

# **FCC TEST REPORT** FCC ID:2A6NT-VGEA46 IC:28474-VGEA46

| Report Number                                                                                              | ZKT-220718L5033-1                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of Test                                                                                               | . Jul. 10, 2022 to Aug. 19, 2022                                                                                                                                                                                                                                                     |
| Date of issue                                                                                              | : Aug. 22, 2022                                                                                                                                                                                                                                                                      |
| Total number of pages                                                                                      | 69                                                                                                                                                                                                                                                                                   |
| Test Result                                                                                                | PASS                                                                                                                                                                                                                                                                                 |
| Testing Laboratory                                                                                         | Shenzhen ZKT Technology Co., Ltd.                                                                                                                                                                                                                                                    |
| Address                                                                                                    | 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China                                                                                                                                                                 |
| Applicant's name                                                                                           | : Cerwin-Vega, Inc                                                                                                                                                                                                                                                                   |
| Address                                                                                                    | 3761 S. Hill Street Los Angeles, CA 90007                                                                                                                                                                                                                                            |
| Manufacturer's name                                                                                        | : Cerwin-Vega, Inc                                                                                                                                                                                                                                                                   |
| Address                                                                                                    | 3761 S. Hill Street Los Angeles, CA 90007                                                                                                                                                                                                                                            |
| Test specification:                                                                                        |                                                                                                                                                                                                                                                                                      |
| Standard                                                                                                   | FCC CFR Title 47 Part 15 Subpart C Section 15.247<br>RSS-247 Issue 2: February 2017<br>RSS-GEN, Issue 5: March 2019<br>ANSI C63.10:2013                                                                                                                                              |
| Test procedure                                                                                             | : /                                                                                                                                                                                                                                                                                  |
| Non-standard test method                                                                                   | : N/A                                                                                                                                                                                                                                                                                |
| Test Report Form No                                                                                        | TRF-EL-111_V0                                                                                                                                                                                                                                                                        |
| Test Report Form(s) Originator                                                                             | ZKT Testing                                                                                                                                                                                                                                                                          |
| Master TRF                                                                                                 | Dated: 2021-04-22                                                                                                                                                                                                                                                                    |
| test (EUT) is in compliance with the<br>identified in the report.<br>This report shall not be reproduced e | en tested by ZKT, and the test results show that the equipment under<br>e FCC requirements. And it is applicable only to the tested sample<br>except in full, without the written approval of ZKT, this document may<br>al only, and shall be noted in the revision of the document. |
| Product name                                                                                               | Subwoofer                                                                                                                                                                                                                                                                            |
| Trademark                                                                                                  |                                                                                                                                                                                                                                                                                      |
| Model/Type reference                                                                                       | VEGA4S-HUB, VEGA6S-HUB                                                                                                                                                                                                                                                               |
| Ratings                                                                                                    | AC 100V-240V, 50/60Hz                                                                                                                                                                                                                                                                |
|                                                                                                            |                                                                                                                                                                                                                                                                                      |

Shenzhen ZKT Technolgy Co., Ltd.





| Testing procedure and testing location: |                                                                                                                                                                 |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Testing Laboratory:<br>Address          | Shenzhen ZKT Technology Co., Ltd.<br>1/F, No. 101, Building B, No. 6, Tangwei Community<br>Industrial Avenue, Fuhai Street, Bao'an District,<br>Shenzhen, China |  |  |
| Tested by (name + signature):           | Alen He                                                                                                                                                         |  |  |
| Reviewer (name + signature):            | Joe. Lin.                                                                                                                                                       |  |  |
| Approved (name + signature):            | Lake Xie                                                                                                                                                        |  |  |
|                                         |                                                                                                                                                                 |  |  |





# **Table of Contents**

|                                              | Page |
|----------------------------------------------|------|
| 1. VERSION                                   |      |
| 2. TEST SUMMARY                              |      |
| 2.1 TEST FACILITY                            |      |
| 2.2 MEASUREMENT UNCERTAINTY                  |      |
| 3. GENERAL INFORMATION                       |      |
| 3.1 GENERAL DESCRIPTION OF EUT               | 8    |
| 3.2 Test Setup Configuration                 | 9    |
| 3.3 Support Equipment                        | 9    |
| 3.4 Test Mode                                |      |
| 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS       |      |
| 4. EMC EMISSION TEST                         | 12   |
| 4.1 Conducted emissions                      |      |
| 4.1.1 POWER LINE CONDUCTED EMISSION Limits   |      |
| 4.1.2 TEST PROCEDURE                         |      |
| 4.1.3 DEVIATION FROM TEST STANDARD           |      |
| 4.1.4 TEST SETUP                             |      |
| 4.1.5 EUT OPERATING CONDITIONS               |      |
| 4.1.6 Test Result                            |      |
| 4.2 Radiated emissions                       |      |
| 4.2.1 Radiated Emission Limits               |      |
| 4.2.2 TEST PROCEDURE                         |      |
| 4.2.3 DEVIATION FROM TEST STANDARD           |      |
| 4.2.4 TEST SETUP                             |      |
| 4.2.5 EUT OPERATING CONDITIONS               |      |
| 4.2.6 TEST RESULTS                           |      |
| 5. RADIATED BAND EMISSION MEASUREMENT        |      |
| 5.1 Test Requirement:                        |      |
| 5.2 TEST PROCEDURE                           |      |
| 5.3 DEVIATION FROM TEST STANDARD             |      |
| 5.4 TEST SETUP                               |      |
| 5.5 EUT OPERATING CONDITIONS                 |      |
| 5.6 TEST RESULT                              |      |
| 6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION |      |
| 6.1 Limit                                    |      |
| 6.2 Test Setup                               |      |
| 6.3 Test procedure                           |      |
| 6.4 DEVIATION FROM STANDARD                  |      |
| 6.5 Test Result                              |      |
| 7. 20DB BANDWIDTH & 99% BANDWIDTH            |      |
| 7.1 Test Setup                               |      |
| 7.2 Limit                                    |      |
| 7.3 Test procedure                           |      |
| 7.4 DEVIATION FROM STANDARD                  |      |
| 2KT Technolgy Co., Ltd.                      | 40   |
| r ziki redinidigy od., tiu.                  |      |

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



| 7.5 Test Result                 |    |
|---------------------------------|----|
| 8. MAXIMUM PEAK OUTPUT POWER    |    |
| 8.1 Block Diagram Of Test Setup |    |
| 8.2 Limit                       |    |
| 8.3 Test procedure              |    |
| 8.4 DEVIATION FROM STANDARD     | 46 |
| 8.5 Test Result                 |    |
| 9. HOPPING CHANNEL SEPARATION   |    |
| 9.1 Test Setup                  | 52 |
| 9.2 Test procedure              |    |
| 9.3 DEVIATION FROM STANDARD     |    |
| 9.4 Test Result                 |    |
| 10.NUMBER OF HOPPING FREQUENCY  |    |
| 10.1 Test Setup                 | 58 |
| 10.2 Test procedure             |    |
| 10.3 DEVIATION FROM STANDARD    | 58 |
| 10.4 Test Result                |    |
| 11. DWELL TIME                  |    |
| 11.1 Test Setup                 |    |
| 11.2 Test procedure             |    |
| 11.3 DEVIATION FROM STANDARD    |    |
| 11.4 Test Result                |    |
| 12. ANTENNA REQUIREMENT         |    |
| 13. TEST SETUP PHOTO            |    |
| 14. EUT CONSTRUCTIONAL DETAILS  |    |





| Report No.        | Version | Description             | Approved      |
|-------------------|---------|-------------------------|---------------|
| ZKT-220718L5033-1 | Rev.01  | Initial issue of report | Aug. 22, 2022 |
|                   |         |                         |               |
|                   |         |                         |               |





Test procedures according to the technical standards:

| FCC Part15 (15.247) , Subpart C<br>RSS-247 Issue 2: February 2017 |                                              |        |        |  |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------|--------|--------|--|--|--|--|
| Standard<br>Section                                               | Test Item                                    | Result | Remark |  |  |  |  |
| 15.203/15.247<br>(c)<br>RSS-Gen 6.8                               | Antenna Requirement                          | PASS   |        |  |  |  |  |
| 15.207<br>RSS-Gen 8.8                                             | AC Power Line Conducted Emission             | PASS   |        |  |  |  |  |
| 15.247 (b)(1)<br>RSS-247.5.4(4)                                   | Conducted Peak Output Power                  | PASS   |        |  |  |  |  |
| 15.247 (a)(1)<br>RSS-247.5.1(2)<br>RSS-Gen.6.7                    | 20dB Occupied Bandwidth & 99% OCB            | PASS   |        |  |  |  |  |
| 15.247 (a)(1)<br>RSS-247.5.1(4)                                   | Carrier Frequencies Separation               | PASS   |        |  |  |  |  |
| 15.247 (a)(1)(iii)<br>RSS-247.5.1(4)                              | Hopping Channel Number                       | PASS   |        |  |  |  |  |
| 15.247 (a)(1)(iii)<br>RSS-247.5.1(5)                              | Dwell Time                                   | PASS   |        |  |  |  |  |
| 15.205/15.209<br>RSS-Gen.6.13<br>RSS-Gen.8.10                     | Radiated Emission and Restricted Bandedge    | PASS   |        |  |  |  |  |
| 15.247(d)<br>RSS-247 5.5                                          | Conducted Unwanted emissions and<br>Bandedge | PASS   |        |  |  |  |  |

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report







#### 2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033 Test lab CAB identifier:CN0110

#### 2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U  $^{,}$  where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of  $\,$  k=2  $^{,}$  providing a level of confidence of approximately 95 %  $^{\circ}$ 

| No. | Item                         | Uncertainty |
|-----|------------------------------|-------------|
| 1   | Conducted Emission Test      | ±1.38dB     |
| 2   | RF power conducted           | ±0.16dB     |
| 3   | Spurious emissions conducted | ±0.21dB     |
| 4   | All emissions radiated(<1G)  | ±4.68dB     |
| 5   | All emissions radiated(>1G)  | ±4.89dB     |
| 6   | Temperature                  | ±0.5°C      |
| 7   | Humidity                     | ±2%         |



# **3. GENERAL INFORMATION**

# **3.1 GENERAL DESCRIPTION OF EUT**

| Product Name:          | Subwoofer                                                                                                                                                                                                                                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | VEGA6S-HUB                                                                                                                                                                                                                                                |
| Sample ID:             | ZKT220718L5033-1#                                                                                                                                                                                                                                         |
| Serial No.:            | VEGA4S-HUB                                                                                                                                                                                                                                                |
| Model Different.:      | VEGA4S and VEGA6S power boards are the same, and the power<br>amplifier PCB board is the same. Differences: 1. Due to different<br>power, VEGA4S is equipped with one less power amplifier IC than<br>VEGA6S. 2. The sizes of wooden cases are different. |
| HVIN:                  | VEGA6S-HUB, VEGA4S-HUB                                                                                                                                                                                                                                    |
| Hardware Version:      | V1.0                                                                                                                                                                                                                                                      |
| Software Version:      | V1.0                                                                                                                                                                                                                                                      |
| Sample(s) Status:      | Engineer sample                                                                                                                                                                                                                                           |
| Channel numbers:       | 79                                                                                                                                                                                                                                                        |
| Channel separation:    | 2402MHz~2480MHz                                                                                                                                                                                                                                           |
| Modulation technology: | GFSK, π/4-DQPSK, 8-DPSK                                                                                                                                                                                                                                   |
| Antenna Type:          | PCB antenna                                                                                                                                                                                                                                               |
| Antenna gain:          | 2.6dBi                                                                                                                                                                                                                                                    |
| Power supply:          | AC 100V-240V, 50/60Hz                                                                                                                                                                                                                                     |

| Operation | Frequency each | n of channel |           | · · · · · |           |         |           |
|-----------|----------------|--------------|-----------|-----------|-----------|---------|-----------|
| Channel   | Frequency      | Channel      | Frequency | Channel   | Frequency | Channel | Frequency |
| 1         | 2402MHz        | 21           | 2422MHz   | 41        | 2442MHz   | 61      | 2462MHz   |
| 2         | 2403MHz        | 22           | 2423MHz   | 42        | 2443MHz   | 62      | 2463MHz   |
| 3         | 2404MHz        | 23           | 2424MHz   | 43        | 2444MHz   | 63      | 2464MHz   |
| 4         | 2405MHz        | 24           | 2425MHz   | 44        | 2445MHz   | 64      | 2465MHz   |
| 5         | 2406MHz        | 25           | 2426MHz   | 45        | 2446MHz   | 65      | 2466MHz   |
| 6         | 2407MHz        | 26           | 2427MHz   | 46        | 2447MHz   | 66      | 2467MHz   |
| 7         | 2408MHz        | 27           | 2428MHz   | 47        | 2448MHz   | 67      | 2468MHz   |
| 8         | 2409MHz        | 28           | 2429MHz   | 48        | 2449MHz   | 68      | 2469MHz   |
| 9         | 2410MHz        | 29           | 2430MHz   | 49        | 2450MHz   | 69      | 2470MHz   |
| 10        | 2411MHz        | 30           | 2431MHz   | 50        | 2451MHz   | 70      | 2471MHz   |
| 11        | 2412MHz        | 31           | 2432MHz   | 51        | 2452MHz   | 71      | 2472MHz   |
| 12        | 2413MHz        | 32           | 2433MHz   | 52        | 2453MHz   | 72      | 2473MHz   |
| 13        | 2414MHz        | 33           | 2434MHz   | 53        | 2454MHz   | 73      | 2474MHz   |
| 14        | 2415MHz        | 34           | 2435MHz   | 54        | 2455MHz   | 74      | 2475MHz   |
| 15        | 2416MHz        | 35           | 2436MHz   | 55        | 2456MHz   | 75      | 2476MHz   |
| 16        | 2417MHz        | 36           | 2437MHz   | 56        | 2457MHz   | 76      | 2477MHz   |





| 17 | 2418MHz | 37 | 2438MHz | 57 | 2458MHz | 77 | 2478MHz |
|----|---------|----|---------|----|---------|----|---------|
| 18 | 2419MHz | 38 | 2439MHz | 58 | 2459MHz | 78 | 2479MHz |
| 19 | 2420MHz | 39 | 2440MHz | 59 | 2460MHz | 79 | 2480MHz |
| 20 | 2421MHz | 40 | 2441MHz | 60 | 2461MHz |    |         |

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Test channel        | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2441MHz   |
| The Highest channel | 2480MHz   |

#### 3.2 Test Setup Configuration

**Conducted Emission** 

AC Line EUT Radiated Emission AC Line EUT Conducted Spurious AC Line EUT

3.3 Support Equipment

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand          | Model/Type No. | Series No. | Note |
|------|-----------|--------------------|----------------|------------|------|
| E-1  | Subwoofer | <b>CERWIN-VEGA</b> | VEGA6S-HUB     | N/A        | EUT  |
| AE   | Notebook  | lenovo             | B40-80         | MP07F6JD   | AE   |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
|      |               |              |        |      |
|      |               |              |        |      |
|      |               |              |        |      |

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in <sup>[]</sup>Length <sup>[]</sup> column.





| Transmitting mode                                                                                                                                                                                                               | Keep the EUT in continuously transmitting mode. |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|
| Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated sup voltage, and found that the worst case was under the nominal rated supply condition. So the rep just shows that condition's data. |                                                 |  |  |  |  |

| Test Software     | FCC_V2.24_20200921 |
|-------------------|--------------------|
| Power level setup | <7dBm              |





# 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

# Radiation & RF Conducted Test equipment

| Item | Equipment                           | Manufacturer    | Type No.           | Serial No. | Last calibration | Calibrated until |
|------|-------------------------------------|-----------------|--------------------|------------|------------------|------------------|
| 1    | Spectrum Analyzer<br>(9kHz-26.5GHz) | KEYSIGHT        | 9020A              | MY45109572 | Sep. 21, 2021    | Sep. 20, 2022    |
| 2    | Spectrum Analyzer<br>(1GHz-40GHz)   | Agilent         | E4446A             | 100363     | Sep. 21, 2021    | Sep. 20, 2022    |
| 3    | Test Receiver<br>(9kHz-7GHz)        | R&S             | ESCI7              | 101169     | Sep. 21, 2021    | Sep. 20, 2022    |
| 4    | Bilog Antenna<br>(30MHz-1400MHz)    | Schwarzbeck     | VULB9168           | 00877      | Sep. 21, 2021    | Sep. 20, 2022    |
| 5    | Horn Antenna<br>(1GHz-18GHz)        | SCHWARZBEC<br>K | BBHA9120D          | 1541       | Sep. 21, 2021    | Sep. 20, 2022    |
| 6    | Horn Antenna<br>(18GHz-40GHz)       | A.H. System     | SAS-574            | 588        | Sep. 21, 2021    | Sep. 20, 2022    |
| 7    | Amplifier<br>(30-1000MHz)           | EM Electronics  | EM330<br>Amplifier | N/A        | Sep. 21, 2021    | Sep. 20, 2022    |
| 8    | Amplifier<br>(1GHz-40GHz)           | QUANJUDA        | DLE-161            | 097        | Sep. 21, 2021    | Sep. 20, 2022    |
| 9    | Loop Antenna<br>(9KHz-30MHz)        | SCHWARZBEC<br>K | FMZB1519B          | 014        | Sep. 21, 2021    | Sep. 20, 2022    |
| 10   | RF cables1<br>(9kHz-30MHz)          | N/A             | 9kHz-30MHz         | N/A        | Sep. 21, 2021    | Sep. 20, 2022    |
| 11   | RF cables2<br>(30MHz-1GHz)          | N/A             | 30MHz-1GHz         | N/A        | Sep. 21, 2021    | Sep. 20, 2022    |
| 12   | RF cables3<br>(1GHz-40GHz)          | N/A             | 1GHz-40GHz         | N/A        | Sep. 21, 2021    | Sep. 20, 2022    |
| 13   | CMW500 Test                         | R&S             | CMW500             | 106504     | Sep. 21, 2021    | Sep. 20, 2022    |
| 14   | ESG Signal<br>Generator             | Agilent         | E4421B             | GB40051203 | Sep. 21, 2021    | Sep. 20, 2022    |
| 15   | Signal Generator                    | Agilent         | N5182A             | MY47420215 | Sep. 21, 2021    | Sep. 20, 2022    |
| 16   | Power Meter                         | Anritsu         | ML2495A            | N/A        | Sep. 21, 2021    | Sep. 20, 2022    |
| 17   | D.C. Power Supply                   | LongWei         | TPR-6405D          | ١          | ١                | ١                |
| 18   | Software                            | Audix           | E3                 | 6.101223a  | ١                | ١                |

# **Conduction Test equipment**

| Item | Kind of Equipment | Manufacturer | Type No. | Serial No.  | Last calibration | Calibrated until |
|------|-------------------|--------------|----------|-------------|------------------|------------------|
| 1    | LISN              | R&S          | ENV216   | 101471      | Sep. 21, 2021    | Sep. 20, 2022    |
| 2    | LISN              | CYBERTEK     | EM5040A  | E1850400149 | Sep. 21, 2021    | Sep. 20, 2022    |
| 3    | Test Cable        | N/A          | C01      | N/A         | Sep. 21, 2021    | Sep. 20, 2022    |
| 4    | Test Cable        | N/A          | C02      | N/A         | Sep. 21, 2021    | Sep. 20, 2022    |
| 5    | EMI Test Receiver | R&S          | ESRP3    | 101946      | Sep. 21, 2021    | Sep. 20, 2022    |
| 6    | Absorbing Clamp   | DZ           | ZN23201  | N/A         | Sep. 21, 2021    | Sep. 20, 2022    |
| 7    | Software          | Audix        | E3       | 6.101223a   | ١                | λ                |











#### 4. EMC EMISSION TEST

#### 4.1 Conducted emissions

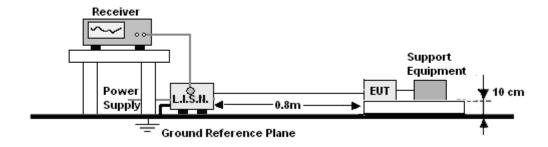
| Test Requirement:     | FCC Part15 C Section 15.207& RSS-Gen [8.8] |
|-----------------------|--------------------------------------------|
| Test Method:          | ANSI C63.10:2013                           |
| Test Frequency Range: | 150KHz to 30MHz                            |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sweep time=auto       |

#### 4.1.1 POWER LINE CONDUCTED EMISSION Limits

| FREQUENCY (MHz) | Limit (    | Standard  |          |
|-----------------|------------|-----------|----------|
|                 | Quasi-peak | Average   | Stanuaru |
| 0.15 -0.5       | 66 - 56 *  | 56 - 46 * | FCC      |
| 0.50 -5.0       | 56.00      | 46.00     | FCC      |
| 5.0 -30.0       | 60.00      | 50.00     | FCC      |

Note:

(1) \*Decreases with the logarithm of the frequency.


#### 4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

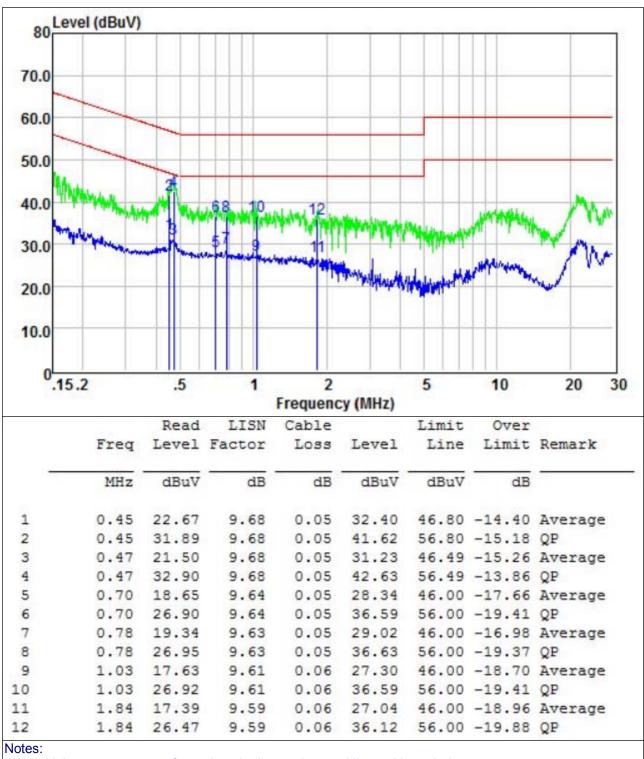






# 4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.





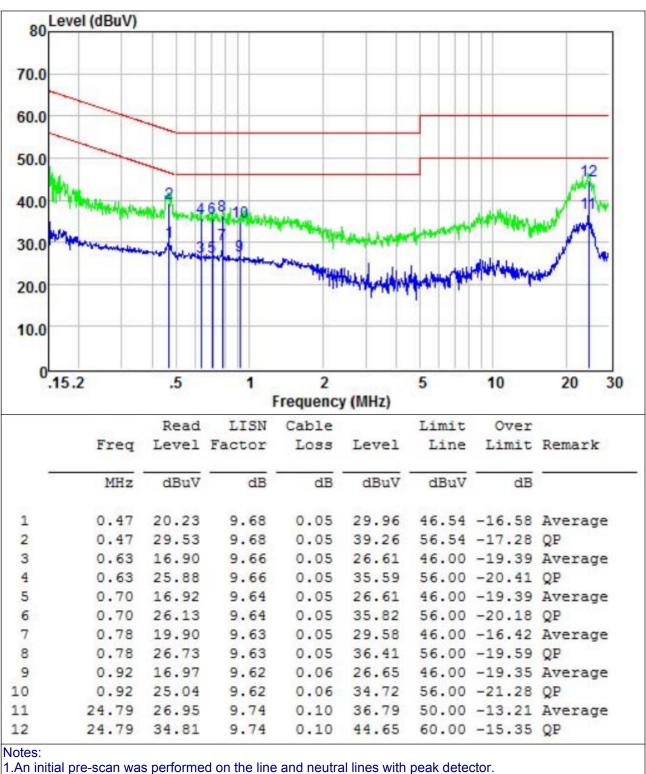
#### 4.1.6 Test Result

| Temperature :  | <b>26</b> ℃  | Relative Humidity: | 54% |
|----------------|--------------|--------------------|-----|
| Pressure :     | 101kPa       | Phase :            | L   |
| Test Voltage : | AC 120V/60Hz |                    |     |



1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor


4.The test data shows only the worst case GFSK mode Shenzhen ZKT Technolgy Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China





| Temperature :  | <b>26</b> ℃    | Relative Humidity: | 54% |
|----------------|----------------|--------------------|-----|
| Pressure :     | 101kPa Phase : |                    | Ν   |
| Test Voltage : | AC 120V/60Hz   |                    |     |



2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

4. The test data shows only the worst case GFSK mode

Shenzhen ZKT Technolgy Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China







#### 4.2 Radiated emissions

| Test Requirement:     | FCC Part15 C Section 15.209 & RSS-247 [5.5] |            |        |        |            |  |
|-----------------------|---------------------------------------------|------------|--------|--------|------------|--|
| Test Method:          | ANSI C63.10:2013                            |            |        |        |            |  |
| Test Frequency Range: | 9kHz to 25GHz                               |            |        |        |            |  |
| Test site:            | Measurement Distance: 3m                    |            |        |        |            |  |
| Receiver setup:       | Frequency                                   | Detector   | RBW    | VBW    | Value      |  |
|                       | 9KHz-150KHz                                 | Quasi-peak | 200Hz  | 600Hz  | Quasi-peak |  |
|                       | 150KHz-30MHz                                | Quasi-peak | 9KHz   | 30KHz  | Quasi-peak |  |
|                       | 30MHz-1GHz                                  | Quasi-peak | 100KHz | 300KHz | Quasi-peak |  |
|                       | Above 1GHz                                  | Peak       | 1MHz   | 3MHz   | Peak       |  |
|                       |                                             | Peak       | 1MHz   | 1/T    | Average    |  |
|                       |                                             |            |        |        |            |  |

#### 4.2.1 Radiated Emission Limits

| Frequencies<br>(MHz) | Field Strength<br>(micorvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(KHz)                          | 300                              |
| 0.490~1.705          | 24000/F(KHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

#### LIMITS OF RADIATED EMISSION MEASUREMENT

| FREQUENCY (MHz) | Limit (dBuV/m) (at 3M) |         |  |
|-----------------|------------------------|---------|--|
|                 | PEAK                   | AVERAGE |  |
| Above 1000      | 74                     | 54      |  |

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### 4.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.



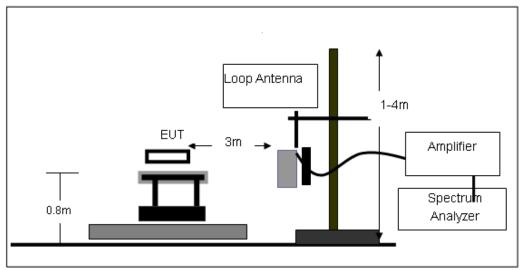


- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre( Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

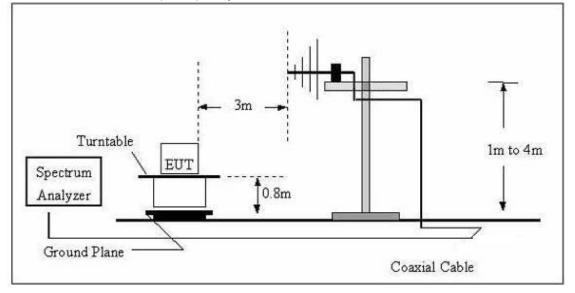
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

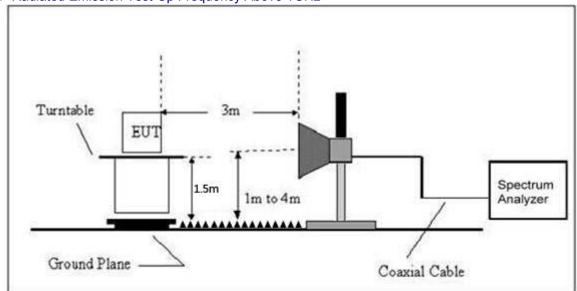
#### 4.2.3 DEVIATION FROM TEST STANDARD

#### No deviation

#### 4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz








# (B) Radiated Emission Test-Up Frequency 30MHz~1GHz



# (C) Radiated Emission Test-Up Frequency Above 1GHz



# 4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



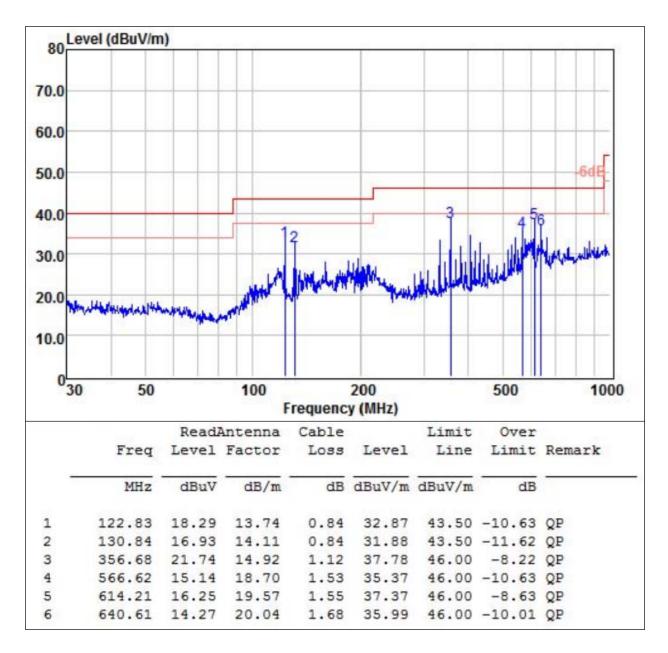




# 4.2.6 TEST RESULTS

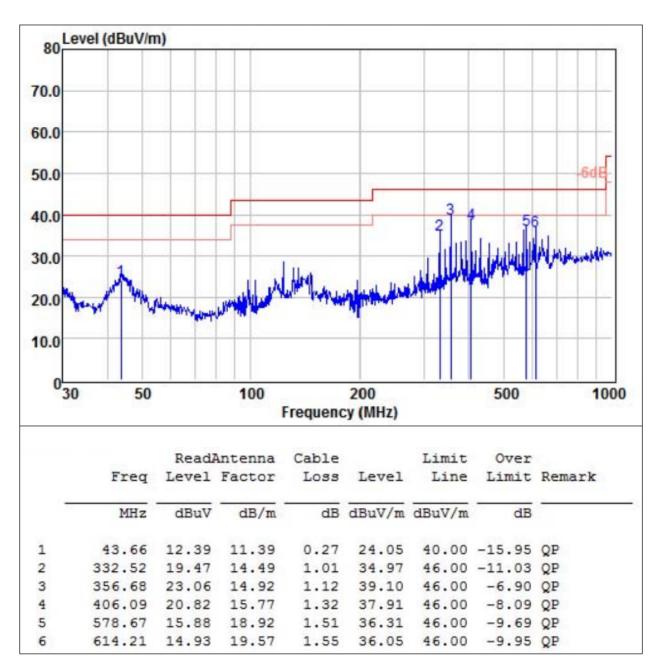
# Between 9KHz – 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.









#### Between 30MHz - 1GHz

| Temperature:  | <b>26</b> ℃  | Relative Humidity: | 54%        |
|---------------|--------------|--------------------|------------|
| Pressure:     | 101 kPa      | Polarization:      | Horizontal |
| Test Voltage: | AC 120V/60Hz |                    |            |





| Temperature:  | <b>26</b> ℃  | Relative Humidity: | 54%      |
|---------------|--------------|--------------------|----------|
| Pressure:     | 101kPa       | Polarization:      | Vertical |
| Test Voltage: | AC 120V/60Hz |                    |          |



Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case GFSK mode









# Above 1 GHz Test Results (GFSK Worst Case): 1GHz~25GHz

|       |           |                  |                   | (             | GFSK              |                   |          |        |          |
|-------|-----------|------------------|-------------------|---------------|-------------------|-------------------|----------|--------|----------|
| Polar | Frequency | Meter<br>Reading | Pre-ampli<br>fier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector |
| (H/V) | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/m) | (dB)   | Туре     |
|       |           |                  |                   | Low Cha       | nnel:2402M        | Hz                |          |        |          |
| V     | 4804.00   | 55.81            | 30.55             | 5.77          | 24.66             | 55.69             | 74.00    | -18.31 | Pk       |
| V     | 4804.00   | 46.73            | 30.55             | 5.77          | 24.66             | 46.61             | 54.00    | -7.39  | AV       |
| V     | 7206.00   | 53.41            | 30.33             | 6.32          | 24.55             | 53.95             | 74.00    | -20.05 | Pk       |
| V     | 7206.00   | /                | 30.33             | 6.32          | 24.55             | /                 | 54.00    | /      | AV       |
| V     | 9608.00   | 51.26            | 30.85             | 7.45          | 24.69             | 52.55             | 74.00    | -21.45 | Pk       |
| V     | 9608.00   | /                | 30.85             | 7.45          | 24.69             | /                 | 54.00    | /      | AV       |
| V     | 12010.00  | 49.56            | 31.02             | 8.99          | 25.57             | 53.1              | 74.00    | -20.9  | Pk       |
| V     | 12010.00  | /                | 31.02             | 8.99          | 25.57             | /                 | 54.00    | /      | AV       |
| Н     | 4804.00   | 56.32            | 30.55             | 5.77          | 24.66             | 56.2              | 74.00    | -17.8  | Pk       |
| Н     | 4804.00   | 47.18            | 30.55             | 5.77          | 24.66             | 47.06             | 54.00    | -6.94  | AV       |
| Н     | 7206.00   | 52.81            | 30.33             | 6.32          | 24.55             | 53.35             | 74.00    | -20.65 | Pk       |
| Н     | 7206.00   | /                | 30.33             | 6.32          | 24.55             | /                 | 54.00    | /      | AV       |
| Н     | 9608.00   | 50.46            | 30.85             | 7.45          | 24.69             | 51.75             | 74.00    | -22.25 | Pk       |
| Н     | 9608.00   | /                | 30.85             | 7.45          | 24.69             | /                 | 54.00    | /      | AV       |
| Н     | 12010.00  | 49.32            | 31.02             | 8.99          | 25.57             | 52.86             | 74.00    | -21.14 | Pk       |
| Н     | 12010.00  | /                | 31.02             | 8.99          | 25.57             | /                 | 54.00    | 1      | AV       |

| Polar | Frequency | Meter<br>Reading | Pre-ampli<br>fier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector |
|-------|-----------|------------------|-------------------|---------------|-------------------|-------------------|----------|--------|----------|
| (H/V) | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/m) | (dB)   | Туре     |
|       | •         |                  | N                 | Aiddle Ch     | nannel:2441       | MHz               |          |        |          |
| V     | 4882.00   | 55.21            | 30.55             | 5.77          | 24.66             | 55.09             | 74.00    | -18.91 | Pk       |
| V     | 4882.00   | 45.16            | 30.55             | 5.77          | 24.66             | 45.04             | 54.00    | -8.96  | AV       |
| V     | 7323.00   | 52.34            | 30.33             | 6.32          | 24.55             | 52.88             | 74.00    | -21.12 | Pk       |
| V     | 7323.00   | /                | 30.33             | 6.32          | 24.55             | /                 | 54.00    | /      | AV       |
| V     | 9764.00   | 50.18            | 30.85             | 7.45          | 24.69             | 51.47             | 74.00    | -22.53 | Pk       |
| V     | 9764.00   | /                | 30.85             | 7.45          | 24.69             | /                 | 54.00    | /      | AV       |
| V     | 12205.00  | 48.29            | 31.02             | 8.99          | 25.57             | 51.83             | 74.00    | -22.17 | Pk       |
| V     | 12205.00  | /                | 31.02             | 8.99          | 25.57             | /                 | 54.00    | /      | AV       |
| Н     | 4882.00   | 55.62            | 30.55             | 5.77          | 24.66             | 55.5              | 74.00    | -18.5  | Pk       |
| Н     | 4882.00   | 45.81            | 30.55             | 5.77          | 24.66             | 45.69             | 54.00    | -8.31  | AV       |
| Н     | 7323.00   | 52.16            | 30.33             | 6.32          | 24.55             | 52.7              | 74.00    | -21.3  | Pk       |
| Н     | 7323.00   | /                | 30.33             | 6.32          | 24.55             | /                 | 54.00    | /      | AV       |
| Н     | 9764.00   | 50.46            | 30.85             | 7.45          | 24.69             | 51.75             | 74.00    | -22.25 | Pk       |
| Н     | 9764.00   | /                | 30.85             | 7.45          | 24.69             | /                 | 54.00    | /      | AV       |
| Н     | 12205.00  | 49.16            | 31.02             | 8.99          | 25.57             | 52.7              | 74.00    | -21.3  | Pk       |
| Н     | 12205.00  | /                | 31.02             | 8.99          | 25.57             | /                 | 54.00    | /      | AV       |



| - 1 |  |
|-----|--|
| 69  |  |
| 00  |  |
|     |  |

| Polar | Frequency | Meter<br>Reading | Pre-ampli<br>fier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector |
|-------|-----------|------------------|-------------------|---------------|-------------------|-------------------|----------|--------|----------|
| (H/V) | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/m) | (dB)   | Туре     |
|       |           | •                |                   | -<br>ligh Cha | nnel:2480N        | IHz               |          |        |          |
| V     | 4960.00   | 55.14            | 30.55             | 5.77          | 24.66             | 55.02             | 74.00    | -18.98 | Pk       |
| V     | 4960.00   | 45.32            | 30.55             | 5.77          | 24.66             | 45.2              | 54.00    | -8.8   | AV       |
| V     | 7440.00   | 52.91            | 30.33             | 6.32          | 24.55             | 53.45             | 74.00    | -20.55 | Pk       |
| V     | 7440.00   | /                | 30.33             | 6.32          | 24.55             | /                 | 54.00    | /      | AV       |
| V     | 9920.00   | 50.29            | 30.85             | 7.45          | 24.69             | 51.58             | 74.00    | -22.42 | Pk       |
| V     | 9920.00   | /                | 30.85             | 7.45          | 24.69             | /                 | 54.00    | /      | AV       |
| V     | 12400.00  | 48.37            | 31.02             | 8.99          | 25.57             | 51.91             | 74.00    | -22.09 | Pk       |
| V     | 12400.00  | /                | 31.02             | 8.99          | 25.57             | /                 | 54.00    | /      | AV       |
| Н     | 4960.00   | 55.74            | 30.55             | 5.77          | 24.66             | 55.62             | 74.00    | -18.38 | Pk       |
| Н     | 4960.00   | 45.31            | 30.55             | 5.77          | 24.66             | 45.19             | 54.00    | -8.81  | AV       |
| Н     | 7440.00   | 52.81            | 30.33             | 6.32          | 24.55             | 53.35             | 74.00    | -20.65 | Pk       |
| Н     | 7440.00   | /                | 30.33             | 6.32          | 24.55             | /                 | 54.00    | /      | AV       |
| Н     | 9920.00   | 51.06            | 30.85             | 7.45          | 24.69             | 52.35             | 74.00    | -21.65 | Pk       |
| Н     | 9920.00   | /                | 30.85             | 7.45          | 24.69             | /                 | 54.00    | /      | AV       |
| Н     | 12400.00  | 49.35            | 31.02             | 8.99          | 25.57             | 52.89             | 74.00    | -21.11 | Pk       |
| Н     | 12400.00  | /                | 31.02             | 8.99          | 25.57             | 1                 | 54.00    | /      | AV       |

### Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.







#### 5.1 Test Requirement:

| Test Requirement:     | FCC Part15 C Section 15.209 and 15.205                                                             |          |      |      |         |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------|----------|------|------|---------|--|--|--|
| Test Method:          | ANSI C63.10: 2013                                                                                  |          |      |      |         |  |  |  |
| Test Frequency Range: | All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed. |          |      |      |         |  |  |  |
| Test site:            | Measurement Distance: 3m                                                                           |          |      |      |         |  |  |  |
| Receiver setup:       | Frequency                                                                                          | Detector | RBW  | VBW  | Value   |  |  |  |
|                       | Above                                                                                              | Peak     | 1MHz | 3MHz | Peak    |  |  |  |
|                       | 1GHz                                                                                               | Average  | 1MHz | 1/T  | Average |  |  |  |

# LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | Limit (dBuV/m) (at 3M) |         |  |  |  |
|-----------------|------------------------|---------|--|--|--|
|                 | PEAK                   | AVERAGE |  |  |  |
| Above 1000      | 74                     | 54      |  |  |  |

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

| Spectrum Parameter                    | Setting                                         |
|---------------------------------------|-------------------------------------------------|
| Attenuation                           | Auto                                            |
| Start Frequency                       | 2300MHz                                         |
| Stop Frequency                        | 2520                                            |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 1/T for Average |

#### 5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

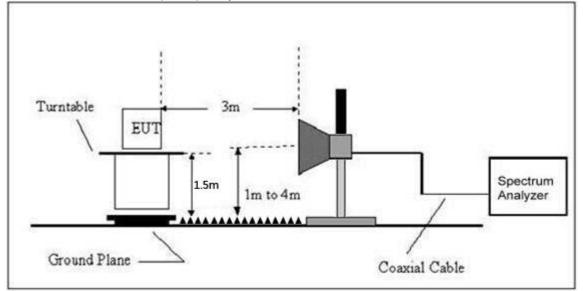
- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Shenzhen ZKT Technolgy Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China








# 5.3 DEVIATION FROM TEST STANDARD No deviation

# 5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz



# 5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.







### 5.6 TEST RESULT

#### PASS

Remark: All modes of GFSK,  $\pi/4$  DQPSK, 8DPSK were tested, only the worst result of GFSK was reported as below.

|      | Polar<br>(H/V) | Frequenc<br>y<br>(MHz) | Meter<br>Reading<br>(dBuV) | Pre-<br>amplifier<br>(dB) | Cable<br>Loss<br>(dB) | Antenna<br>Factor<br>(dB/m) | Emission<br>level<br>(dBuV/m) | Limit<br>(dBuV<br>/m) | Detec<br>tor<br>Type | Result |  |  |
|------|----------------|------------------------|----------------------------|---------------------------|-----------------------|-----------------------------|-------------------------------|-----------------------|----------------------|--------|--|--|
|      |                |                        |                            | Low                       | Channe                | I: 2402MHz                  | 2                             |                       |                      |        |  |  |
|      | Н              | 2390.00                | 54.39                      | 30.22                     | 4.85                  | 23.98                       | 53                            | 74.00                 | PK                   | PASS   |  |  |
|      | Н              | 2390.00                | 45.21                      | 30.22                     | 4.85                  | 23.98                       | 43.82                         | 54.00                 | AV                   | PASS   |  |  |
|      | Н              | 2400.00                | 53.29                      | 30.22                     | 4.85                  | 23.98                       | 51.9                          | 74.00                 | PK                   | PASS   |  |  |
|      | Н              | 2400.00                | /                          | 30.22                     | 4.85                  | 23.98                       | /                             | 54.00                 | AV                   | PASS   |  |  |
|      | V              | 2390.00                | 54.16                      | 30.22                     | 4.85                  | 23.98                       | 52.77                         | 74.00                 | PK                   | PASS   |  |  |
|      | V              | 2390.00                | 44.32                      | 30.22                     | 4.85                  | 23.98                       | 42.93                         | 54.00                 | AV                   | PASS   |  |  |
|      | V              | 2400.00                | 53.74                      | 30.22                     | 4.85                  | 23.98                       | 52.35                         | 74.00                 | PK                   | PASS   |  |  |
| OFOR | V              | 2400.00                | /                          | 30.22                     | 4.85                  | 23.98                       | /                             | 54.00                 | AV                   | PASS   |  |  |
| GFSK |                | High Channel: 2480MHz  |                            |                           |                       |                             |                               |                       |                      |        |  |  |
|      | Н              | 2483.50                | 54.36                      | 30.22                     | 4.85                  | 23.98                       | 52.97                         | 74.00                 | PK                   | PASS   |  |  |
|      | Н              | 2483.50                | 45.82                      | 30.22                     | 4.85                  | 23.98                       | 44.43                         | 54.00                 | AV                   | PASS   |  |  |
|      | Н              | 2500.00                | 53.08                      | 30.22                     | 4.85                  | 23.98                       | 51.69                         | 74.00                 | PK                   | PASS   |  |  |
|      | Н              | 2500.00                | /                          | 30.22                     | 4.85                  | 23.98                       | /                             | 54.00                 | AV                   | PASS   |  |  |
|      | V              | 2483.50                | 54.83                      | 30.22                     | 4.85                  | 23.98                       | 53.44                         | 74.00                 | PK                   | PASS   |  |  |
|      | V              | 2483.50                | 45.37                      | 30.22                     | 4.85                  | 23.98                       | 43.98                         | 54.00                 | AV                   | PASS   |  |  |
|      | V              | 2500.00                | 53.47                      | 30.22                     | 4.85                  | 23.98                       | 52.08                         | 74.00                 | PK                   | PASS   |  |  |
|      | V              | 2500.00                | /                          | 30.22                     | 4.85                  | 23.98                       | /                             | 54.00                 | AV                   | PASS   |  |  |







# 6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

| Test Requirement: | FCC Part15 C Section 15.247 (d) & RSS-247 5.5       |
|-------------------|-----------------------------------------------------|
| Test Method:      | KDB558074 D0115.247 Meas Guidancev05r02 and RSS-Gen |

#### 6.1 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 6.2 Test Setup



#### 6.3 Test procedure

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

#### 6.4 DEVIATION FROM STANDARD

No deviation.







#### 6.5 Test Result

Remark: Spurious Emission all modes of GFSK,  $\pi/4$  DQPSK, 8DPSK were tested, only the worst result of GFSK

Lowest channel

| was i | reported | as | bel | low |
|-------|----------|----|-----|-----|
| GFSI  | K mode:  |    |     |     |

Test channel:



#### CH:2402MHz



Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community

+86-400-000-9970

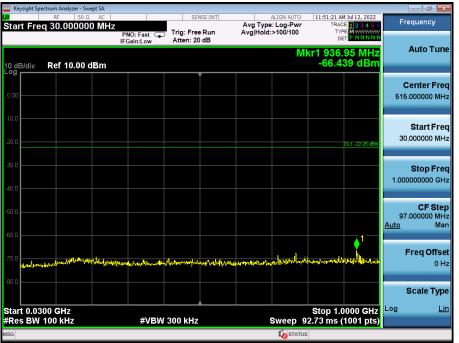
1







| 🔤 Keysight Sp      | ectrum Analyzer - | Swept SA    |                                         |                         |                     |          |                         |                |                         |             |                        |
|--------------------|-------------------|-------------|-----------------------------------------|-------------------------|---------------------|----------|-------------------------|----------------|-------------------------|-------------|------------------------|
| 🔀<br>Start Fre     | RF 5              | 0Ω AC       | -lz                                     |                         | SE:INT              | Avg Type | ALIGN AUTO<br>: Log-Pwr | TRA            | M Jul 12, 2022          | Fr          | equency                |
|                    | 100000            |             | PNO: Fast                               | Trig: Free<br>Atten: 20 |                     | Avg Hold | : 58/100                | TY<br>D        | PE MWWWWW<br>ET P NNNNN |             |                        |
|                    |                   |             | IFGain:Low                              | Atten: 20               | ub                  |          | M                       | ce4 02 0       | 56 GHz                  |             | Auto Tune              |
| 10 dB/div          | Ref 10.0          | 0 dBm       |                                         |                         |                     |          | IVI                     |                | 54 dBm                  |             |                        |
| Log                | Kei 10.0          | o ubiii     |                                         | Y                       |                     |          |                         |                |                         |             |                        |
| 0.00               |                   |             |                                         |                         |                     |          |                         |                |                         |             | Center Freq            |
| -10.0              |                   |             |                                         |                         |                     |          |                         |                |                         | 13.00       | 0000000 GHz            |
| -20.0              |                   | _           |                                         |                         |                     |          |                         |                | DL1 -22.19 dBm          |             |                        |
| -30.0              |                   |             |                                         |                         |                     |          |                         |                |                         |             | Start Freq             |
| -40.0              |                   |             |                                         |                         |                     |          |                         |                | <b></b> ∳ <sup>1</sup>  | 1.00        | 0000000 GHz            |
| -50.0              |                   |             |                                         |                         |                     |          | manilmonglas            | and the states | mohendre                |             |                        |
| -60.0 <b>-60.0</b> | Aurangener        | www.hild.Ma | مهر بر مرسوم الأمي<br>مرد المرسوم الأمي | manne                   | ممهليهم مريك المابر |          |                         |                |                         |             | Stop Freq              |
| -70.0              |                   |             |                                         |                         |                     |          |                         |                |                         | 25.00       | 0000000 GHz            |
| -80.0              |                   |             |                                         |                         |                     |          |                         |                |                         | 20.00       | 0000000000112          |
| Start 1.0          |                   |             |                                         |                         |                     |          |                         | Stop 2         | 5.00 GHz                |             | OF Otem                |
|                    | 1.0 MHz           |             | #VBV                                    | V 3.0 MHz               |                     |          | Sweep 6                 |                | 1001 pts)               | 2.40        | CF Step<br>0000000 GHz |
| MKR MODE T         |                   | X           |                                         | Y                       | FUNC                |          | CTION WIDTH             |                | ON VALUE                | <u>Auto</u> | Man                    |
| 1 N                |                   |             | .656 GHz                                | -46.754 dB              |                     |          |                         | 1011011        |                         |             |                        |
| 2                  |                   |             |                                         |                         |                     |          |                         |                |                         |             | Freq Offset            |
| 4                  |                   |             |                                         |                         |                     |          |                         |                | _                       |             | 0 Hz                   |
| 6                  |                   |             |                                         |                         |                     |          |                         |                |                         |             |                        |
| 8                  |                   |             |                                         |                         |                     |          |                         |                |                         |             | Scale Type             |
| 9                  |                   |             |                                         |                         |                     |          |                         |                |                         |             |                        |
| 11                 |                   |             |                                         |                         |                     |          |                         |                | -                       | Log         | Lin                    |
| <                  |                   |             |                                         | m                       |                     |          | <b>1</b>                |                | •                       |             |                        |
| MSG                |                   |             |                                         |                         |                     |          |                         | 5              |                         |             |                        |


1MHz~25GHz



#### Middle channel



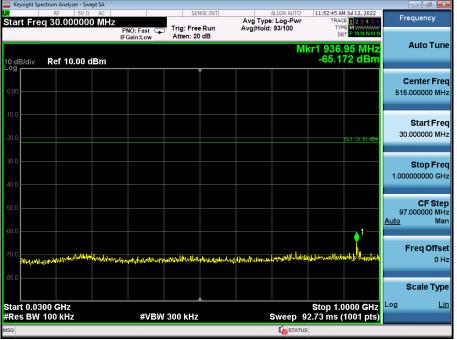




#### 30MHz~1GHz



| Keysight Spectrum Analyzer - Swept SA                                                                                                                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | - J ×                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| KF 50 Ω AC   Start Freg 1.000000000 G                                                                                                                                                                                 | SENSE:INT                                           | ALIGN AUTO<br>Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11:51:46 AM Jul 12, 2022<br>TRACE 1 2 3 4 5 6 | Frequency                                            |
| 10 dB/div Ref 10.00 dBm                                                                                                                                                                                               | PNO: Fast Trig: Free Run<br>IFGain:Low Atten: 20 dB | Avg Hold: 52/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 21.184 GHz<br>-47.877 dBm                   | Auto Tune                                            |
| -10.0<br>-20.0                                                                                                                                                                                                        |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL1 22.26 dBm                                 | <b>Center Freq</b><br>13.000000000 GHz               |
| -30.0                                                                                                                                                                                                                 |                                                     | A Warner and a start of the sta | 1                                             | <b>Start Freq</b><br>1.000000000 GHz                 |
| -60.0                                                                                                                                                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | <b>Stop Freq</b><br>25.000000000 GHz                 |
| Start 1.00 GHz<br>#Res BW 1.0 MHz                                                                                                                                                                                     | #VBW 3.0 MHz                                        | Sweep 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stop 25.00 GHz<br>00 ms (1001 pts)            | <b>CF Step</b><br>2.400000000 GHz<br><u>Auto</u> Man |
| 1 N 1 f 2   2 3 3 3 4 4 4 5 5 6 4 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 11.184 GHz -47.877 dBm                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                             | <b>Freq Offset</b><br>0 Hz                           |
| 7<br>8<br>9<br>10<br>11                                                                                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Scale Type                                           |
| MSG                                                                                                                                                                                                                   | III                                                 | <b>I</b> STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                             |                                                      |


1GHz~25GHz



#### **Highest channel**



CH:2480MHz

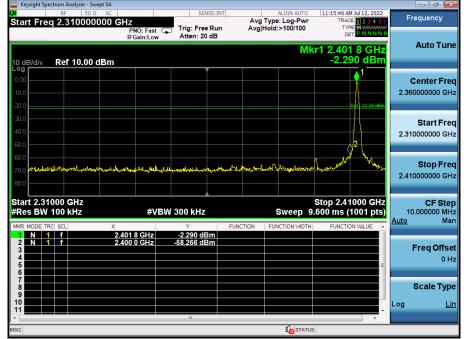


#### 30MHz~1GHz





| Keysight Spectrum Analyzer - Swep                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| ম⊧ 50 Ω<br>tart Freg 1.0000000                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT                             | ALIGN AUTO<br>Avg Type: Log-Pwr | 11:53:04 AM Jul 12, 2022<br>TRACE 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequency                          |
| tart Freq 1.0000000                                                 | PNO: Fast<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trig: Free Run<br>Atten: 20 dB        | Avg Hold: 43/100                | TYPE NWWWW<br>DET PNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 0 dB/div Ref 10.00 dl                                               | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | MI                              | (r1 24.544 GHz<br>-46.033 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Auto Tun                           |
| •g<br>0.00<br>10.0<br>20.0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 | 0L1 -21.91 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Center Fre<br>13.000000000 GH      |
| 0.0                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 | and the second s | <b>Start Fre</b><br>1.000000000 G⊦ |
| 00.0                                                                | ander The full in particular production of the particular production of th | erendelingthe market and and produced |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop Fre<br>25.000000000 G⊦        |
| tart 1.00 GHz<br>Res BW 1.0 MHz                                     | #VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BW 3.0 MHz                            |                                 | Stop 25.00 GHz<br>0.00 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CF Ste<br>2.40000000 GH<br>Auto Ma |
| KR MODE TRC SCL   1 N 1 f   2 - - -   3 - - -   4 - - -   5 - - - - | X<br>24.544 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y FU                                  | NCTION FUNCTION WIDTH           | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Freq Offse                         |
| 6<br>7<br>8<br>9<br>9                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale Typ                          |
| 1                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |

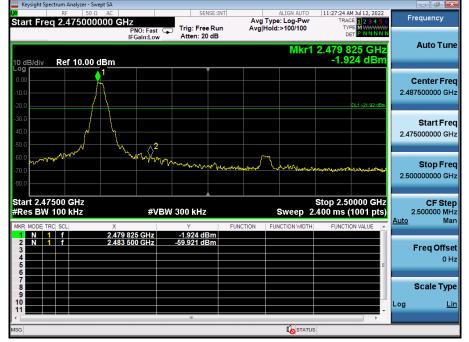

1GHz~25GHz

# Conducted band edge Test result

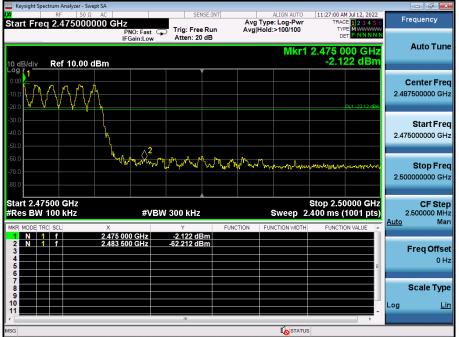
| Modulation |             | Frequency Band | Delta Peak to band<br>emission (dBc) | >Limit<br>(dBc) | Result |
|------------|-------------|----------------|--------------------------------------|-----------------|--------|
|            | Non honning | Left Band      | 55.98                                | 20              | Pass   |
| OFOK       | Non-hopping | Right Band     | 58.00                                | 20              | Pass   |
| GFSK       | henning     | Left Band      | 57.75                                | 20              | Pass   |
|            | hopping     | Right Band     | 60.09                                | 20              | Pass   |
|            | Non honning | Left Band      | 57.97                                | 20              | Pass   |
|            | Non-hopping | Right Band     | 60.29                                | 20              | Pass   |
| π/4DQPSK   | hanning     | Left Band      | 57.27                                | 20              | Pass   |
|            | hopping     | Right Band     | 57.70                                | 20              | Pass   |
|            | Non honning | Left Band      | 58.01                                | 20              | Pass   |
| 00001      | Non-hopping | Right Band     | 60.20                                | 20              | Pass   |
| 8DPSK      | henning     | Left Band      | 58.34                                | 20              | Pass   |
|            | hopping     | Right Band     | 60.21                                | 20              | Pass   |



# GFSK No-hopping Band edge-left side




# GFSK Hopping Band edge-left side


| Keysight Spectrum Analyzer - Swept SA    |                     |                               |                                 |                                                             | - J ×                                |
|------------------------------------------|---------------------|-------------------------------|---------------------------------|-------------------------------------------------------------|--------------------------------------|
| ₩ RF 50 Ω AC<br>Start Freq 2.310000000 G |                     | SENSE:INT                     | ALIGN AUTO<br>Avg Type: Log-Pwr | 11:16:35 AM Jul 12, 2022<br>TRACE 1 2 3 4 5 6               | Frequency                            |
| 10 dB/div Ref 10.00 dBm                  | PNO: Fast           | rig: Free Run<br>Atten: 20 dB | Avg Hold:>100/100               | TYPE MWWWW<br>DET P N N N N<br>r1 2.408 8 GHz<br>-2.329 dBm | Auto Tune                            |
| -20.0                                    |                     |                               |                                 |                                                             | Center Freq<br>2.360000000 GHz       |
| -30.0                                    |                     |                               |                                 | 2                                                           | <b>Start Freq</b><br>2.310000000 GHz |
| -60.0<br>-70.0                           | harden and a second | ~~~~                          | nmakon neuk kung                |                                                             | <b>Stop Freq</b><br>2.410000000 GHz  |
| Start 2.31000 GHz<br>#Res BW 100 kHz     | #VBW 30             | 10 kHz                        | Sweep 9                         | Stop 2.41000 GHz<br>.600 ms (1001 pts)                      | CF Step<br>10.000000 MHz<br>Auto Man |
| MKR MODE TRC SCL X                       | 408 8 GHz -2        | Y FUN<br>2.329 dBm            | ICTION FUNCTION WIDTH           | FUNCTION VALUE                                              | <u>- nuro</u>                        |
|                                          |                     | 0.075 dBm                     |                                 | E                                                           | <b>Freq Offset</b><br>0 Hz           |
| 7<br>8<br>9                              |                     |                               |                                 |                                                             | Scale Type                           |
| 10                                       |                     |                               |                                 |                                                             | Log <u>Lin</u>                       |
| < [                                      |                     | III                           | 1                               | •                                                           |                                      |
| ISG                                      |                     |                               | I STATUS                        |                                                             |                                      |



# GFSK No-hopping Band edge-right side



#### GFSK Hopping Band edge-right side

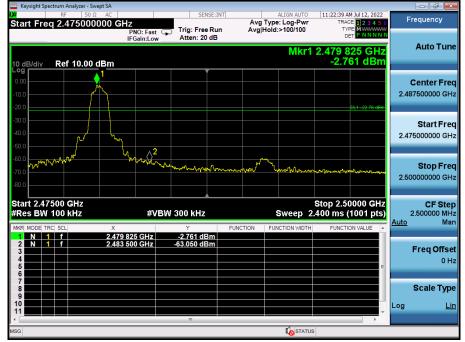




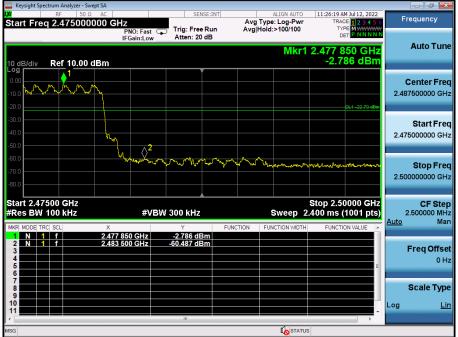


### $\pi/4\text{-}DQPSK$ No-hopping Band edge-left side

| Keysight Spectrum Analyzer - Swept SA                                                                                                             |                                              |                |                              |                                            | - 7 ×                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|------------------------------|--------------------------------------------|----------------------------------------------------|
| ₩ RF 50 Ω AC<br>Start Freq 2.310000000 Gł                                                                                                         |                                              |                | ALIGN AUTO 11:<br>e: Log-Pwr | 18:29 AM Jul 12, 2022<br>TRACE 1 2 3 4 5 6 | Frequency                                          |
| 10 dB/div Ref 10.00 dBm                                                                                                                           | PNO: Fast Trig: Free<br>IFGain:Low Atten: 20 | e Run Avg Hold | :>100/100<br>Mkr1 2          | 2.401 8 GHz                                | Auto Tune                                          |
| 10.0                                                                                                                                              |                                              |                |                              | 0/1 -20.09 dBm                             | Center Freq<br>2.360000000 GHz                     |
| -30.0                                                                                                                                             |                                              |                |                              | 2                                          | Start Freq<br>2.310000000 GHz                      |
| -60.0<br>-70.0 <b>4 h</b> wa <b>ya, ama baharin ang baharin<br/>-60.0</b> | the print the ground of the second           | and the second | uhandasha (hara              | allow have                                 | <b>Stop Fred</b><br>2.410000000 GHz                |
| Start 2.31000 GHz<br>#Res BW 100 kHz                                                                                                              | #VBW 300 kHz                                 |                | Sweep 9.600                  | p 2.41000 GHz<br>ms (1001 pts)             | <b>CF Step</b><br>10.000000 MH:<br><u>Auto</u> Mar |
| 1 N 1 f 2.4                                                                                                                                       | 01 8 GHz -3.086 dE<br>00 0 GHz -61.060 dE    | Bm             |                              |                                            | <b>Freq Offse</b><br>0 H:                          |
| 7 8 9 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                  |                                              |                |                              |                                            | Scale Type                                         |
| ISG                                                                                                                                               |                                              |                | <b>I</b> o status            |                                            |                                                    |


# $\pi/4\text{-}DQPSK$ Hopping Band edge-left side

| 🔤 Keysight Sp |          | nalyzer - Swe  |                 |             |            |                       |                  |                                                                                                                 |           |                | _           | -   #   🗙  |
|---------------|----------|----------------|-----------------|-------------|------------|-----------------------|------------------|-----------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------|------------|
|               | RF       | 50 Ω           |                 |             | SEN        | SE:INT                | ΑναΤν            | ALIGN AUTO                                                                                                      |           | H Jul 12, 2022 | Fred        | uency      |
| Start Fre     | eq Z.3   | 5100000        |                 | NO:Fast (   | Trig: Free | Run                   |                  | Id:>100/100                                                                                                     | TYP       | E M WWWWW      |             |            |
|               |          |                |                 | Gain:Low    | Atten: 20  | dB                    | -                |                                                                                                                 | DE        | P NNNN         |             |            |
|               |          |                |                 |             |            |                       |                  | Mk                                                                                                              | r1 2.402  | 2 8 GHz        | A           | uto Tune   |
| 10 dB/div     | Pef      | 10.00 d        | Bm              |             |            |                       |                  |                                                                                                                 |           | 25 dBm         |             |            |
| Log           |          | 10.00 0        |                 |             |            |                       |                  |                                                                                                                 |           | <u> </u>       |             |            |
| 0.00          |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                | Ce          | nter Freq  |
| -10.0         |          |                |                 |             |            |                       |                  |                                                                                                                 |           | AMMAA          | 2.3600      | 00000 GHz  |
| -20.0         |          |                |                 |             |            |                       |                  |                                                                                                                 |           | 011-22-29 dBm  |             |            |
|               |          |                |                 |             |            |                       |                  |                                                                                                                 |           | 021-22-29 dBm  |             |            |
| -30.0         |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                | 5           | Start Freq |
| -40.0         |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                | 2 3100      | 00000 GHz  |
| -50.0         |          |                |                 |             |            |                       |                  |                                                                                                                 |           | 2              |             |            |
| -60.0         |          |                |                 |             |            |                       |                  |                                                                                                                 |           | ) <b>2</b>     |             |            |
|               |          |                |                 |             |            |                       |                  | a the part of the hand and and a second s | phrman    |                | 5           | Stop Freq  |
| -70.0 -70.0   | -William | adrat land the | bornoutortellar | with mailer | *****      | Carles Mail No. North | arija aliyang di | ~~~~                                                                                                            |           |                |             | 00000 GHz  |
| -80.0         |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                | 2.4100      |            |
|               |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                |             |            |
| Start 2.3     |          |                |                 |             |            |                       |                  |                                                                                                                 | Stop 2.41 |                |             | CF Step    |
| #Res BW       | 100      | kHz            |                 | #VB         | W 300 kHz  |                       |                  | Sweep 9                                                                                                         | .600 ms ( | 1001 pts)      |             | 00000 MHz  |
| MKR MODE T    | RC SCL   |                | х               |             | Y          | FUNC                  | TION F           | UNCTION WIDTH                                                                                                   | FUNCTIO   | ON VALUE       | <u>Auto</u> | Man        |
| 1 N *         | 1 f      |                |                 | 8 GHz       | -3.125 dB  |                       |                  |                                                                                                                 |           |                |             |            |
| 2 N           | 1 f      |                | 2.400           | 0 GHz       | -60.392 dB | m                     |                  |                                                                                                                 |           |                | Fr          | eq Offset  |
| 4             |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                |             | 0 Hz       |
| 5             |          |                |                 |             |            |                       |                  |                                                                                                                 |           | =              |             |            |
| 7             |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                |             |            |
| 8             |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                | S           | cale Type  |
| 9             |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                |             |            |
| 11            |          |                |                 |             |            |                       |                  |                                                                                                                 |           | -              | Log         | Lin        |
|               |          |                |                 |             |            |                       |                  |                                                                                                                 |           | E F            |             |            |
| MSG           |          |                |                 |             |            |                       |                  |                                                                                                                 | 6         |                |             |            |
|               |          |                |                 |             |            |                       |                  |                                                                                                                 |           |                |             |            |






### π/4-DQPSK No-hopping Band edge-right side



### $\pi$ /4-DQPSK Hopping Band edge-right side





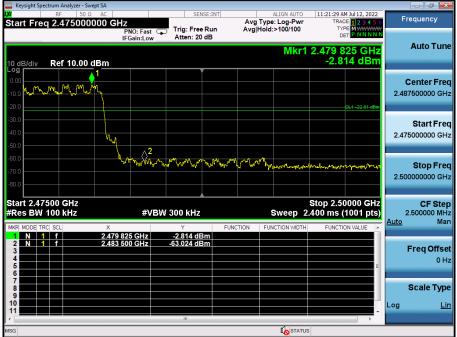


### 8-DQPSK No-hopping Band edge-left side

| Keysight Spectrum                                                                                                | n Analyzer - Swept SA  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | <u> </u>                 |               |
|------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------------------|--------------------------|---------------|
|                                                                                                                  | RF 50 Ω AC             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:                        |                       | ALIGN AUTO              | 11:18:58 AM Jul 12, 2022 | English       |
| Start Freq 2                                                                                                     | .310000000 GH          | IZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                       | g Type: Log-Pwr         | TRACE 1 2 3 4 5 6        | Frequency     |
|                                                                                                                  |                        | PNO: Fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trig: Free Ru<br>Atten: 20 dE |                       | Hold:>100/100           | DET P NNNN               |               |
|                                                                                                                  |                        | IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Atten: 20 de                  | ,                     |                         | ,                        | Auto Tur      |
|                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       | MK                      | r1 2.402 2 GHz           | Autoru        |
| 0 dB/div 🛛 🛛                                                                                                     | ef 10.00 dBm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | -3.003 dBm               |               |
| .og                                                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | 1                        |               |
| 0.00                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          | Center Fre    |
| 0.0                                                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | <u>н А</u>               | 2.36000000 G  |
| 20.0                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | DI 4, 23.00 4Dm          |               |
|                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | 011 20.00 (10)           |               |
| 80.0                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          | Start Fr      |
| 40.0                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          | 2.31000000 G  |
| 50.0                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | 2                        |               |
| 50.0                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          |               |
|                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       | any and have an         | A water Yula             | Stop Fre      |
| 70.0 And and a second | mently when the states | hali and a state of the state o | and survey and a second       | and the second second | aliter der ferder halte | Marker 14                | 2.41000000 GI |
| 30.0                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          |               |
|                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          |               |
| tart 2.3100                                                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | Stop 2.41000 GHz         | CF Ste        |
| Res BW 10                                                                                                        | 0 kHz                  | #VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300 kHz                       |                       | Sweep 9                 | .600 ms (1001 pts)       | 10.000000 M   |
| IKR MODE TRC S                                                                                                   | CL X                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y                             | FUNCTION              | FUNCTION WIDTH          | FUNCTION VALUE           | Auto M        |
| 1 N 1 1                                                                                                          |                        | 02 2 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.003 dBm                    |                       |                         |                          |               |
| 2 N 1 1                                                                                                          | f 2.4                  | 00 0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -61.013 dBm                   |                       |                         |                          | Freq Offs     |
| 4                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          | 01            |
| 5                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | E                        |               |
| 6                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          |               |
| 8                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          | Scale Typ     |
| 9                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          |               |
| 10                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         |                          | Log <u>L</u>  |
|                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III                           |                       |                         | *                        |               |
| G                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                         | 3                        |               |
|                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       | N                       |                          |               |

# 8-DQPSK Hopping Band edge-left side

| Keysight Spectrum Analyzer - Swept SA  |                                |                               |                                 |                                                           |                                                  |
|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|-----------------------------------------------------------|--------------------------------------------------|
| RF 50Ω AC<br>Start Freg 2.310000000 GH | lz                             | SENSE:INT                     | ALIGN AUTO<br>Avg Type: Log-Pwr | 11:20:01 AM Jul 12, 2022<br>TRACE 1 2 3 4 5 6             | Frequency                                        |
| 10 dB/div <b>Ref 10.00 dBm</b>         | PNO: Fast                      | rig: Free Run<br>Atten: 20 dB | Avg Hold:>100/100               | TYPE MWWWW<br>DET P NNNNN<br>r1 2.408 8 GHz<br>-2.982 dBm | Auto Tune                                        |
|                                        |                                |                               |                                 | MAMAN                                                     | <b>Center Free</b><br>2.360000000 GH             |
| -30.0                                  |                                |                               |                                 | Dt1-20.00 dDm                                             | Start Free<br>2.310000000 GH                     |
| -60.0<br>-70.0                         | identariora dell'assance della | Andonewith and Marith         | (generally and an all and the   |                                                           | Stop Free<br>2.410000000 GH:                     |
| Start 2.31000 GHz<br>#Res BW 100 kHz   | #VBW 30                        |                               | Sweep 9                         | Stop 2.41000 GHz<br>.600 ms (1001 pts)                    | <b>CF Stej</b><br>10.000000 MH<br><u>Auto</u> Ma |
| 1 N 1 f 2.4                            | 08 8 GHz -2<br>00 0 GHz -61    | 2.982 dBm<br>1.326 dBm        |                                 | E                                                         | Freq Offse<br>0 H                                |
| 7<br>8<br>9<br>10<br>11                |                                |                               |                                 |                                                           | Scale Type<br>Log <u>Li</u> i                    |
| <                                      |                                | m                             | <b>K</b> ostatus                | 3                                                         |                                                  |






### 8-DQPSK No-hopping Band edge-right side



### 8-DQPSK Hopping Band edge-right side





# 7. 20DB BANDWIDTH & 99% BANDWIDTH

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1) & RSS-247.5.1(2) RSS-Gen 6.7 |
|-------------------|-----------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013and RSS-Gen                                     |

# 7.1 Test Setup



# 7.2 Limit

N/A

# 7.3 Test procedure

1. Set RBW = 30 kHz.

# 2. Set the video bandwidth (VBW) $\ge$ 3 x RBW.

- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.4 DEVIATION FROM STANDARD

No deviation.



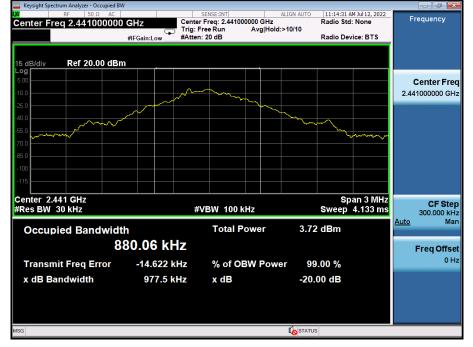




# 7.5 Test Result

| Mode      | Test channel | 20dB Emission<br>Bandwidth (MHz) | 99% Emission<br>Bandwidth (MHz) | Result |
|-----------|--------------|----------------------------------|---------------------------------|--------|
|           | Lowest       | 0.994                            | 0.887                           |        |
| GFSK      | Middle       | 0.978                            | 0.880                           | Pass   |
|           | Highest      | 0.973                            | 0.881                           |        |
|           | Lowest       | 1.250                            | 1.160                           |        |
| π/4-DQPSK | Middle       | 1.248                            | 1.157                           | Pass   |
|           | Highest      | 1.247                            | 1.156                           |        |
|           | Lowest       | 1.224                            | 1.147                           |        |
| 8-DPSK    | Middle       | 1.224                            | 1.145                           | Pass   |
|           | Highest      | 1.224                            | 1.145                           |        |

# Test plots


|                                             | GFS                      | SK Low Chanr                               | iei                   |                                                                  |                                           |
|---------------------------------------------|--------------------------|--------------------------------------------|-----------------------|------------------------------------------------------------------|-------------------------------------------|
| www.www.com analyzer - Occupied BW          |                          |                                            |                       |                                                                  |                                           |
| RF 50 Ω AC   Center Freq 2.402000000 Gi #II | Z Center                 | Freq: 2.402000000 GHz<br>ree Run Avg Hold: | ALIGN AUTO<br>:>10/10 | 11:13:59 AM Jul 12, 2022<br>Radio Std: None<br>Radio Device: BTS | Frequency                                 |
| 15 dB/div Ref 20.00 dBm                     |                          |                                            |                       |                                                                  |                                           |
| 5.00<br>-10.0<br>-25.0                      |                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     |                       |                                                                  | Center Freq<br>2.402000000 GHz            |
| -40.0                                       |                          |                                            |                       | -^                                                               |                                           |
| -70.0                                       |                          |                                            |                       |                                                                  |                                           |
| -115<br>Center 2.402 GHz                    |                          |                                            |                       | Span 3 MHz                                                       |                                           |
| #Res BW 30 kHz<br>Occupied Bandwidth        | #V                       | /BW 100 kHz<br>Total Power                 | 3.86                  | Sweep 4.133 ms                                                   | CF Step<br>300.000 kHz<br><u>Auto</u> Man |
| 887                                         | .32 kHz                  |                                            |                       |                                                                  | Freq Offset                               |
| Transmit Freq Error<br>x dB Bandwidth       | -16.522 kHz<br>993.6 kHz | % of OBW Powe<br>x dB                      |                       | .00 %<br>00 dB                                                   | 0 H2                                      |
| MSG                                         |                          |                                            | <b>I</b> STATUS       |                                                                  |                                           |

**GFSK Low Channel** 

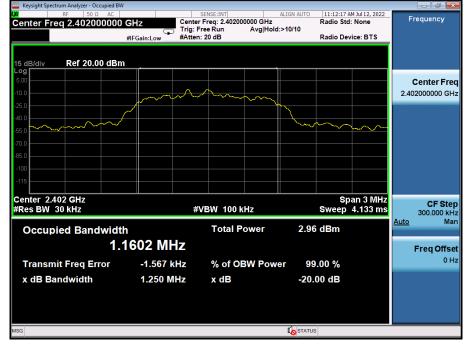




# **GFSK Middle Channel**



# **GFSK High Channel**

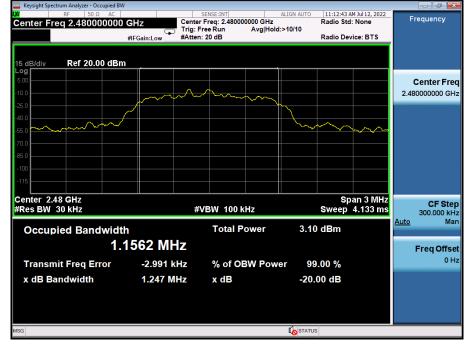









# π/4-DQPSK Low Channel




# π/4-DQPSK Middle Channel



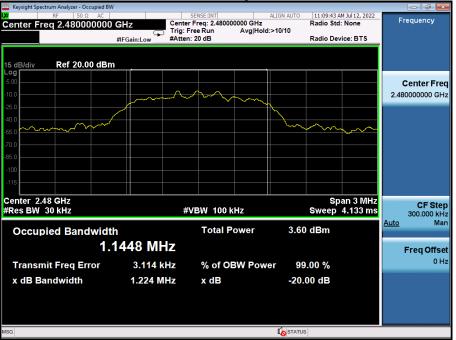


# π/4-DQPSK High Channel



# 8-DPSK Low Channel








# 8-DPSK Middle Channel

| Keysight Spectrum Analyzer - Occupied BW |           |                                      |                 |                                            | - J - X                        |
|------------------------------------------|-----------|--------------------------------------|-----------------|--------------------------------------------|--------------------------------|
| Center Freq 2.441000000                  |           | SENSE:INT<br>r Freq: 2.441000000 GHz | R               | 11:10:48 AM Jul 12, 2022<br>adio Std: None | Frequency                      |
|                                          |           | Free Run Avg Hol<br>n: 20 dB         |                 | adio Device: BTS                           |                                |
|                                          |           |                                      |                 |                                            |                                |
| 15 dB/div Ref 20.00 dBm                  |           |                                      |                 |                                            |                                |
| 5.00                                     |           |                                      |                 |                                            | Contor From                    |
| -10.0                                    |           |                                      |                 |                                            | Center Fred<br>2.441000000 GHz |
| -25.0                                    | June -    |                                      | <u> </u>        |                                            | 2.44 1000000 6112              |
| -40.0                                    |           |                                      |                 |                                            |                                |
| -55.0                                    |           |                                      |                 | $\sim$                                     |                                |
| -70.0                                    |           |                                      |                 |                                            |                                |
| -85.0                                    |           |                                      |                 |                                            |                                |
| -100                                     |           |                                      |                 |                                            |                                |
| -115                                     |           |                                      |                 |                                            |                                |
| Center 2.441 GHz                         |           |                                      |                 | Span 3 MHz                                 |                                |
| #Res BW 30 kHz                           | #         | VBW 100 kHz                          | s               | weep 4.133 ms                              | CF Step<br>300.000 kHz         |
| Occupied Bandwidth                       |           | Total Power                          | 3.38 d          | Bm                                         | <u>Auto</u> Mar                |
|                                          |           |                                      | 0.00 0          | Sill                                       |                                |
| 1.                                       | 1449 MHz  |                                      |                 |                                            | Freq Offset                    |
| Transmit Freq Error                      | 4.096 kHz | % of OBW Pow                         | ver 99.0        | 0 %                                        | 0 Hz                           |
| x dB Bandwidth                           | 1.224 MHz | x dB                                 | -20.00          | dB                                         |                                |
|                                          |           |                                      |                 |                                            |                                |
|                                          |           |                                      |                 |                                            |                                |
|                                          |           |                                      |                 |                                            |                                |
| ISG                                      |           |                                      | <b>I</b> STATUS |                                            |                                |

# 8-DPSK High Channel







## 8. Maximum Peak Output Power

| Test Requirement: | FCC Part15 C Section 15.247 (b)(1) & RSS-247.5.4(4) |
|-------------------|-----------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and RSS-Gen                        |
| Limit:            | 20.97dBm(for GFSK), 20.97dBm(for EDR)               |

# 8.1 Block Diagram Of Test Setup



### 8.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

### 8.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 2MHz. VBW = 2MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

### 8.4 DEVIATION FROM STANDARD


No deviation.

### 8.5 Test Result

| Mode      | Test channel | Peak Output Power<br>(dBm) | Limit (dBm) | Result |
|-----------|--------------|----------------------------|-------------|--------|
|           | Lowest       | -2.460                     |             |        |
| GFSK      | Middle       | -1.959                     | 20.97       | Pass   |
|           | Highest      | -1.700                     |             |        |
|           | Lowest       | -2.233                     |             |        |
| π/4-DQPSK | Middle       | -2.304                     | 20.97       | Pass   |
|           | Highest      | -1.957                     |             |        |
|           | Lowest       | -2.136                     |             |        |
| 8-DPSK    | Middle       | -2.196                     | 20.97       | Pass   |
|           | Highest      | -1.861                     |             |        |

85









# Test plots

### **GFSK Low Channel**

| SG            |                                          |                         |                |                                        |                                      |                               |
|---------------|------------------------------------------|-------------------------|----------------|----------------------------------------|--------------------------------------|-------------------------------|
|               | 402000 GHz<br>2.0 MHz                    | #VBW 2                  | 2.0 MHz        | Sweep 1                                | Span 5.000 MHz<br>.000 ms (1001 pts) | Log <u>Lir</u>                |
|               |                                          |                         |                |                                        |                                      |                               |
| 80.0          |                                          |                         |                |                                        |                                      | Scale Type                    |
| 70.0          |                                          |                         |                |                                        |                                      | 0 H:                          |
|               |                                          |                         |                |                                        |                                      | Freq Offse                    |
| 60.0          |                                          |                         |                |                                        |                                      | <u>Auto</u> Mar               |
| 50.0          |                                          |                         |                |                                        |                                      | CF Step<br>500.000 kH         |
| 10.0          |                                          |                         |                |                                        |                                      | 2.40400000 011                |
| 30.0          |                                          |                         |                |                                        |                                      | Stop Free<br>2.404500000 GH   |
|               |                                          |                         |                |                                        |                                      |                               |
| 20.0          |                                          |                         |                |                                        |                                      | Start Fred<br>2.399500000 GH; |
| 10.0          |                                          |                         |                |                                        |                                      |                               |
| 0.00          |                                          |                         |                |                                        |                                      | 2.402000000 GH;               |
| <sup>og</sup> |                                          |                         | .1             |                                        |                                      | Center Fred                   |
| 0 dB/div      | Ref 10.00 dBm                            |                         |                | WIKET                                  | 2.401 800 GHz<br>-2.460 dBm          |                               |
|               |                                          | PNO: Fast<br>IFGain:Low | Atten: 20 dB   |                                        |                                      | Auto Tun                      |
| Center F      | req 2.402000000                          | GHz                     | Trig: Free Run | Avg Type: Log-Pwr<br>Avg Hold:>100/100 | TRACE 1 2 3 4 5 6                    | Frequency                     |
| Keysight op   | ectrum Analyzer - Swept SA<br>RF 50 Ω AC |                         | SENSE:INT      | ALIGN AUTO                             | 11:04:59 AM Jul 12, 2022             |                               |

### **GFSK Middle Channel**



Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

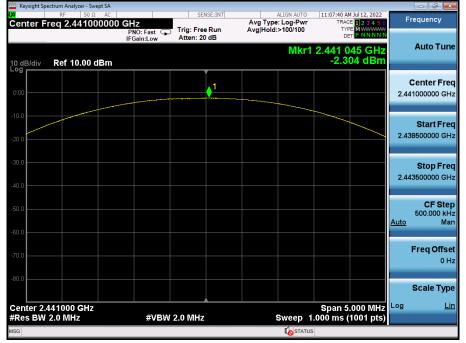
1



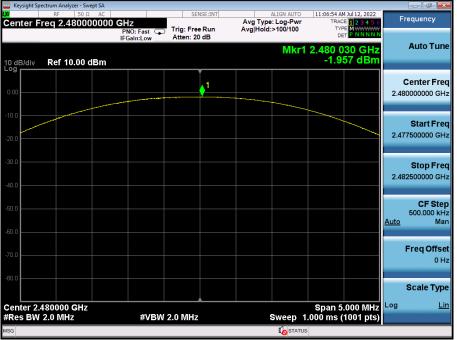


# **GFSK High Channel**




# π/4-DQPSK Low Channel

| Keysight Spectrum Analyzer - Swept SA  |                                                     |                                 |                                               | - 5 💌                                     |
|----------------------------------------|-----------------------------------------------------|---------------------------------|-----------------------------------------------|-------------------------------------------|
| <b>X</b> RF 50 Ω AC                    | SENSE:INT                                           | ALIGN AUTO<br>Avg Type: Log-Pwr | 11:07:10 AM Jul 12, 2022<br>TRACE 1 2 3 4 5 6 | Frequency                                 |
| Center Freq 2.40200000                 | PNO: Fast Trig: Free Run<br>IFGain:Low Atten: 20 dB | Avg Hold:>100/100               |                                               |                                           |
| 10 dB/div Ref 10.00 dBm                |                                                     | Mkr1                            | 2.402 040 GHz<br>-2.233 dBm                   | Auto Tune                                 |
| 0.00                                   | 1                                                   |                                 |                                               | Center Freq<br>2.402000000 GHz            |
| 20 0                                   |                                                     |                                 |                                               | Start Freq<br>2.399500000 GHz             |
| 40.0                                   |                                                     |                                 |                                               | <b>Stop Fred</b><br>2.404500000 GHz       |
| so.o                                   |                                                     |                                 |                                               | CF Step<br>500.000 kH:<br><u>Auto</u> Mar |
| 70.0                                   |                                                     |                                 |                                               | Freq Offse<br>0 H:                        |
| 80.0                                   |                                                     |                                 |                                               | Scale Type                                |
| Center 2.402000 GHz<br>#Res BW 2.0 MHz | #VBW 2.0 MHz                                        | Sweep 1.                        | Span 5.000 MHz<br>000 ms (1001 pts)           | Log <u>Lin</u>                            |
| ISG                                    |                                                     | STATUS                          |                                               |                                           |






## π/4-DQPSK Middle Channel



# π/4-DQPSK High Channel

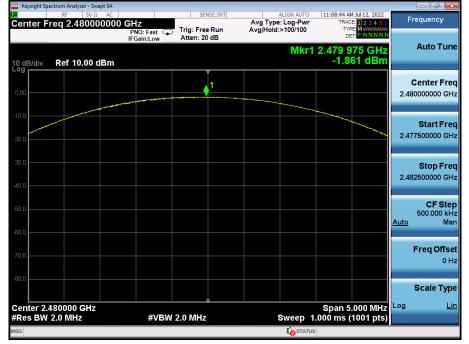






# 8-DPSK Low Channel




# 8-DPSK Middle Channel

| Keysight Spectrum Analyzer - Swept SA  |            |                      |                                 |                                               | -                                        |
|----------------------------------------|------------|----------------------|---------------------------------|-----------------------------------------------|------------------------------------------|
| X RF 50 Ω AC<br>Center Freq 2.44100000 | ) GHz      | SENSE:INT            | ALIGN AUTO<br>Avg Type: Log-Pwr | 11:08:05 AM Jul 12, 2022<br>TRACE 1 2 3 4 5 6 | Frequency                                |
|                                        | PNO: East  | Free Run<br>:: 20 dB | Avg Hold:>100/100               |                                               | Auto Tune                                |
| 0 dB/div Ref 10.00 dBm                 |            |                      |                                 | -2.196 dBm                                    |                                          |
| 0.00                                   |            | 1                    |                                 |                                               | Center Fred<br>2.441000000 GHz           |
| 10.0                                   |            |                      |                                 |                                               |                                          |
| 20.0                                   |            |                      |                                 |                                               | Start Freq<br>2.438500000 GHz            |
| 30.0                                   |            |                      |                                 |                                               | Stop Fred                                |
| 40.0                                   |            |                      |                                 |                                               | 2.443500000 GH:                          |
| 50.0                                   |            |                      |                                 |                                               | CF Step<br>500.000 kH<br><u>Auto</u> Mar |
|                                        |            |                      |                                 |                                               | Freq Offse                               |
| 70.0                                   |            |                      |                                 |                                               | 0 H:                                     |
| 80.0                                   |            |                      |                                 |                                               | Scale Type                               |
|                                        |            |                      |                                 |                                               |                                          |
| Center 2.441000 GHz<br>#Res BW 2.0 MHz | #VBW 2.0 M | Hz                   | Sweep                           | Span 5.000 MHz<br>I.000 ms (1001 pts)         | Log <u>Lin</u>                           |
| usg 🗼 File <3-1.png> saved             |            |                      | 🚺 STATU                         | s                                             |                                          |





# 8-DPSK High Channel





# 9. HOPPING CHANNEL SEPARATION

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1) & RSS-247.5.1(4)                                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and RSS-Gen                                                                              |
| Receiver setup:   | RBW=100KHz, VBW=300KHz, detector=Peak                                                                     |
| Limit:            | GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater) |

### 9.1 Test Setup

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

### 9.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port

to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

9.3 DEVIATION FROM STANDARD No deviation.







| Modulation  | Test Channel | Separation (MHz) Limit(MHz) |       | Result |  |
|-------------|--------------|-----------------------------|-------|--------|--|
| GFSK        | GFSK Low     |                             | 0.994 | PASS   |  |
| GFSK        | Middle       | 1.011                       | 0.978 | PASS   |  |
| GFSK        | High         | High 0.999 0.973            |       | PASS   |  |
| π/4-DQPSK   | Low          | 0.996                       | 0.833 | PASS   |  |
| π/4-DQPSK   | Middle       | 0.990 0.832                 |       | PASS   |  |
| π/4-DQPSK   | High         | 1.005 0.831                 |       | PASS   |  |
| 8-DPSK      | Low          | 0.996                       | 0.816 | PASS   |  |
| 8-DPSK      | Middle       | 0.999                       | 0.816 | PASS   |  |
| 8-DPSK High |              | 1.002                       | 0.816 | PASS   |  |


### Test plots GFSK Low Channel







### **GFSK Middle Channel**



# **GFSK High Channel**



Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China





# π/4-DQPSK Low Channel



# π/4-DQPSK Middle Channel



Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China





# π/4-DQPSK High Channel



# 8-DPSK Low Channel



Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China





### 8-DPSKMiddle Channel



### 8-DPSK High Channel



Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China







| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)(iii) & RSS-247.5.1(4)                 |
|-------------------|--------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and RSS-Gen                                             |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |
| Limit:            | 15 channels                                                              |

### 10.1 Test Setup

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

### 10.2 Test procedure

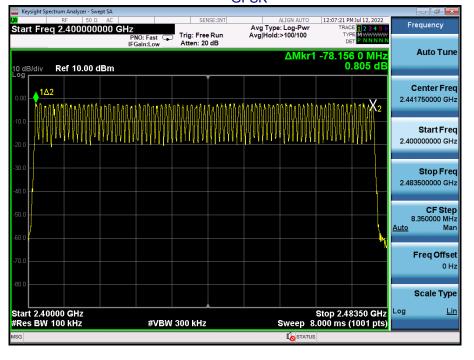
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

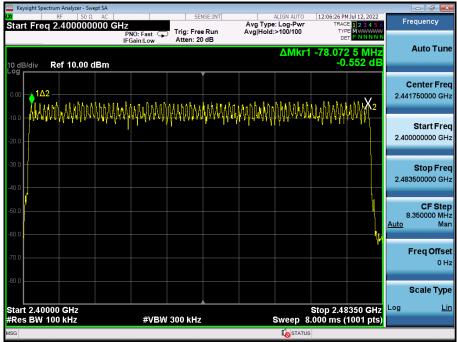
3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

10.3 DEVIATION FROM STANDARD No deviation.






### 10.4 Test Result

### Test Plots: 79 Channels in total GFSK



### π/4-DQPSK









|                                                         | 8-C                            | PSK                             |                                               |                                 |
|---------------------------------------------------------|--------------------------------|---------------------------------|-----------------------------------------------|---------------------------------|
| Keysight Spectrum Analyzer - Swept SA                   |                                |                                 |                                               | - 7 -                           |
| RF 50 Ω AC   Start Freg 2.400000000 GHz 50 Ω 50 Ω       | SENSE:INT                      | ALIGN AUTO<br>Avg Type: Log-Pwr | 12:05:28 PM Jul 12, 2022<br>TRACE 1 2 3 4 5 6 | Frequency                       |
| PNO: Fast 😱<br>IFGain:Low                               | Trig: Free Run<br>Atten: 20 dB | Avg Hold:>100/100               | DET P NNNN                                    |                                 |
|                                                         |                                | ΔMkr1                           | -78.406 5 MHz                                 | Auto Tune                       |
| 10 dB/div Ref 10.00 dBm                                 |                                |                                 | -0.329 dB                                     |                                 |
| Log                                                     | ľ                              |                                 |                                               | Center Freq                     |
| 0.00 142                                                |                                |                                 |                                               | 2.441750000 GHz                 |
| אאלו גאל גער או אין | 10.50 JAAA ( 6.57 JAAA         |                                 | MANAAAAMAX2                                   |                                 |
| -10.0                                                   | <u>ամիկ և Ռ</u> ՈՌԴՈՒՈՒՈՐՈ օՐ  | մանվիծ հանհոս իսնվ։             | ah nathati an nath                            | Start Freq                      |
| -20.0                                                   |                                |                                 |                                               | 2.400000000 GHz                 |
| -20.0                                                   |                                |                                 |                                               |                                 |
| -30.0                                                   |                                |                                 |                                               | Stop Freq                       |
|                                                         |                                |                                 |                                               | 2.483500000 GHz                 |
| -40.0                                                   |                                |                                 |                                               |                                 |
| -50.0                                                   |                                |                                 | ų į                                           | CF Step                         |
|                                                         |                                |                                 |                                               | 8.350000 MHz<br><u>Auto</u> Man |
| -60.0                                                   |                                |                                 |                                               | <u>Auto</u> murr                |
|                                                         |                                |                                 | ۳ı                                            | Freq Offset                     |
| -70.0                                                   |                                |                                 |                                               | 0 Hz                            |
| -80.0                                                   |                                |                                 |                                               |                                 |
| -60.0                                                   |                                |                                 |                                               | Scale Type                      |
|                                                         |                                |                                 |                                               |                                 |
| Start 2.40000 GHz<br>#Res BW 100 kHz #VBW 1             | 300 kHz                        | Sweep 8                         | Stop 2.48350 GHz<br>.000 ms (1001 pts)        |                                 |
| MSG                                                     |                                |                                 |                                               |                                 |





### **11. DWELL TIME**

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)(iii) & RSS-247.5.1(4) |  |
|-------------------|----------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2013 and RSS-Gen                             |  |
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak              |  |
| Limit:            | 0.4 Second                                               |  |

## 11.1 Test Setup

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

### 11.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0Hz;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

11.3 DEVIATION FROM STANDARD No deviation.





# 11.4 Test Result

### GFSK DH5 mode:

| Frequency | Packet                     | Dwell time(ms) | Limit(ms)  | Result |
|-----------|----------------------------|----------------|------------|--------|
| 2402MHz   | 2402MHz DH5 3 <sup>4</sup> |                | 400        | Pass   |
| 2441MHz   | 2441MHz DH5                |                | 315.52 400 |        |
| 2480MHz   | 2480MHz DH5                |                | 400        | Pass   |

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: as blow

CH:2402MHz time slot=2.942(ms)\*(1600/ (6\*79))\*31.6=313.81ms

CH:2441MHz time slot=2.958(ms)\*(1600/ (6\*79))\*31.6=315.52ms

CH:2480MHz time slot=2.925(ms)\*(1600/ (6\*79))\*31.6=312.00ms

 $\pi$ /4-DQPSK mode:

| Frequency | Packet Dwell time(ms) Limit(ms) |        | Result |      |
|-----------|---------------------------------|--------|--------|------|
| 2402MHz   | 2DH5                            | 312.85 | 400    | Pass |
| 2441MHz   | MHz 2DH5 315.52                 |        | 400    | Pass |
| 2480MHz   | 2DH5                            | 314.67 | 400    | Pass |

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow CH:2402MHz time slot=2.933(ms)\*(1600/ (6\*79))\*31.6=312.85ms CH:2441MHz time slot=2.958(ms)\*(1600/ (6\*79))\*31.6=315.52ms CH:2480MHz time slot=2.950(ms)\*(1600/ (6\*79))\*31.6=314.67ms

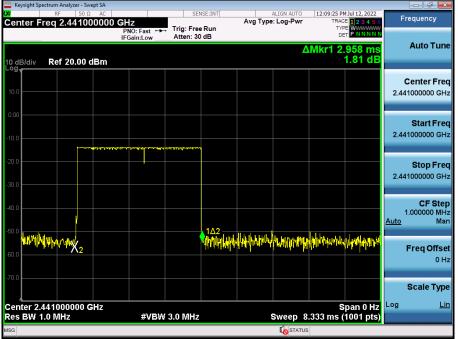
### 8-DPSK mode:

| Frequency | Packet         | Dwell time(ms) | Limit(ms) | Result |
|-----------|----------------|----------------|-----------|--------|
| 2480MHz   | 3DH5           | 312.85         | 400       | Pass   |
| 2480MHz   | lz 3DH5 315.52 |                | 400       | Pass   |
| 2480MHz   | 3DH5           | 312.00         | 400       | Pass   |

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow CH:2402MHz time slot=2.933(ms)\*(1600/ (6\*79))\*31.6=312.85ms CH:2441MHz time slot=2.958(ms)\*(1600/ (6\*79))\*31.6=315.52ms CH:2480MHz time slot=2.925(ms)\*(1600/ (6\*79))\*31.6=312.00ms





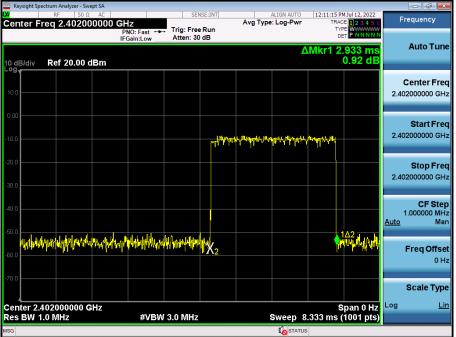

# Test Plots

# GFSK 2402MHz

| Keysight Sp                           | ectrum Analyzer - Swe  |          |                            |                                  |             |                 |                            |             |                           |
|---------------------------------------|------------------------|----------|----------------------------|----------------------------------|-------------|-----------------|----------------------------|-------------|---------------------------|
|                                       | RF 50 Ω                |          | ~                          | SENSE:IN                         | ALIGN AUTO  | 12:08:41 PM Ju  |                            | E           | requency                  |
| enter F                               | req 2.40200            |          | PNO: Fast ++<br>IFGain:Low | . Trig: Free Run<br>Atten: 30 dB | be: Log-Pwr | TYPE            | 123456<br>WWWWWW<br>PNNNNN |             |                           |
| l0 dB/div<br>_og <sub>w</sub>         | Ref 20.00 c            | lBm      |                            |                                  | Δ           | Mkr1 2.9<br>-1. | 42 ms<br>62 dB             |             | Auto Tune                 |
| 10.0                                  |                        |          |                            |                                  |             |                 |                            |             | Center Free<br>2000000 GH |
| 0.00                                  |                        |          |                            |                                  |             |                 |                            | 2.40        | 2000000 GH                |
|                                       |                        |          |                            |                                  |             |                 |                            | 2.40        | Start Fre<br>2000000 GH   |
| 10.0                                  |                        |          | والاسمى لينشك المرادية     | [                                |             |                 |                            |             |                           |
| 20.0                                  |                        |          |                            |                                  |             |                 |                            | 2.40        | Stop Fre<br>2000000 GH    |
| 30.0                                  |                        |          |                            |                                  |             |                 |                            |             | CF Ste                    |
| 40.0                                  |                        |          |                            |                                  |             |                 |                            | <u>Auto</u> | 1.000000 MH<br>Ma         |
| -50.0<br><mark>МР<sub>И</sub>М</mark> | hteller and the second | Hinkey.» | 2                          |                                  | Multinur    | . Ipristerings  | mlluhh                     |             | Freq Offse                |
| 60.0                                  |                        |          |                            |                                  |             |                 |                            |             | 0 H                       |
| 70.0                                  |                        |          |                            |                                  |             |                 |                            |             | Scale Type                |
|                                       | 402000000 G            | Hz       |                            |                                  |             | Sp              | an 0 Hz                    | Log         | Lir                       |
| Res BW 1                              | I.U MHZ                |          | #VBN                       | 3.0 MHz                          | Sweep 8     | .333 ms (10     | 001 pts)                   |             |                           |

# GFSK 2441MHz



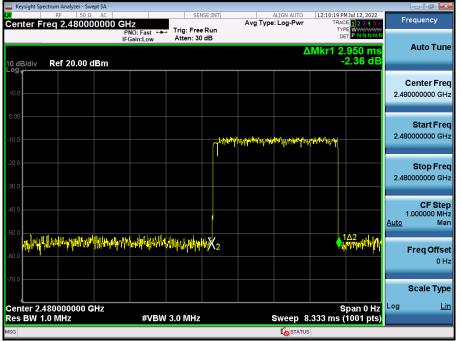





### GFSK 2480MHz

| Keysight Sp       | ectrum Analyzer - Swept SA      |                             |                                        |           |           |                   |                                 | - J ×                      |
|-------------------|---------------------------------|-----------------------------|----------------------------------------|-----------|-----------|-------------------|---------------------------------|----------------------------|
| 4<br>Center E     | RF 50 Ω AC<br>req 2.480000000   |                             | SENSE:INT                              | Avg Type: | LIGN AUTO |                   | 1 Jul 12, 2022<br>E 1 2 3 4 5 6 | Frequency                  |
| Senter P          | req 2.400000000                 | PNO: Fast +++<br>IFGain:Low | Trig: Free Run<br>Atten: 30 dB         |           |           | TYP               | E WWWWWW<br>T P N N N N N       |                            |
|                   |                                 | IFGalli.Low                 | Allen: 00 dB                           |           | Λ         | Mkr1 2.           | 925 ms                          | Auto Tune                  |
| l0 dB/div<br>_og_ | Ref 20.00 dBm                   |                             |                                        |           |           | (                 | 0.97 dB                         |                            |
| <sup>og</sup>     |                                 |                             |                                        |           |           |                   |                                 | Center Free                |
| 10.0              |                                 |                             |                                        |           |           |                   |                                 | 2.48000000 GH              |
| 0.00              |                                 |                             |                                        |           |           |                   |                                 |                            |
|                   |                                 |                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |           | ·····     |                   |                                 | Start Free                 |
| 10.0              |                                 |                             |                                        |           |           |                   |                                 | 2.480000000 GH:            |
| 20.0              |                                 |                             |                                        |           |           |                   |                                 |                            |
| 20.0              |                                 |                             |                                        |           |           |                   |                                 | Stop Free<br>2.48000000 GH |
| 30.0              |                                 |                             |                                        |           |           |                   |                                 | 2.4000000000               |
| 40.0              |                                 |                             |                                        |           |           |                   |                                 | CF Step                    |
| 10.0              |                                 |                             |                                        |           |           |                   |                                 | 1.000000 MH<br>Auto Ma     |
| 50.0              | under Arlate im anne difere a d | المراجع والمراجع            |                                        |           |           | 1∆2 <u>haluli</u> | he and solve                    |                            |
| 60.0              | Manual Abalter Manual Islandsi  | Al Walder and a state       | X <sub>2</sub>                         |           | M         | Hui dah Kadidi    | and when the                    | Freq Offse                 |
| 30.0              |                                 |                             |                                        |           |           |                   |                                 | 0 H:                       |
| 70.0              |                                 |                             |                                        |           |           |                   |                                 |                            |
|                   |                                 |                             |                                        |           |           |                   |                                 | Scale Type                 |
|                   | 480000000 GHz                   | #\/D\\                      | 0.0411-                                |           |           | S                 | pan 0 Hz                        | Log <u>Lir</u>             |
| Res BW 1          | LU MHZ                          | #VBW 3                      | .U MHZ                                 |           | Sweep 8   | .333 ms (         | rour pts)                       |                            |
| 20                |                                 |                             |                                        |           | STATUS    |                   |                                 |                            |

# π/4-DQPSK 2402MHz






## π/4-DQPSK 2441MHz

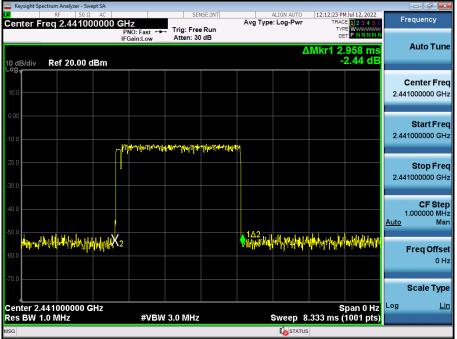
| Keysight S                    | pectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | - 7 💌                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|
| XI                            | RF 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | SENSE:INT        | ALIGN AUTO<br>Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:10:55 PM Jul 12, 2022<br>TRACE 1 2 3 4 5 6 | Frequency                      |
| Senter I                      | Freq 2.441000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNO: Fast ++ | . Trig: Free Run | Avg Type. Log-Pwi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TYPE WWWWWW                                   |                                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IFGain:Low   | Atten: 30 dB     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DET P NNNNN                                   | Auto Tuno                      |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \Mkr1 2.958 ms                                | Auto Tune                      |
| l0 dB/div<br>_og <sub>w</sub> | Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.43 dB                                      |                                |
| <sup>og</sup>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Conton From                    |
| 10.0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Center Free<br>2.441000000 GH; |
| 10.0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | 2.441000000 GH2                |
| 0.00                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                |
| 0.00                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | here the second s |                                               | Start Freq                     |
| -10.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | 2.441000000 GHz                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                |
| -20.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Stop Freq                      |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | 2.441000000 GHz                |
| 30.0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | 2.441000000 GH2                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                |
| 40.0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | CF Step<br>1.000000 MHz        |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Auto Man                       |
| -50.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | 1Δ2 .t. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                |
| MP/M                          | where the share the same and the share by the state of th | MX2          |                  | Shine a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n an      | Freq Offset                    |
| -60.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | 0 Hz                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | 0112                           |
| 70.0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Scale Type                     |
| Center 2                      | .441000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Span 0 Hz                                     | Log <u>Lin</u>                 |
|                               | 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #VBW         | 3.0 MHz          | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.333 ms (1001 pts)                           |                                |
| SG                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                                |

### π/4-DQPSK 2480MHz



Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

+86-755-2233 6688


1



## 8-DPSK 2402MHz

| Keysight Sp                   | pectrum Analyzer - Swept SA   |                                |                                |                                                                                                                  |                                               | - F 🗙                 |
|-------------------------------|-------------------------------|--------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|
| 0<br>Comtor E                 | RF 50 Ω AC<br>req 2.402000000 |                                | SENSE:INT                      | ALIGN AUTO<br>Avg Type: Log-Pwr                                                                                  | 12:11:51 PM Jul 12, 2022<br>TRACE 1 2 3 4 5 6 | Frequency             |
| senter r                      | req 2.40200000                | PNO: Fast +++<br>IFGain:Low    | Trig: Free Run<br>Atten: 30 dB | Ang Type. Logi wi                                                                                                |                                               |                       |
| l0 dB/div<br>_og <sub>w</sub> | Ref 20.00 dBm                 |                                |                                | L                                                                                                                | Mkr1 2.933 ms<br>-4.14 dB                     | Auto Tune             |
|                               |                               |                                |                                |                                                                                                                  |                                               | Center Fre            |
| 10.0                          |                               |                                |                                |                                                                                                                  |                                               | 2.402000000 GH        |
| 0.00                          |                               |                                |                                |                                                                                                                  |                                               | Start Fre             |
| 10.0                          | - Mallahara                   | เป็นทางสารสารสารสาร<br>เป็นทาง | Analythic and                  |                                                                                                                  |                                               | 2.402000000 GH        |
| 20.0                          |                               |                                |                                |                                                                                                                  |                                               | Stop Fre              |
| 30.0                          |                               |                                |                                |                                                                                                                  |                                               | 2.402000000 GH        |
| 40.0                          |                               |                                |                                |                                                                                                                  |                                               | CF Ste<br>1.000000 M⊦ |
| 50.0                          |                               |                                | 142                            |                                                                                                                  | Latin a bat                                   | <u>Auto</u> Ma        |
| 60.0                          |                               |                                |                                | and the second |                                               | Freq Offse            |
| 70.0                          |                               |                                |                                |                                                                                                                  |                                               | 0 H                   |
| 70.0                          |                               |                                |                                |                                                                                                                  |                                               | Scale Typ             |
|                               | .402000000 GHz<br>1.0 MHz     | #VBW 3                         | 0 MHz                          | Sween                                                                                                            | Span 0 Hz<br>3.333 ms (1001 pts)              | Log <u>Li</u>         |
| SG                            | 10 10112                      | # V D V V                      | -V-WI12                        | Sweep a                                                                                                          |                                               |                       |

# 8-DPSK 2441MHz







# 8-DPSK 2480MHz

| 🔤 Keysight Spe                | ctrum Analyzer - Swept SA |                                          |                         |            |                                          |                         |                 |                    |           |                             |
|-------------------------------|---------------------------|------------------------------------------|-------------------------|------------|------------------------------------------|-------------------------|-----------------|--------------------|-----------|-----------------------------|
| <u>u</u>                      | RF 50 Ω AC                |                                          | SEN                     | ISE:INT    |                                          | ALIGN AUTO<br>: Log-Pwr |                 | M Jul 12, 2022     | Fr        | equency                     |
| Senter Fr                     | req 2.48000000            | PNO: Fast                                | Trig: Free<br>Atten: 30 |            | Avg Type                                 | e: Log-Pwr              |                 |                    |           |                             |
| 10 dB/div<br>_og <sub>w</sub> | Ref 20.00 dBm             |                                          |                         |            |                                          | Δ                       |                 | .925 ms<br>2.45 dB |           | Auto Tune                   |
| 10.0                          |                           |                                          |                         |            |                                          |                         |                 |                    |           | Center Free                 |
| 0.00                          |                           |                                          |                         |            |                                          |                         |                 |                    | 2.48      | 0000000 GH                  |
|                               |                           |                                          |                         |            |                                          |                         |                 |                    | 2.48      | Start Free                  |
| 10.0                          | - Anton Martin - Martin   | nfeefafrafra fransfirsteren fransfirster | n <sub>1</sub>          |            |                                          |                         |                 |                    | 2.40      |                             |
| 20.0                          |                           |                                          |                         |            |                                          |                         |                 |                    | 2.48      | Stop Fre                    |
| 30.0                          |                           |                                          |                         |            |                                          |                         |                 |                    |           |                             |
| 40.0                          |                           |                                          |                         |            |                                          |                         |                 |                    | 1<br>Auto | CF Stej<br>.000000 MH<br>Ma |
| 50.0                          | <u>k</u> ,                |                                          |                         | Malen Inst | han had at                               | huidhanalu              | Anterland while | Alder Mar M        |           |                             |
| 60.0                          | <u>گ</u> 2                |                                          | . <b>4</b> 4 4.         | a hot a    | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 1 <b>6. 1</b> 7. 11.    | անու անուլ վա   |                    |           | Freq Offse<br>0 H           |
| 70.0                          |                           |                                          |                         |            |                                          |                         |                 |                    |           | Scale Typ                   |
| Center 2.4                    | 80000000 GHz              |                                          |                         |            |                                          |                         | s               | ipan 0 Hz          | Log       | <u>Lii</u>                  |
| Res BW 1.                     |                           | #VBW                                     | 3.0 MHz                 |            |                                          | Sweep 8                 | .333 ms (       | 1001 pts)          |           |                             |
| SG                            |                           |                                          |                         |            |                                          | <b>I</b> STATUS         |                 |                    |           |                             |







# 12. Antenna Requirement

| Standard requirement:                                                                                                                                 | FCC Part15 C Section 15.203 /247(c) & RSS-Gen 6.8                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| be used with the device. The use of a intentional radiator, the manufacturer is use of a standard antenna jack or elect 15.247(c) (1)(i) requirement: | ed to ensure that no antenna other than that furnished by the responsible party shall<br>a permanently attached antenna or of an antenna that uses a unique coupling to the<br>may design the unit so that a broken antenna can be replaced by the user, but the<br>trical connector is prohibited.<br>83.5 MHz band that is used exclusively for fixed. Point-to-point operations may |  |  |  |  |  |
| employ transmitting antennas with dire                                                                                                                | ectional gain greater than 6dBi provided the maximum conducted output power of dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.                                                                                                                                                                                                                                |  |  |  |  |  |
| EUT Antenna:                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| The antennas are PCB antenna, the be                                                                                                                  | est case gain of the antennas are 2.6dBi.                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |







Reference to the **appendix I** for details.

# **14. EUT Constructional Details**

Reference to the appendix II for details.

\*\*\*\*\* END OF REPORT \*\*\*\*\*

