		. [4	6
2			246
L			Report No.: DACE250108016RL001
	DAC	RF TEST REPOR	RT DAG
		For	<i>.</i> .
		Shenzhen Buzz Tech Co.,L	
		Product Name: Smart wat	cn Direction
6		Test Model(s): J01	
	Report Reference No.	: DACE250108016RL001	
	FCC ID	: 2AGFWJ01	
V	Applicant's Name	: Shenzhen Buzz Tech Co.,Ltd	
	Address	10th Floor, Guang Chang Bldg, 74#,Ba Guangdong,China	oMin 1st Rd, Bao An Shenzhen,
	- DAG		
	Testing Laboratory Address	 Shenzhen DACE Testing Technology C 102, Building H1, & 1/F., Building H, Ho Tangtou Community, Shiyan Subdistric 	ongfa Science & Technology Park,
		Guangdong, China	
	Test Specification Standard	: 47 CFR Part 15.247	
6	Date of Receipt	: January 8, 2025	
	Date of Test	: January 8, 2025 to February 8, 2025	
	Data of Issue	: February 8, 2025	
	Result	: Pass	
	Testing Technology Co., Ltd. Th	eproduced except in full, without the written a his document may be altered or revised by Sh hall be noted in the revision section of the do sample	nenzhen DACE Testing Technology
	.C.	Co.	
	102, Building H1, & 1/F., Building H, Hongfa Sci Web: http://www.dace-lab.com	ence & Technology Park, Tangtou Community, Shiyan Subdistrict, Ba Tel: +86-755-23010613 E-mail: service@dad	

Ì

ì

DAG

Apply for company information

Applicant's Name	:	Shenzhen Buzz Tech Co.,Ltd
Address	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong,China	
Product Name :		Smart watch
Test Model(s)		J01
Series Model(s)		Y20,Y21,Y22,Y23,Y25,Y26,Y27,Y28,S101,S102,S103,S105,S106,P153,P155, P156,P157,P158,P159,P160
Test Specification Standard(s)	:	47 CFR Part 15.247

NOTE1:

)De

DAC

200

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NE

Compiled by: Keren Huang

Supervised by:

Approved by:

NE

Keren Huang / Test Engineer

Ben Jang

Ben Tang / Project Engineer

Machael MJ

Machael Mo / Manager

)AC

NC

DVC	V1.0		Report No.: DACE25010801
		vision History Of Repor	t DAC
Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE250108016RL001	February 8, 2025
		VP	2
	6		
	DAC	20	E
	- 6		
	DAG		5

D

١

CONTENTS

V1.0	Report No.: DACE250108016RL001
	Report No.: DACE250 1060 TORLUO
CONTENT	S
DE DE	
1 TEST SUMMARY	
1.1 TEST STANDARDS 1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION 2.2 DESCRIPTION OF DEVICE (EUT)	
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	<u></u>
2.5 EQUIPMENTS USED DURING THE TEST	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY 2.7 IDENTIFICATION OF TESTING LABORATORY	
2.7 IDENTIFICATION OF TESTING LABORATORY	
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	·······
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	<u> </u>
4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	
4.2 6DB BANDWIDTH	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 Power Spectral Density	
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	<u></u>
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 BAND EDGE EMISSIONS (RADIATED)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
4.7.1 E.U.T. Operation:	
4.7.2 Test Data:	
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	-
4.8.1 E.U.T. Operation:	
4.8.2 Test Data:	

5 TEST SETUE	PHOTOS		
6 PHOTOS OF	THE EUT	 	
16DB	BANDWIDTH		
3. DUTY	CYCLE		
5. Powe	R SPECTRAL DENSITY		

C

-

TEST SUMMARY 1

1.1 Test Standards

DAC

NE

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
6dB Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

C

)AC

Se

GENERAL INFORMATION 2

2.1 Client Information

DAC

Applicant's Name	:	Shenzhen Buzz Tech Co.,Ltd
Address	:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen,
DAC		Guangdong,China
Manufacturer	:	Shenzhen Buzz Tech Co.,Ltd
Address	:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen,

Guangdong, China

2.2 Description of Device (EUT)

Product Name:	Smart watch		
Model/Type reference:	J01		
Series Model:	Y20,Y21,Y22,Y23,Y25,Y26,Y27,Y28,S101,S102,S103,S105,S106,P153,P155, P156,P157,P158,P159,P160		
Model Difference:	The product has many models, only the model name, Appearance and color is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.		
Trade Mark:	N/A		
Power Supply:	DC 5V/1A from adapter Battery:DC3.8V 270mAh		
Operation Frequency:	2402MHz to 2480MHz		
Number of Channels:	40		
Modulation Type:	GFSK		
Antenna Type:	Internal		
Antenna Gain:	0dBi		
Hardware Version:	V1.0		
Software Version:	V1.0		

(Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for This data and the related calculations associated with it)

Operation	Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz		
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz		
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz		
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz		
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz		
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz		
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz		
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz		
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz		
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

Report No.: DACE250108016RL001

Note:

DAC

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test sharped	Frequency (MHz)	
Test channel	BLE	
Lowest channel	2402MHz	
Middle channel	2440MHz	6
Highest channel	2480MHz	
Remark:Only the data of the worst mod	e would be recorded in this report.	J

2.3 Description of Test Modes

No	Title	Description
TM1 Lowest channel		Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2 Middle channel		Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM3 Highest channel		Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

)De

NE

e

)De

DE

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

6

2.5 Equipments Used During The Test

DAG

Conducted Emission at AC power line								
Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
SCHWARZ BECK	MESS- ELEKTRONIK	/	2024-03-25	2025-03-24				
SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	1				
SCHWARZ BECK	124	1	2024-03-20	2025-03-19				
SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05				
Anritsu	MP59B	M20531	/	/				
Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11				
R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11				
SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13				
CYBERTEK	EM5010A	/ 🥏	2024-09-27	2025-09-26				
EZ -EMC	EZ	V1.1.42	1	1				
	Manufacturer SCHWARZ BECK SCHWARZ BECK SCHWARZ BECK Anritsu Rohde & Schwarz R&S SCHWARZ BECK CYBERTEK	ManufacturerModel NoSCHWARZ BECKMESS- ELEKTRONIKSCHWARZ BECKCAT5 8158SCHWARZ BECK/SCHWARZ BECK/SCHWARZ BECKVTSD 9561-F Pulse limiter 10dB AttenuationAnritsuMP59BRohde & SchwarzESPI TEST RECEIVERR&SESH3-Z5SCHWARZ BECKNSLK 8126CYBERTEKEM5010A	ManufacturerModel NoInventory NoSCHWARZ BECKMESS- ELEKTRONIK/SCHWARZ BECKCAT5 8158CAT5 8158#207SCHWARZ BECK//SCHWARZ BECK//SCHWARZ BECK//SCHWARZ BECK//SCHWARZ BECKVTSD 9561-F Pulse limiter 10dB Attenuation561-G071AnritsuMP59BM20531Rohde & SchwarzESPI TEST RECEIVERID:1164.6607K 03-102109- MHR&SESH3-Z5831.5518.52SCHWARZ BECKNSLK 812605055CYBERTEKEM5010A/	ManufacturerModel NoInventory NoCal DateSCHWARZ BECKMESS- ELEKTRONIK/2024-03-25SCHWARZ BECKCAT5 8158CAT5 8158#207/SCHWARZ BECK//2024-03-20SCHWARZ BECK//2024-03-20SCHWARZ BECK//2024-03-20SCHWARZ BECK//2024-03-20SCHWARZ BECKVTSD 9561-F Pulse limiter 10dB Attenuation561-G0712024-03-20AnritsuMP59BM20531/Rohde & SchwarzESPI TEST RECEIVERID:1164.6607K 03-102109- MH2024-06-12R&SESH3-Z5831.5518.522023-12-12SCHWARZ BECKNSLK 8126050552024-06-14CYBERTEKEM5010A/2024-09-27				

6dB Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands

Emissions in non-rest					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	/	1
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

2

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 9 of 62

1

V	1		0	
v	1	٠	•	

DAE

DAG

ø

3

DAE

Emissions in frequence Band edge emissions Emissions in frequence	(Radiated)	- NC		ad	E
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/
Positioning Controller	MF	MF-7802	6 /	/	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	/	/	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

DAE

)DE

DAG

oi

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

1

Page 10 of 62

)DE

DAC

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power 🥢	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded up	certainty expressed at approximately the 95%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Respons	ible Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Page 11 of 62

)AC

NE

Report No.: DACE250108016RL001

Evaluation Results (Evaluation) 3

3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

-

DAG

0

Test Requirement:

DΔG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NG

ANT

)De

NE

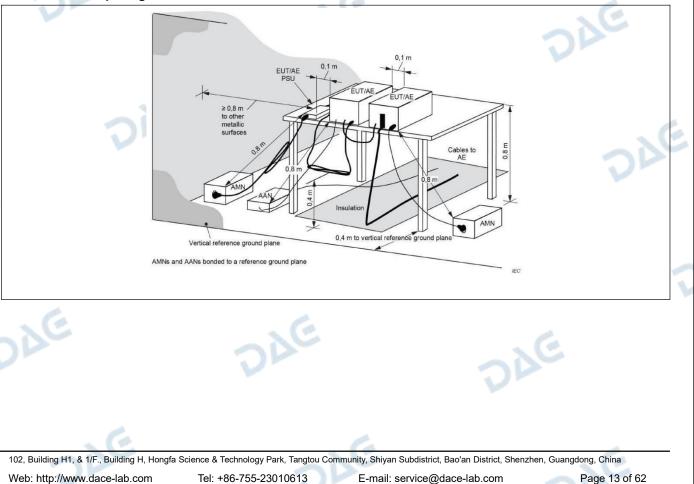
)AC

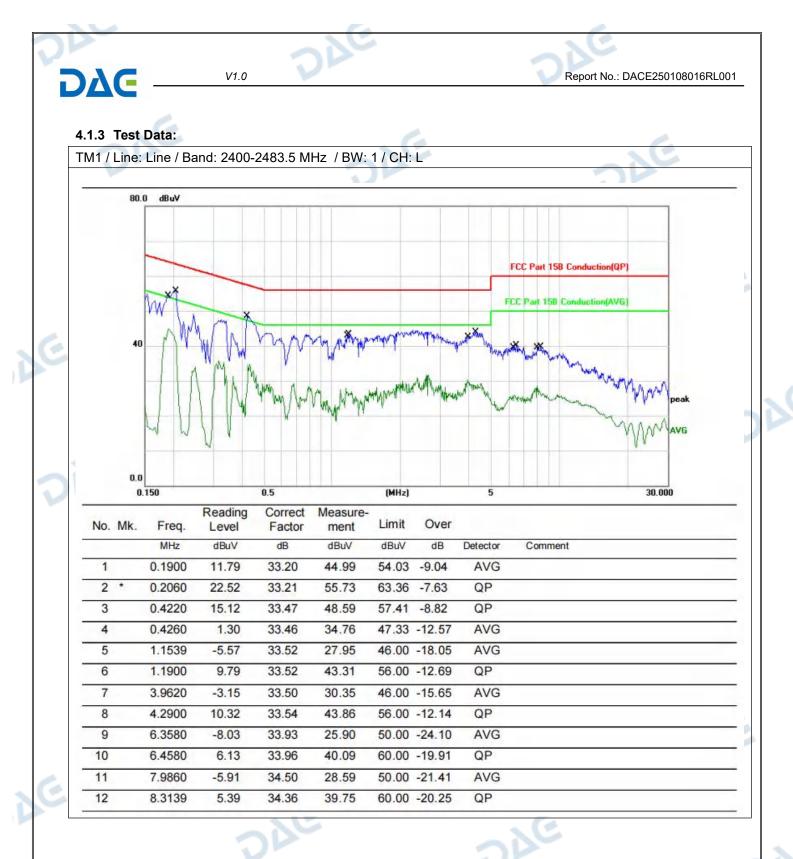
6

Report No.: DACE250108016RL001

Radio Spectrum Matter Test Results (RF) 4

4.1 Conducted Emission at AC power line


Test Requirement:	Refer to 47 CFR 15.207(a), Except a section, for an intentional radiator th utility (AC) power line, the radio freq AC power line on any frequency or f MHz, shall not exceed the limits in th μ H/50 ohms line impedance stabilized	at is designed to be conne uency voltage that is cond requencies, within the ban ne following table, as meas	ected to the public lucted back onto the ld 150 kHz to 30			
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2013 section 6.2	V	1			
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					
4.1.1 E.U.T. Operation:	.e		4			

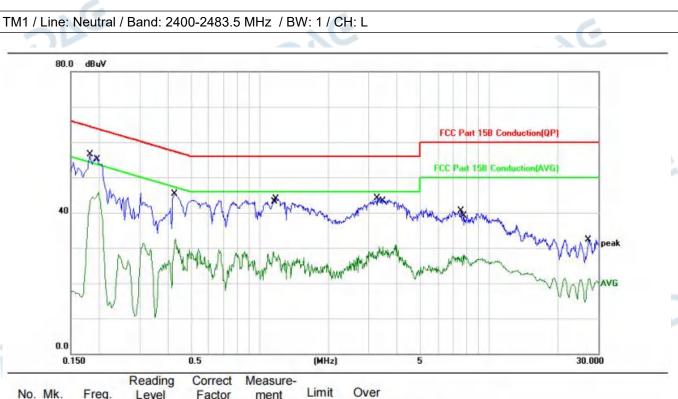

4.1.1 E.U.T. Operation:

DAG

Operating Environment:							
Temperature: 22.5 °C Humidity: 47 % Atmospheric Pressure:						102 kPa	
Pretest mode:		TM1			V		
Final test mode:		TM1					

4.1.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


)De

DAG

24C

DAG

Report No.: DACE250108016RL001

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	_	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1819	23.28	33.20	56.48	64.39	-7.91	QP	
2	_	0.1980	12.57	33.20	45.77	53.69	-7.92	AVG	
3		0.4260	11.91	33.46	45.37	57.33	-11.96	QP	
4	-	0.4300	-0.88	33.45	32.57	47.25	-14.68	AVG	
5		1.1500	-4.55	33.52	28.97	46.00	-17.03	AVG	
6		1.1820	10.41	33.52	43.93	56.00	-12.07	QP	
7		3.2700	10.59	33.54	44.13	56.00	-11.87	QP	
8		3.4420	-3.21	33.53	30.32	46.00	-15.68	AVG	
9	_	7.5580	6.22	34.35	40.57	60.00	-19.43	QP	
10	_	7.7620	-6.32	34.42	28.10	50.00	-21.90	AVG	
11		27.1780	-1.61	33.91	32.30	60.00	-27.70	QP	
12	-	27.4420	-12.62	33.90	21.28	50.00	-28.72	AVG	

DAG

Tel: +86-755-23010613

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

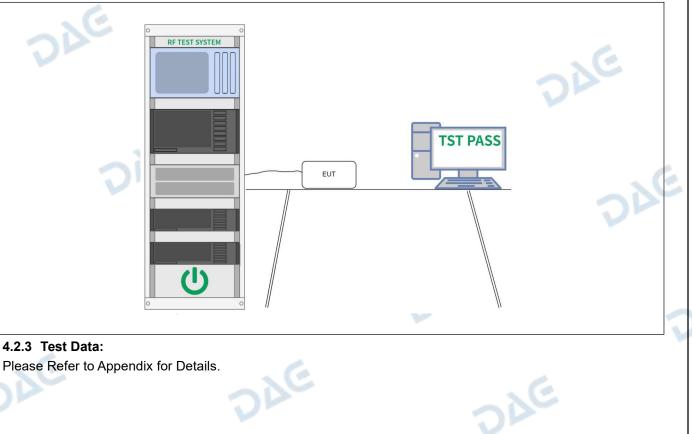
DAG

)AC

Web: http://www.dace-lab.com

DAG

4.2 6dB Bandwidth


DAC

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.5 °C	_	Humidity:	47 %	Atmospheric Pressure:	102 kPa		
Pretest mode:		TM1,	TM2, TM3			6		
Final test mode: TM1, TM2, TM3								
400 Test Ost								

4.2.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

Report No.: DACE250108016RL001

,AC

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. (alculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

. 6

4.3.1 E.U.T. Operation:

Operating Envir	onment:				- NC			
Temperature:	22.5 °C		Humidity:	47 %	Atmospl	neric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3					JP
Final test mode:		TM1,	TM2, TM3					

4.3.2 Test Setup Diagram:

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 17 of 62

Se

DAC	V1.0	Report No.: DACE250108016RL001
DAG	O O	DIE
E		EUT
4.3.3 Test Data : Please Refer to Ap	pendix for Details.	DIE
	DAC	ngtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

1

Report No.: DACE250108016RL001

4.4 Power Spectral Density

DΔC

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6

4.4.1 E.U.T. Operation:

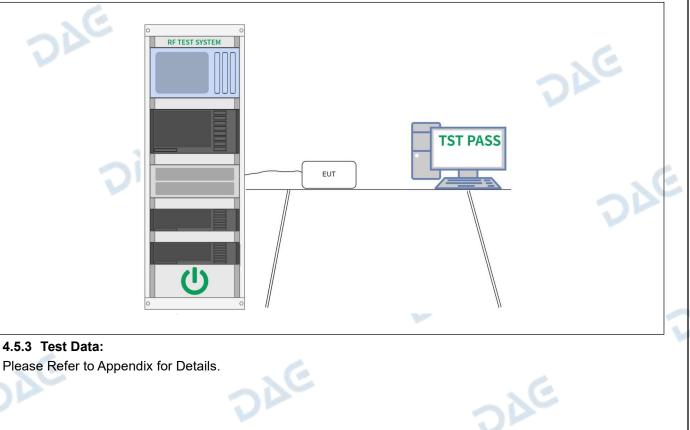
Operating Environment:						
Temperature:	22.5 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1, TM2, TM3				
Final test mode:		TM1,	TM2, TM3			

4.4.2 Test Setup Diagram:

O O O			
	EUT		
4.4.3 Test Data: Please Refer to Appendix for Details.		DYE	

Report No.: DACE250108016RL001

4.5 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

DAC

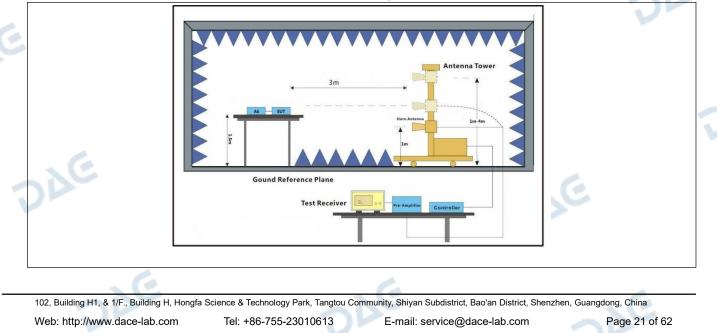
Operating Environment:						
Temperature:	22.5 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa
Pretest mode:	e: TM1, TM2, TM3				6	
Final test mode:		TM1, TM2, TM3				
	D .					

4.5.2 Test Setup Diagram:

Report No.: DACE250108016RL001

4.6 Band edge emissions (Radiated)

DVC


Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
20	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
AE	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2013 sect	ion 6.10.5.2	.C			
4.6.1 E.U.T. Operation:			200			

6

4.6.1 E.U.T. Operation:

Operating Envir	onment:						
Temperature:	22.5 °C		Humidity:	47 %	Atmospheric Pressu	re: 102 kPa	
Pretest mode:		TM1,	TM2, TM3		6		
Final test mode:		TM1					

4.6.2 Test Setup Diagram:

DAG V1.0 Report No.: DACE250108016RL001 4.6.3 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 110.0 100 90 80 FCC Part 15C (Pr 70 60 FEC Part 15C 50 40 30 AVG 20 10 0.0 2400.000 2410.000 2310.000 2320.000 2340.000 2350.000 2370.000 2330.000 (MHz) 2380.000 2390.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector No. P/F Remark (cm) (deg.) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 38.10 1 2310.000 41.73 -3.63 74.00 -35.90 peak 150 P 29.78 P 2 * 2310.000 -3.63 26.15 54.00 -27.85 AVG 150 P 3 2390.000 40.69 -3.42 37.27 74.00 -36.73 150 peak P 29.44 -3.42 26.02 54.00 -27.98 150 4 2390.000 AVG

DAG

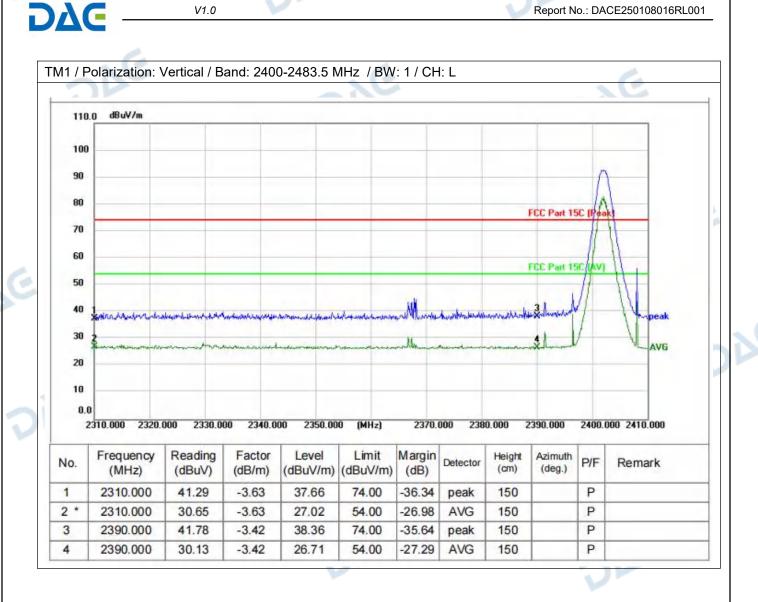
٧

DAG

DAE

)De

DAG


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)DE

NE

Report No.: DACE250108016RL001

DAE

4

DAG

DAG

)De

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

Page 23 of 62

)DE

DAC V1.0 Report No.: DACE250108016RL001 TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H dBuV/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 40 30 XAVG 20 10 0.0 2475.000 2477.500 2480.000 2482.500 2485.000 (MHz) 2490.000 2492.500 2495.000 2497.500 2500.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB)(cm) (deg.) 51.28 Ρ 2483.500 -3.17 48.11 74.00 -25.89 150 1 peak 2 * 2483.500 39.14 -3.17 35.97 54.00 -18.03 AVG 150 P Ρ 3 2500.000 40.91 -3.13 37.78 74.00 -36.22 peak 150

54.00

26.16

DAE

DAE

29.29

-3.13

DAG

2500.000

4

DAG

٧

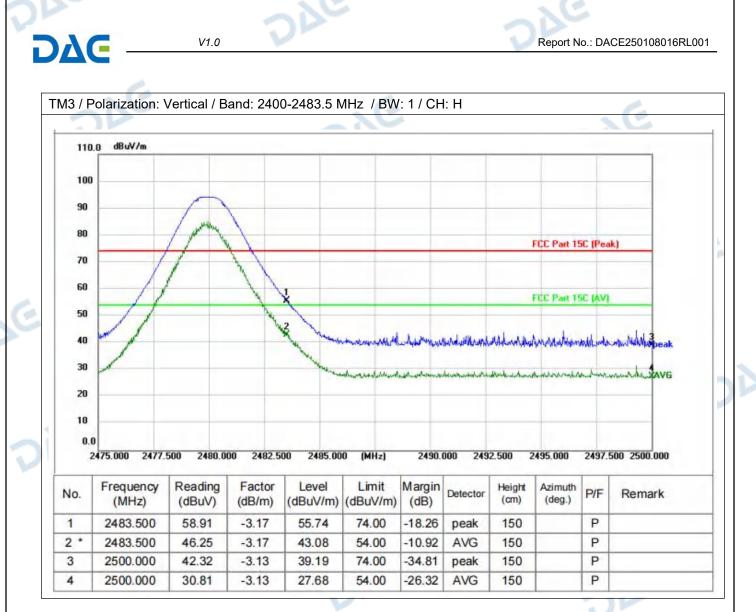
4

DAG

-27.84

AVG

150


2AC

DAG

P

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

DAE

4

DAG

DAE

2AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

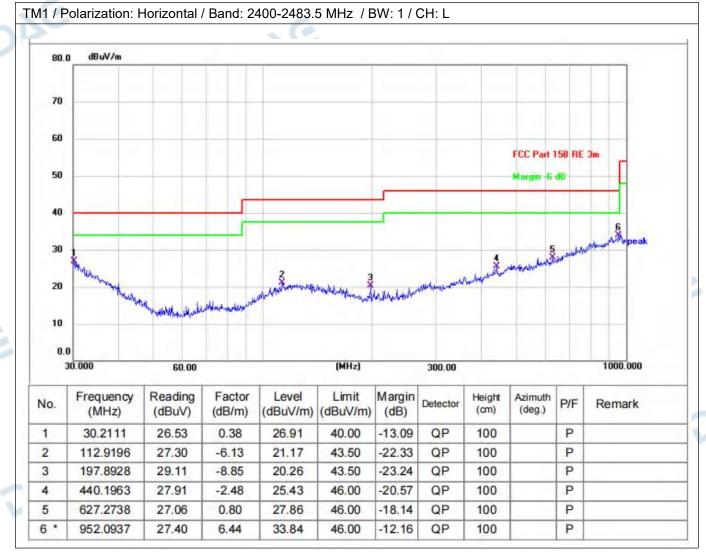
Page 25 of 62

)DE

DΔC

4.7 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
,	216-960	200 **	3			
	Above 960	500	3			
	The emission limits show employing a CISPR quas 110–490 kHz and above are based on measureme	ove, the tighter limit applies at the on in the above table are based o si-peak detector except for the fre 1000 MHz. Radiated emission lir ents employing an average detect	n measurements equency bands 9–90 kHz nits in these three bands			
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	above the ground at a 3 of 360 degrees to determine b. For above 1GHz, the E above the ground at a 3 of degrees to determine the c. The EUT was set 3 or which was mounted on th d. The antenna height is determine the maximum polarizations of the anten e. For each suspected en the antenna was tuned to below 30MHz, the antenn was turned from 0 degree f. The test-receiver syste Bandwidth with Maximum g. If the emission level of specified, then testing co reported. Otherwise the e tested one by one using reported in a data sheet. h. Test the EUT in the low i. The radiation measurer Transmitting mode, and f j. Repeat above procedure	the EUT in peak mode was 10dl uld be stopped and the peak valu emissions that did not have 10dB peak, quasi-peak or average met	ber. The table was rotate ation. otating table 1.5 meters ne table was rotated 360 ence-receiving antenna, na tower. eters above the ground to norizontal and vertical ment. o its worst case and then rs (for the test frequency of and the rotatable table kimum reading. on and Specified B lower than the limit ues of the EUT would be margin would be re- thod as specified and the , the Highest channel. kis positioning for h it is the worst case.			
.C.	Remark: 1) For emission below 10	GHz, through pre-scan found the	worst case is the lowest			

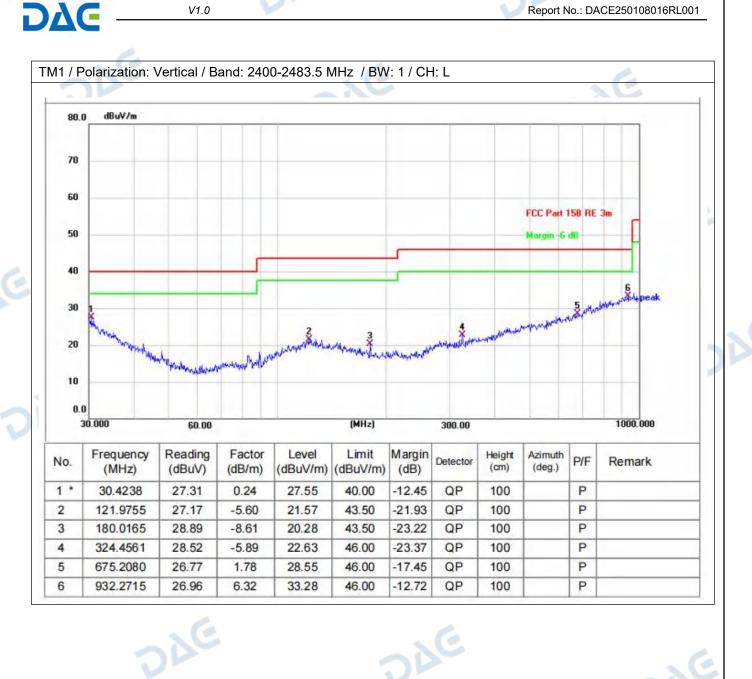

ong, China 102, Building H ig H, Hongfa Science & Technology Park, Tangtou Commu nity, Shiyan Sul Bao'an District, Shenzh en, Guang Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG -	V1.0	Report No.: DACE250108016RL001
DAC	Preamplifier. The basic equa Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points man found when testing, so only a spurious emissions from the	e is recorded in the report. Jated by adding the Antenna Factor, Cable Factor & tion with a sample calculation is as follows: Leading + Antenna Factor + Cable Factor "C a, the disturbance above 12.75GHz and below 30MHz rked on above plots are the highest emissions could be above points had been displayed. The amplitude of radiator which are attenuated more than 20dB below d. Fundamental frequency is blocked by filter, and only

4.7.1 E.U.T. Operation:

Operating Environment:						
Temperature: 2	22.5 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa
Pretest mode:	TM1, TM2, TM3					
Final test mode: TM1						

4.7.2 Test Data:



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 27 of 62

Report No.: DACE250108016RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)DC

)AC

DAG

)AC

Page 28 of 62

NE

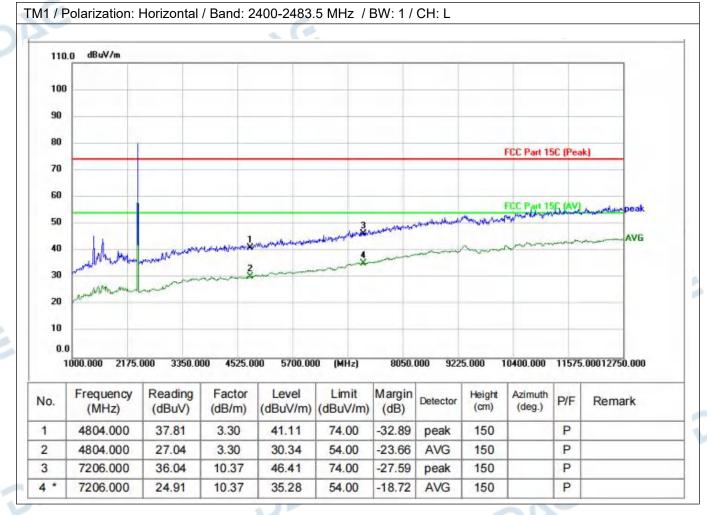
DΔC

Report No.: DACE250108016RL001

4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
20	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
-	216-960	200 **	3		
1	Above 960	500	3		
	 these frequency bands is permitted under other sections of this part, e.g., §§ 15.2 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 				
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02				
Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotation degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter fully-anechoic chamber. The table was rotated degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving anter which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and the antenna was tuned to heights from 1 meter to 4 meters (for the test freque below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable tall was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case j. Repeat above procedures until all frequencies measured was complete. 				

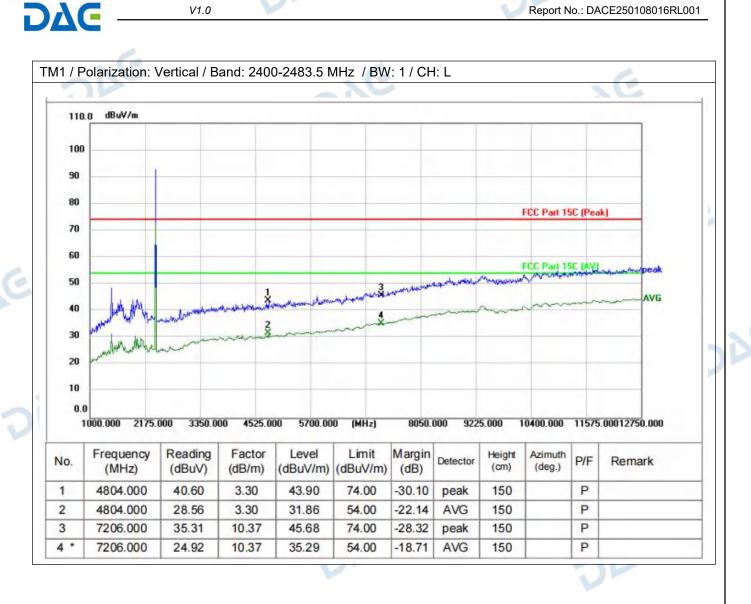
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


Page 29 of 62

DAC -	V1.0	Report No.: DACE250108016RL001
DAC	Preamplifier. The basic equa Final Test Level =Receiver F Preamplifier Factor 3) Scan from 9kHz to 25GH was very low. The points ma found when testing, so only spurious emissions from the	Alated by adding the Antenna Factor, Cable Factor & ation with a sample calculation is as follows: Reading + Antenna Factor + Cable Factor "C z, the disturbance above 12.75GHz and below 30MHz arked on above plots are the highest emissions could be above points had been displayed. The amplitude of e radiator which are attenuated more than 20dB below ed. Fundamental frequency is blocked by filter, and only

4.8.1 E.U.T. Operation:

Operating Environment:						
Temperature: 2	2.5 °C	Humidity:	47 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	TM	ТМ1, ТМ2, ТМ3				
Final test mode:	ТМ	1	200			


4.8.2 Test Data:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Page 30 of 62

Report No.: DACE250108016RL001

DAE

4

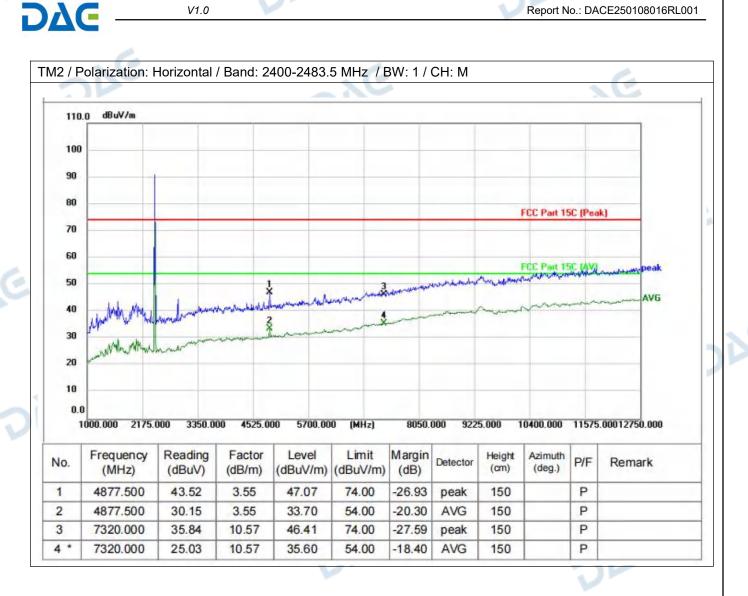
DAG

DAG

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


)AC

DAG

Page 31 of 62

NE

Report No.: DACE250108016RL001

DAG

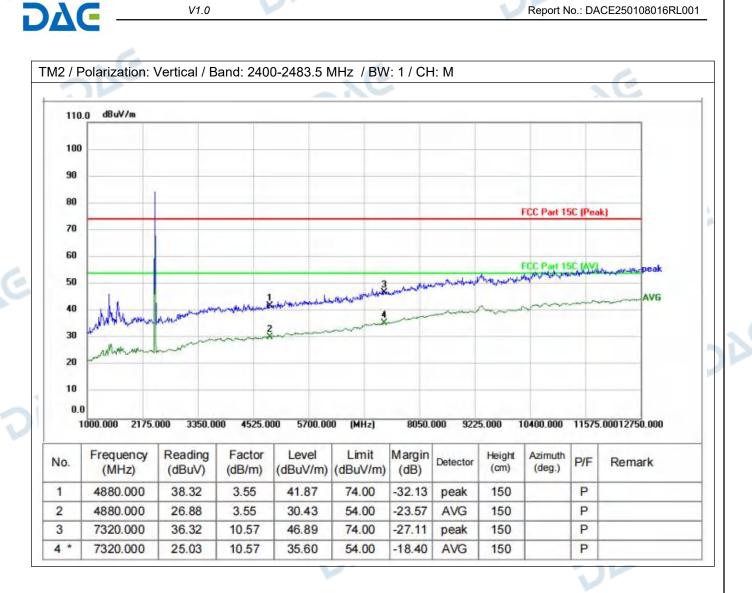
DAG

DAG

)De

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


)AC

)AC

Page 32 of 62

)DE

Report No.: DACE250108016RL001

DAE

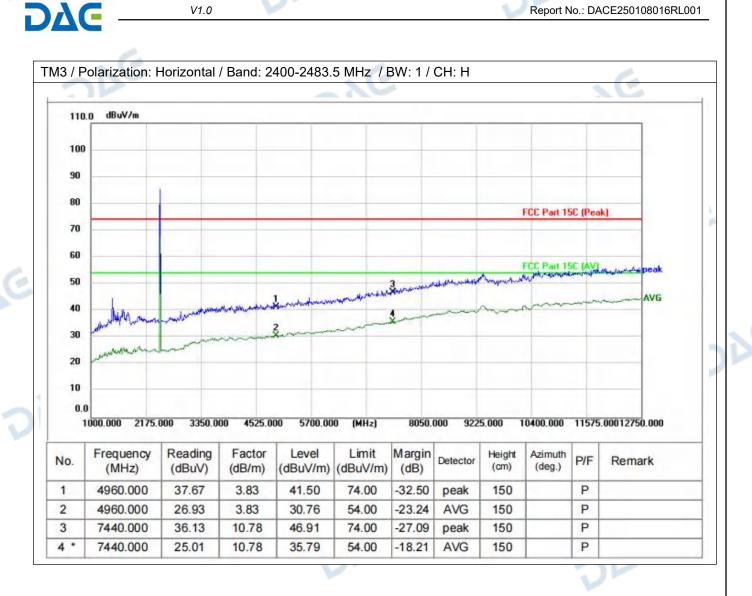
DAG

DAG

)De

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


)ÀC

)DE

Page 33 of 62

NE

Report No.: DACE250108016RL001

DAE

4

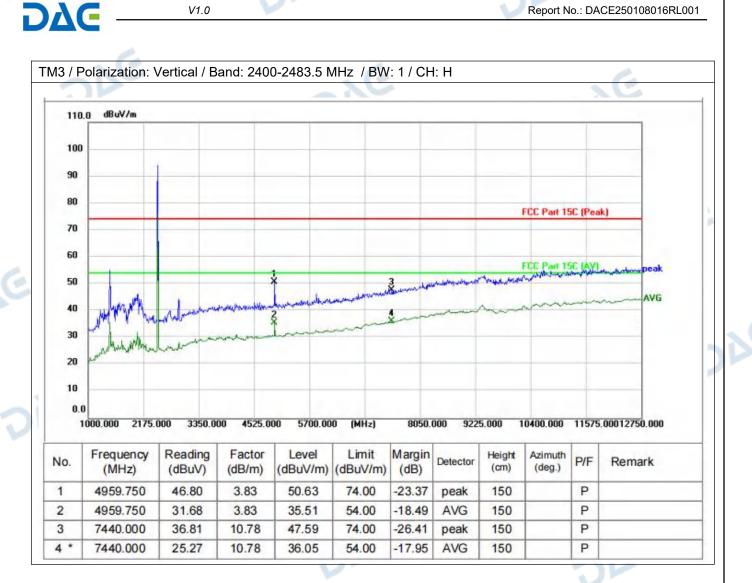
DAG

DAG

)De

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC


DAG

Page 34 of 62

DAG

)DE

Report No.: DACE250108016RL001

DAE

4

DAG

DAE

)De

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

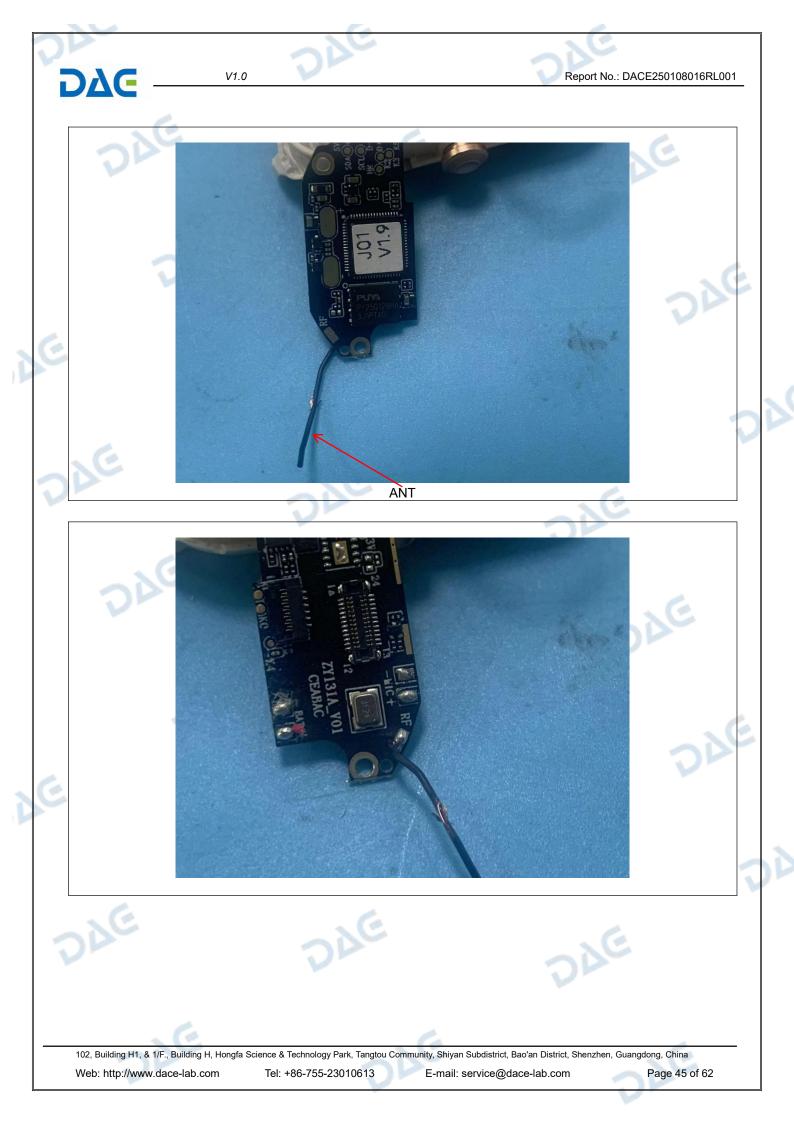
)DE

DAG

DAG

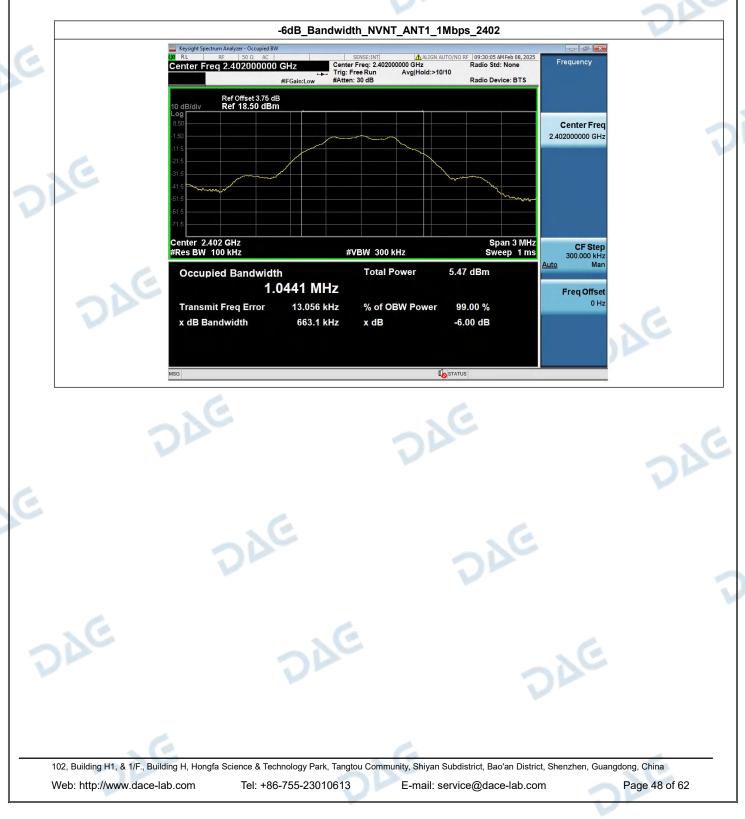
Page 35 of 62

)DE



Report No.: DACE250108016RL001

e


HT250108012--J01--BLE--FCC FCC_BLE (Part15.247) Test Data

1. -6dB Bandwidth

V1.0

DAC

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	663.14	500	Pass
NVNT	ANT1	1Mbps	2440.00	661.77	500	Pass
NVNT 🔰	ANT1	1Mbps	2480.00	661.89	500	Pass

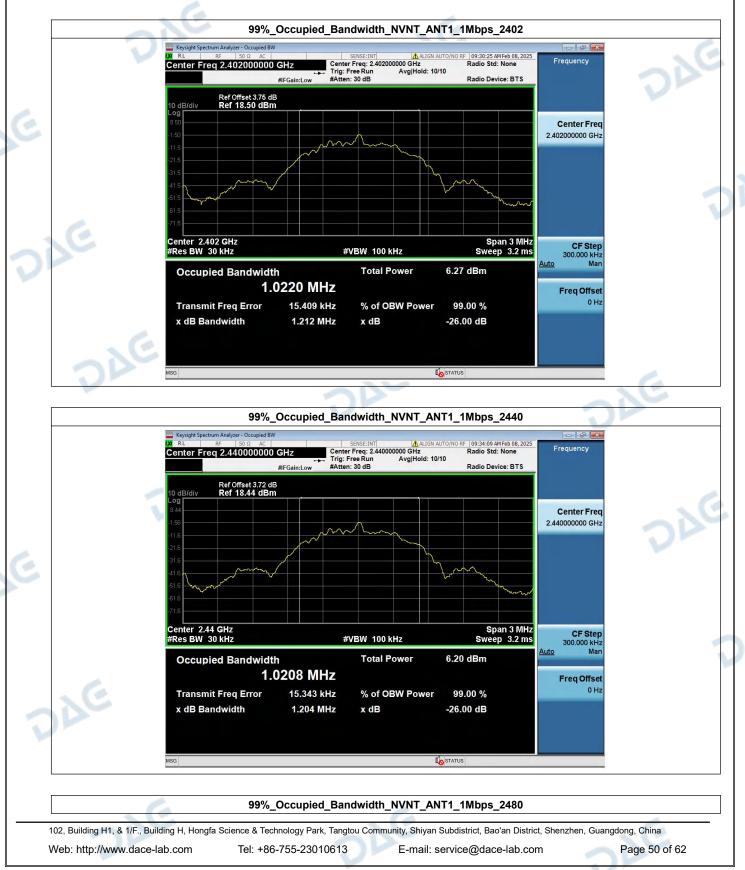
V1.0 Report No.: DACE250108016RL001

DAC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC


DAG

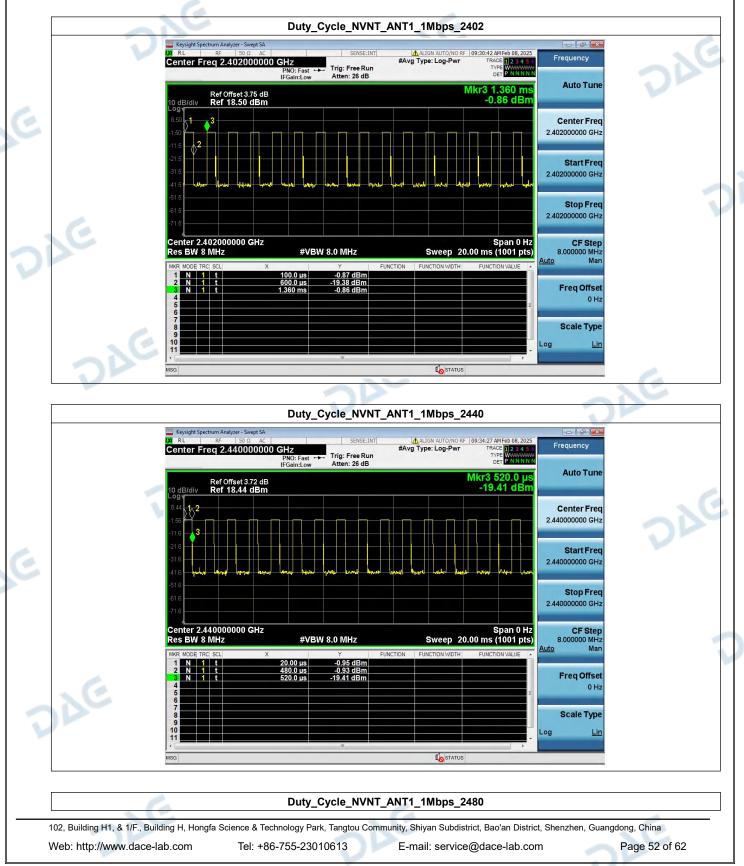
Report No.: DACE250108016RL001

2. 99% Occupied Bandwidth

DAC

Condition	Condition Antenna		Condition Antenna Rate		Frequency (MHz)	99%%BW(MHz)	
NVNT	ANT1	1Mbps	2402.00	1.022			
NVNT	ANT1	1Mbps	2440.00	1.021			
NVNT	ANT1	1Mbps	2480.00	1.022			

V1.0	Report No	o.: DACE250108016RL001
Center Freq 2.480000000 GHz	SE:INTI <u> A</u> ALIGN AUTO/NO RF 99:37:32 AMFeb 08, 2025 eq: 2.480000000 GHz Radio Std: None sRun Avg Hold: 10/10 0 dB Radio Device: BTS	NY SC
1.30 .1.3 .213 .313 .413 .413 .613 .613 .713		
Center 2.48 GHz #Res BW 30 kHz #VE		Step
Occupied Bandwidth	Total Power 6.49 dBm	Man
Transmit Freq Error 15.262 kHz	% of OBW Power 99.00 %	0 Hz
	20.00 ub	
MSG	To STATUS	
	Mysight Spectrum Analyze: - Occupied BW Center Freq 2.480000000 GHz FGainclow Ref Offset 3 &6 dB 10 dB/d/v Ref 18.70 dBm 0 dG/d/u Center 2.48 GHz #Res BW 30 kHz Center 2.48 GHz #WE Occupied Bandwidth 1.0220 MHz Transmit Freq Error 15.262 kHz x dB Bandwidth 1.214 MHz MIC	Center Freq 2480000000 GHz Center Freq 2480000000 GHz Reform 38 Ging Center Ging Reform 38 Ging Center Ging Reform 38 Ging Center Ging Center Ging Reform 38 Ging Center Ging Reform 38 Ging Center G


D

Report No.: DACE250108016RL001

3. Duty Cycle

DΔC

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	39.68	4.01
NVNT	ANT1	1Mbps	2440.00	92.00	0.36
NVNT	ANT1	1Mbps	2480.00	41.27	3.84

DAG -	V1.0 w Keysight Spectrum Analyzer - Swept SA W RL RF S0 Ω AC Center Freq 2.480000000 GHz PN0: Fast +→ Tri FGain: to A	SENSE:INT ALIGN AUTO/NO RF 09:37:49 AM Feb #Avg Type: Log-Pwr TRACE 1 fig: Free Run TYPE W tet: 25 dB DET	3455 Frequency	3016RL001
	Ref Offset 3.85 dB 10 dE/div Ref 18.70 dBm 0.00 1 3 1.30 1 3 .113 2 1 .21.3 2 1 1 .31.3 .11.3 2 1 1 .31.3 .31.3 <th< th="" th<=""><th>Mkr3 2.08 -0.63</th><th>Center Freq 2.48000000 GHz Start Freq</th><th></th></th<>	Mkr3 2.08 -0.63	Center Freq 2.48000000 GHz Start Freq	
E	1 N 1 t 820.0 µs1	Spar MHz Sweep 20.00 ms (100 Y FUNCTION FUNCTION WIDTH FUNCTION VAI 0.64 dBm 29 dBm 0.63 dBm 0.63 dBm 0.63 dBm 0.63 dBm 0.63 dBm 0.63 dBm	1 pts) 8.000000 MHz	
200	DAG		DAE	
DAG				

D

Report No.: DACE250108016RL001

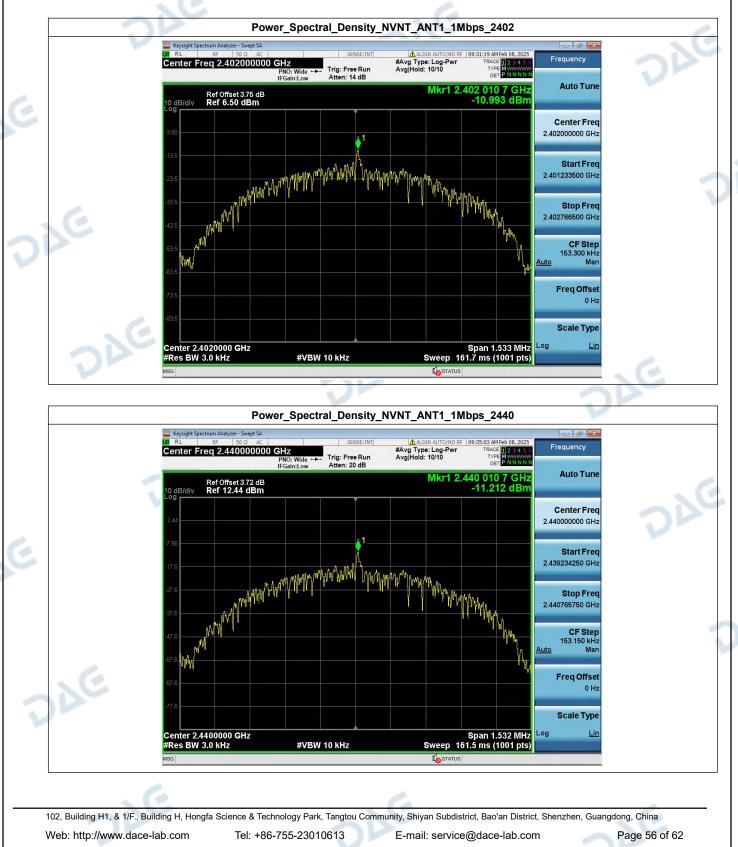
V1.0

4. Peak Output Power

DΔG

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	-0.84	0.82	1000	Pass
NVNT	ANT1	1Mbps	2440.00	-0.91	0.81	1000	Pass
NVNT	ANT1	1Mbps	2480.00	-0.58	0.88	1000	Pass

C


E	Peak_Ou	utput_Power_NVNT_AN	T1_1Mbps_2480		
DA	Keysight Spectrum Analyzer - Swept SA W RL RF 50 Ω AC Conter From 2.420000000 CH7	SENSE:INT ALL	GN AUTO/NO RF 09:38:10 AM Feb 08, 2025	Frequency	
	PNO: Fas IFGain:Lo	t 🛶 Trig: Free Run 🛛 Avg Hold	10/10 TYPE M WWWWW DET WNNNN Mkr1 2.479 772 GHz -0.578 dBm	Auto Tune	
	Ref Offset 3.85 dB 10 dB/div Ref 18.70 dBm		-0.578 dBm	Center Freq	
	1.30	<u></u>		2.480000000 GHz	
V	-11.3			Start Freq 2.477000000 GHz	1C
	-21.3			Stop Freq 2.483000000 GHz	
-	-41.3			CF Step	
	-61.3		Αι	600.000 kHz <u>ito</u> Man	
	-61.3			Freq Offset 0 Hz	
	-71.3			Scale Type	1
SE	Center 2.480000 GHz #Res BW 3.0 MHz #\	/BW 8.0 MHz	Span 6.000 MHz Sweep 1.000 ms (1001 pts)	g <u>Lin</u>	
	2	>		10	
					JAC

Report No.: DACE250108016RL001

5. Power Spectral Density

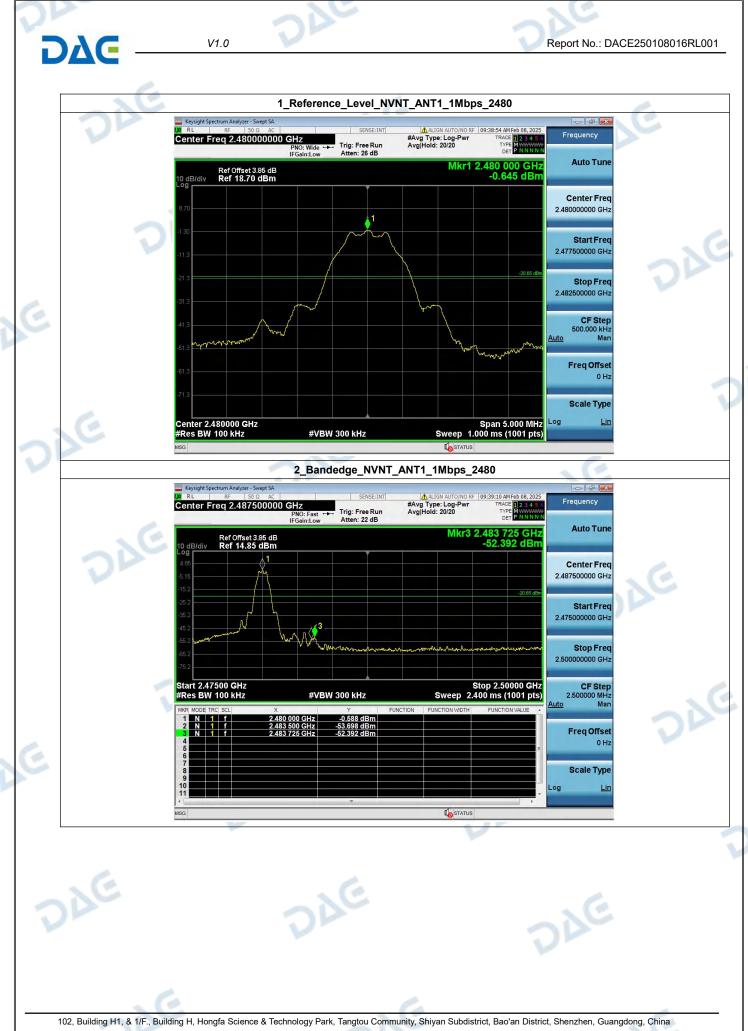
DΔG

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-10.99	8	Pass
NVNT	ANT1	1Mbps	2440.00	-11.21	8	Pass
NVNT	ANT1	1Mbps	2480.00	-10.59	8	Pass

DAG -	Keysight Spectrum Analyzer - Swept SA	Ctral_Density_NVNT_ANT1_1Mbj	38:25 AM Feb 08, 2025 TRACE 12 3 4 5 5 Frequency	e
	PRO: Wide IC gB/div Ref 12.70 dBm 2.70 2.70 7.30 7.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3	Atten: 20 dB Mkr1 2.48	Auto Tune 0.12 3 GHz 2.48000000 GHz 2.480060000 GHz 2.479233500 GHz 2.479233500 GHz 2.480766500 GHz 4.480766500 GHz CF Step 153.300 kHz Auto Tune 0 Hz	DAG
DYE Dy		W 10 kHz Sweep 161.7	Dan 1.533 MHz Log Lin	JE

V

Report No.: DACE250108016RL001


V1.0

6. Bandedge

DΔC

Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark_freq(MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2399.015	-0.895	-47.445	-20.895	Pass
NVNT	ANT1	1Mbps	2480.00	2483.725	-0.645	-52.392	-20.645	Pass

E-mail: service@dace-lab.com

Tel: +86-755-23010613

Web: http://www.dace-lab.com

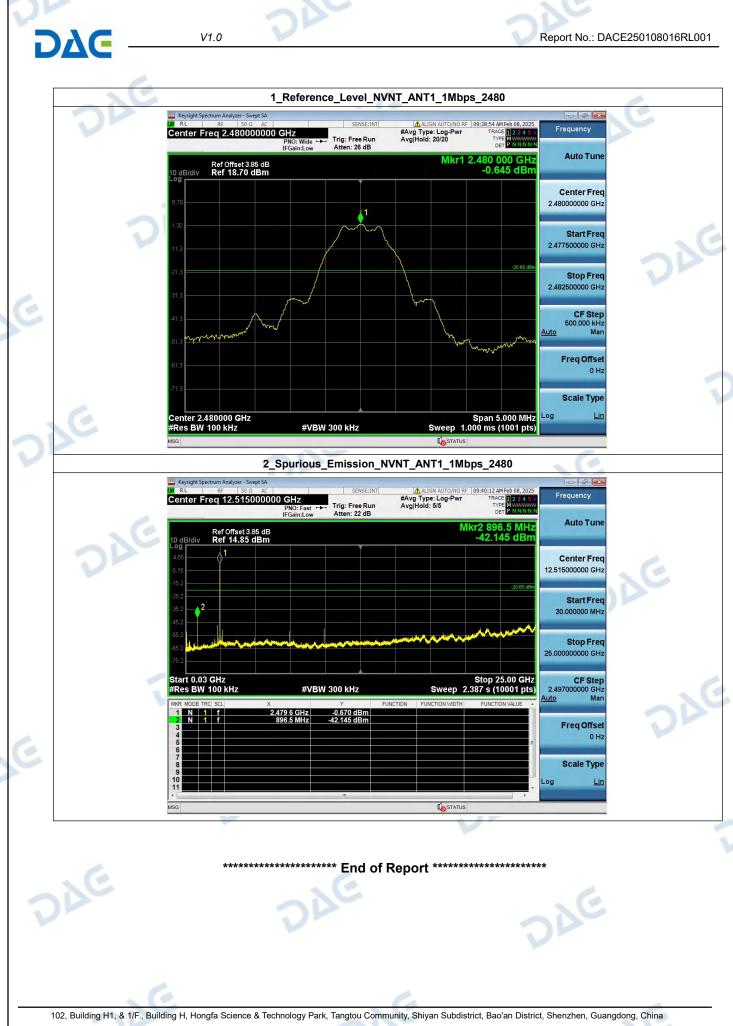
Page 59 of 62

Report No.: DACE250108016RL001

7. Spurious Emission

DΔG

Condition	Antenna	Modulation	TX_Frequency (MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	-0.895	-44.988	-20.895	Pass
NVNT	ANT1	1Mbps	2440.00	-0.954	-46.588	-20.954	Pass
NVNT	ANT1	1Mbps	2480.00	-0.645	-42.145	-20.645	Pass



Tel: +86-755-23010613 E-mail: service@dace-lab.com

Web: http://www.dace-lab.com

Page 61 of 62

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 62 of 62