

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

TEST REPORT

ORAIMO TECHNOLOGY LIMITED

SZNS220922-43425E-RF-00A

2AXYP-OEB-E105D-L

SHAN MEI STREET FOTAN NT Hong Kong

Applicant Name : Address :

Report Number : FCC ID:

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Report Date: True Wireless Earbuds OEB-E105D N/A oraimo 2022/09/22 2022/10/24

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Roger, Ling

Roger Ling EMC Engineer

Approved By:

Candry . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

this report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 59

FCC-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	6
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC§15.247 (I), §1.1307 (B) (3) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	10
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	12
FCC §15.205, §15.209 & §15.247(D) - RADIATED EMISSIONS	13
APPLICABLE STANDARD	13
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP Test Procedure	
TEST PROCEDURE	
Test Data	
FCC §15.247(A) (1)-CHANNEL SEPARATION TEST	22
Applicable Standard	
Test Procedure	
Test Data	
FCC §15.247(A) (1) – 20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	23
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	24
FCC §15.247(A) (1) (III)-QUANTITY OF HOPPING CHANNEL TEST	25
APPLICABLE STANDARD	
Test Procedure	-
TEST DATA	25

Version 11: 2021-11-09

FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	27
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(D) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
APPENDIX	
APPENDIX A: 20DB EMISSION BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENTS	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 2.12dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification*	0.3dBi (provided by the applicant)
Voltage Range	DC3.7V from battery
Sample serial number	SZNS220922-43425E-RF-S1a for Radiated Emissions Test SZNS220922-43425E-RF-S2a for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement U	Uncertainty
---------------	-------------

Para	meter	Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output pov	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz- 40GHz	4.72dB
Temperature		1°C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"BT_Tool" exercise software was used and the power level is 3*. The software and power level was provided by the manufacturer.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Report No.: SZNS220922-43425E-RF-00A

Block Diagram of Test Setup

For Radiated Emissions:

	EUT	1.0 Meter
Non-Conductive Table 80/150 cm above Ground Plane	1.5 Meters	

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (3) & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

Not Applicable: the Bluetooth function cannot used when in charging.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Radiated emiss	ion test		
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04
Radiated Emission Test Software: e3 19821b (V9)					
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13
RF conducted test					
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/01/19	2023/01/18
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/10/26	2022/10/25
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.31	RF-01	Each	time

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Version 11: 2021-11-09

FCC§15.247 (i), §1.1307 (b) (3) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (3), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance

SAR-Based Exemption:

SAR-based thresholds are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum timeaveraged power or maximum time-averaged ERP, whichever is greater.

Per § 1.1307(b)(3)(i)(B), for single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20 \ cm} (d/20 \ cm)^{x} & d \le 20 \ cm \\ ERP_{20 \ cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20\ cm}\sqrt{f}}\right)$$
 and f is in GHz;

and

$$ERP_{20\ cm}\ (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \le f < 1.5\ \text{GHz} \\ \\ 3060 & 1.5\ \text{GHz} \le f \le 6\ \text{GHz} \end{cases}$$

d = the separation distance (cm);

For worst case:

Exemption limit:

For f=2.48GHz, d=0.5cm, the $P_{th}=2.72$ mW

The higher of the available maximum time-averaged power or effective radiated power (ERP):

The antenna gain is 0.3dBi (-1.85dBd), 0dBd=2.15dBi

The maximum tune-up conducted power is 2.5dBm (1.78mW), which less than 2.72 mW@2480MHz exemption limit

So the stand-alone SAR evaluation can be exempted.

FCC §15.203 – ANTENNA REQUIREMENT

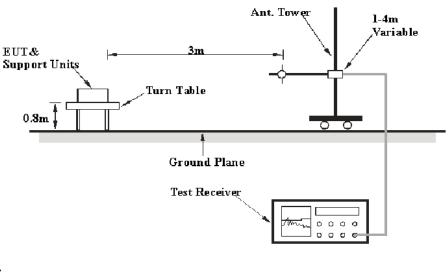
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

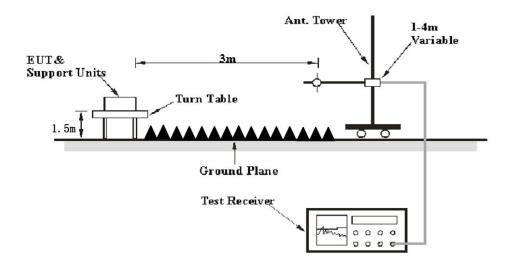
Antenna Connector Construction

The EUT has one internal antenna, which was permanently attached, and the maximum antenna gain is 0.3dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

For average measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20*log(Duty cycle)

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

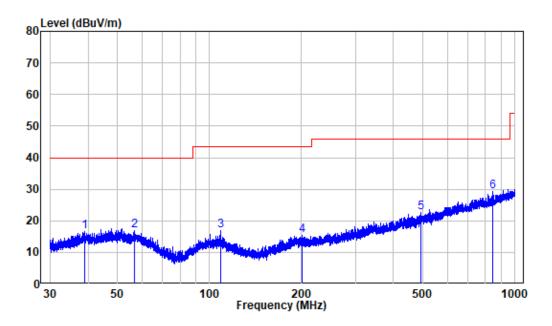
Test Data

Environmental Conditions

Temperature:	24.5~25 °C
Relative Humidity:	50~58 %
ATM Pressure:	101.0 kPa

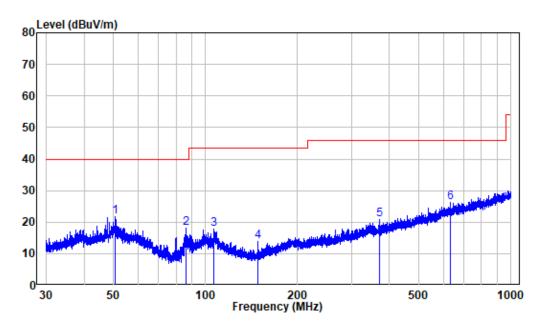
The testing was performed by Level Li on 2022-10-20 for below 1GHz, Zeki Ma from 2022-10-08 to 2022-10-14 for above 1GHz

EUT operation mode: Transmitting


Note: Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded

Version 11: 2021-11-09

30MHz-1GHz: (worst case is GFSK Mode, high channel)


Note: When the test result of Peak was less than the limit of QP, just the peak value was recorded.

Horizontal:

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	SZNS220922-43425E-RF
Test Mode:	BT Transmitting
Note :	L

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	38.922	-10.61	27.16	16.55	40.00	-23.45	Peak
2	56.643	-10.10	27.11	17.01	40.00	-22.99	Peak
3	108.838	-11.98	28.92	16.94	43.50	-26.56	Peak
4	200.776	-11.47	26.95	15.48	43.50	-28.02	Peak
5	490.960	-4.63	27.39	22.76	46.00	-23.24	Peak
6	847.313	0.39	28.78	29.17	46.00	-16.83	Peak

Vertical

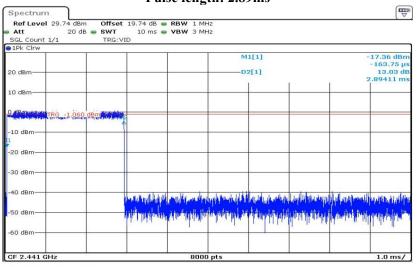
Site : chamber Condition: 3m VERTICAL Job No. : SZNS220922-43425E-RF Test Mode: BT Transmitting Note : L

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	50.453	-9.92	31.61	21.69	40.00	-18.31	Peak
2	86.011	-15.20	33.25	18.05	40.00	-21.95	Peak
3	106.712	-11.95	29.71	17.76	43.50	-25.74	Peak
4	148.376	-15.36	29.29	13.93	43.50	-29.57	Peak
5	370.865	-7.30	28.19	20.89	46.00	-25.11	Peak
6	634.742	-2.00	28.25	26.25	46.00	-19.75	Peak

Report No.: SZNS220922-43425E-RF-00A

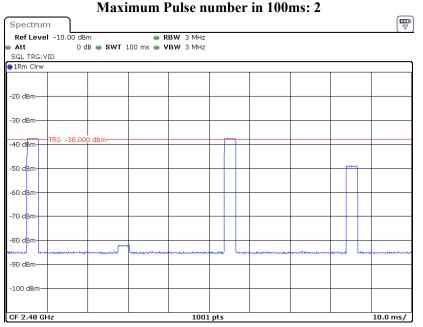
Frequency	Receiver		Turntable	Rx Ar	ntenna	Factor	Absolute	Limit	Margin	
(MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBµV/m)	(dBµV/m)	(dB)	
	Low Channel(2402MHz)									
2310	67.66	РК	59	2	Н	-7.24	60.42	74	-13.58	
2310	67.24	PK	191	1.1	V	-7.24	60.00	74	-14.00	
2390	68.95	PK	51	2.3	Н	-7.22	61.73	74	-12.27	
2390	68.56	PK	162	1.8	V	-7.22	61.34	74	-12.66	
4804	72.86	PK	113	2.4	Н	-3.51	69.35	74	-4.65	
4804	73.22	РК	283	1.2	V	-3.51	69.71	74	-4.29	
			Middle (Channel	(2441M	Hz)				
4882	74.01	РК	184	1	Н	-3.37	70.64	74	-3.36	
4882	73.60	РК	345	2.3	V	-3.37	70.23	74	-3.77	
			High Cl	nannel(2	2480 MF	łz)				
2483.5	72.25	РК	223	1.7	Н	-7.20	65.05	74	-8.95	
2483.5	69.77	PK	312	1.5	V	-7.20	62.57	74	-11.43	
2500	68.65	РК	309	1.9	Н	-7.18	61.47	74	-12.53	
2500	68.59	РК	59	2.2	V	-7.18	61.41	74	-12.59	
4960	73.19	РК	72	1.8	Н	-3.01	70.18	74	-3.82	
4960	74.58	РК	218	1.8	V	-3.01	71.57	74	-2.43	

Above 1GHz: (worst case is 8DPSK Mode, 3DH5)


Report No.: SZNS220922-43425E-RF-00A

Field Strength of Average								
Frequency	Peak Measurement	Polar	Duty Cycle Correction	Corrected	FCC Part 15.247			
(MHz)	@3m (dBµV/m)	(H/V)	Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
		Lo	w Channel(240	2MHz)				
2310	60.42	Н	-24.76	35.66	54	-18.34		
2310	60.00	V	-24.76	35.24	54	-18.76		
2390	61.73	Н	-24.76	36.97	54	-17.03		
2390	61.34	V	-24.76	36.58	54	-17.42		
4804	69.35	Н	-24.76	44.59	54	-9.41		
4804	69.71	V	-24.76	44.95	54	-9.05		
		Mic	ldle Channel(24	41MHz)				
4882	70.64	Н	-24.76	45.88	54	-8.12		
4882	70.23	V	-24.76	45.47	54	-8.53		
		Hi	gh Channel(248	0MHz)				
2483.5	65.05	Н	-24.76	40.29	54	-13.71		
2483.5	62.57	V	-24.76	37.81	54	-16.19		
2500	61.47	Н	-24.76	36.71	54	-17.29		
2500	61.41	V	-24.76	36.65	54	-17.35		
4960	70.18	Н	-24.76	45.42	54	-8.58		
4960	65.05	V	-24.76	40.29	54	-13.71		

Note:

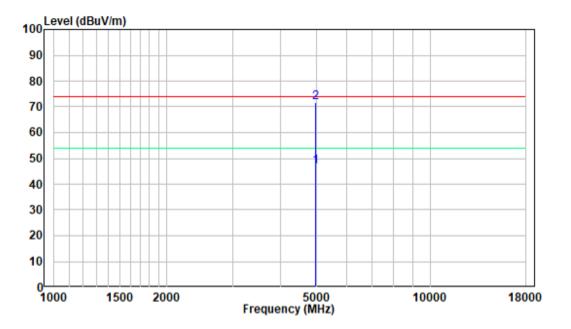

Absolute Level = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor

The worst case duty cycle as below: Duty cycle = Ton/100ms = 2.89*2/100=0.0578 Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.0578 = -24.76

Pulse length: 2.89ms

Date: 10.0CT.2022 00:04:35

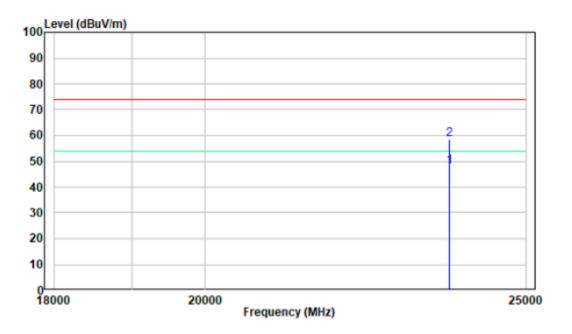
Date: 14.0CT.2022 14:19:31

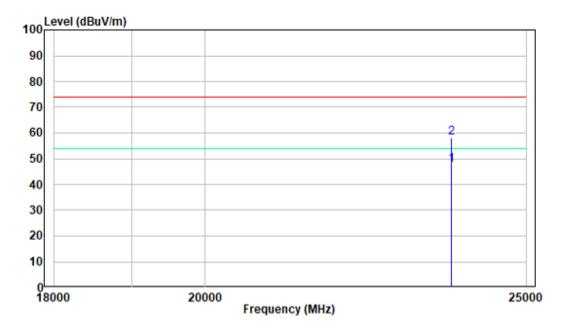

1-18GHz

Pre-scan for High Channel

100 Level (dBuV/m) 90 80 70 60 50 40 30 20 10 0 1000 5000 Frequency (MHz) 1500 10000 18000 2000

Horizontal:

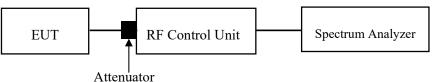

Vertical:


18-25GHz

Pre-scan for High Channel

Horizontal:

Vertical:


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	20~22 ℃	
Relative Humidity:	50~51 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Roger Ling on 2022-10-09 and 2022-10-10.

EUT operation mode: Transmitting

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

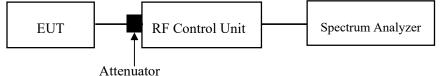
Test Data

Environmental Conditions

Temperature:	20~22 ℃	
Relative Humidity:	50~51 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Roger Ling on 2022-10-09 and 2022-10-10.

EUT operation mode: Transmitting


FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

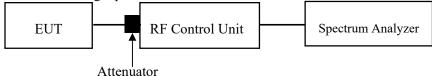
Test Data

Environmental Conditions

Temperature:	20~22 °C
Relative Humidity:	50~51 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2022-10-09 and 2022-10-10.

EUT operation mode: Transmitting


FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

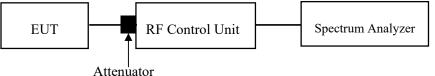
Test Data

Environmental Conditions

Temperature:	20~22 °C		
Relative Humidity:	50~51 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Roger Ling on 2022-10-09 and 2022-10-10.

EUT operation mode: Transmitting


FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	20~22 °C		
Relative Humidity:	50~51 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Roger Ling on 2022-10-09 and 2022-10-10.

EUT operation mode: Transmitting


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

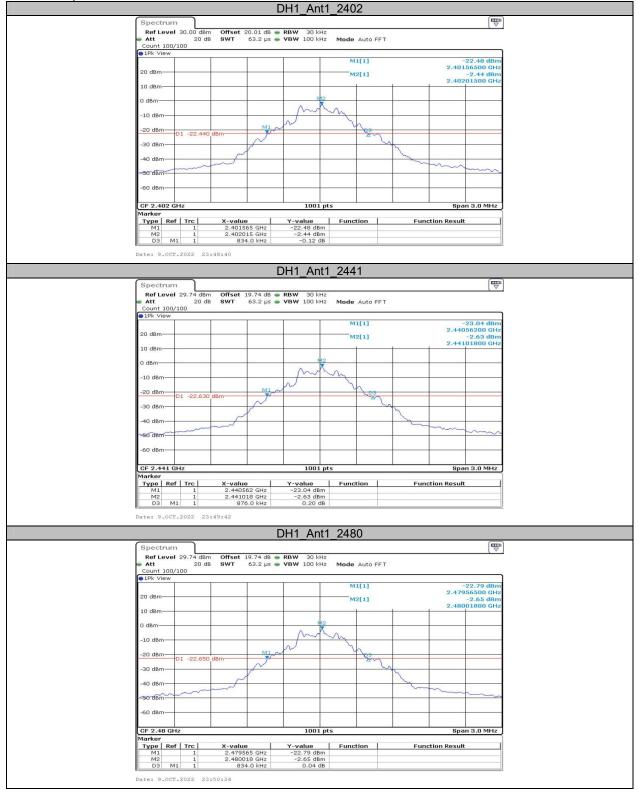
Attenuator

Test Data

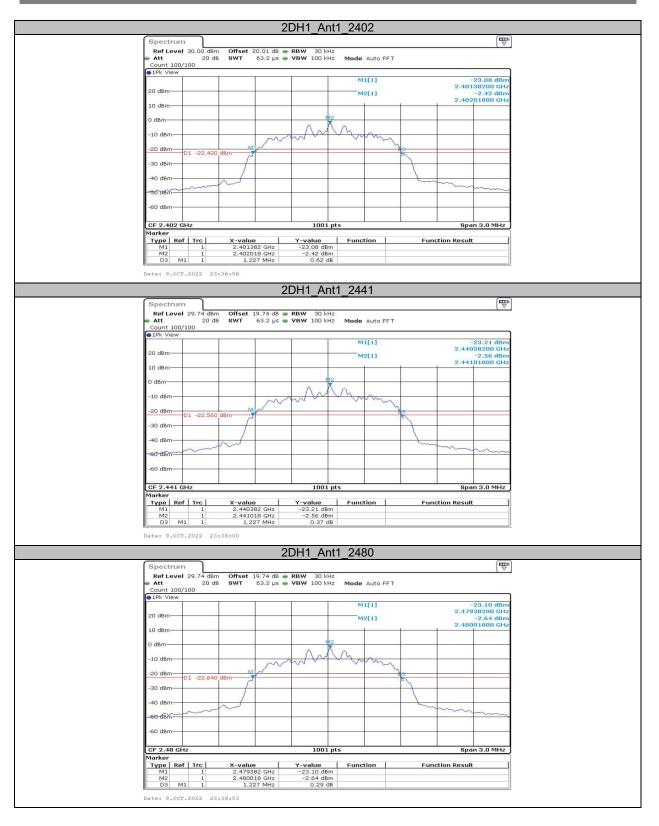
Environmental Conditions

Temperature:	20~22 ℃	
Relative Humidity:	50~51 %	
ATM Pressure:	101.0 kPa	

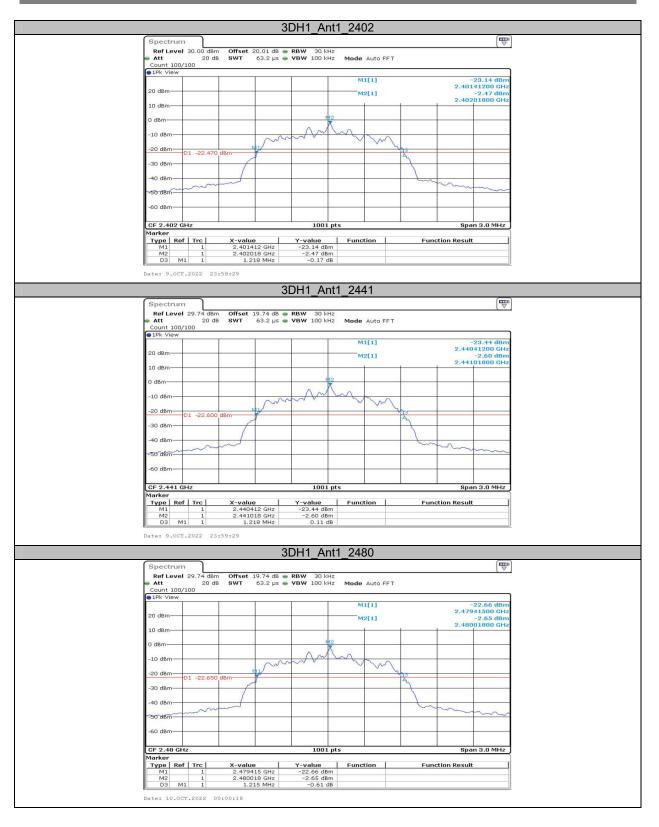
The testing was performed by Roger Ling on 2022-10-09 and 2022-10-10.


EUT operation mode: Transmitting

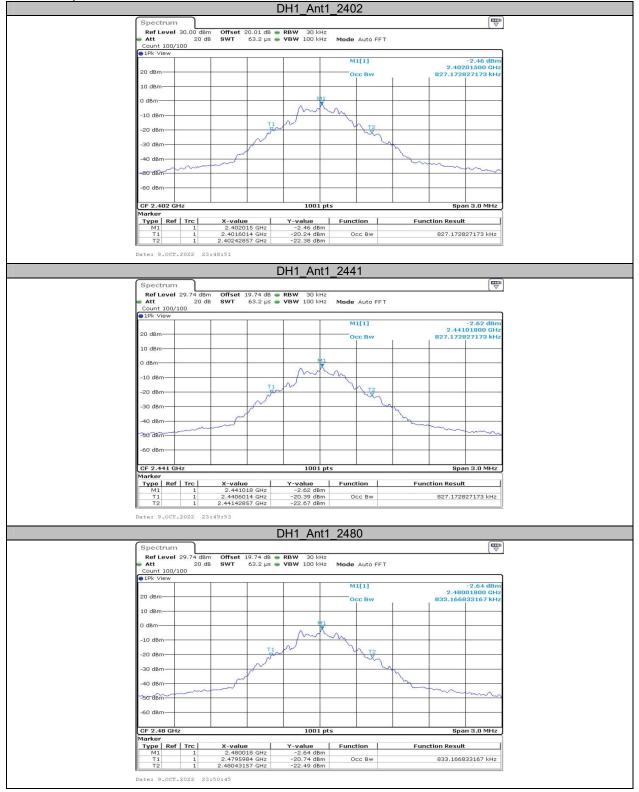
APPENDIX


Appendix A: 20dB Emission Bandwidth Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]	Limit[MHz]	Verdict
		2402	0.83		
DH1	Ant1	2441	0.88		
		2480	0.83		
		2402	1.23		
2DH1	Ant1	2441	1.23		
		2480	1.23		
		2402	1.22		
3DH1	Ant1	2441	1.22		
		2480	1.22		

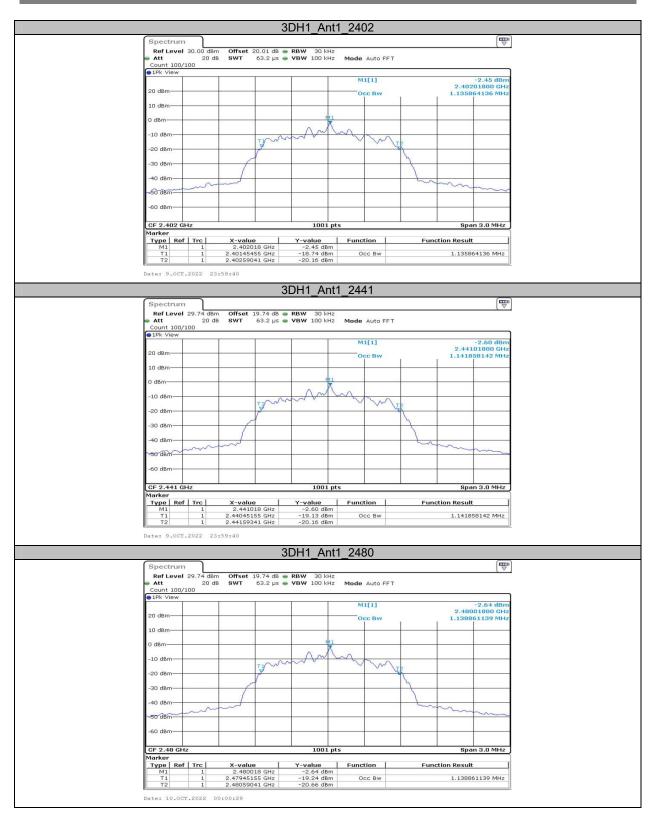

Test Graphs

Report No.: SZNS220922-43425E-RF-00A


Report No.: SZNS220922-43425E-RF-00A

Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	0.827		
		2441	0.827		
		2480	0.833		
2DH1	Ant1	2402	1.145		
		2441	1.145		
		2480	1.145		
3DH1	Ant1	2402	1.136		
		2441	1.142		
		2480	1.139		


Test Graphs

Report No.: SZNS220922-43425E-RF-00A

Report No.: SZNS220922-43425E-RF-00A


Appendix C: Maximum conducted Peak output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-0.34	≤20.97	PASS
DH1	Ant1	2441	-0.16	≤20.97	PASS
		2480	-0.24	≤20.97	PASS
		2402	1.54	≤20.97	PASS
2DH1	Ant1	2441	1.60	≤20.97	PASS
		2480	1.66	≤20.97	PASS
		2402	2.12	≤20.97	PASS
3DH1	Ant1	2441	1.96	≤20.97	PASS
		2480	2.08	≤20.97	PASS

Test Graphs

ist Graphs			DH1 A	nt1 2402				
	Spectrum	1						
	Att	D dBm Offset 20.0 20 dB SWT	01 dB 👄 RBW 3 1 ms 👄 VBW 10	MHz MHz Mode Au	to Sweep			
	Count 100/100 1Pk View							
				M1[:	u ,	2.403	-0.34 dBm 04800 GHz	
	20 dBm							
	10 dBm							
	0 dBm			M1				
	-10 dBm							
	-20 dBm	_						
	-30 dBm							
	-40 dBm							
	-50 dBm							
	-60 dBm							
	CF 2.402 GHz		10	01 pts		Spa	n 8.0 MHz	
	Date: 9.0CT.2022	23:49:09						
			DH1_A	nt1_2441				
	Spectrum Ref Level 29.74	4 dBm Offset 19.	74 dB 🕳 RBW 3	MHz				
	Att Count 100/100	20 dB SWT	1 ms . VBW 10	MHz Mode Au	to Sweep			
	• 1Pk View			M1[:	L]	1000	-0.16 dBm	
	20 dBm			+ +		2.44	02400 GHz	
	10 dBm	_		-		_		
	0 dBm			MI				
	-10 dBm							
	-20 dBm						-	
	-30 dBm							
	-40 dBm							
	-50 dBm							
	-60 dBm							
	CF 2.441 GHz		10	01 pts		Sna	n 8.0 MHz	
	Date: 9.0CT.2022	23:50:04	10	or hea		арс		
			DH1 A	nt1_2480				
	Spectrum							
	Ref Level 29.74		74 dB 👄 RBW 3 1 ms 👄 VBW 10		to Sweep			
	Count 100/100 Pk View		1	M1[:	1		-0.24 dBm	
	20 dBm			mit)	·	2.479	-0.24 dBm 088010 GHz	
	10 dBm							
	10 dBm		Р	11				
	0 dBm		N	41				
			N	11				
	0 dBm		4	41				
	0 dBm		1					
	0 dBm -10 dBm -20 dBm		4					
	0 dBm		4					
	0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm		4					
	0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			11			n 8.0 MHz	

Report No.: SZNS220922-43425E-RF-00A

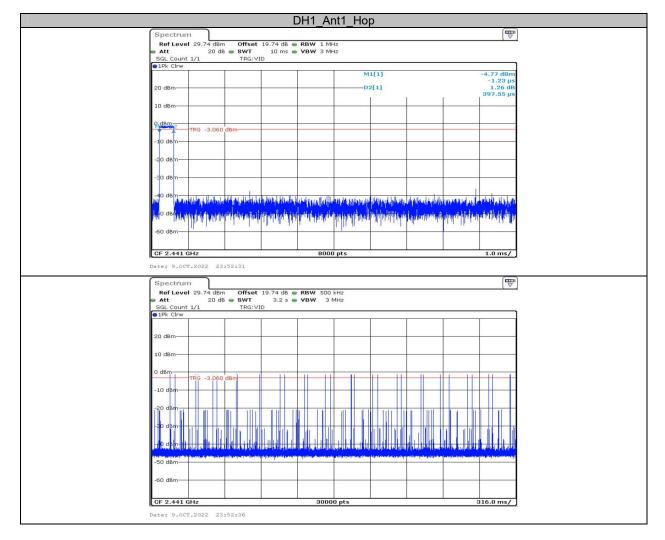
Report No.: SZNS220922-43425E-RF-00A

Appendix D: Carrier frequency separation Test Result

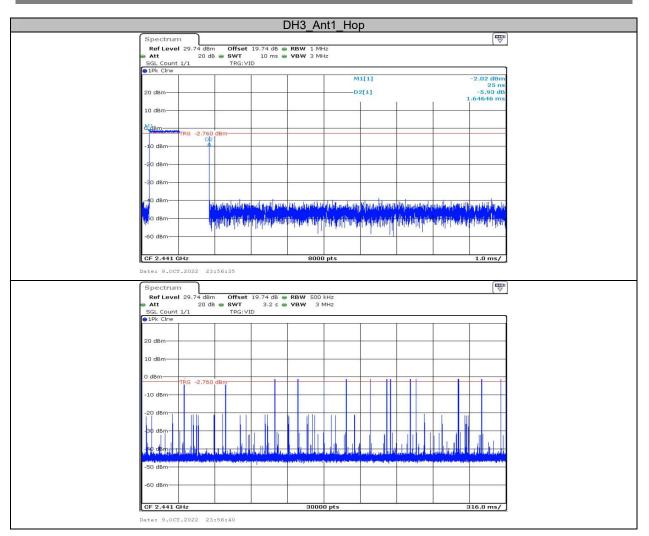
Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.000	≥0.587	PASS
2DH1	Ant1	Нор	1.003	≥0.820	PASS
3DH1	Ant1	Нор	1.003	≥0.813	PASS

Test Graphs

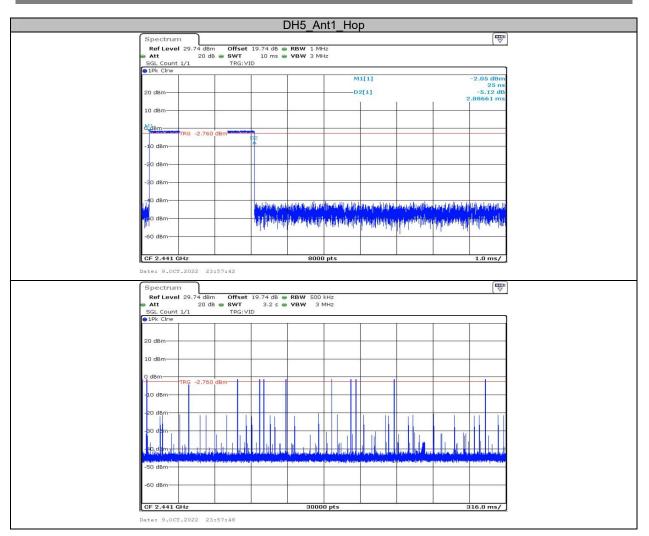
Appendix E: Time of occupancy Test Result

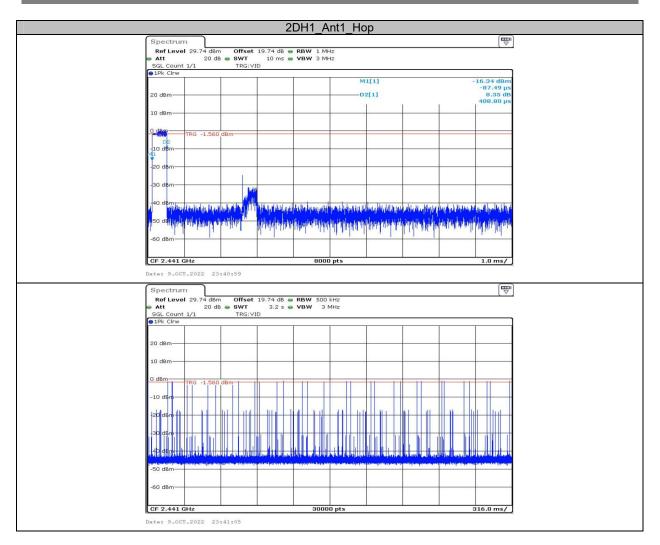

Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.40	320	0.128	≤0.4	PASS
DH3	Ant1	Нор	1.65	160	0.264	≤0.4	PASS
DH5	Ant1	Нор	2.89	120	0.347	≤0.4	PASS
2DH1	Ant1	Нор	0.41	320	0.131	≤0.4	PASS
2DH3	Ant1	Нор	1.65	140	0.231	≤0.4	PASS
2DH5	Ant1	Нор	2.89	110	0.318	≤0.4	PASS
3DH1	Ant1	Нор	0.41	320	0.131	≤0.4	PASS
3DH3	Ant1	Нор	1.65	150	0.248	≤0.4	PASS
3DH5	Ant1	Нор	2.89	110	0.318	≤0.4	PASS

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

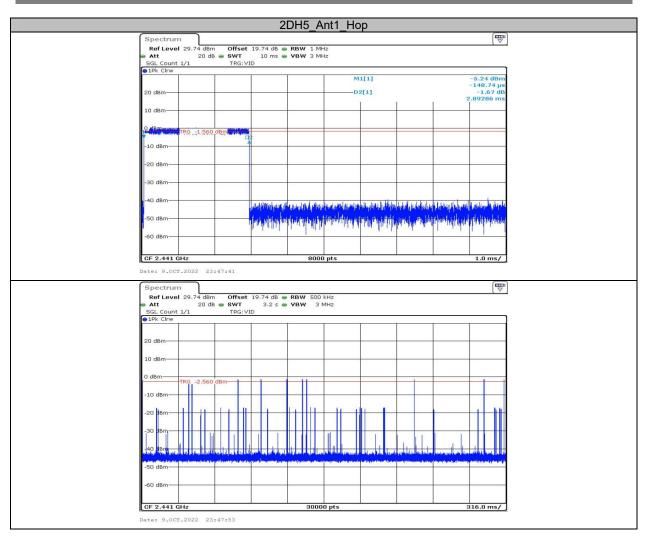

Note 2: Totalhops=Hopping Number in 3.16s*10

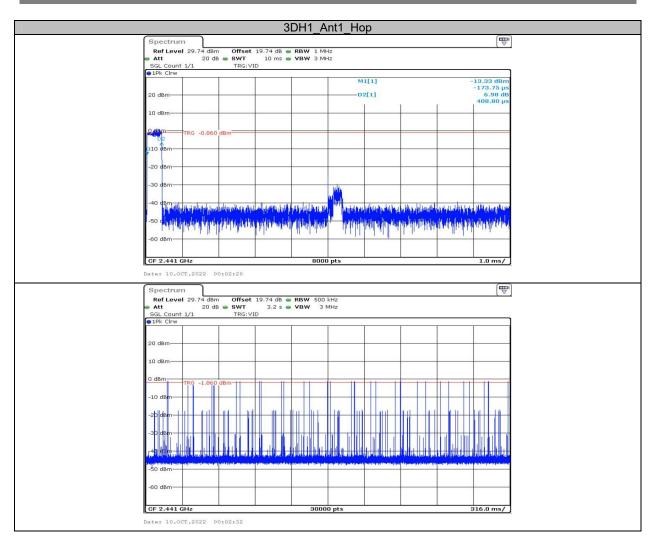
Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

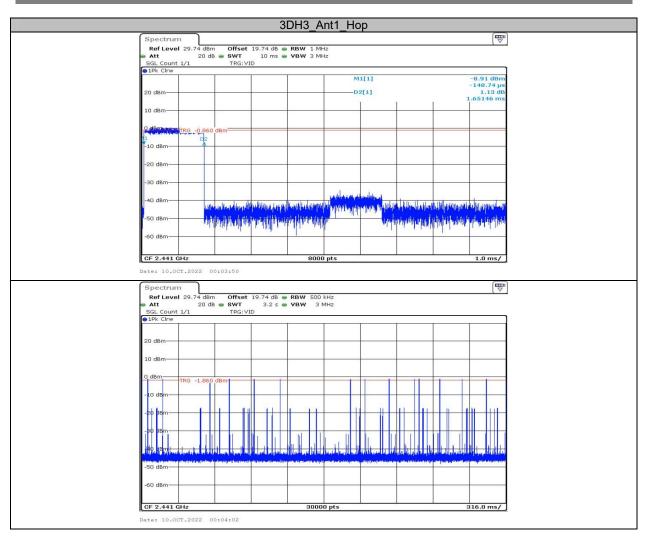

Test Graphs


Report No.: SZNS220922-43425E-RF-00A


Report No.: SZNS220922-43425E-RF-00A


Report No.: SZNS220922-43425E-RF-00A


Report No.: SZNS220922-43425E-RF-00A


Report No.: SZNS220922-43425E-RF-00A

Report No.: SZNS220922-43425E-RF-00A

Report No.: SZNS220922-43425E-RF-00A

Report No.: SZNS220922-43425E-RF-00A

	3DH5_A	nt1_Hop		
Spectrum				
👄 Att 20 dB 👄 SWT				
SGL Count 1/1 TRG: 1Pk Clrw	VID			
		M1[1]	-1	7.36 dBm 163.75 µs
20 dBm		D2[1]		13.03 dB
10 dBm			2.	89411 ms
10 dBill				
O (Broute TRG -1.060 dBm				
-10 dBm	Î			
1				
-20 dBm				
-30 dBm				
				10.
-40 dBm	ومالقهم والرواحي فالراول الوطريقهم	الالفريان اللرام أرهم الماسية فالم	Lief Hanston (Lief and most)	dilla bladdau
-50 dBm	dalah menganan di kalan baha bah	in additional and dependent of the	h dinamin di king di sanahadi dinahasi	and the last
-60 dBm	Table of a date	i da talitte	de contra mante a se con	di di c
-oo abiii				
CF 2.441 GHz	8000	pts		1.0 ms/
Date: 10.0CT.2022 00:04:35				
Spectrum				
Ref Level 29.74 dBm Offse	t 19.74 dB 👄 RBW 500	Hz		
Att 20 dB SWT SGL Count 1/1 TRG:		1Hz		
●1Pk Clrw	1 1			
20 dBm				
10 dBm				
Q dBm				
TRG -2.060 dBm				
-10 dBm				
-20 dBm				1 1
-80 dBm				
+40 dBm		when the second second second	and the state of the second state of the secon	a salar di da
-50 dBm	and her see the second s		-	Contraction publications
-50 0811				
-60 dBm				
CF 2.441 GHz	3000) pts	31	16.0 ms/
Date: 10.0CT.2022 00:04:47				

Appendix F: Number of hopping channels Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

Spectrum W In all Local 20.00 dim UNIX 20.01 dim WINK 20.01 dim Model Auto Sweep In al local 20.00 dim WINK 20.01 dim Model Auto Sweep In al local 20.00 dim In al local 20.01 dim In al local 20.01 dim In al local 20.01 dim In al local 20.01 dim In al local 20.01 dim In al local 20.01 dim In al local 20.01 dim In al local 20.01 dim In al local 20.01 dim In	Test Graphs	Dild Antid Llan
In the second and the second an	C	DH1_Ant1_Hop
• Aft • Bit P View Bit P View • Aft • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View • Bit P View		Ref Level 30.00 dBm Offset 20.01 dB 🖷 RBW 100 kHz
So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image: So dom Image:	(Count 1000/1000
In the second	•	1Pk View
In the second		20 (8m)
Image:		
	1	10 dBm
Image: state of the second	a	
i o dam		
i o dam		Jagaanaa ka k
yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo dam yo	-	-30 dBm
Sp dam	-	-p0 dBm
Sp dam		10 f8m
e-o dam	N	
istar 2.4 GHz 691 pts Btop 2.4635 GHz Date: 9.007.2022 2315217 DDH_Ant1_Hop Ref Lavel 3.0.00 dbm Offset 20.01 db * RBW 100 SHz Comment of the comme	9	-50 dBm
DIPL Antl_Hop Image was a colspan="2">Image was a colspan="2">Image was a colspan="2">Image was a colspan="2" Image was a colspan="2"	-	-60 dBm
DIPL Antl_Hop Immediate 20.01 dB @ RBW 100 Htt		
2DH1_Ant1_Hop Ref Level 30.00 dem Offset 20.01 de Repuinde Auto Sweep Cont 1000/1000 D dem O dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem 0 dem >>>>>>>>>>>>>>>>>>>>>>>>>>>		
Spectrum W Ref Level 30.00 dBm Offset 20.01 dB @ RBW 100 kHz Mode Auto Sweep Count 1000/1000 WW 300 kHz Mode Auto Sweep Count 1000/1000 WW 300 kHz Mode Auto Sweep 20 dBm Ims @ VBW 300 kHz Mode Auto Sweep 20 dBm Ims @ VBW 300 kHz Mode Auto Sweep 0 dBm Ims @ VBW 300 kHz Mode Auto Sweep 0 dBm Ims @ VBW 300 kHz Mode Auto Sweep 0 dBm Ims @ VBW 300 kHz Mode Auto Sweep 0 dBm Ims @ VBW 300 kHz Mode Auto Sweep 0 dBm Ims @ VBW 300 kHz Mode Auto Sweep 0 dBm Ims @ VBW 300 kHz Ims @ VBW 300 kHz 10 dBm Ims @ VBW 300 kHz Ims @ VBW 300 kHz 30 dBm Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 300 kHz Ims @ VBW 3	Da	
Ref Level 30.00 dbm Offset 20.01 db RRW 100 HHz Att 20 db SWT 1 ms VBW 300 HHz Out 1000/1000 Ims VBW 300 HHz Mode Auto Sweep Count 1000/1000 Ims VBW 300 HHz Mode Auto Sweep O dbm 0 Image: Sweet Auto Sweep Image: Sweet Auto Sweep 0 dbm 0 Image: Sweet Auto Sweep Image: Sweet Auto Sweep 0 dbm 0 Image: Sweet Auto Sweep Image: Sweet Auto Sweep 0 dbm 0 Image: Sweet Auto Sweep Image: Sweet Auto Sweep 0 dbm 0 Image: Sweet Auto Sweep Image: Sweet Auto Sweep 0 dbm 0 Image: Sweet Auto Sweep Image: Sweet Auto Sweep 0 dbm 0 Image: Sweet Auto Sweep Image: Sweet Auto Sweep -0 dbm 0 Image: Sweet Auto Sweep Image: Sweet Auto Sweep -0 dbm -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0		
• Att 20 db SWT 1 ms • VBW 300 kHz Mode Auto Sweep • Fk View •		
• 1 Pk View 20 dBm 10 dBm 0 dBm 0 dBm -0 dBm	-	Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep
10 dBm		
10 dBm		
0 dBm 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm -30 dBm 0 dBm 0 dBm 0 dBm -50 dBm 0 dBm 0 dBm 0 dBm 0 dBm -50 dBm 0 dBm 0 dBm 0 dBm 0 dBm <td< td=""><td>2</td><td>20 dBm</td></td<>	2	20 dBm
-10 dBm	1	10 dBm
-10 dBm	с	0 dBm
-20 dBm		tamaalikka alaanaa ka ahaa ka ahaa ahaa ahaa ahaa aha
30 dBm	*	-1U GRW
40 dBm	3	-20 dBm
40 dBm	ل	-30 dBm
S0 dBm		
-60 dBm	1	AU dbm
Start 2.4 GHz 691 pts Stop 2.4835 GHz Date: 9.0CT.2022 23:40:45 3DH1_Ant1_Hop Spectrum Ref Level 30.00 dBm Offset 20.01 dB @ RBW 100 kHz	2.	-50 dBm
Bate: 9.0CT.2022 23;40:45 3DH1_Ant1_Hop Image: Control of the second secon	بـ	-60 dBm
Bate: 9.0CT.2022 23;40:45 3DH1_Ant1_Hop Image: Control of the second secon		
3DH1_Ant1_Hop		
Spectrum Ref Level 30.00 dBm Offset 20.01 dB ● RBW 100 kHz	Da	ate: 9.0CT.2022 23:40:45
RefLevel 30.00 dBm Offset 20.01 dB RBW 100 kHz		
	-	Att 20 dB SWT 1 ms • VBW 300 kHz Mode Auto Sweep
Count 1000/1000 ●1Pk View		
20 dBm	2	20 dBm
10 dBm-	1	10 dBm
O dBm		
. The second sec	0	AND
-10 dBm-	-	-10 dBm
-20 dBm	3	-20 dBm
-30 dBm		-50 dBm
10 dBm	λī.	
-50 dBm		"-50 dBm
-60 dBm		-60 dBm
	-	
Start 2.4 GHz 691 pts Stop 2.4835 GHz	8	Start 2.4 GHz 691 pts Stop 2.4835 GHz
Date: 10.0CT.2022 00:02:06	Da	ate: 10.0CT.2022 00:02:06

Appendix G: Band edge measurements Test Graphs

Spectrum		H1_Ant1_Lo		und the second	20
Ref Level 30.00 dt	3m Offset 20.01 dB	- RBW 100 kHz			
Att 20					
Count 300/300					-
1Pk View			M1[1]	-1.53 dBr	0
20 dBm				2.4020150 GH	z
			M2[1]	-50.65 dBr 2.4000000 GH	2
10 dBm				2.400000 GH	2
0 dBm				M1	
				l í	
-10 dBm					-
-20 dBmD1 -21.53					
D1 -21.53	30 d8m		2		
-30 dBm					-
-40 dBm		-			
				M3 . M4	
USD dBog	and the sold and the second	and proceeding of the	man and and and and and and and and and a	the second and the second the	4
-60 dBm		_			-
Start 2.35 GHz		691 pts		Stop 2.405 GHz	
Marker					7
Type Ref Trc M1 1	2.402015 GHz	-1.53 dBm	Function	Function Result	4
M2 1	2.4 GHz	-50.65 dBm			
	2.39 GHz	-50.50 dBm			
M3 1					_
M3 1 M4 1 Date: 9.0CT.2022 2	2.3998188 GHz	-47.67 dBm	gh_2480		
M4 1 Date: 9.0CT.2022 2	2.3998188 GHz	-47.67 dBm	gh_2480	(The second seco	2
M4 1 Date: 9.0CT.2022 2	2.3998188 GHz 23:49:00 DH	-47.67 dBm	gh_2480	(m	2
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 di 3 Att 20 3	2.3998188 GHz	-47.67 dBm	gh_2480 Mode Auto Sweep	(T	2
M4 1 Date: 9.0CT.2022 2 Spectrum Ref Level 29.74 dl Att 20 Count 300/300	2.3998188 GHz	-47.67 dBm		(Tr	
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 di 3 Att 20 3	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	х	<u>-</u> ב
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 20.74 di 20 Att 20 20 Ount 300/300 1Pk View 10	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH	
M4 1 Date: 9.0CT.2022 2 Spectrum Ref Level 20.74 dl 20 Att 20 20 Date: 20 dBm 20	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 di 20 Att 20 Count 300/300 1Pk View 20 dBm 10 dBm 10 dBm 10 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH	
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 dl 4 Att 20 Count 300/300 ● IPk View 20 dBm 10 dBm 10 dBm M1 10	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 Spectrum Ref Level 29.74 dl Att 20 Ocunt 300/300 10k 20 dBm 10 dBm 10 dBm M1	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 dl 4 Att 20 Count 300/300 ● IPk View 20 dBm 10 dBm 10 dBm M1 10	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 3 Spectrum Rof Level 29.74 di Att 20 Count 300/300 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 dl Att 20 20 dBm 0 dBm 10 dBm -10 dBm 01 -21.51	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 3 Spectrum Rof Level 29.74 di Att 20 Count 300/300 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 2 Spectrum Ref Level 29.74 dl 3 Att 30/300 1 Odbm 10 9.74 dl 10 dBm 10 10 dBm -10 dBm 01 -21.5 -30 dBm 01 -21.5 -40 dBm 10 -21.5	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep M1[1] M2[1]	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 dl Att 20 20 dBm 10 dBm 10 dBm -10 dBm 01 -21.5 -30 dBm 10 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep M1[1] M2[1]	-1.51 dBr 2.480010 GH -48.56 dBr 2.483500 GH	
M4 1 Date: 9.0CT.2022 3 Spectrum Rof Level 29.74 dl Att 20 Ocunt 300/300 120 dBm 10 dBm 10 dBm -10 dBm 01 -21.5 -30 dBm 30 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr	
M4 1 Date: 9.0CT.2022 3 Spectrum Rof Level 29.74 dl Att 20 Ocunt 300/300 1Pk View 20 dBm 10 dBm 10 dBm 1 -10 dBm 01 -21.51 -30 dBm -30 dBm -50 dBm 50 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep M1[1] M2[1]	-1.51 dBr 2.480010 GH -48.56 dBr 2.483500 GH	
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 dl Att 20 20 dBm 10 dBm 10 dBm -10 dBm 01 -21.5 -30 dBm 10 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep M1[1] M2[1]	-1.51 dBr 2.480010 GH -48.56 dBr 2.483500 GH	
M4 1 Date: 9.0CT.2022 3 Spectrum Rof Level 29.74 dl Att 20 Ocunt 300/300 1Pk View 20 dBm 10 dBm 10 dBm 1 -10 dBm 01 -21.51 -30 dBm -30 dBm -50 dBm 50 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep M1[1] M2[1]	-1.51 dBr 2.480010 GH -48.56 dBr 2.483500 GH	
M4 1 Date: 9.0CT.2022 3 Spectrum Ref Level 29.74 di Att 20 OBM 0 10 dBm 0 10 dBm 1 -10 dBm 1 -30 dBm 1 -50 dBm -60 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep M1[1] M2[1]	-1.51 dBr 2.480010 GH -48.56 dBr 2.483500 GH	
M4 1 Date: 9.0CT.2022 3 Ref Level 29.74 dl 3 Att 20 20 Ocunt 300/300 19k View 20 dBm 10 10 dBm 11 -10 dBm 11 -30 dBm 10 -30 dBm 11 -31 dBm 12 -32 dBm 12 -30 dBm 10 -30 dBm 12 -30 dBm 10 -50 dBm 50 -50 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep M1[1] M2[1]	-1.51 dBr 2.480010 GH -48.56 dBr 2.483500 GH	
M4 1 Date: 9.0CT.2022 2 Spectrum Ref Level 29.74 dl Att 20 Ocunt 300/300 1Pk View 20 dBm 10 dBm 10 dBm 1 -10 dBm 1.21.5 -30 dBm 1.21.5 -50 dBm 5.50 dBm -60 dBm 5.50 dBm -50 dBm 5.50 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr 2.483500 GH	
M4 1 Date: 9.0CT.2022 3 Ref Level 29.74 dl 3 Att 20 20 Ocunt 300/300 19k View 20 dBm 10 10 dBm 11 -10 dBm 11 -30 dBm 10 -30 dBm 11 -31 dBm 12 -32 dBm 12 -30 dBm 10 -30 dBm 12 -30 dBm 10 -50 dBm 50 -50 dBm	2.3998188 GHz	-47.67 dBm	Mode Auto Sweep	-1.51 dBr 2.480010 GH -48.56 dBr 2.483500 GH	

Report No.: SZNS220922-43425E-RF-00A

Report No.: SZNS220922-43425E-RF-00A

Report No.: SZNS220922-43425E-RF-00A

Report No.: SZNS220922-43425E-RF-00A

Spectrun	n					E.
	29.74 dBn	Offset 19.74 dB	BBW 100 kuz			
Att	20 de		• VBW 300 kHz	Mode Auto	Sweep	
Count 300	/300					
●1Pk View						
				M1[1]		-1.44 dBr
20 dBm-						2.470980 GH
				M2[1]		-49.34 dBr
10 dBm-						2.483500 GH
641						
	1.00					
MMMM	why					
10 dBm						
-20 dBm	D1 -21.440	dBm	-			
-30 dBm-						
-30 ubm						
-40 dBm-			_			
	M2	M	3	M4		
-50 dBm	Uniter	Herenarde Walter and the	Current warmen war	provelle bonnen	and an and a start way have been a start of the	mar and and and and a second
100000000000000000000000000000000000000						
-60 dBm						
Start 2.47	GHz		691 pt	5		Stop 2.55 GHz
Marker				-		
Type Re	f Trc	X-value	Y-value	Function	L E	unction Result
M1	1	2.47098 GHz	-1.44 dBm	1 dilocion		
M2	1	2.4835 GHz	-49.34 dBm			
M3	1	2.5 GHz	-48.83 dBm			
M4	1	2.515333 GHz	-47.00 dBm			

***** END OF REPORT *****