

FCC RF Test Report

APPLICANT	: Motorola Solutions Inc.			
EQUIPMENT	: WAVE Two-Way Mobile Radio			
BRAND NAME	: Motorola Solutions			
MODEL NAME	: TLK 150			
MODEL NUMBER	: HK2131A			
FCC ID	: AZ492FT7127			
STANDARD	: FCC Part 15 Subpart C § 15.247			
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter			

The product was received on Nov. 04, 2019 and testing was completed on Jan. 15, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes Huang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

		I HISTORY	-
SUI	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1	Carrier Frequency Channel	
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	
3	TEST	RESULT	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	13
	3.3	Dwell Time Measurement	19
	3.4	20dB Bandwidth Measurement	
	3.5	Output Power Measurement	27
	3.6	Conducted Band Edges Measurement	28
	3.7	Conducted Spurious Emission Measurement	35
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	Antenna Requirements	49
4	LIST	OF MEASURING EQUIPMENT	50
5	UNCE	RTAINTY OF EVALUATION	51
APF	PENDI	X A. CONDUCTED TEST RESULTS	
APF	PENDI	X B. RADIATED SPURIOUS EMISSION	
APF	PENDI	X C. DUTY CYCLE PLOTS	
APF	PENDI	X D. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR9N0421A	Rev. 01	Initial issue of report	Feb. 20, 2020
FR9N0421A	Rev. 02	Update the equipment name.	Mar. 10, 2020

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.4	-	99% Bandwidth	-	Not Required	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7 15.247(d)		Conducted Spurious Emission	≤ 20dBc	Pass	-
		Radiated Band Edges			Under limit
3.8	15.247(d)	and Radiated Spurious	15.209(a) & 15.247(d)	Pass	11.47 dB at
		Emission			120.21 MHz
3.9	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-
Remark: N	ot required mean	s after assessing, test	items are not necess	ary to carry ou	ıt.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Motorola Solutions Inc.

8000 West Sunrise Boulevard, Fort Lauderdale, Florida

1.2 Manufacturer

Motorola Solutions Malaysia Sdn. Bhd.

Plot 2A, Medan Bayan Lepas, Mukim 12, S.W.D. 11900 Bayan Lepas, Penang, Malaysia.

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	WAVE Two-Way Mobile Radio			
Brand Name	Motorola Solutions			
Model Name	TLK 150			
Model Number	HK2131A			
FCC ID AZ492FT7127				
EUT supports Radios application	WCDMA/LTE/GNSS WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11 a/n HT20/HT40 Bluetooth BR/EDR/LE			
HW Version	P2			
SW Version	TLK150_BASE_ENG_D03.00.32_APPS_D03.00.36			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 10.03 dBm (0.0101 W) Bluetooth EDR (2Mbps) : 9.28 dBm (0.0085 W) Bluetooth EDR (3Mbps) : 9.45 dBm (0.0088 W)			
Antenna Type / Gain	Chip Antenna with gain -0.1 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
Test one Location	TEL : +86-512-57900158			
	FAX : +86-512-57900958			
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
Test Site No.	03CH06-KS TH01-KS	CN1257	314309	

1.7 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH06-KS	AUDIX	E3	6.2009-8-24al

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

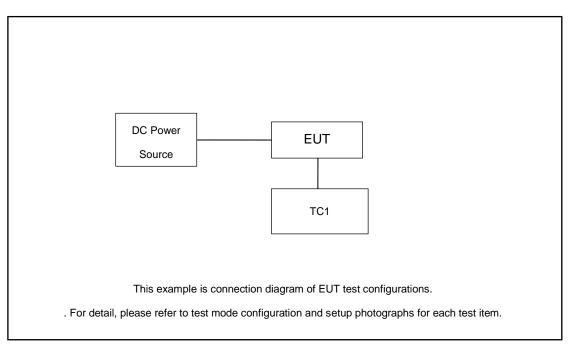
The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases							
		Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π /4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
	Bluetooth BR 1Mbps GFSK						
Radiated	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz						
Test Cases							
	Mode 3: CH78_2480 MHz						

Remark:

For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.


Test mode: DC power supply + EUT + TC1

TC1: External speaker(AC000240A01)+ External Mic (PMMN4129A)+ Footswitch (RLN4836AR)+ Footswitch (RLN4856A)+ Ignition Sense Cable with Housing Connector(HKN9327BR)

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	DC Power Source	DC	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 5.80 dB.

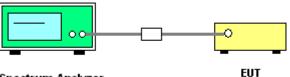
 $Offset(dB) = RF \ cable \ loss(dB)$. = 5.80 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

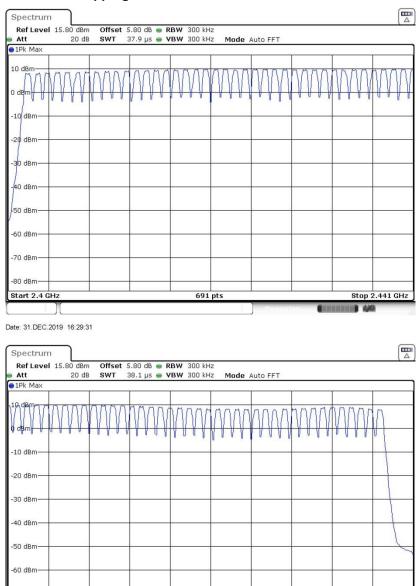

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

691 pts

Number of Hopping Channel Plot on Channel 00 - 78

Date: 31.DEC.2019 16:30:03

Start 2.441 GHz

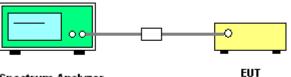
-70 dBm -80 dBm

Stop 2.4835 GHz

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

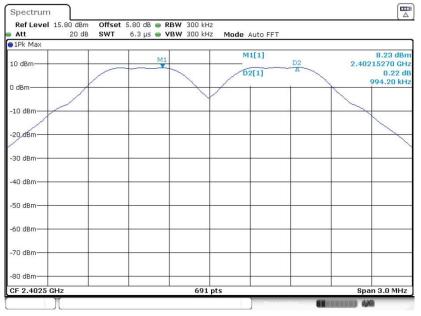
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

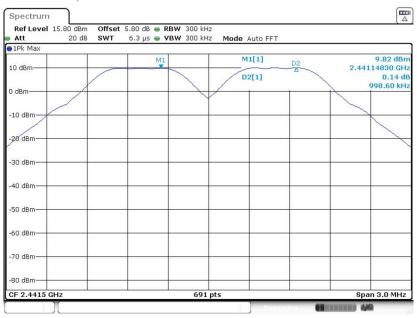
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

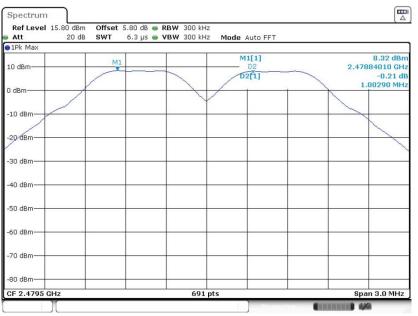
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

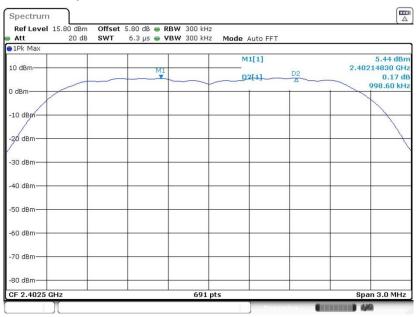

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 31.DEC.2019 16:16:35

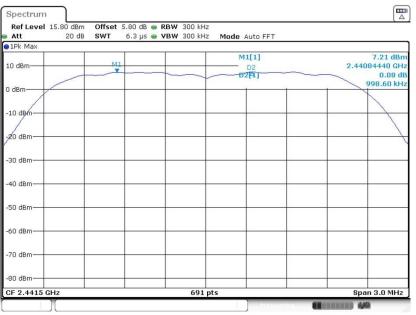
Channel Separation Plot on Channel 39 - 40

Date: 31.DEC.2019 16:20:14



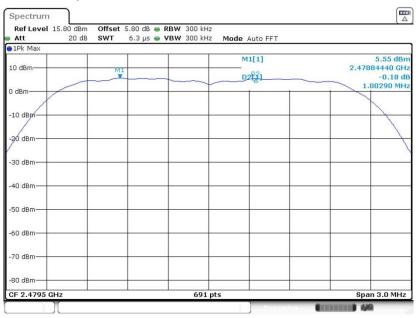
Channel Separation Plot on Channel 77 - 78

Date: 31.DEC.2019 16:25:51


<2Mbps>

Channel Separation Plot on Channel 00 - 01

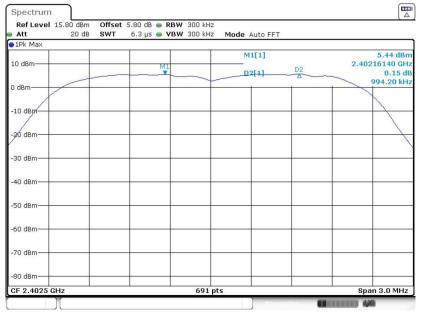
Date: 31.DEC.2019 16:32:51



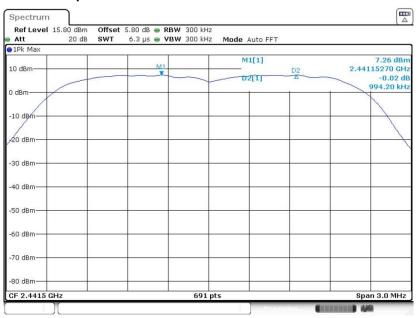
Channel Separation Plot on Channel 39 - 40

Date: 31.DEC.2019 16:37:11

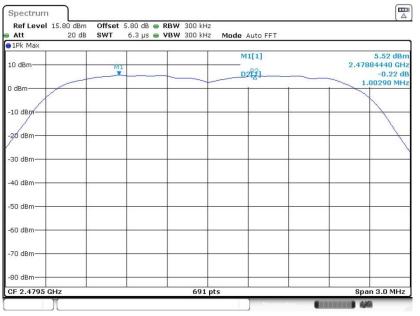
Channel Separation Plot on Channel 77 - 78



Date: 31.DEC.2019 16:43:41


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 31.DEC.2019 16:50:26

Channel Separation Plot on Channel 39 - 40

Date: 31.DEC.2019 16:55:28

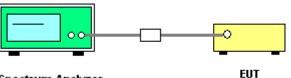
Channel Separation Plot on Channel 77 - 78

Date: 31.DEC.2019 17:00:38

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 28.DEC.2019 11:54:46

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

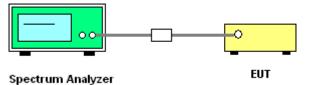
With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only


3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 5. Measure and record the results in the test report.

3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

20 dB Bandwidth Plot on Channel 00

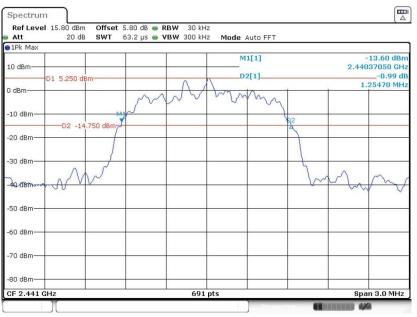
Date: 31.DEC.2019 16:15:12

20 dB Bandwidth Plot on Channel 39

Date: 31.DEC.2019 16:19:31

20 dB Bandwidth Plot on Channel 78

Date: 31.DEC.2019 16:23:23


<2Mbps>

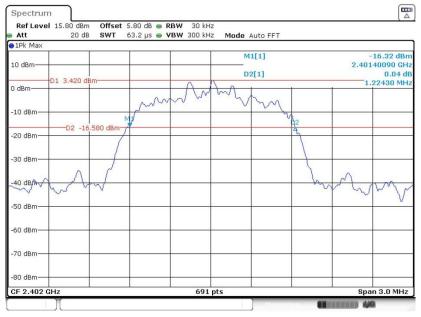
20 dB Bandwidth Plot on Channel 00

Date: 31.DEC.2019 16:31:12

20 dB Bandwidth Plot on Channel 39

Date: 31.DEC.2019 16:36:14

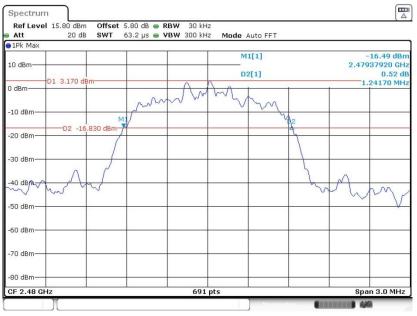
20 dB Bandwidth Plot on Channel 78



Date: 31.DEC.2019 16:41:26

<3Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 31.DEC.2019 16:47:09

20 dB Bandwidth Plot on Channel 39

Date: 31.DEC.2019 16:53:42

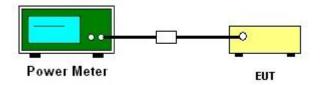
20 dB Bandwidth Plot on Channel 78

Date: 31.DEC.2019 16:58:42

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

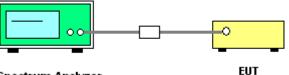
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

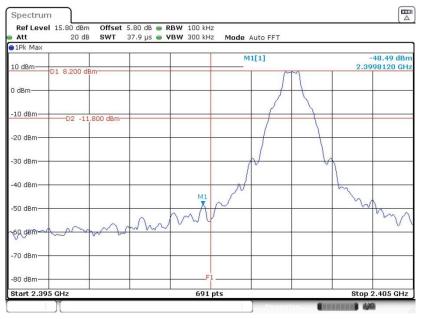

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

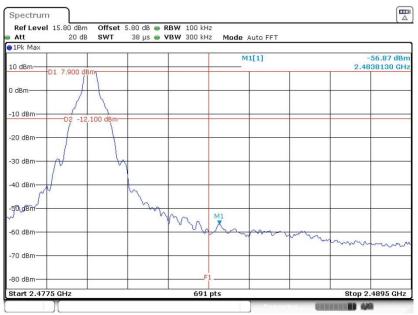
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

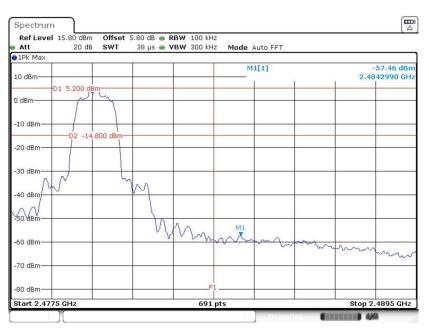

<1Mbps>

Low Band Edge Plot on Channel 00

Date: 31.DEC.2019 16:15:30

High Band Edge Plot on Channel 78

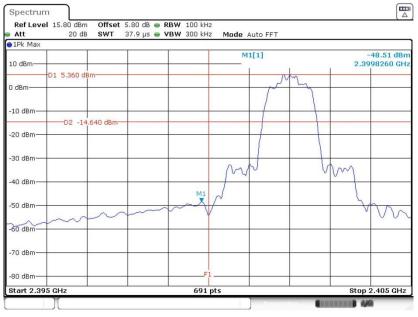
Date: 31.DEC.2019 16:23:46


<2Mbps>

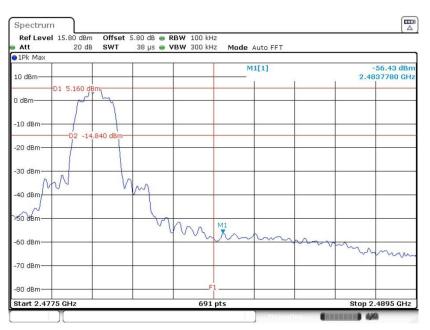
Low Band Edge Plot on Channel 00

Date: 31.DEC.2019 16:31:34

High Band Edge Plot on Channel 78



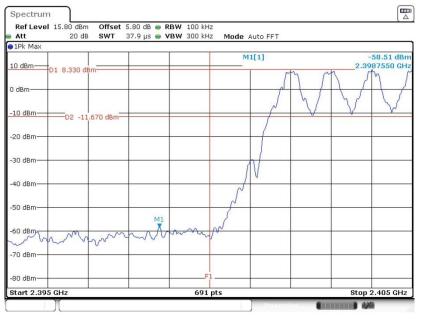
Date: 31.DEC.2019 16:41:48


<3Mbps>

Low Band Edge Plot on Channel 00

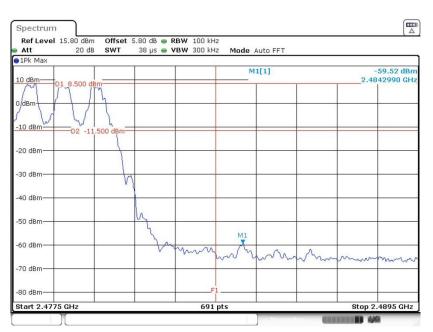
Date: 31.DEC.2019 16:47:45

High Band Edge Plot on Channel 78



Date: 31.DEC.2019 16:59:04

3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 31.DEC.2019 16:15:45

Hopping Mode High Band Edge Plot

Date: 31.DEC.2019 16:24:00


<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 31.DEC.2019 16:31:52

Hopping Mode High Band Edge Plot



Date: 31.DEC.2019 16:42:21


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 31.DEC.2019 16:48:16

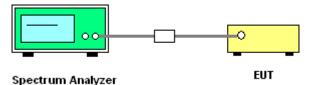
Hopping Mode High Band Edge Plot

Date: 31.DEC.2019 16:59:23

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

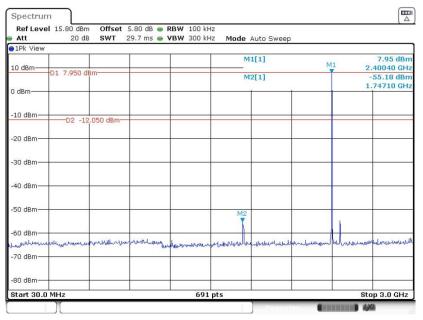

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

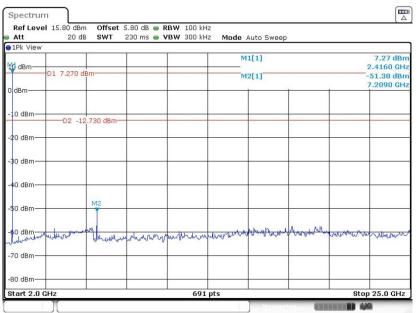
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: AZ492FT7127

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 16:18:05

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 31.DEC.2019 16:18:36

1Pk View					Auto Sweep			
.0 dBm D1 9.460	dBm=			M1[1]			M1 9.46 dB	
01 91100				M	2[1]			-59.18 dBm
I dBm					1			1.76000 GH
10 d8mD2 -	10.540 dBm=							
20 dBm								
30 dBm								
40 dBm								
50 dBm	-							_
50 dBm	100 100 4 10 1	Marthalinen .		M2			A	wylet march last
70 dBm			g the whole was	Charles and and an	al a they again	an man analasina		

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 16:21:43

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Spectrum Ref Level 15.80 d	in offert fo	10 dB 👄 RBW 100					
		0 ms - VBW 300		еер			
1Pk View	50.0 22		10				
M1			M1[1]		9.09 dBr		
10 dBm D1 9.09	0 dBm		M2[1]		2.4490 GH: -47.72 dBn		
			mz[1]		7.3090 GH		
0 dBm							
-10 dBmD2	-10.910 dBm						
-20 dBm-							
-30 dBm							
-40 dBm	M2						
-50 dBm	Ţ						
-50 dBm-							
40 d0m	a t.		mandorolan	whatonthe	1		
60 dBm	Winner	over my handling	hour and a second second	man anon hour	agent drop and and		
-70 dBm							
-/0 ubiii							
-80 dBm							
Start 2.0 GHz		69	91 pts		Stop 25.0 GHz		

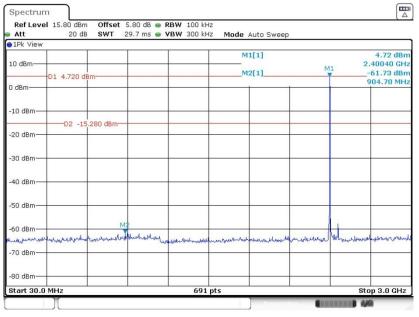
Date: 31.DEC.2019 16:22:12

	0 dB SWT 29	.7 ms 👄 VBW 300 ki	Hz Mode Auto Sweep			
1Pk View						
10 dBm) dBm		M1[1]	7.46 di M1 2.48210 G		
D1 7.4	50 dBm		M2[1]	T	-51.57 dBn	
0 dBm					1.74710 GHz	
-10 dBm						
D2	-12.540 dBm					
-20 dBm						
-30 dBm						
-40 dBm						
			M2			
-50 dBm			T T			
				A		
-60 dBm	man hannahan	uperation .	munumuman	the maximum like the	a se se se se se a leder se Maria	
-70 dBm	• • • • • • • • • • • • • • • • • • •	harman	monterspreading			
-70 ubiii						
-80 dBm						

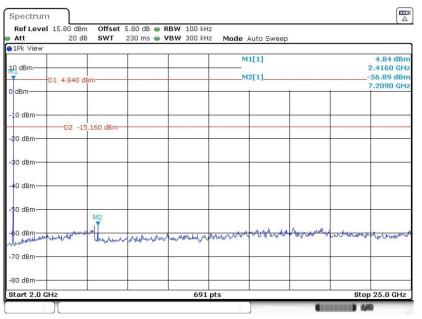
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 16:27:47

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	20 dE	SWT	230 ms 🥃 🛚	BW 300 KH	Iz Mode	Auto Sweep	6		
1Pk View			Ĩ		M	11[1]			7.18 dBr
🖞 dBm —	D1 7.180 d	Bm				10111			2.4830 GH
	DI 7.100 u				M	12[1]			-58.06 dBi
dBm						1			1
10 dBm—		ļ		-			-		
	D2 -12	2.820 dBm-							
0 dBm—				-					
0 dBm—									
0 dBm—									
0 dBm—									
						M2			
0 dBm	Marthumbergo	holder	an an an and made	tworstandyre	mondo	Anger and a	Advertion	unumunutu	modulta
'0 dBm—									
0 dBm—									
tart 2.0	CHA			691	. pts			Sto	p 25.0 GHz

Date: 31.DEC.2019 16:28:31


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 16:34:51

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 31.DEC.2019 16:35:19

Att	20 di	B SWT	29.7 ms 👄	VBW 300 kH	Iz Mode	Auto Sweep	0		
€1Pk View		T	-						
10 dBm	IBm				M1[1]			M1	7.10 dBm 2.43910 GHz
10 0011	D1 7.100 d	l8m			M	2[1]		T	-58.68 dBm
0 dBm						1	1	-	1.75570 GHz
-10 dBm—			_						
	D2 -12	2.900 dBm-							_
-20 dBm—									
-30 dBm—							-		
40 dBm—								+	
-50 dBm		1							
					M2				
-60 dBm-		then be ad	whenever	and have been		. di la		11	wanneutrestregenerated
	Markeduranter	monu	and chan the add	mulphanton	grander	y - Marina	and the second of the second of	an Anna	alour an and alour and
-70 dBm—								<u> </u>	_
-80 dBm—									

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 16:39:56

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 de	SWT	230 ms 🥌	VBW 300 kH	12 Mode	Auto Sweep	j.		
1Pk View					M	11[1]			6.48 dBr 2.4490 GH
<u>Т</u>	D1 6.480 d	Bm			M	12[1]			-56.89 dBr
dBm					-		5		7.3090 GH
Jubin									
10 dBm-									
do abiii	D2 -13	3.520 dBm-							-
20 dBm-				-					
30 dBm—									
40 dBm—									+
50 dBm—		M2							
	1. 1.	Inn				Name al	Annak		
60 dBm	and the second and a second a se	Murin	manner	phoneworkerson	hallertar	dragen	C C C C C C C C C C C C C C C C C C C	hubblindume	man
70 dBm—									
80 dBm—									-
start 2.0					pts				p 25.0 GHz

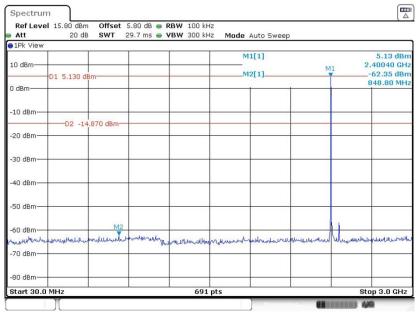
Date: 31.DEC.2019 16:40:27

Att 🛛	20 dB	SWT	29.7 ms 🕳	VBW 300 kH	z Mode	Auto Sweep	5		
●1Pk View				-					
10 dBm					M	1[1]		M1	5.19 dBm 2.47780 GHz
	D1 5.190 dl	Bm			M	2[1]		-	62.22 dBn
0 dBm							1		917.60 MHz
-10 dBm									
	D2 -14	.810 dBm-					-		
-20 dBm—							-		
-30 dBm							-		
-40 dBm							2		
-50 dBm				-					
			MP						
-60 dBm-	inderensentender top	uter when the th	hauntering.		un un hard	Mr. mark healt	What Inter	and made	menterenterenter
-70 dBm—			10	Multiculous acres					
-80 dBm									
Start 30.0				691					Stop 3.0 GHz

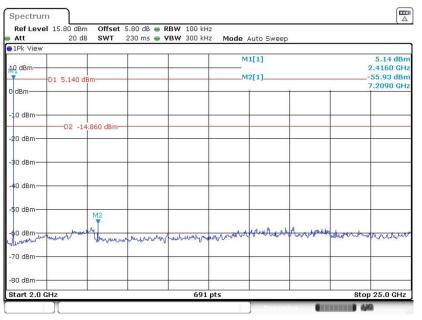
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 16:45:16

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	20 dB	SWT	230 ms 🥃 🖌	/BW 300 kH	z Mode	Auto Sweep	Č.		
1Pk View			Ĩ		M	1[1]			5.05 dBr
PidBm-						0111			2.4830 GH
Ĭ	D1 5.050 de	3m-			M	2[1]			-57.15 dBr 8.2930 GH
) dBm	-					1			
10 dBm-									
	D2 -14	.950 dBm-							
20 dBm—				-					
30 dBm—									
40 dBm—		-							
50 dBm		1							
							M2		
60 dBm	muchable	horwood	andonalar	revenue	Morrisonthippe	Walthurs	A A A A A A A A A A A A A A A A A A A	Will of the state	mutut
		and designed at the second							
70 dBm—									
80 dBm—	-								
Start 2.0	CHA			601	pts			Ptor	25.0 GHz

Date: 31.DEC.2019 16:45:50


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 16:51:51

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 31.DEC.2019 16:52:22

Ref Leve Att	15.80 dBm 20 dE		5.80 dB 👄 🛙 29.7 ms 👄 🕅			Auto Sweep)		
1Pk View		1-55			~				
10 dBm	D1 7.020 d				C.	1[1]	1		7.02 dBm 2.43910 GHz
0 dBm	-DI 7.020 a	BM			M	2[1]			-62.48 dBm 2.85170 GHz
-10 dBm		2.980 dBm-							
-20 dBm—	02 -12	.900 ubiii							
-30 dBm									
-40 dBm—									
-50 dBm		-							
-60 dBm	an at hearths	m. mu dant	wanter					A	M2
-70 dBm-	and activity of the activ			house and the second second	per and	COLORD COLORD	du. A many dail fraid.	1 March 1999 1	
-80 dBm									

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 16:57:05

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 🥃 ٧	/BW 300 kH	z Mode	Auto Sweep			
1Pk View									
dBm					N	11[1]			7.05 dBr 2.4490 GH
dom	D1 7.050 dl	Bm		-	N	12[1]			-53.39 dBr
dBm						1			7.3090 GH
10 dBm-									
	D2 -12	.950 dBm-							
20 dBm—						-			
30 dBm						-			
40 dBm									
		540							
50 dBm		Y							
eo dom i		des				Lun en	the man work of		
60 dBm	and other and	Winter	monor	manhahan	MAR MAN	Around	a martine au	and the second of the second s	hadrenow
70 dBm									
0 0011									
80 dBm									
tart 2.0 (pts				p 25.0 GHz

Date: 31.DEC.2019 16:57:45

Att 🗧	20 dB	SWT	29.7 ms 👄 🕻	/BW 300 kH	z Mode	Auto Sweep				
1Pk View			~							
10 dBm			M1[1]			5.05 dB				
10 00111	D1 5.050 d	Bm			M	2[1]		M1		62.18 dBm
0 dBm						1			2.9	95490 GHz
-10 dBm—										
	D2 -14	.950 dBm-								
-20 dBm—										
-30 dBm—	-									
-40 dBm—										
-50 dBm										
-60 d8m—								10		M2
-60 aBm-	and the second and the	guldancer	mathematical	A second data	. h. n Arthur	Lin July	-Inmultipul h.	July	1 Mudialia	watersholdshold
-70 dBm—			Ala	he chere man						
, o ubm										
-80 dBm—										
) MHz			691						p 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 31.DEC.2019 17:02:28

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

1Pk View						,
0 dBm				M1[1]		4.77 dBr 2.4830 GH
	4.770 dBm			M2[1]		-57.55 dBr
dBm					1	6.8100 GH
10 dBm						
20 dBm	-D2 -15.230 dBm					
30 dBm						
10 dBm						
50 dBm	M2					
0 dBm		multipunation	whenter	www.www.	When a state when	www.www.
70 dBm						

Date: 31.DEC.2019 17:02:57

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

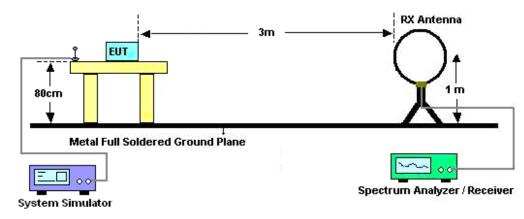
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

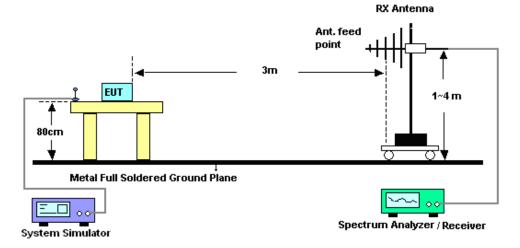
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

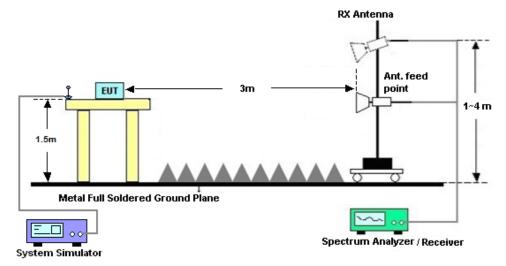
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79 dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: AZ492FT7127

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 Antenna Requirements

3.9.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.9.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.9.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 07, 2019	Dec. 28, 2019~ Dec. 31, 2019	Aug. 06, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 14, 2019	Dec. 28, 2019~ Dec. 31, 2019	Jan. 13, 2020	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 14, 2019	Dec. 28, 2019~ Dec. 31, 2019	Jan. 13, 2020	Conducted (TH01-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 08	10Hz-44GHz	Apr. 16, 2019	Jan. 15, 2020	Apr. 18, 2020	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	May 30, 2019	Jan. 15, 2020	May 29, 2020	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 27, 2019	Jan. 15, 2020	Jan. 26, 2020	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 08, 2020	Jan. 15, 2020	Jan. 07, 2021	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHZ	Aug. 06, 2019	Jan. 15, 2020	Aug. 05, 2020	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Apr. 17. 2019	Jan. 15, 2020	Apr. 16, 2020	Radiation (03CH06-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2020	Jan. 15, 2020	Jan. 13, 2021	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532702 03	500MHz~26.5G Hz	Apr. 15, 2019	Jan. 15, 2020	Apr. 14. 2020	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jan. 15, 2020	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jan. 15, 2020	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jan. 15, 2020	NCR	Radiation (03CH06-KS)

NCR: No Calibration Required.

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Appendix A. Conducted Test Results

Report Number : FR9N0421A

Bluetooth

Test Engineer:	Aly Cao	Temperature:	20~26	°C
Test Date:	2019/12/28~2019/12/31	Relative Humidity:	40~51	%

	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (kHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail		
DH	1Mbps	1	0	2402	0.949	0.903	994.200	0.6329	Pass		
DH	1Mbps	1	39	2441	0.949	0.906	998.600	0.6329	Pass		
DH	1Mbps	1	78	2480	0.947	0.906	1002.900	0.6310	Pass		
2DH	2Mbps	1	0	2402	1.255	1.169	998.600	0.8365	Pass		
2DH	2Mbps	1	39	2441	1.255	1.169	998.600	0.8365	Pass		
2DH	2Mbps	1	78	2480	1.250	1.169	1002.900	0.8336	Pass		
3DH	3Mbps	1	0	2402	1.224	1.155	994.200	0.8162	Pass		
3DH	3Mbps	1	39	2441	1.242	1.155	994.200	0.8278	Pass		
3DH	3Mbps	1	78	2480	1.242	1.155	1002.900	0.8278	Pass		

			<u>TE</u> :	ST RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>									
DH	CH.	NTX	Peak Power	Power Limit	Test					
ЪП	υп.		(dBm)	(dBm)	Result					
	0	1	7.98	20.97	Pass					
DH1	39	1	10.03	20.97	Pass					
	78	1	8.47	20.97	Pass					
				•						
2DH	CH.	СН	н сн.	NTX	Peak Power	Power Limit	Test			
			(dBm)	(dBm)	Result					
	0	1	7.11	20.97	Pass					
2DH1	39	1	9.28	20.97	Pass					
	78	1	7.48	20.97	Pass					
3DH	CH.	NTX	Peak Power	Power Limit	Test					
3011	-		(dBm)	(dBm)	Result					
	0	1	7.47	20.97	Pass					
3DH1	39	1	9.45	20.97	Pass					
	78	1	7.83	20.97	Pass					

<u>TEST RESULTS DATA</u> Number of Hopping Frequency									
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail						
79	79	> 15	Pass						

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5M	Hz
---------------------	----

BT (Band Edge @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2366.16	55.50	-18.50	74	47.6	32.07	7.25	31.42	351	88	Р	Н
-		2366.16	30.71	-23.29	54	-	-	-	-	-	-	А	Н
рт	*	2402	98.97	-	-	91.08	32	7.3	31.41	351	88	Р	Н
BT CH00		2402	74.18	-	-	-	-	-	-	-	-	А	Н
2402MHz		2333.4	55.81	-18.19	74	48.08	31.97	7.2	31.44	102	222	Р	V
240211112	*	2333.4	31.02	-22.98	54	-	-	-	-	-	-	А	V
		2402	102.71	-	-	94.82	32	7.3	31.41	102	222	Ρ	V
		2402	77.92	-	-	-	-	-	-	-	-	А	V
		2490.7	55.93	-18.07	74	47.6	32.2	7.52	31.39	327	87	Р	Н
	*	2490.7	31.14	-22.86	54	-	-	-	-	-	-	А	Н
DT		2480	100.12	-	-	91.76	32.27	7.48	31.39	327	87	Ρ	Н
BT CH 78		2480	75.33	-	-	-	-	-	-	-	-	А	Н
СП 78 2480MHz		2483.62	56.25	-17.75	74	47.89	32.27	7.48	31.39	105	186	Ρ	V
240011112	*	2483.62	31.46	-22.54	54	-	-	-	-	-	-	А	V
		2480	102.95	-	-	94.59	32.27	7.48	31.39	105	186	Ρ	V
		2480	78.16	-	-	-	-	-	-	-	-	А	V
Remark		o other spurio I results are F		st Peak	and Averag	e limit lin	е.						

BT (Harmonic @ 3m)													
ВТ	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ СН 00		4806	40.03	-33.97	74	56.93	34.2	10.49	61.59	100	360	Ρ	н
2402MHz		4806	40.79	-33.21	74	57.69	34.2	10.49	61.59	100	360	Р	V
		4884	42.04	-31.96	74	58.94	34.13	10.58	61.61	100	360	Р	Н
ВТ СН 39		7320	42.69	-31.31	74	54.81	36.6	13.62	62.34	100	360	Ρ	Н
2441MHz		4884	41.28	-32.72	74	58.18	34.13	10.58	61.61	100	360	Р	V
244 111172		7320	43.22	-30.78	74	55.34	36.6	13.62	62.34	100	360	Р	V
		4962	39.74	-34.26	74	56.6	34.10	10.68	61.64	100	360	Р	Н
ВТ СН 78		7440	40.64	-33.36	74	53.06	36.40	13.58	62.40	100	360	Р	Н
2480MHz		4962	42.26	-31.74	74	59.12	34.10	10.68	61.64	100	360	Р	V
		7440	41.99	-32.01	74	54.41	36.40	13.58	62.40	100	360	Р	V
Remark		o other spurio I results are F		st Peak	and Averag	e limit lin	е.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BT (LF)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		49.4	17.89	-22.11	40	35.85	14.3	0.7	32.96	-	-	Ρ	Н
		120.21	32.03	-11.47	43.5	45.65	18.2	1.12	32.94	100	360	Р	Н
		185.2	28.52	-14.98	43.5	44.63	15.38	1.43	32.92	-	-	Р	Н
		220.12	26.99	-19.01	46	43.01	15.3	1.62	32.94	-	-	Ρ	Н
0.4011-		259.89	25.32	-20.68	46	36.77	19.8	1.75	33	-	-	Р	Н
2.4GHz BT		593.57	22.39	-23.61	46	28.62	24.53	2.58	33.34	-	-	Р	Н
LF		48.43	17.29	-22.71	40	34.86	14.7	0.69	32.96	-	-	Р	V
		117.3	24.13	-19.37	43.5	37.95	18.01	1.1	32.93	-	-	Р	V
		195.87	26.15	-17.35	43.5	42.01	15.54	1.51	32.91	-	-	Р	V
		264.74	30.75	-15.25	46	42.4	19.59	1.76	33	100	0	Ρ	V
		442.25	19.37	-26.63	46	27.91	22.46	2.21	33.21	-	-	Ρ	V
		839.95	24.21	-21.79	46	27.52	26.26	3.1	32.67	-	-	Р	V
Remark		o other spurio I results are F		st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any								
	unwanted emissions shall not exceed the level of the fundamental frequency.								
!	Test result is over limit line.								
P/A	Peak or Average								
H/V	Horizontal or Vertical								

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

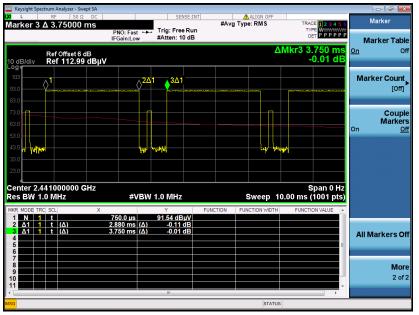
2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)


For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.