
Sweep time	Auto couple		

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

A plot of the data shall be included in the test report.

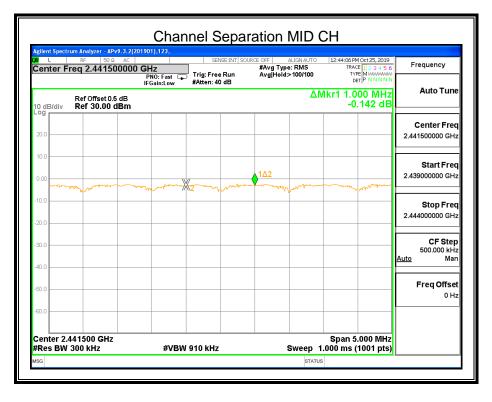
TEST SETUP


TEST ENVIRONMENT

Temperature 25.2°C		Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

6.4.1. GFSK MODE


Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ 20 dB Bandwidth Of The Hopping Channel	PASS

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.2.

6.4.2. 8DPSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.2.

6.5. NUMBER OF HOPPING FREQUENCY

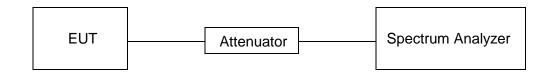
LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2					
Section Test Item Limit					
CFR 47 15.247 (a) (1) IIINumber of Hoppingat least 15 hopping changeISED RSS-247 Clause 5.1 (d)Frequencyat least 15 hopping change					

TEST PROCEDURE

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation
Trace	Max hold
Sweep time	Auto couple

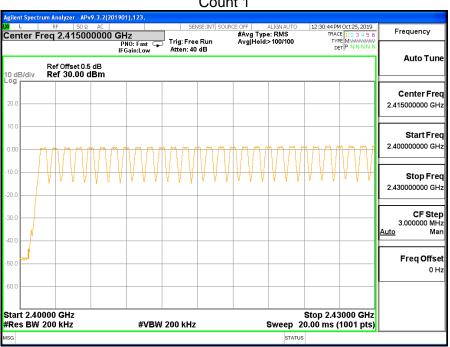

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer.

Count the quantity of peaks to get the number of hopping channels.

FHSS Mode: 79 Channels observed.

AFHSS Mode: 20 Channels declared.

TEST SETUP


TEST ENVIRONMENT

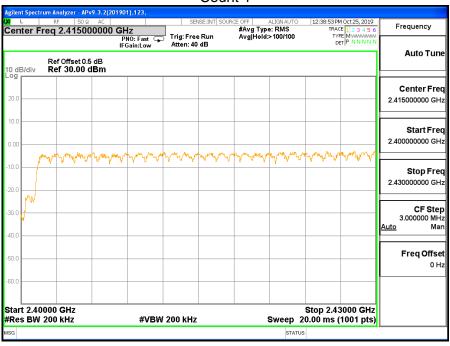
Temperature	25.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

6.5.1. GFSK MODE

Hopping numbers	Limit	Results
79	>=15	Pass

Count 1

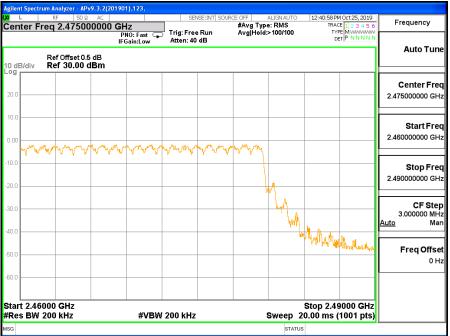
Count	2
-------	---


gilent Spec	t <mark>rum Analyzer - APv</mark> RF 50 Ω		SENSE:INT SOU	RCE OFF ALIGNAUTO	12:31:23 PM Oct 25, 2019	1
	Freq 2.44500			#Avg Type: RMS Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div	Ref Offset 0.5 Ref 30.00 d	dB	Allen. 40 dB			Auto Tune
og						Center Fre 2.445000000 GH
0.0	nana	ากกุสุก	ANAAAA		ากกลาก	Start Fre 2.430000000 GH
0.0	↓ ↓ ↓ ↓ ↓	$\forall \forall \forall \forall \forall \forall \forall$			$\begin{array}{c c} & & \\ & &$	Stop Fre 2.460000000 G⊦
0.0						CF Ste 3.000000 MH <u>Auto</u> Ma
0.0						Freq Offso 0 ⊦
10.0	3000 GHz				Stop 2.46000 GHz	
	V 200 kHz	#VBV	V 200 kHz	Sweep 2	2.46000 GH2 20.00 ms (1001 pts)	
SG				STATU	3	

Count 3 12:33:07 PM Oct 25, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N Frequency Center Freq 2.475000000 GHz #Avg Type: RMS Avg|Hold:>100/100 Trig: Free Run Atten: 40 dB PNO: Fast 😱 IFGain:Low Auto Tune Ref Offset 0.5 dB Ref 30.00 dBm 10 dB/div **Center Freq** 20. 2.475000000 GHz Start Freq 2.46000000 GHz n ni Stop Freq 2.490000000 GHz CF Step 3.000000 MHz Mar Auto 40. Freq Offset 0 Hz Start 2.46000 GHz #Res BW 200 kHz Stop 2.49000 GHz Sweep 20.00 ms (1001 pts) #VBW 200 kHz STATUS

6.5.2. 8DPSK MODE

Hopping numbers	Limit	Results
79	>=15	Pass



Count 1

Count 2

	alyzer - APv9.3.2(20	1901),123,						
Center Freq	50 Ω AC 2.445000000	GHz	SENS		≗OFF / / #Avg Type Avg Hold⊃		12:39:53 PM Oct 25, 2019 TRACE 1 2 3 4 5 0 TYPE MWWWW	Frequency
10 dB/div Re	Offset 0.5 dB f 30.00 dBm	PNO: Fast 🖵 IFGain:Low	Atten: 40 d		Arginous	100/100	DETPNNNN	Auto Tune
20.0								Center Freq 2.445000000 GHz
0.00	a stalles sources starting the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	han got a cher han got ha	᠕᠕᠉᠕	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 M.M	4/ ¹ /201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Start Fred 2.430000000 GHz
10.0 20.0	4. Y Y Y Y Y	Y 10 4 4	· · · · · ·	V V V'		v v		Stop Fred 2.460000000 GHz
40.0								CF Step 3.000000 MH: <u>Auto</u> Mar
50.0								Freq Offse
Start 2.43000 #Res BW 200		#VBW	200 kHz			Sweep	Stop 2.46000 GHz 20.00 ms (1001 pts	
ISG						STAT		- U

Count 3

6.6. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit		
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.		

TEST PROCEDURE

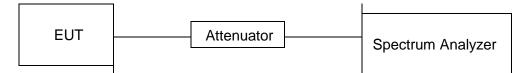
Connect the UUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Average
RBW	1 MHz
VBW	≥RBW
Span	zero span
Trace	Clear Write
Sweep time	As necessary to capture the entire dwell time per hopping channel

a. The transmitter output (antenna port) was connected to the spectrum analyzer

- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse. A Period Time = (channel number)*0.4

For FHSS Mode (79 Channel):

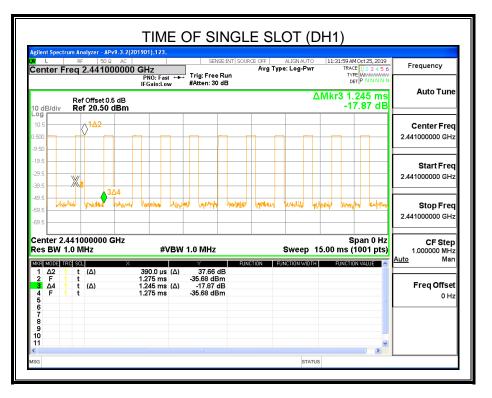

DH1 Time Slot: Reading * (1600/2)*31.6/(channel number) DH3 Time Slot: Reading * (1600/4)*31.6/(channel number) DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

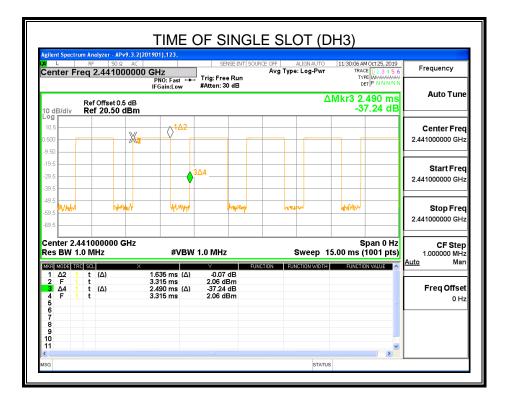
For AFHSS Mode (20 Channel):

DH1 Time Slot: Reading * (800/2)*8/(channel number) DH3 Time Slot: Reading * (800/4)*8/(channel number) DH5 Time Slot: Reading * (800/6)*8/(channel number)

TEST SETUP

TEST ENVIRONMENT

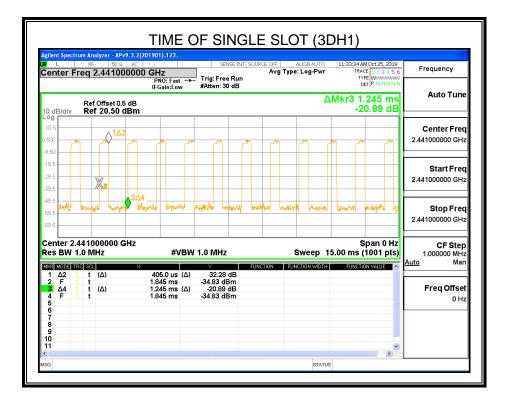

Temperature	25.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

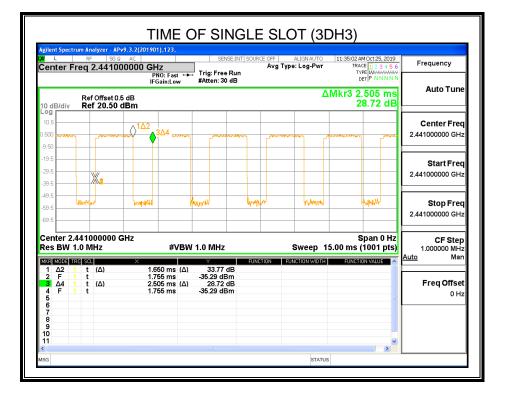

RESULTS

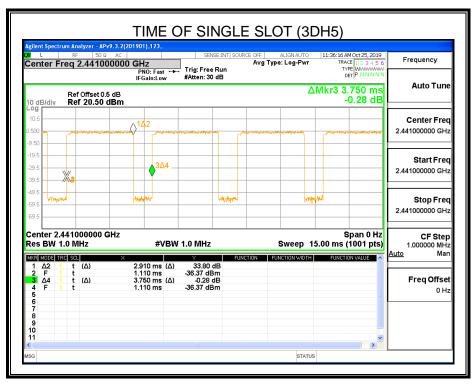
6.6.1. GFSK MODE

FHSS Mode						
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [s]	Results		
DH1	MCH	0.390	0.1248	PASS		
DH3	MCH	1.635	0.2616	PASS		
DH5	MCH	2.895	0.3088	PASS		
AFHSS Mode						
DH1	MCH	0.390	0.0624	PASS		
DH3	MCH	1.635	0.1308	PASS		
DH5	MCH	2.895	0.1544	PASS		

Test Graph




XI L	RF 50 Ω A req 2.4410000 A	00 GHz PN0: Fast ↔	Trig: Free Run	SOURCE OFF ALIC Avg Type: Lo	TYPE MA	
10 dB/div	Ref Offset 0.5 dB Ref 20.50 dBn		#Atten: 30 dB		ΔMkr3 3.75	Auto Tun
- ° g 10.5).500 -9.50			2			Center Free 2.441000000 GH:
.19.5 29.5 39.5	X_2		3∆4			Start Free 2.441000000 GH
49.5 59.5 69.5		rth-rs	H		wighth	Stop Free 2.441000000 GH
Center 2. Res BW 1	441000000 GHz I.0 MHz		/ 1.0 MHz	Sw	Spar veep 15.00 ms (100	, , , , , , , , , , , , , , , , , , , ,
MXE MODE TI 1 Δ2 1 2 F 1 3 Δ4 1 4 F 1 5 6 7 8 9 10	t (Δ) t (Δ) t (Δ) t (Δ)	× 2.895 ms (Δ) 2.460 ms 3.750 ms (Δ) 2.460 ms	37.46 dB -35.46 dBm -0.20 dB -35.46 dBm	FUNCTION FUNCTION	FUNCTION VA	Example 1 Auto Mar


6.6.2. 8DPSK MODE

FHSS Mode						
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [s]	Results		
3DH1	MCH	0.405	0.1296	PASS		
3DH3	MCH	1.650	0.2640	PASS		
3DH5	MCH	2.910	0.3104	PASS		
AFHSS Mode						
3DH1	MCH	0.405	0.0648	PASS		
3DH3	MCH	1.650	0.1320	PASS		
3DH5	MCH	2.910	0.1552	PASS		

Test Graph

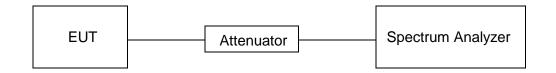
6.7. CONDUCTED SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2					
Section	Test Item	Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power			

TEST PROCEDURE

For Bandedge use the following settings:

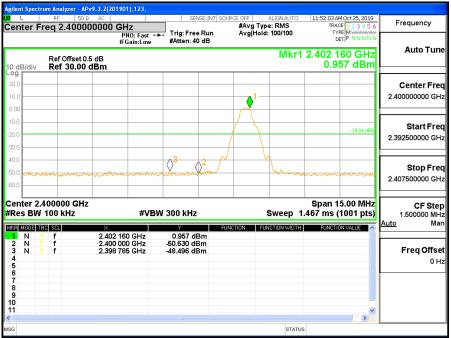

Detector	Peak
RBW	100kHz
VBW	300kHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

For Spurious Emission use the following settings:

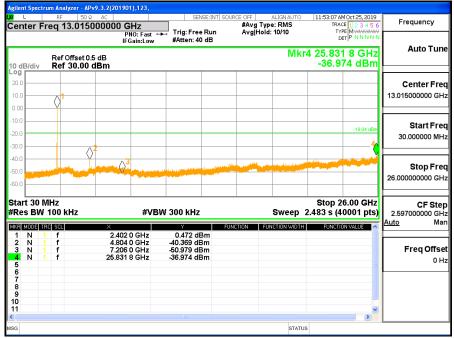
Detector	Peak
RBW	100kHz
VBW	300kHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP


TEST ENVIRONMENT

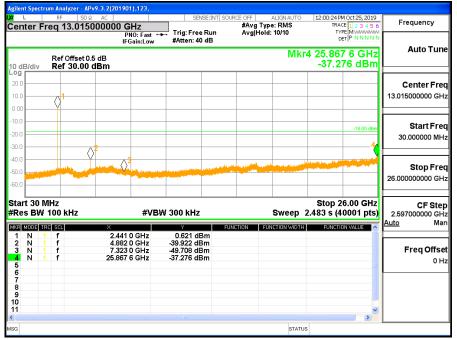
Temperature	25.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V


RESULTS

6.6.3. GFSK MODE

LOW CH BANDEDAGE

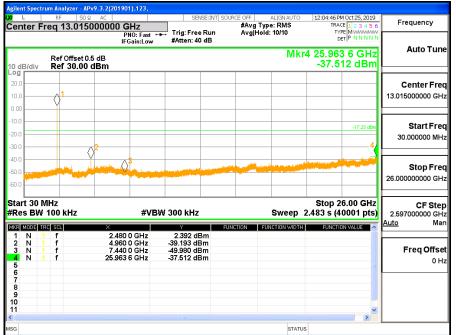
LOW CH SPURIOUS EMISSIONS 30M-26G


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

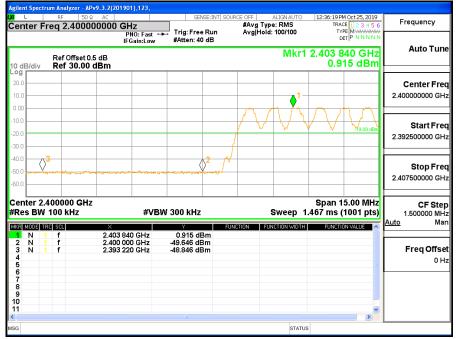
ilent Spectrum Analyzer - APv9.3.2(2 L RF 50 Ω AC		ENSE:INT SOUR	CE OFF ALIGNAU	TO 11:57:57	AMOct 25, 2019	_
enter Freq 2.44100000	OGHz PNO: Fast +++ Trig: Fr	ee Run	#Avg Type: RMS Avg Hold: 100/10	TF D	ACE 1 2 3 4 5 6 TYPE M WWWWWW DET P NNNNN	Frequency
	IFGain:Low #Atten:		-		165 GHz	Auto Tune
Ref Offset 0.5 dB dB/div Ref 30.00 dBm					996 dBm	
3						Center Free
1.0						2.441000000 GH
.0		<u></u>				Start Fre
00		nt				2.433500000 GH
.0						
					-18.00 dBm	Stop Fre 2.448500000 GH
.0						
.0						CF Ste 1.500000 MH
.0	N	<u> </u>				<u>Auto</u> Ma
10.4	- And	- L	n			Freq Offse
1.0 toxtom much and to make	month and a construction of the	U	VPW - W. I. M. M. M.	m RAParlagar	rannanana	0 H
.0						
enter 2.441000 GHz					15.00 MHz	
les BW 100 kHz	#VBW 300 kH	z	Swee	p 1.467 ms	s (1001 pts)	
3			S	TATUS		

MID CH SPURIOUS EMISSIONS REFERENCE

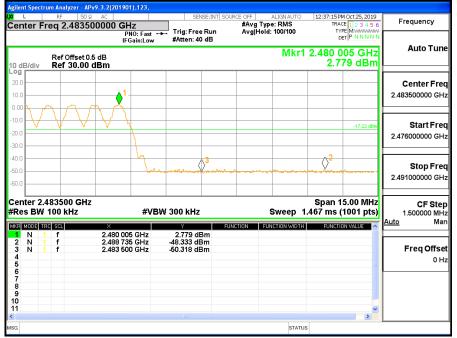
MID CH SPURIOUS EMISSIONS 30M-26G



HIGH CH BANDEDAGE

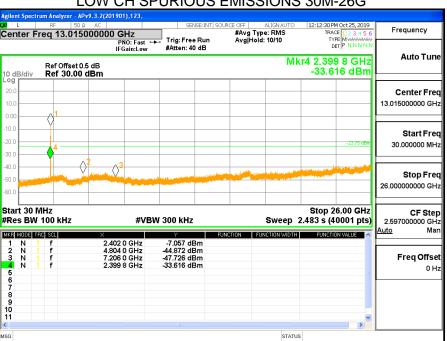

Agilent S	ipectru					01),123	В,											
Cente	er Fro	RF eq 2	50 2.4835		000 GI					IT SOUR	#Avg	Туре	EIGNAUTO RMS 100/100	TF	ACE 1	2 3 4 5	6	Frequency
10 dB/	div		Offset (5 30.00		iř 3	'NO: Fa Gain:L	ast ↔ .ow	#Atten:		·		1014.		2.480	DET P	NNNN		Auto Tune
20.0 - 10.0 -						1												Center Freq 2.483500000 GHz
-10.0 -20.0 -30.0																-17.25 dBn		Start Freq 2.476000000 GHz
-40.0	᠆ᢧᠯᡔ᠊ᡆᡟ	voyo	the galance	ſ		- M	han		2 ³	han an he	mm		www.ry	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ረጉሙሉ	~~~~~		Stop Freq 2.491000000 GHz
Cente #Res	BW 1	00	kHz	z		#	¢VBW	1 300 kH	z				weep 1	.467 ms	(10)	CF Step 1.500000 MHz Auto Man
1 N 2 N 3 N 4 5 6 7	1 1	f f f		1	× 2.480 17 2.488 69 2.483 50	90 GH	z	2.752 -48.284 -51.163	dBm	FUNU	CTION	FUN	CTION WIDTH	FUNC	TION W			Freq Offset 0 Hz
8 9 10 11 <													STATU	s		>		

HIGH CH SPURIOUS EMISSIONS 30M-26G



SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

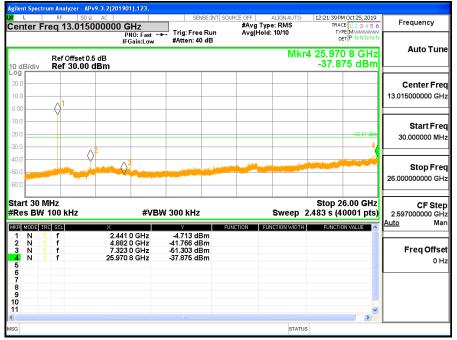
LOW CH BANDEDGE WITH HOPPING ON


HIGH CH BANDEDGE WITH HOPPING ON

6.6.4. 8DPSK MODE

LOW CH BANDEDAGE

LOW CH SPURIOUS EMISSIONS 30M-26G


FORM No.: 10-SL-F0035 UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Agilent Spectru	m Analyzer - ΑΡν9.3.2(20 RF 50 Ω AC	1901),123,	SENSE:INT S		ALIGNAUTO	12:16:10 PM Oct 25, 2019	
enter Fr	eq 2.441000000	GHz PNO: Fast	rig: Free Run	#Avg Type Avg Hold:	e: RMS	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N	Frequency
0 dB/div	Ref Offset 0.5 dB Ref 30.00 dBm	IFGain:Low	Atten: 40 dB		Mkr1	0≞1P NNNN 2.441 165 GHz -2.566 dBm	Auto Tune
og 20.0							Center Freq 2.441000000 GHz
0.0			1 .Vrvi				Start Free 2.433500000 GHz
20.0						-22.57 dBm	Stop Fred 2.448500000 GHz
0.0		m	N Y		\wedge		CF Step 1.500000 MH: <u>Auto</u> Mar
0.0 <mark>1444242</mark>	mannan					hornohum	Freq Offse
	41000 GHz					Span 15.00 MHz	
Res BW 1	IUU KHZ	#VBW 3	UU KHZ			1.467 ms (1001 pts)	
G					STATU	S	

MID CH SPURIOUS EMISSIONS REFERENCE


MID CH SPURIOUS EMISSIONS 30M-26G

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

HIGH CH BANDEDAGE

HIGH CH SPURIOUS EMISSIONS 30M-26G

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

LOW CH BANDEDGE WITH HOPPING ON

HIGH CH BANDEDGE WITH HOPPING ON

7. RADIATED TEST RESULTS 7.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

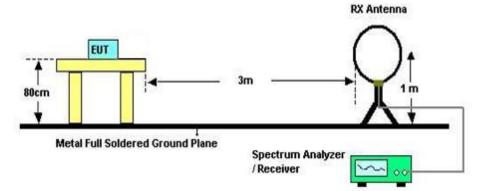
Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance forfield strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Frequency (MHz)dB(uV/m) (at 3 meters)PeakAverage

Radiation Disturbance Test Limit for FCC (Above 1G)

Above 1000


About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

74

54

TEST SETUP AND PROCEDURE Below 30MHz

The setting of the spectrum Analyzer

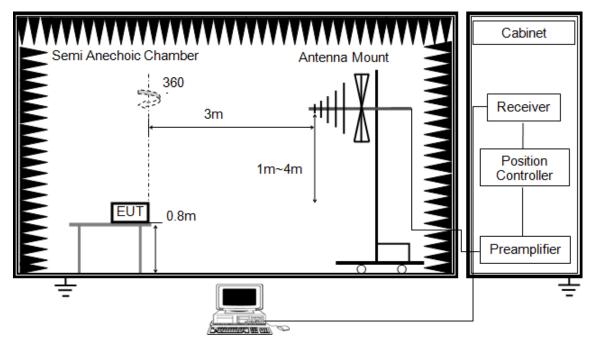
RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

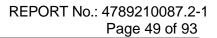
6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m OFS. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

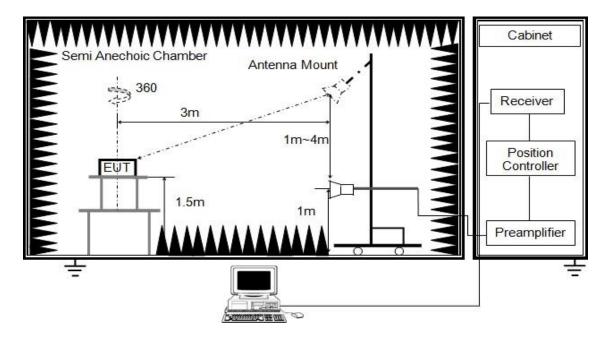
Below 1G and above 30MHz

The setting of the spectrum Analyzer

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold


1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

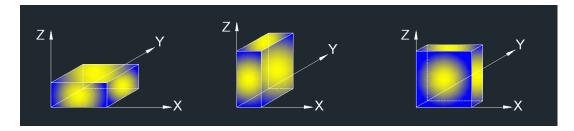
Above 1G

RBW	1M
	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 150cm above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

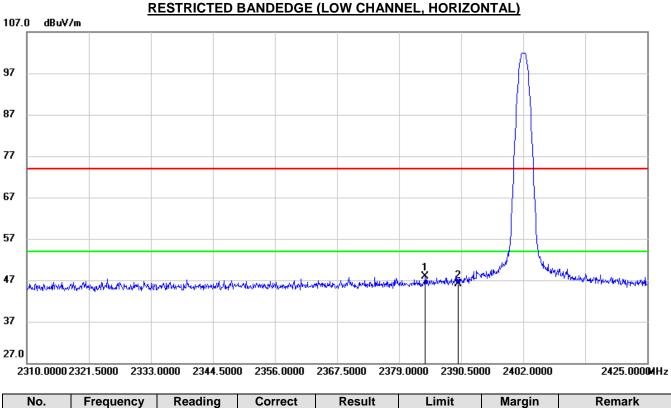
5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector. For the Duty Cycle please refer to clause 6.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

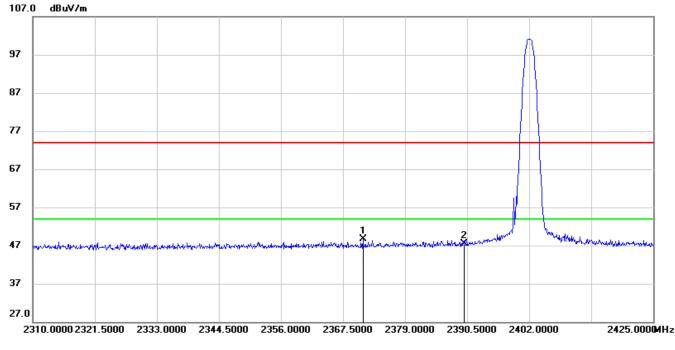

TEST ENVIRONMENT

Temperature	24.1°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

7.2. RESTRICTED BANDEDGE

7.2.1. GFSK MODE

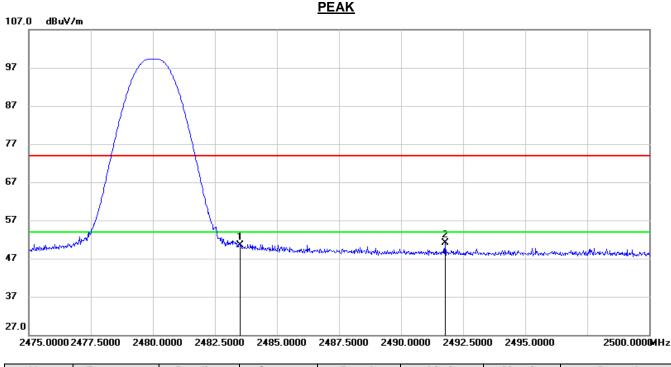
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2383.830	14.99	32.92	47.91	74.00	-26.09	peak
2	2390.000	13.24	32.94	46.18	74.00	-27.82	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

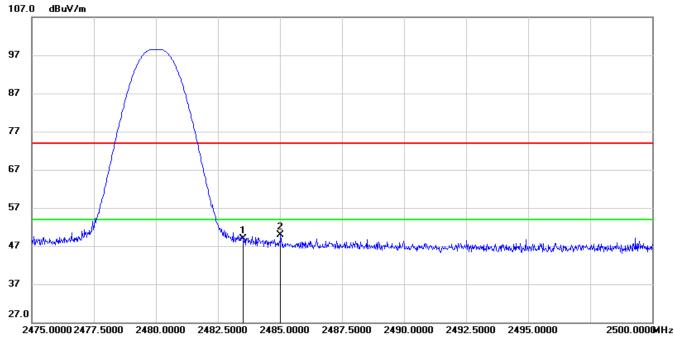

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2371.180	15.82	32.88	48.70	74.00	-25.30	peak
2	2390.000	14.55	32.94	47.49	74.00	-26.51	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2.If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3.Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

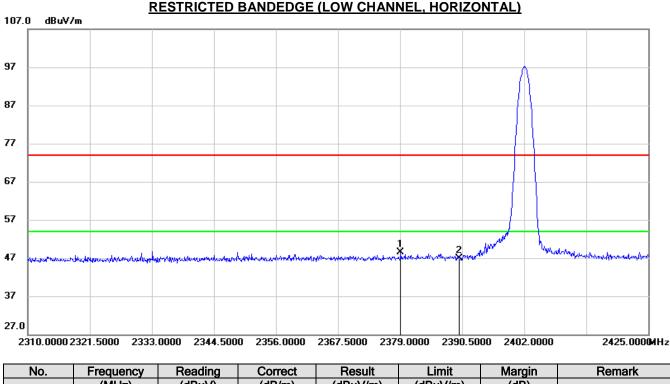
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.83	33.58	50.41	74.00	-23.59	peak
2	2491.775	17.45	33.64	51.09	74.00	-22.91	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2.If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3.Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

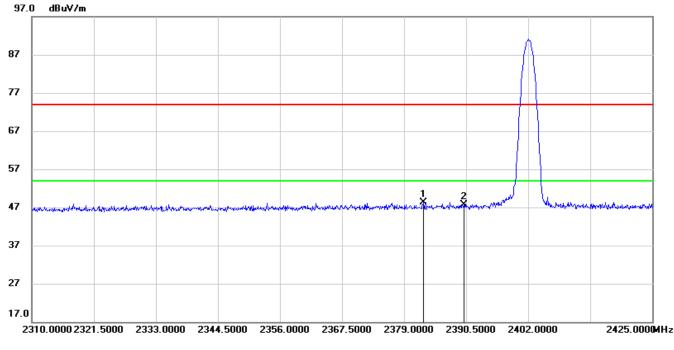

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.25	33.58	48.83	74.00	-25.17	peak
2	2485.025	16.33	33.59	49.92	74.00	-24.08	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2.If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3.Peak: Peak detector.

7.2.2. 8DPSK MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2379.115	15.55	32.91	48.46	74.00	-25.54	peak
2	2390.000	13.91	32.94	46.85	74.00	-27.15	peak

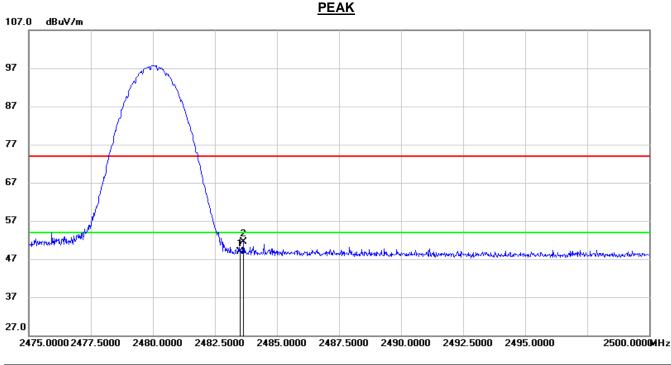

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2382.565	15.37	32.92	48.29	74.00	-25.71	peak
2	2390.000	14.70	32.94	47.64	74.00	-26.36	peak

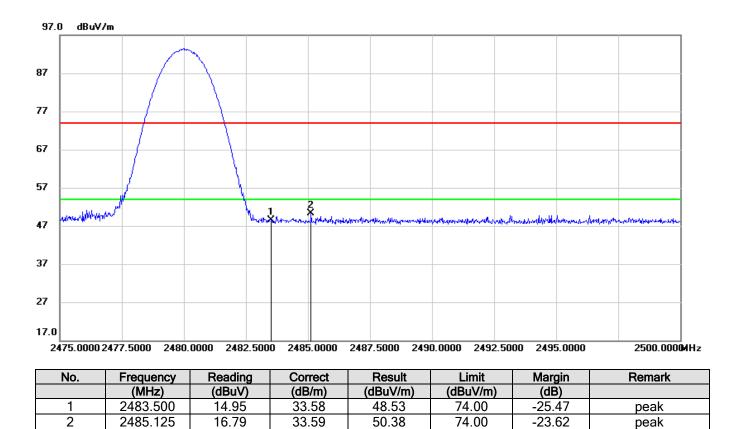

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

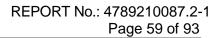
RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.23	33.58	48.81	74.00	-25.19	peak
2	2483.650	17.84	33.58	51.42	74.00	-22.58	peak


Note: 1. Measurement = Reading Level + Correct Factor.

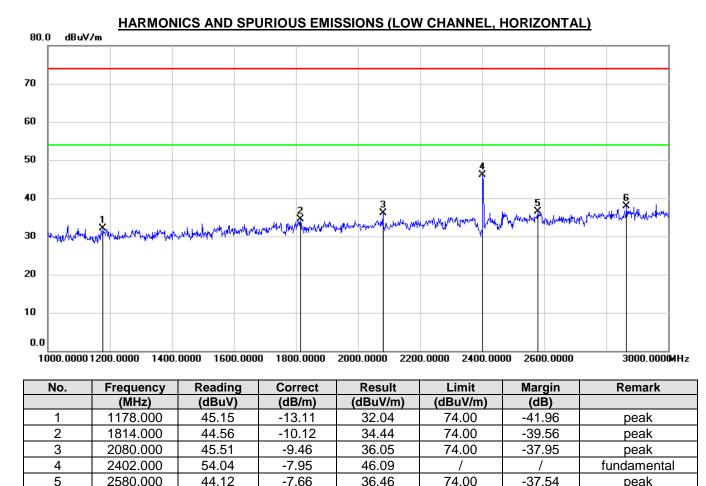
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL) PEAK

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

7.3. SPURIOUS EMISSIONS (1~3GHz)

7.3.1. GFSK MODE

Note: 1. Peak Result = Reading Level + Correct Factor.

44.12

43.66

-7.66

-5.71

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

2580.000

2866.000

6

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.

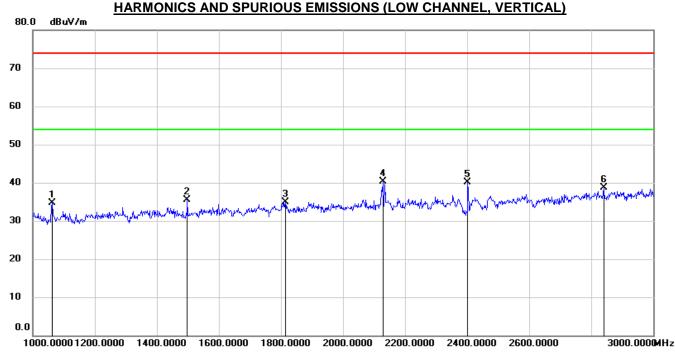
36.46

37.95

74.00

74.00

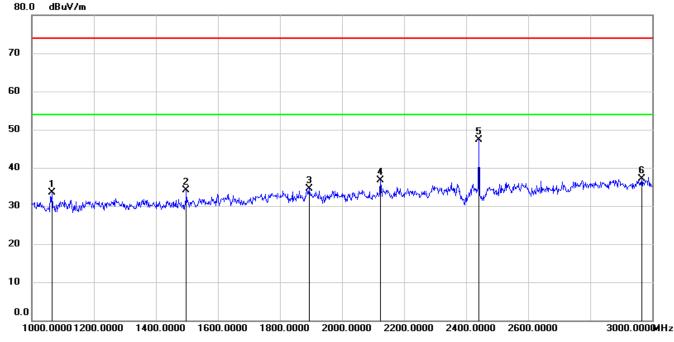
-37.54


-36.05

peak

peak

- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.

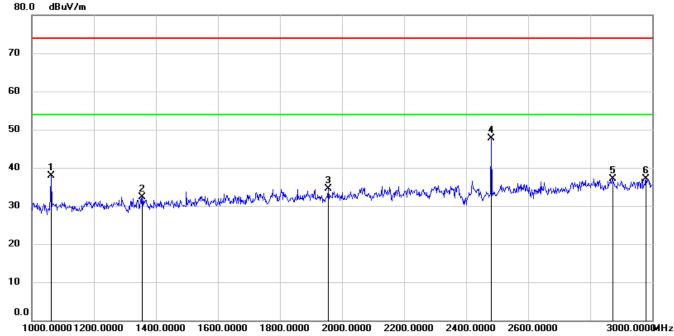


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	48.43	-13.81	34.62	74.00	-39.38	peak
2	1498.000	47.89	-12.43	35.46	74.00	-38.54	peak
3	1814.000	45.10	-10.12	34.98	74.00	-39.02	peak
4	2128.000	49.44	-9.18	40.26	74.00	-33.74	peak
5	2402.000	48.02	-7.95	40.07	/	/	fundamental
6	2840.000	44.49	-5.86	38.63	74.00	-35.37	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.

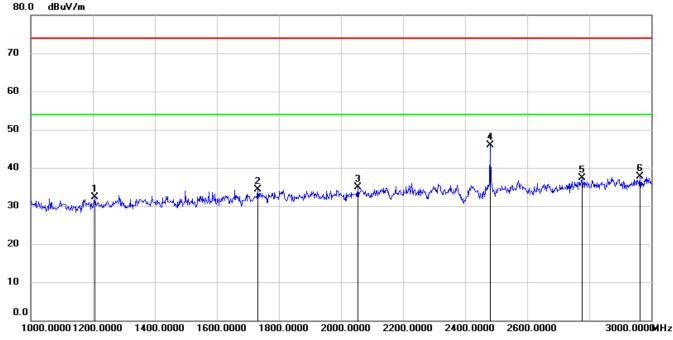
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	47.38	-13.80	33.58	74.00	-40.42	peak
2	1498.000	46.47	-12.43	34.04	74.00	-39.96	peak
3	1894.000	44.67	-10.14	34.53	74.00	-39.47	peak
4	2124.000	45.94	-9.20	36.74	74.00	-37.26	peak
5	2441.000	55.05	-7.66	47.39	/	/	fundamental
6	2966.000	42.52	-5.36	37.16	74.00	-36.84	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.



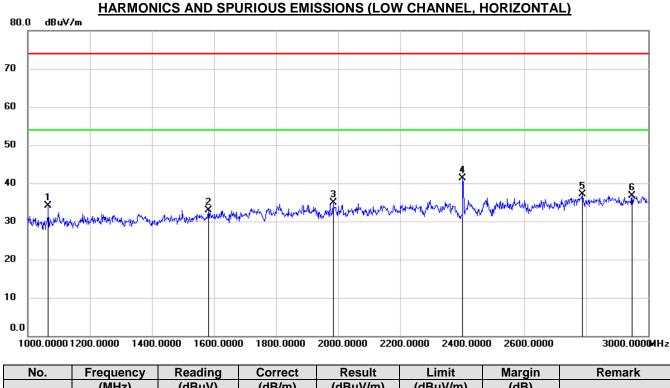
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1066.000	46.96	-13.80	33.16	74.00	-40.84	peak
2	1498.000	46.25	-12.43	33.82	74.00	-40.18	peak
3	2060.000	45.26	-9.59	35.67	74.00	-38.33	peak
4	2441.000	47.59	-7.66	39.93	/	/	fundamental
5	2894.000	42.88	-5.56	37.32	74.00	-36.68	peak
6	2992.000	43.38	-5.30	38.08	74.00	-35.92	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	51.76	-13.81	37.95	74.00	-36.05	peak
2	1356.000	44.94	-12.60	32.34	74.00	-41.66	peak
3	1956.000	44.49	-10.07	34.42	74.00	-39.58	peak
4	2480.000	55.02	-7.39	47.63	/	/	fundamental
5	2872.000	42.84	-5.67	37.17	74.00	-36.83	peak
6	2980.000	42.52	-5.32	37.20	74.00	-36.80	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.

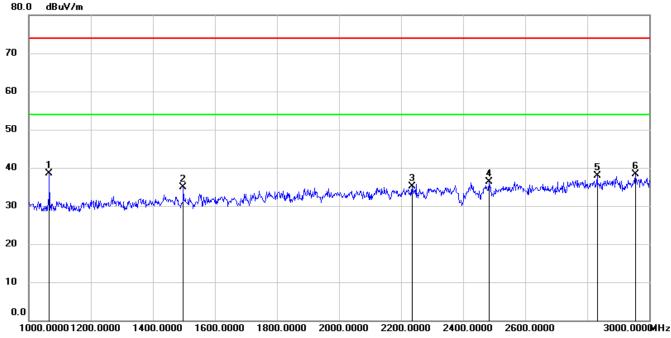


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1206.000	45.28	-12.90	32.38	74.00	-41.62	peak
2	1732.000	45.00	-10.79	34.21	74.00	-39.79	peak
3	2054.000	44.58	-9.63	34.95	74.00	-39.05	peak
4	2480.000	53.38	-7.39	45.99	/	/	fundamental
5	2778.000	43.55	-6.32	37.23	74.00	-36.77	peak
6	2964.000	43.10	-5.37	37.73	74.00	-36.27	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.

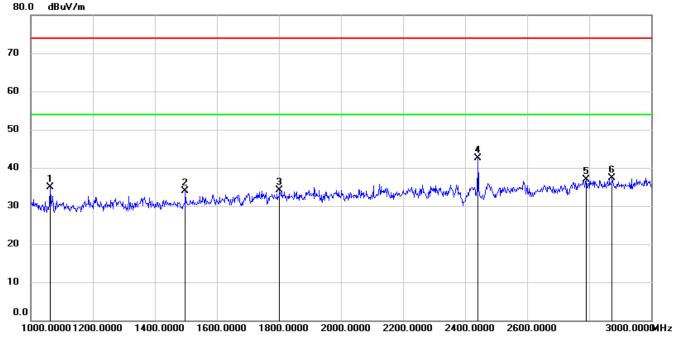
7.3.2. 8DPSK MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1066.000	47.98	-13.80	34.18	74.00	-39.82	peak
2	1582.000	44.73	-11.76	32.97	74.00	-41.03	peak
3	1984.000	44.92	-10.02	34.90	74.00	-39.10	peak
4	2402.000	49.20	-7.95	41.25	/	/	fundamental
5	2788.000	43.26	-6.20	37.06	74.00	-36.94	peak
6	2948.000	42.18	-5.41	36.77	74.00	-37.23	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

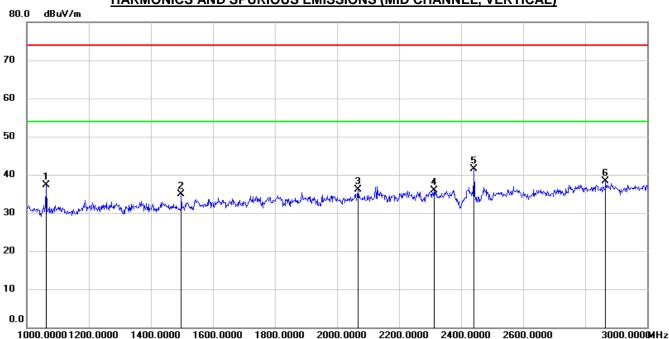
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.



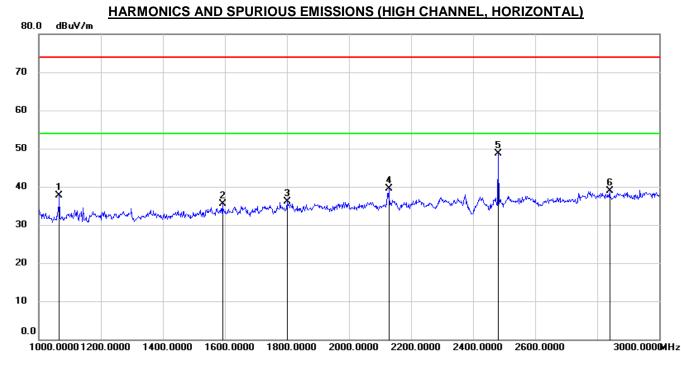
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1066.000	52.28	-13.80	38.48	74.00	-35.52	peak
2	1498.000	47.30	-12.43	34.87	74.00	-39.13	peak
3	2236.000	43.72	-8.63	35.09	74.00	-38.91	peak
4	2484.000	43.74	-7.36	36.38	74.00	-37.62	peak
5	2832.000	43.85	-5.89	37.96	74.00	-36.04	peak
6	2956.000	43.67	-5.39	38.28	74.00	-35.72	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	48.73	-13.81	34.92	74.00	-39.08	peak
2	1498.000	46.28	-12.43	33.85	74.00	-40.15	peak
3	1802.000	44.16	-10.11	34.05	74.00	-39.95	peak
4	2441.000	50.25	-7.66	42.59	/	/	fundamental
5	2790.000	43.00	-6.19	36.81	74.00	-37.19	peak
6	2874.000	42.96	-5.66	37.30	74.00	-36.70	peak

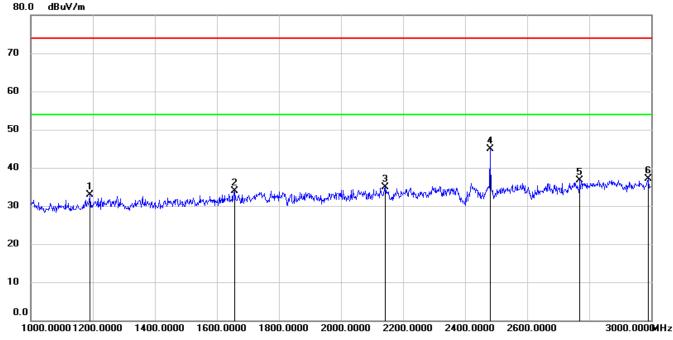
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.



HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

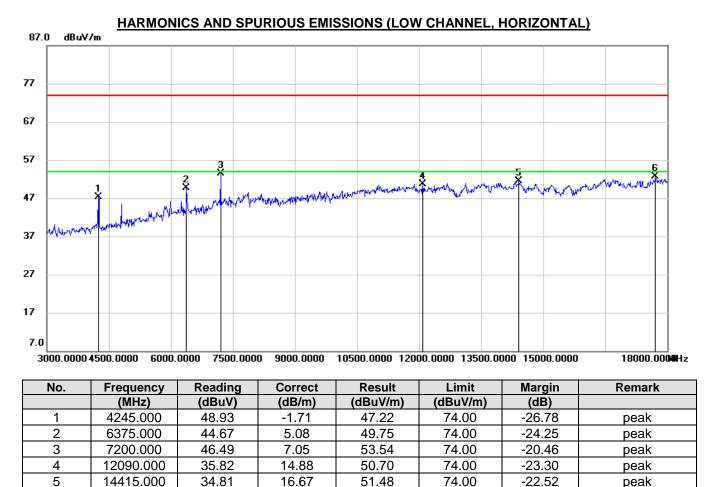
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	51.02	-13.81	37.21	74.00	-36.79	peak
2	1498.000	47.41	-12.43	34.98	74.00	-39.02	peak
3	2068.000	45.70	-9.54	36.16	74.00	-37.84	peak
4	2312.000	44.22	-8.27	35.95	74.00	-38.05	peak
5	2441.000	49.08	-7.66	41.42	/	/	fundamental
6	2866.000	44.05	-5.71	38.34	74.00	-35.66	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1066.000	51.56	-13.80	37.76	74.00	-36.24	peak
2	1592.000	47.24	-11.68	35.56	74.00	-38.44	peak
3	1800.000	46.31	-10.11	36.20	74.00	-37.80	peak
4	2128.000	48.59	-9.18	39.41	74.00	-34.59	peak
5	2480.000	56.13	-7.39	48.74	/	/	fundamental
6	2840.000	44.70	-5.86	38.84	74.00	-35.16	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1190.000	45.87	-13.01	32.86	74.00	-41.14	peak
2	1658.000	45.26	-11.32	33.94	74.00	-40.06	peak
3	2142.000	44.05	-9.10	34.95	74.00	-39.05	peak
4	2480.000	52.36	-7.39	44.97	/	/	fundamental
5	2770.000	43.18	-6.41	36.77	74.00	-37.23	peak
6	2990.000	42.51	-5.31	37.20	74.00	-36.80	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.

7.4. SPURIOUS EMISSIONS (3~18GHz)

7.4.1. GFSK MODE

Note: 1. Peak Result = Reading Level + Correct Factor.

30.04

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

22.65

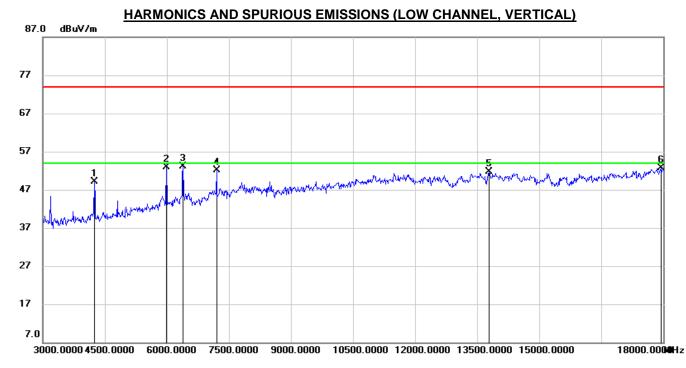
3. Peak: Peak detector.

17715.000

6

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

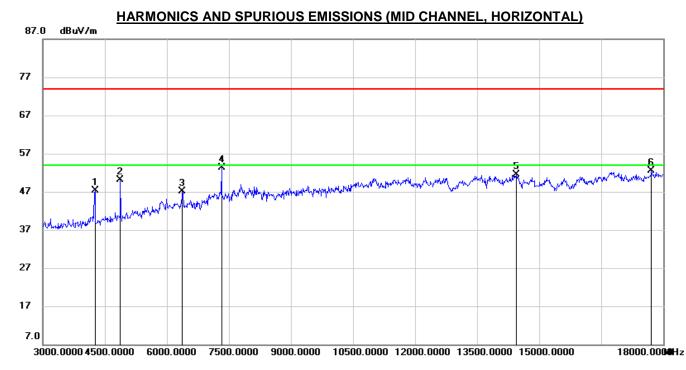
52.69


74.00

-21.31

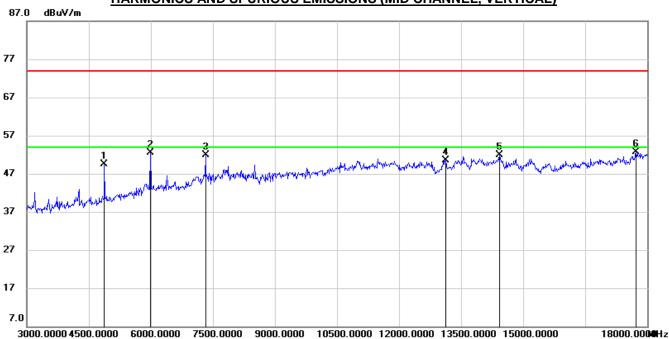
peak

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



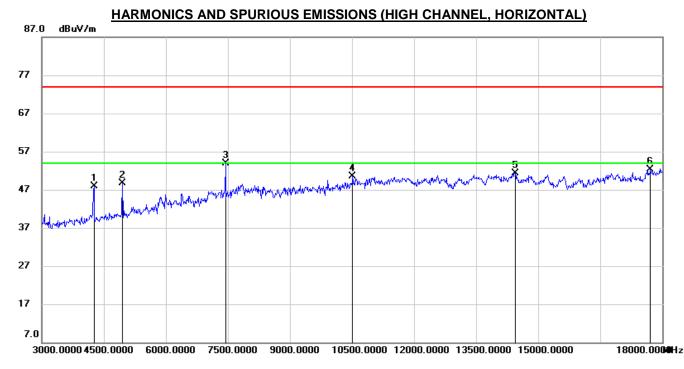
No. Frequency Reading Correct Result Limit Margin Remark (dBuV) (dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 4245.000 50.84 -1.71 74.00 -24.87 1 49.13 peak 2 5985.000 48.71 4.20 74.00 -21.09 52.91 peak 3 6390.000 47.96 5.15 53.11 74.00 -20.89 peak 4 7200.000 45.15 7.05 52.20 74.00 -21.80 peak 5 13785.000 34.26 74.00 -22.34 17.40 51.66 peak 6 17940.000 29.30 23.37 52.67 74.00 -21.33 peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4260.000	49.12	-1.84	47.28	74.00	-26.72	peak
2	4875.000	50.01	0.10	50.11	74.00	-23.89	peak
3	6375.000	42.11	5.08	47.19	74.00	-26.81	peak
4	7320.000	45.83	7.42	53.25	74.00	-20.75	peak
5	14445.000	34.79	16.66	51.45	74.00	-22.55	peak
6	17715.000	29.82	22.65	52.47	74.00	-21.53	peak

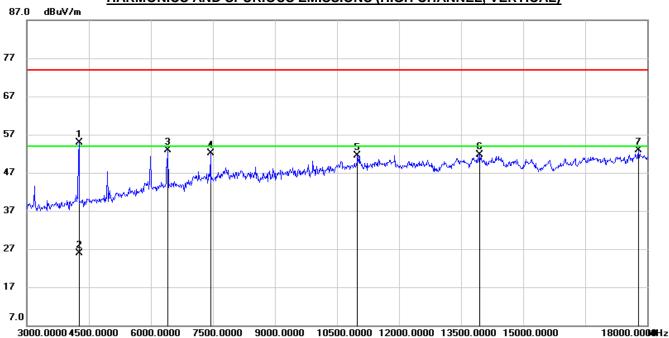
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

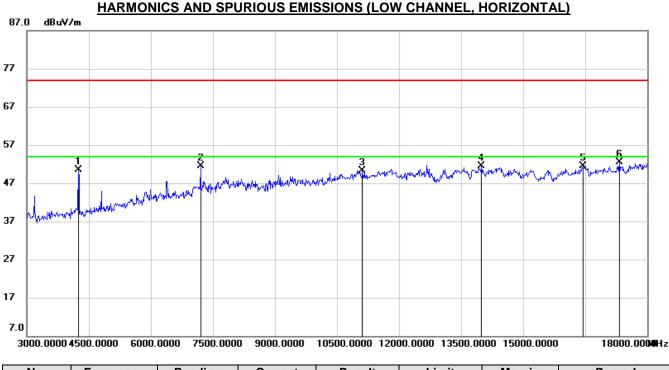
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	49.42	0.10	49.52	74.00	-24.48	peak
2	5985.000	48.29	4.20	52.49	74.00	-21.51	peak
3	7320.000	44.42	7.42	51.84	74.00	-22.16	peak
4	13125.000	35.19	15.28	50.47	74.00	-23.53	peak
5	14430.000	35.18	16.66	51.84	74.00	-22.16	peak
6	17730.000	29.85	22.78	52.63	74.00	-21.37	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4260.000	49.70	-1.84	47.86	74.00	-26.14	peak
2	4950.000	48.38	0.40	48.78	74.00	-25.22	peak
3	7440.000	46.28	7.65	53.93	74.00	-20.07	peak
4	10515.000	38.07	12.40	50.47	74.00	-23.53	peak
5	14445.000	34.67	16.66	51.33	74.00	-22.67	peak
6	17715.000	29.72	22.65	52.37	74.00	-21.63	peak

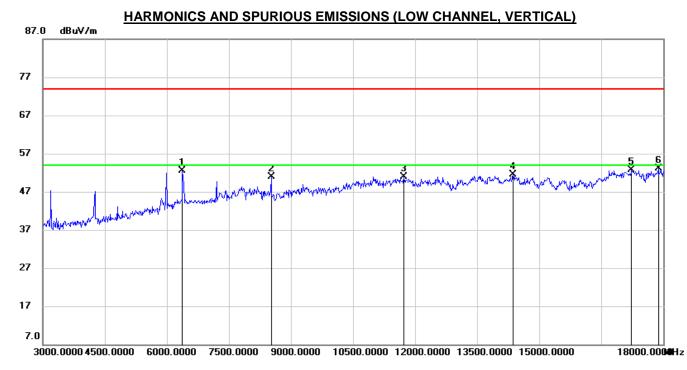
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4260.000	56.65	-1.84	54.81	74.00	-19.19	peak
2	4260.000	27.73	-1.84	25.89	54.00	-28.11	AVG
3	6405.000	47.69	5.26	52.95	74.00	-21.05	peak
4	7440.000	44.40	7.65	52.05	74.00	-21.95	peak
5	10995.000	37.85	13.62	51.47	74.00	-22.53	peak
6	13950.000	35.01	16.69	51.70	74.00	-22.30	peak
7	17790.000	29.59	23.26	52.85	74.00	-21.15	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.4.2. 8DPSK MODE


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4245.000	52.30	-1.71	50.59	74.00	-23.41	peak
2	7200.000	44.42	7.05	51.47	74.00	-22.53	peak
3	11115.000	36.74	13.58	50.32	74.00	-23.68	peak
4	13995.000	34.84	16.64	51.48	74.00	-22.52	peak
5	16455.000	32.30	19.16	51.46	74.00	-22.54	peak
6	17325.000	30.62	21.96	52.58	74.00	-21.42	peak

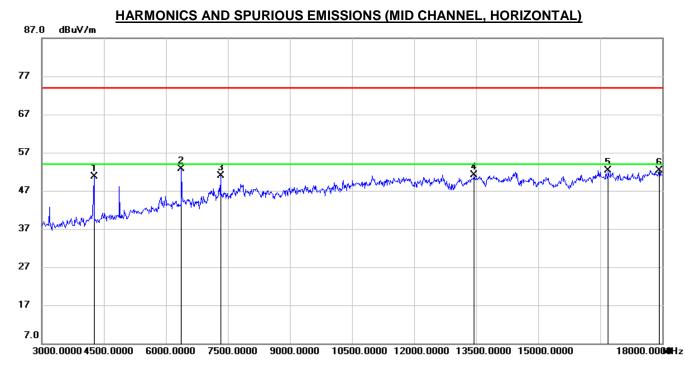
Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Frequency Reading Correct Result Limit Margin Remark No. (dBuV) (dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 6375.000 47.41 5.08 52.49 74.00 -21.51 1 peak 2 42.20 8.76 74.00 -23.04 8520.000 50.96 peak 3 11730.000 36.82 14.13 50.95 74.00 -23.05 peak 4 14370.000 34.92 16.66 51.58 74.00 -22.42 peak 5 17235.000 74.00 31.08 21.54 52.62 -21.38 peak 6 17880.000 29.69 23.34 53.03 74.00 -20.97 peak

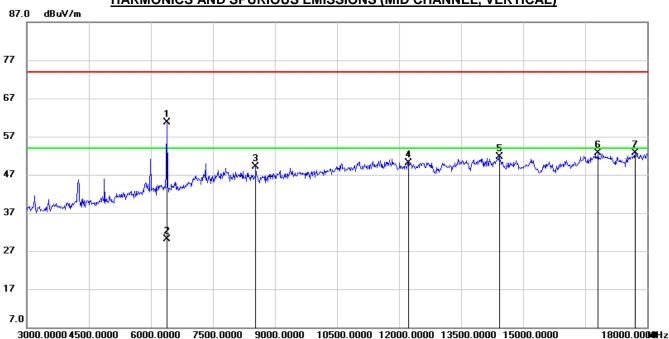
Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

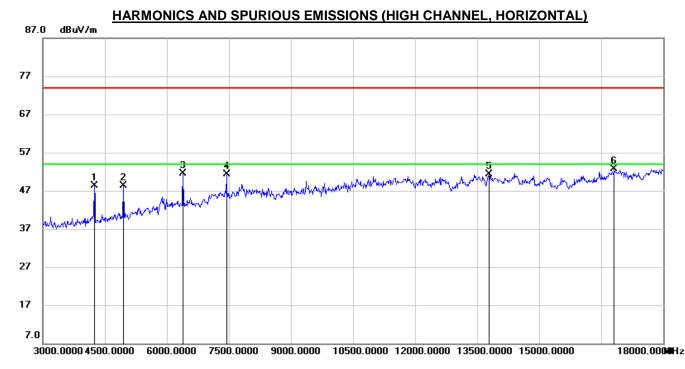
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



Remark No. Frequency Reading Correct Result Limit Margin (dBuV) (dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 4260.000 52.60 -1.84 50.76 74.00 -23.24 1 peak 2 6375.000 47.65 5.08 52.73 74.00 -21.27 peak 3 43.50 7.42 50.92 74.00 -23.08 peak 7320.000 4 13455.000 34.97 16.23 51.20 74.00 -22.80 peak 5 16695.000 20.21 74.00 32.16 52.37 -21.63 peak 6 17925.000 28.92 23.34 52.26 74.00 -21.74 peak

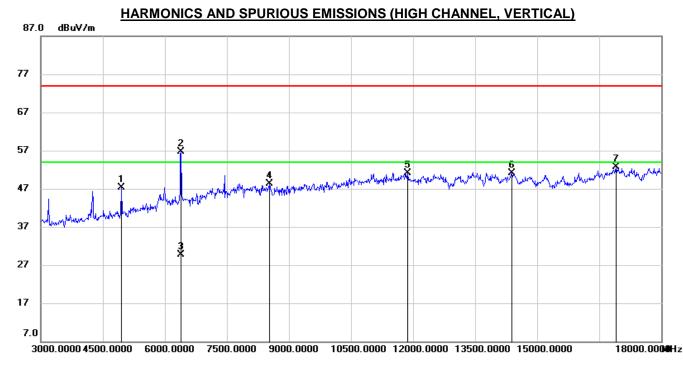
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

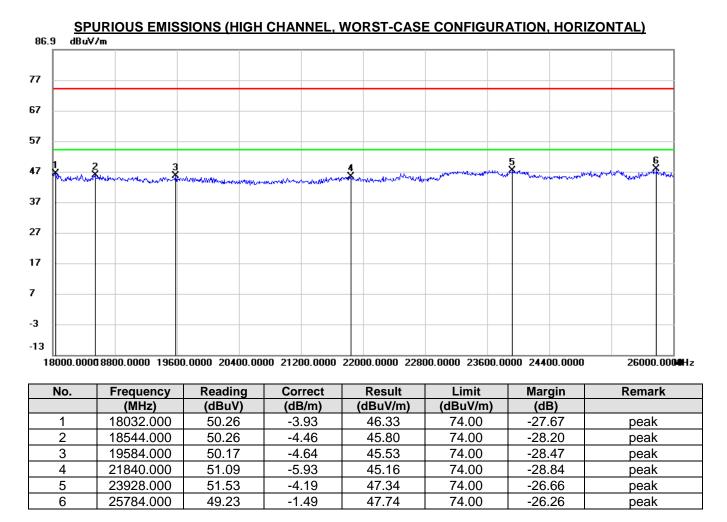
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6390.000	55.50	5.15	60.65	74.00	-13.35	peak
2	6390.000	24.90	5.15	30.05	54.00	-23.95	AVG
3	8535.000	40.29	8.73	49.02	74.00	-24.98	peak
4	12225.000	35.50	14.70	50.20	74.00	-23.80	peak
5	14430.000	35.12	16.66	51.78	74.00	-22.22	peak
6	16815.000	32.39	20.31	52.70	74.00	-21.30	peak
7	17700.000	30.25	22.53	52.78	74.00	-21.22	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For duty cycle, please refer to clause 6.1.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4245.000	49.93	-1.71	48.22	74.00	-25.78	peak
2	4950.000	47.87	0.40	48.27	74.00	-25.73	peak
3	6390.000	46.43	5.15	51.58	74.00	-22.42	peak
4	7440.000	43.61	7.65	51.26	74.00	-22.74	peak
5	13785.000	33.93	17.40	51.33	74.00	-22.67	peak
6	16815.000	32.36	20.31	52.67	74.00	-21.33	peak

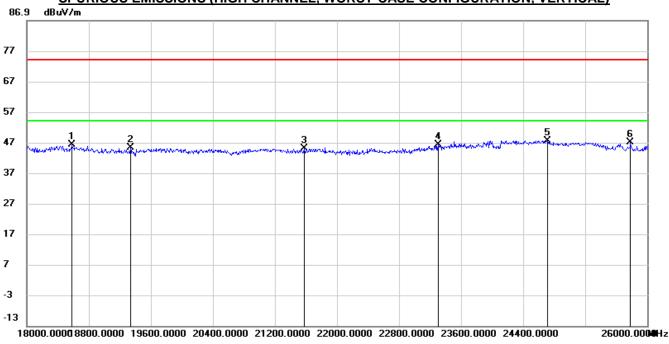
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Frequency Reading Correct Result Limit Margin Remark No. (dBuV) (dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 4950.000 46.87 0.40 47.27 74.00 -26.731 peak 51.47 5.15 74.00 -17.38 2 6390.000 56.62 peak 3 6390.000 24.65 5.15 54.00 -24.20 AVG 29.80 4 8535.000 39.67 8.73 48.40 74.00 -25.60 peak 5 36.86 14.33 74.00 -22.81 11865.000 51.19 peak 6 14385.000 34.50 16.67 51.17 74.00 -22.83 peak 7 16905.000 32.28 20.39 52.67 74.00 -21.33 peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For duty cycle, please refer to clause 6.1.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.5. SPURIOUS EMISSIONS 18G ~ 26GHz

7.5.1. 8DPSK MODE



Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

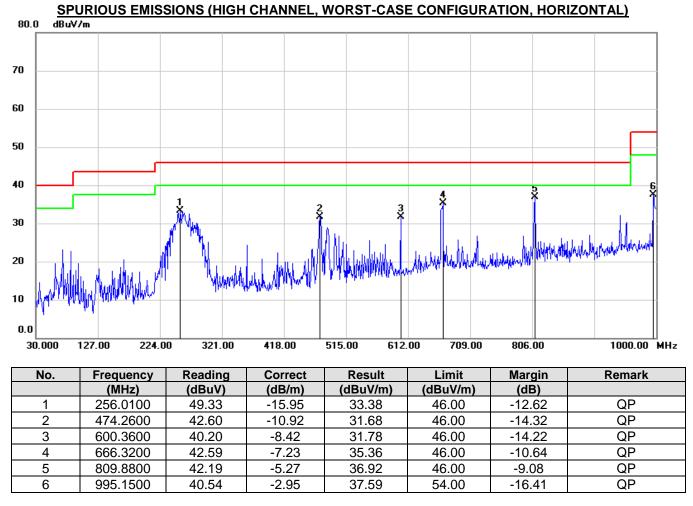
3. Peak: Peak detector.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18584.000	50.69	-4.53	46.16	74.00	-27.84	peak
2	19336.000	50.20	-4.97	45.23	74.00	-28.77	peak
3	21576.000	50.82	-5.77	45.05	74.00	-28.95	peak
4	23304.000	51.37	-5.16	46.21	74.00	-27.79	peak
5	24712.000	49.65	-2.05	47.60	74.00	-26.40	peak
6	25784.000	48.58	-1.49	47.09	74.00	-26.91	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

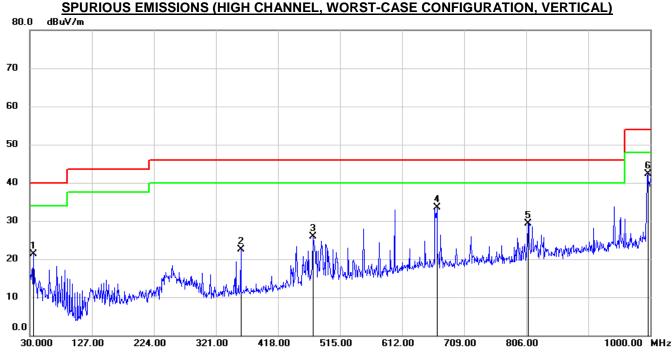
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

Note: All test mode has been tested, only the worst data record in the report.

7.6. SPURIOUS EMISSIONS 30M ~ 1 GHz

7.6.1. 8DPSK MODE



Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

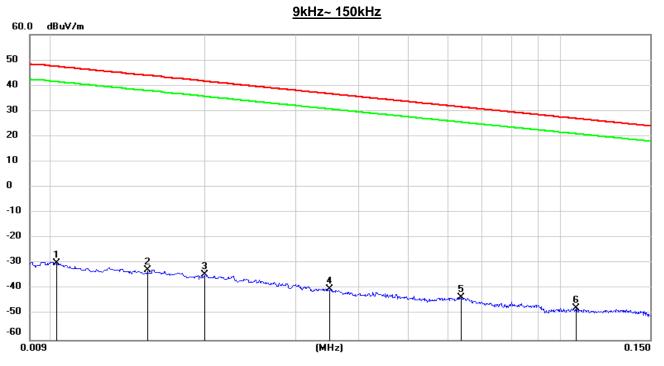
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	35.8200	38.88	-17.63	21.25	40.00	-18.75	QP
2	359.8000	35.50	-13.04	22.46	46.00	-23.54	QP
3	472.3200	36.83	-10.95	25.88	46.00	-20.12	QP
4	666.3200	40.71	-7.23	33.48	46.00	-12.52	QP
5	808.9099	34.57	-5.27	29.30	46.00	-16.70	QP
6	996.1200	45.18	-2.93	42.25	54.00	-11.75	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

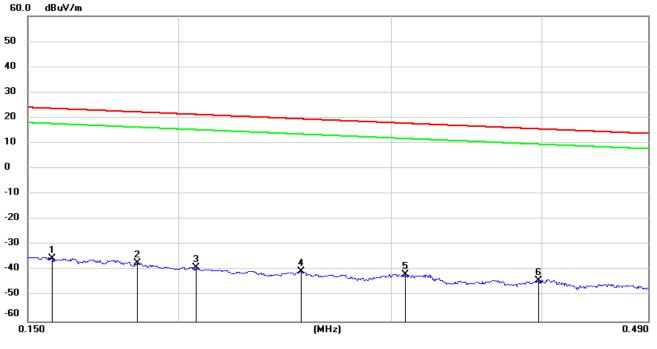

Note: All test mode has been tested, only the worst data record in the report.

7.7. SPURIOUS EMISSIONS BELOW 30M

7.7.1. 8DPSK MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

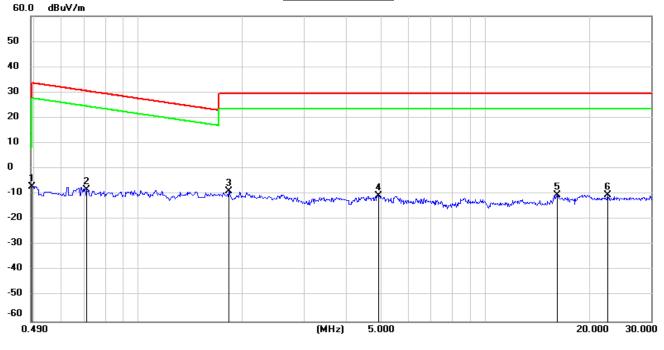
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0102	71.55	-101.40	-29.85	47.43	-77.28	peak
2	0.0154	68.94	-101.37	-32.43	43.85	-76.28	peak
3	0.0200	66.86	-101.34	-34.48	41.58	-76.06	peak
4	0.0350	61.25	-101.41	-40.16	36.72	-76.88	peak
5	0.0636	58.31	-101.54	-43.23	31.53	-74.76	peak
6	0.1073	54.30	-101.77	-47.47	26.99	-74.46	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 0.49MHz</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1570	66.53	-101.65	-35.12	23.68	-58.80	peak
2	0.1847	64.61	-101.70	-37.09	22.28	-59.37	peak
3	0.2068	62.95	-101.73	-38.78	21.29	-60.07	peak
4	0.2530	61.59	-101.80	-40.21	19.54	-59.75	peak
5	0.3084	60.45	-101.86	-41.41	17.82	-59.23	peak
6	0.3975	58.00	-101.96	-43.96	15.61	-59.57	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna hadbeen tested, but only the worst data recorded in the report.

<u>0.49MHz ~ 30MHz</u>

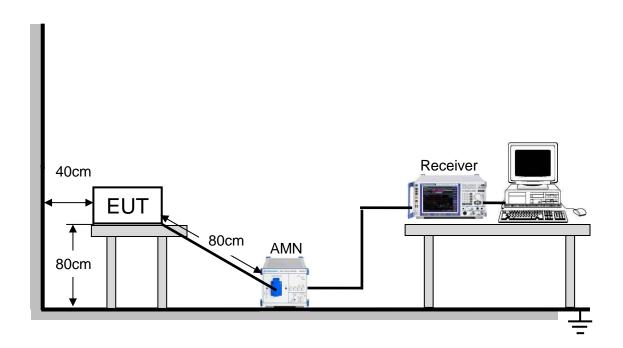
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.4939	55.14	-62.06	-6.92	33.73	-40.65	peak
2	0.7096	53.86	-62.12	-8.26	30.58	-38.84	peak
3	1.8205	52.95	-61.90	-8.95	29.54	-38.49	peak
4	4.9165	50.88	-61.48	-10.60	29.54	-40.14	peak
5	16.1598	50.61	-60.97	-10.36	29.54	-39.90	peak
6	22.5045	50.38	-60.64	-10.26	29.54	-39.80	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All test mode has been tested, only the worst data record in the report.


8. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

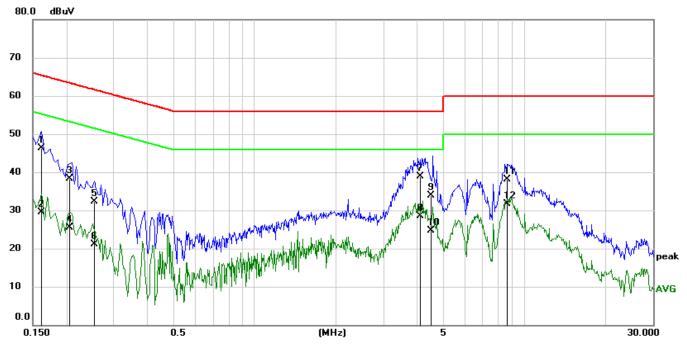
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8.

FREQUENCY (MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

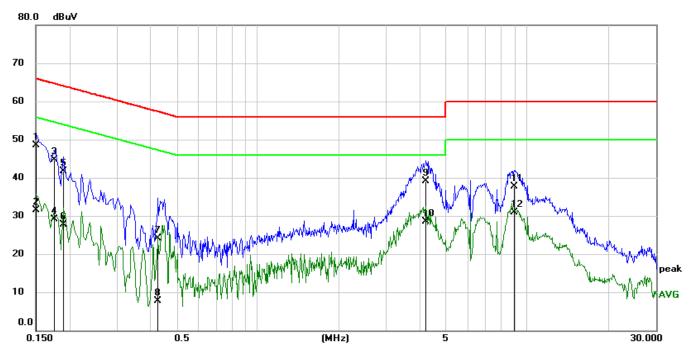
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.1.1. 8DPSK MODE

TEST RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

LINE N RESULTS


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1619	36.64	9.60	46.24	65.37	-19.13	QP
2	0.1619	19.98	9.60	29.58	55.37	-25.79	AVG
3	0.2053	28.71	9.60	38.31	63.39	-25.08	QP
4	0.2053	15.92	9.60	25.52	53.39	-27.87	AVG
5	0.2527	22.72	9.60	32.32	61.67	-29.35	QP
6	0.2527	11.54	9.60	21.14	51.67	-30.53	AVG
7	4.1416	29.18	9.66	38.84	56.00	-17.16	QP
8	4.1416	18.93	9.66	28.59	46.00	-17.41	AVG
9	4.5202	24.15	9.67	33.82	56.00	-22.18	QP
10	4.5202	14.95	9.67	24.62	46.00	-21.38	AVG
11	8.6603	28.28	9.74	38.02	60.00	-21.98	QP
12	8.6603	21.87	9.74	31.61	50.00	-18.39	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

U

LINE L RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1508	38.93	9.61	48.54	65.96	-17.42	QP
2	0.1508	21.83	9.61	31.44	55.96	-24.52	AVG
3	0.1751	35.07	9.61	44.68	64.71	-20.03	QP
4	0.1751	19.59	9.61	29.20	54.71	-25.51	AVG
5	0.1901	32.10	9.60	41.70	64.03	-22.33	QP
6	0.1901	18.04	9.60	27.64	54.03	-26.39	AVG
7	0.4284	14.55	9.60	24.15	57.28	-33.13	QP
8	0.4284	-1.85	9.60	7.75	47.28	-39.53	AVG
9	4.1760	29.40	9.66	39.06	56.00	-16.94	QP
10	4.1760	18.94	9.66	28.60	46.00	-17.40	AVG
11	8.9190	28.04	9.73	37.77	60.00	-22.23	QP
12	8.9190	21.18	9.73	30.91	50.00	-19.09	AVG

Note: 1. Result = Reading +Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).

4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the modes and channels had been tested, but only the worst data recorded in the report.

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT