

FCC TEST REPORT FCC ID:2BEJH-KL-YD74

 Report Number
 DLE-250410005R

 Date of Test
 Mar. 11, 2025 to Mar. 18, 2025

Date of issue.....: Mar. 18, 2025

Test Result: PASS

Testing Laboratory.....: Shenzhen DL Testing Technology Co., Ltd.

101-201, Building C, Shuanghuan, No.8, Baoqing Roa Baolong Address Industrial Zone, Baolong Street, Longgang Shenzhen, Guangdong,

China

Applicant's name: Shenzhen Kula Technology Co.,LTD

Manufacturer's name: Shenzhen Kula Technology Co.,LTD

Test specification:

Standard...... FCC CFR Title 47 Part 15 Subpart C

Test procedure : /

Non-standard test method: N/A

Test Report Form No.....: TRF-EL-107_V0

Test Report Form(s) Originator.....: DL Testing

Master TRF: Dated: 2020-01-06

This device described above has been tested by DL, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of DL, this document may be altered or revised by DL, personal only, and shall be noted in the revision of the document.

Product name.....: power bank

Trademark: N/A

Model/Type reference....: KL-YD74

Ratings.....: Type-C Input: 5V==3A, 9V==3A, 12V==2.5A, 15V==2A

20V === 1.5A (See page 8 for more parameters)

Wireless Output: 15W (Android / iPhone); 2.5W (Apple Watch)

Battery Capacity: 10000mAh

Rated Capacity: 6000mAh (5V === 2A)

Rated Energy: 38.7Wh (DC 7.74V / 5000mAh / 2 in series)

Testing procedure and testing location:			
Testing Laboratory:	Shenzhen DL Testing Technology Co., Ltd.		
Address:	101-201, Building C, Shuanghuan, No.8, Baoqing Roa Baolong Industrial Zone, Baolong Street, Longgang Shenzhen, Guangdong, China		
Tested by (name + signature):	Jìm Liu		
	Jackson Fang		
Reviewer (name + signature):			
Approved (name + signature):	Jackson Fang Ja		

TABLE OF CONTENTS

1. VERSION	4
2. TEST SUMMARY	5
2.1 TEST FACILITY	6
2.2 MEASUREMENT UNCERTAINTY	6
3. GENERAL INFORMATION	7
3.1 GENERAL DESCRIPTION OF EUT	7
3.2 TEST MODE	8
3.3 BLOCK DIAGRAM OF EUT CONFIGURATION	10
3.4 TEST CONDITIONS	11
3.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	11
3.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
4. CONDUCTED EMISSION TEST	14
4.1 CONDUCTED EMISSION MEASUREMENT	14
4.1.1 POWER LINE CONDUCTED EMISSION Limits	14
4.1.2 TEST PROCEDURE	14
4.1.3 DEVIATION FROM TEST STANDARD	14
4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS	
4.1.6 TEST RESULT	16
5. RADIATED EMISSION MEASUREMENT	
5.1 RADIATED EMISSION LIMITS	20
5.2 ANECHOIC CHAMBER TEST SETUP DIAGRAM	21
5.3 TEST PROCEDURE	22
5.4 DEVIATION FROM TEST STANDARD	
5.5 TEST RESULT	22
6. 20DB BANDWIDTH TEST	35
6.1 TEST PROCEDURE	35
6.2 LIMIT	35
6.3 TEST SETUP	35
6.4 DEVIATION FROM STANDARD	
6.5 TEST RESULT	36
7. ANTENNA REQUIREMENT	37
8. TEST SETUP PHOTO	38
9. EUT CONSTRUCTIONAL DETAILS	38

Project No.: DLE-250410005R Page 4 of 38

1. VERSION

Report No. Version		Description	Approved	
DLE-250410005R	Rev.01	Initial issue of report	Mar. 18, 2025	

Project No.: DLE-250410005R Page 5 of 38

2. TEST SUMMARY

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Spurious Emission	15.209(a)(f)	Pass
20dB Bandwidth	15.215	Pass

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Project No.: DLE-250410005R Page 6 of 38

2.1 TEST FACILITY

Shenzhen DL Testing Technology Co., Ltd.

Add.: 101-201, Building C, Shuanghuan, No.8, Baoqing Roa Baolong Industrial Zone, Baolong Stree

Longgang Shenzhen, Guangdong, China

FCC Test Firm Registration Number: 854456

Designation Number: CN1307 IC Registered No.: 27485 CAB identifier: CN0118

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB
4	3m chamber Radiated spurious emission(6GHz-40GHz)	U=5.0dB
5	Conducted disturbance	U=3.2dB
6	RF conducted Spurious Emission	U=2.2dB
7	RF Occupied Bandwidth	U=1.8MHz
8	humidity uncertainty	U=5.3%
9	Temperature uncertainty	U=0.59℃

Project No.: DLE-250410005R Page 7 of 38

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	power bank
Model No.:	KL-YD74
Serial No.:	N/A
Model Difference:	N/A
Hardware Version:	V 1.0
Software Version:	V 1.1
Operation Frequency:	ANT1: 115kHz ~ 205kHz ANT2: 300kHz ~ 350kHz
Modulation Type:	ASK
Antenna Type:	Loop Coil Antenna
Antenna Gain:	0dBi
Ratings:	Type-C Input: 5V==3A, 9V==3A, 12V==2.5A, 15V==2A 20V==1.5A Type-C Output: 5V==3A, 9V==3A, 12V==2.5A, 15V==2A 20V==1.5A Wireless Output: 15W (Android / iPhone); 2.5W (Apple Watch)
Battery Capacity:	10000mAh
Rated Capacity:	6000mAh (5V===2A)
Rated Energy:	38.7Wh (DC 7.74V / 5000mAh / 2 in series)
Transmitting Mode:	Keep the EUT in continuously wireless charging mode

Project No.: DLE-250410005R Page 8 of 38

3.2 TEST MODE

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

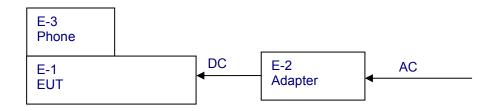
a. EUT mode of adapter input + wireless charge output:

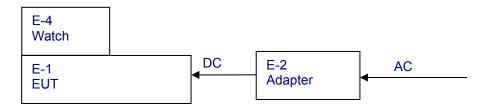
Test Modes:	Test Coil:	Description:
Mode 1		AC/DC Adapter (20V/1.5A) + EUT + Phone 15W (Battery Status: <1%)
Mode 2		AC/DC Adapter (20V/1.5A) + EUT + Phone 15W (Battery Status: 50%)
Mode 3		AC/DC Adapter (20V/1.5A) + EUT + Phone 15W (Battery Status: >98%)
Mode 4		AC/DC Adapter (15V/2A) + EUT + Phone 15W (Battery Status: <1%)
Mode 5		AC/DC Adapter (15V/2A) + EUT + Phone 15W (Battery Status: 50%)
Mode 6		AC/DC Adapter (15V/2A) + EUT + Phone 15W (Battery Status: >98%)
Mode 7		AC/DC Adapter (12V/2.5A) + EUT + Phone 15W (Battery Status: <1%)
Mode 8	ANT 1	AC/DC Adapter (12V/2.5A) + EUT + Phone 15W (Battery Status: 50%)
Mode 9		AC/DC Adapter (12V/2.5A) + EUT + Phone 15W (Battery Status: >98%)
Mode 10		AC/DC Adapter (9V/3A) + EUT + Phone 15W (Battery Status: <1%)
Mode 11		AC/DC Adapter (9V/3A) + EUT + Phone 15W (Battery Status: 50%)
Mode 12		AC/DC Adapter (9V/3A) + EUT + Phone 15W (Battery Status: >98%)
Mode 13		AC/DC Adapter (5V/3A) + EUT + Phone 15W (Battery Status: <1%)
Mode 14		AC/DC Adapter (5V/3A) + EUT + Phone 15W (Battery Status: 50%)
Mode 15		AC/DC Adapter (5V/3A) + EUT + Phone 15W (Battery Status: >98%)
Mode 16		AC/DC Adapter (20V/1.5A) + EUT + Watch 2.5W (Battery Status: <1%)
Mode 17		AC/DC Adapter (20V/1.5A) + EUT + Watch 2.5W (Battery Status: 50%)
Mode 18		AC/DC Adapter (20V/1.5A) + EUT + Watch 2.5W (Battery Status: >98%)
Mode 19		AC/DC Adapter (15V/2A) + EUT + Watch 2.5W (Battery Status: <1%)
Mode 20		AC/DC Adapter (15V/2A) + EUT + Watch 2.5W (Battery Status: 50%)
Mode 21		AC/DC Adapter (15V/2A) + EUT + Watch 2.5W (Battery Status: >98%)
Mode 22		AC/DC Adapter (12V/2.5A) + EUT + Watch 2.5W (Battery Status: <1%)
Mode 23	ANT 2	AC/DC Adapter (12V/2.5A) + EUT + Watch 2.5W (Battery Status: 50%)
Mode 24		AC/DC Adapter (12V/2.5A) + EUT + Watch 2.5W (Battery Status: >98%)
Mode 25		AC/DC Adapter (9V/3A) + EUT + Watch 2.5W (Battery Status: <1%)
Mode 26		AC/DC Adapter (9V/3A) + EUT + Watch 2.5W (Battery Status: 50%)
Mode 27		AC/DC Adapter (9V/3A) + EUT + Watch 2.5W (Battery Status: >98%)
Mode 28		AC/DC Adapter (5V/3A) + EUT + Watch 2.5W (Battery Status: <1%)
Mode 29		AC/DC Adapter (5V/3A) + EUT + Watch 2.5W (Battery Status: 50%)
Mode 30		AC/DC Adapter (5V/3A) + EUT + Watch 2.5W (Battery Status: >98%)

b. EUT mode of wireless charge output:

Test Modes:	Test Coil	Description:		
Mode 1a		EUT + Phone 15W (Battery Status: <1%)		
Mode 2a	ANT 1	EUT + Phone 15W (Battery Status: 50%)		
Mode 3a		EUT + Phone 15W (Battery Status: >98%)		
Mode 4a		EUT + Watch 2.5W (Battery Status: <1%)		
Mode 5a	ANT 2	EUT + Watch 2.5W (Battery Status: 50%)		
Mode 6a		EUT + Watch 2.5W (Battery Status: >98%)		

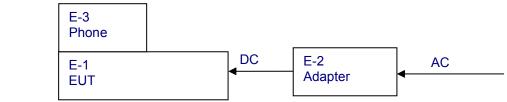
Note: The EUT cannot be charged both ANT 1 and ANT 2 during use.




3.3 BLOCK DIAGRAM OF EUT CONFIGURATION

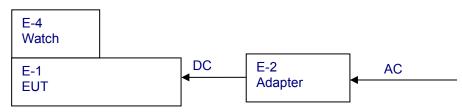
Conducted Emission

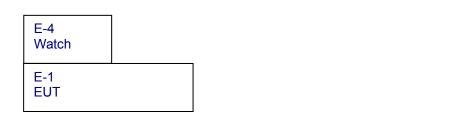
ANT1:



ANT2:

Radiated Emission


ANT1-A:


ANT1-B:

ANT2-A:

ANT2-B:

Project No.: DLE-250410005R Page 11 of 38

3.4 TEST CONDITIONS

Temperature: 23~26 °C

Relative Humidity: 54~63 %

3.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	power bank	N/A	KL-YD74	N/A	EUT
E-2	AC/DC Adapter	HUAWEI	HW-200200CP1	N/A	Auxiliary
E-3	Phone	Apple	iPhone 13 Pro	N/A	Auxiliary
E-4	Watch	Apple	iWatch S2	N/A	Auxiliary

Item	Item Shielded Type Ferrite Core		Shielded Type Ferrite Core Length		
C1	NO	NO 0.8M		DC cable unshielded	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Project No.: DLE-250410005R Page 12 of 38

3.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conduction Emissions Test

Item	Kind of Equipment	Manufacturer	Type No.	ISerial No	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Sep. 30, 2024	Sep. 29, 2025
2	LISN	CYBERTEK	EM5040A	E1850400149	N/A	Sep. 30, 2024	Sep. 29, 2025
3	Test Cable	N/A	C-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
4	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Sep. 29, 2024	Sep. 28, 2025
5	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	N/A	١	\

Radiation Emissions & Radiation Spurious Emissions Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	N9020A	MY55370835	A.17.05	Sep. 29, 2024	Sep. 28, 2025
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Sep. 30, 2024	Sep. 29, 2025
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	100969	4.32	Sep. 29, 2024	Sep. 28, 2025
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	00877	N/A	Sep. 30, 2024	Sep. 29, 2025
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Sep. 30, 2024	Sep. 29, 2025
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	N/A	Sep. 30, 2024	Sep. 29, 2025
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Oct. 11, 2024	Oct. 10, 2025
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	60747	N/A	Sep. 29, 2024	Sep. 28, 2025
9	Amplifier (1GHz-26.5GHz)	HuiPu	8449B	3008A00315	N/A	Sep. 29, 2024	Sep. 28, 2025
10	Amplifier (500MHz-40GHz)	QuanJuDa	DLE-161	097	N/A	Sep. 30, 2024	Sep. 29, 2025
11	Test Cable	N/A	R-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
12	Test Cable	N/A	R-02	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
13	Test Cable	N/A	R-03	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
14	D.C. Power Supply	LongWei	TPR-6405D	GQ7516	N/A	Sep. 29, 2024	Sep. 28, 2025
15	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	1	1
16	Turntable	MF	MF-7802BS	N/A	N/A	1	١
17	Antenna tower	MF	MF-7802BS	N/A	N/A	1	1

RF Conducted Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	N9020A	MY55370835	A.17.05	Sep. 29, 2024	Sep. 28, 2025
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Sep. 30, 2024	Sep. 29, 2025
3	Test Cable	N/A	RF-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
4	Test Cable	N/A	RF-02	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
5	Test Cable	N/A	RF-03	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
6	ESG Signal Generator	Agilent	E4421B	GB40051203	B.03.84	Sep. 29, 2024	Sep. 28, 2025
7	Signal Generator	Agilent	N5182A	MY47420215	A.01.87	Sep. 29, 2024	Sep. 28, 2025
8	Magnetic Field Probe Tester	Narda	ELT-400	0-0344/M-17 52	N/A	Sep. 29, 2024	Sep. 28, 2025
9	Van der Hoofden measuring head	Schwarzbeck Mess-elektron ik	VDHH 9502	9502-039	N/A	Sep. 30, 2024	Sep. 29, 2025
10	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Sep. 30, 2024	Sep. 29, 2025
11	MWRF Power Meter Test system	MW	MW100-RF CB	10371	N/A	Sep. 29, 2024	Sep. 28, 2025
12	D.C. Power Supply	LongWei	TPR-6405D	GQ7516	N/A	Sep. 29, 2024	Sep. 28, 2025
13	RF Software	MW	MTS8310	V2.0.0.0	N/A	1	1

Project No.: DLE-250410005R Page 14 of 38

4. CONDUCTED EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

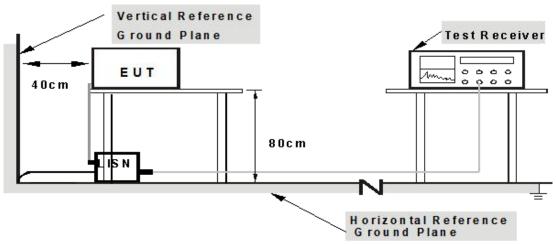
4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (dBuV)		Standard
PREQUENCT (MIDZ)	Quas-peak	Average	Staridard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

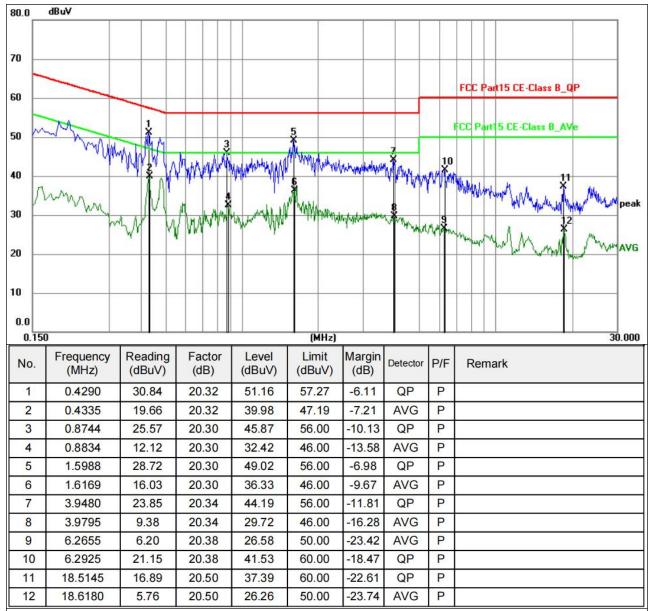
No deviation

Project No.: DLE-250410005R Page 15 of 38

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

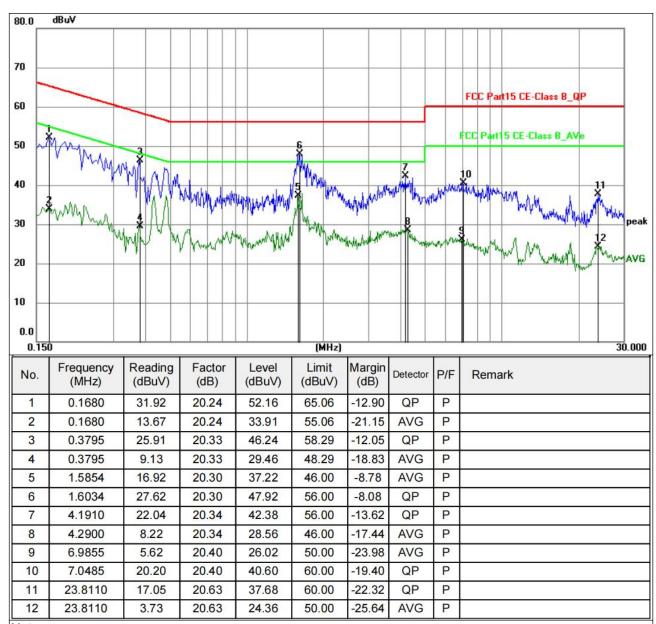
4.1.5 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Project No.: DLE-250410005R Page 16 of 38

4.1.6 TEST RESULT

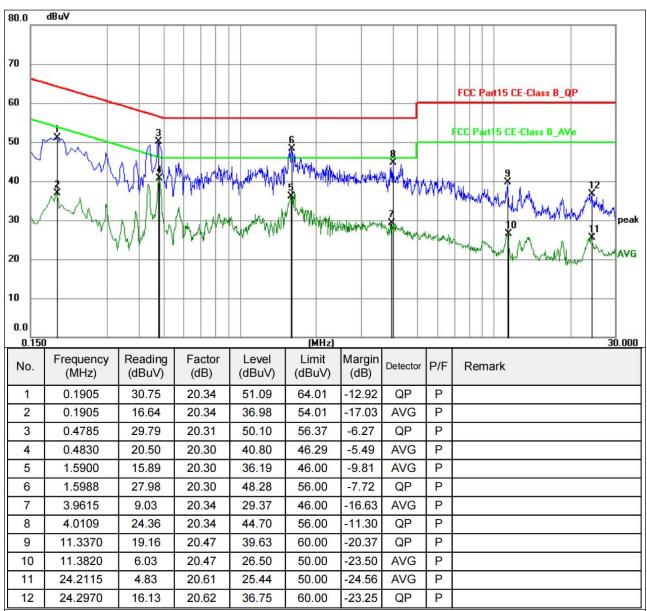
Temperature :	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 1


Notes

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Lisn factor+ Cable loss factor + limiter factor.
- 5.Margin = Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 1 recorded.

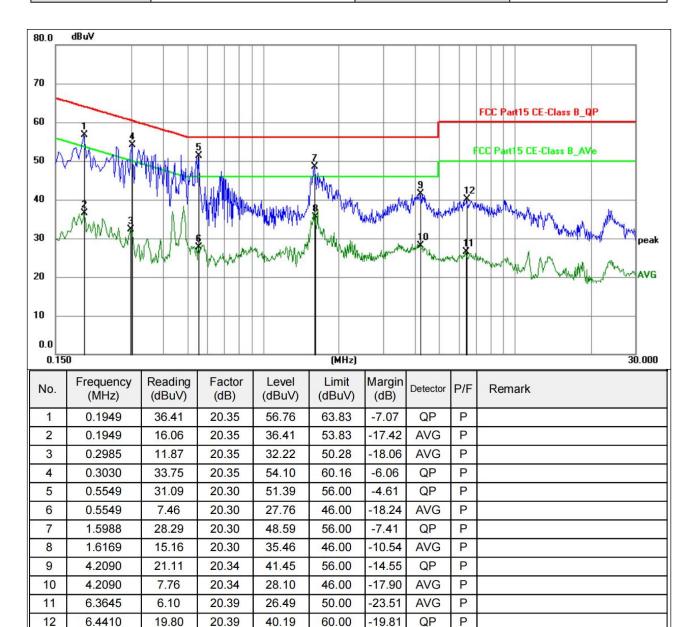
Project No.: DLE-250410005R Page 17 of 38

Temperature :	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 1


Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Lisn factor+ Cable loss factor + limiter factor.
- 5.Margin = Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 1 recorded.

Temperature :	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 16


Notes

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Lisn factor+ Cable loss factor + limiter factor.
- 5.Margin = Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 16 recorded.

Project No.: DLE-250410005R Page 19 of 38

Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 16

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Lisn factor+ Cable loss factor + limiter factor.
- 5.Margin = Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 16 recorded.

Project No.: DLE-250410005R Page 20 of 38

5. RADIATED EMISSION MEASUREMENT

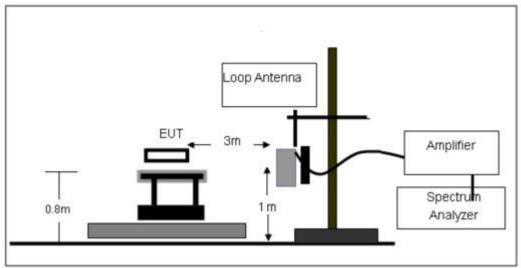
Test Requirement:	FCC Part15 C Secti	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 1GHz	9kHz to 1GHz						
Test site:	Measurement Dista	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak			
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak			
	Above 10Hz	Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz	Average			

5.1 RADIATED EMISSION LIMITS

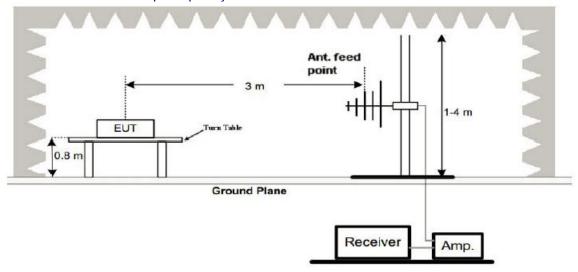
Limits for frequency below 30MHz

Frequency	Limit (uV/m)	Measurement Distance(m)	Remark
0.009-0.490	2400/F(kHz)	300	Quasi-peak Value
0.490-1.705	24000/F(kHz)	30	Quasi-peak Value
1.705-30	30	30	Quasi-peak Value

Limits for frequency Above 30MHz


Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.00	Quasi-peak Value
88MHz-216MHz	43.50	Quasi-peak Value
216MHz-960MHz	46.00	Quasi-peak Value
960MHz-1GHz	54.00	Quasi-peak Value
Above 1GHz	54.00	Average Value
Above IGHZ	74.00	Peak Value

Project No.: DLE-250410005R Page 21 of 38



5.2 ANECHOIC CHAMBER TEST SETUP DIAGRAM

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.205 limits.

Project No.: DLE-250410005R Page 22 of 38

5.3 TEST PROCEDURE

Below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meterssemi-anechoic chamber. The table was rotated 360 degrees to determine the position of thehighest radiation.
- b. The EUT was set 3 meters away from the interference-receiving loop antenna and in thecenter of a loop antenna, which was mounted on the top of a variable-height antenna tower.
- c. For each suspected emission, the EUT was arranged to its worst case, the height ofinterference-receiving loop antenna centre is 1 meter above the ground, and the rotatable tablewas turned from 0 degrees to 360 degrees to find the maximum reading.
- d. Both coaxial (loop plane perpendicular to the ground plane and to the measurement axis) and coplanar (loop plane perpendicular to the ground plane and coplanar with the measurement axis) polarizations of the antenna are set to make the measurement.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth withmaximum hold mode when the test frequency is below 1 GHz.

30MHz-1GHz

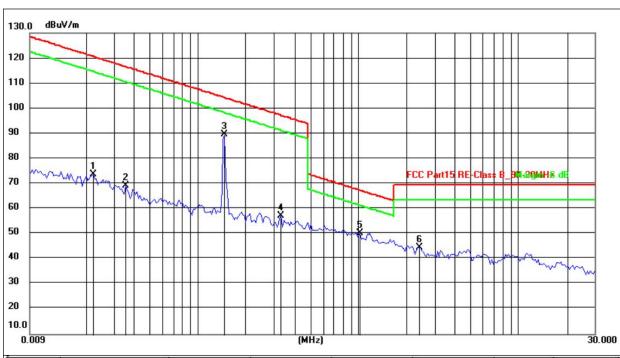
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meterssemi-anechoic chamber. The table was rotated 360 degrees to determine the position of thehighest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mountedon the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four metersabove the ground to determine the maximum value of the field strength. Both horizontal andvertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antennawas tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth withmaximum hold mode when the test frequency is below 1 GHz.

5.4 DEVIATION FROM TEST STANDARD

No deviation

5.5 TEST RESULT

Measurement data:

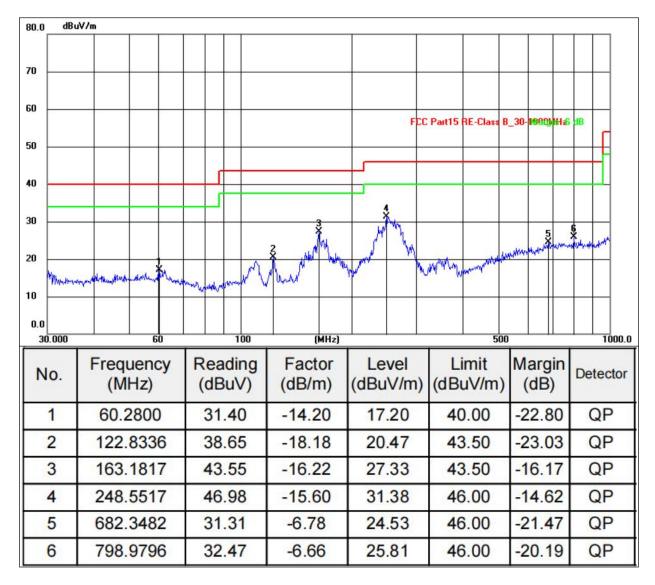

Note: Limit dBuV/m @3m = Limit dBuV/m @300m+ 80 Limit dBuV/m @3m = Limit dBuV/m @30m + 40

Project No.: DLE-250410005R Page 23 of 38

ANT1-A: 9 kHz~30 MHz

Temperature :	26℃	Relative Humidity :	54%
Pressure :	101 kPa	Polarization :	coaxial
Test Voltage :	DC 20V	Test Mode :	Mode 1

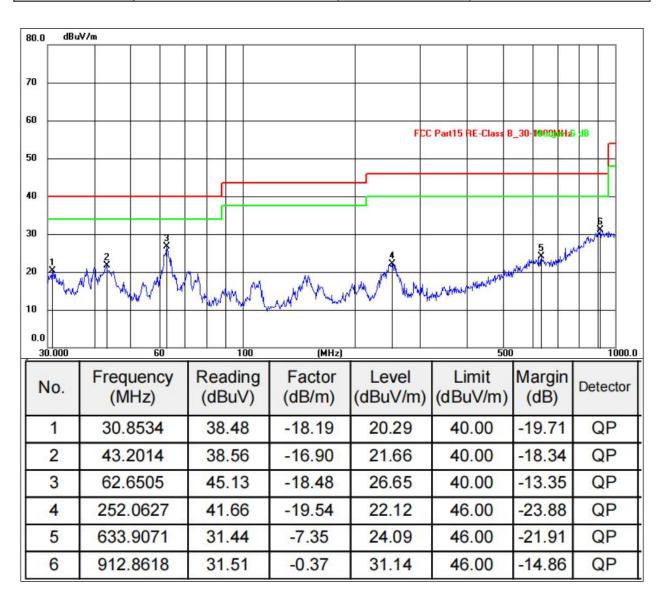
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	0.0223	53.22	20.40	73.62	120.64	-47.02	peak
2	0.0357	49.11	20.08	69.19	116.55	-47.36	peak
3	0.1460	69.52	20.04	89.56	104.32	-14.76	peak
4	0.3326	37.09	20.13	57.22	97.17	-39.95	peak
5	1.0354	30.51	19.94	50.45	67.30	-16.85	peak
6	2.4266	25.02	19.73	44.75	69.54	-24.79	peak


- 1.An initial pre-scan was performed on the peak detector.
- 2.Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3.Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 1 recorded.

Project No.: DLE-250410005R Page 24 of 38

30MHz-1GHz

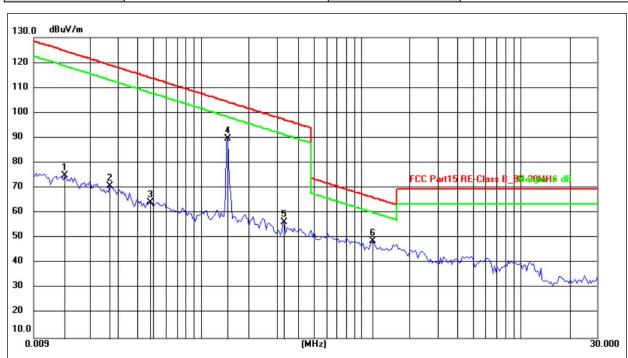
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 20V	Test Mode:	Mode 1



- 1.An initial pre-scan was performed on the peak detector.
- 2.Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4. Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 1 recorded.

Project No.: DLE-250410005R Page 25 of 38

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 20V	Test Mode:	Mode 1

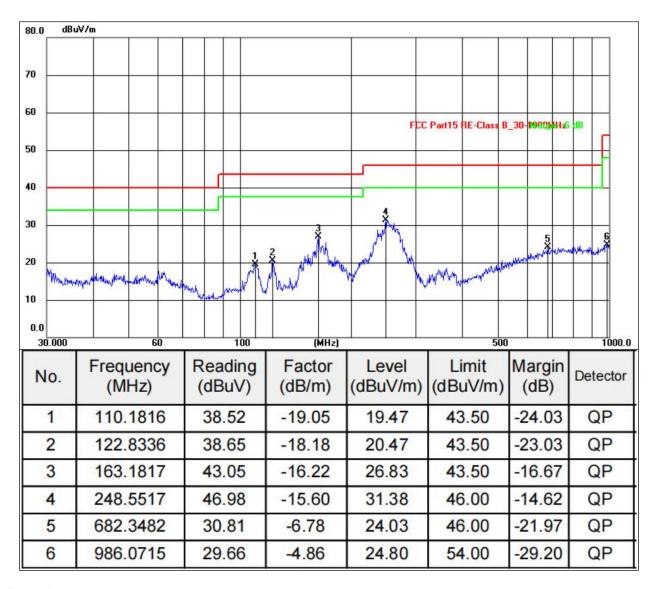

- 1.An initial pre-scan was performed on the peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4. Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 1 recorded.

Project No.: DLE-250410005R Page 26 of 38

ANT1-B: 9 kHz~30 MHz

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	coaxial
Test Voltage:	DC 7.74V	Test Mode:	Mode 1a

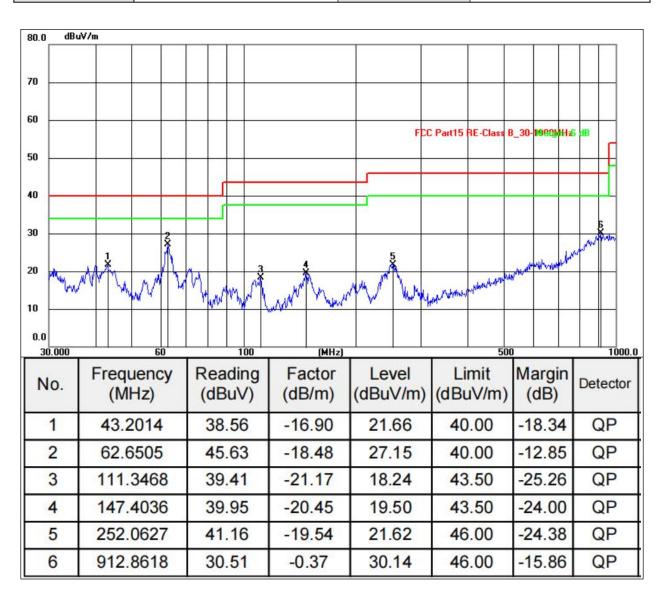
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.0140	54.35	20.51	74.86	124.68	-49.82	peak
2	0.0269	50.55	20.29	70.84	119.01	-48.17	peak
3	0.0483	44.43	19.79	64.22	113.93	-49.71	peak
4	0.1460	69.72	20.04	89.76	104.32	-14.56	peak
5	0.3326	36.09	20.13	56.22	97.17	-40.95	peak
6	1.1933	28.86	19.92	48.78	66.07	-17.29	peak


- 1.An initial pre-scan was performed on the peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3.Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 1a recorded.

Project No.: DLE-250410005R Page 27 of 38

30MHz-1GHz

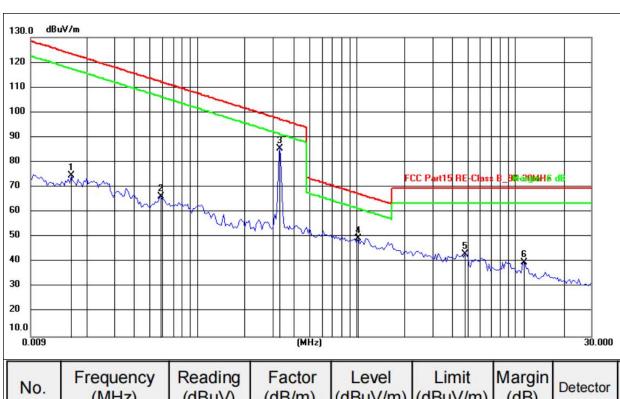
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 7.74V	Test Mode:	Mode 1a



- 1.An initial pre-scan was performed on the peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4. Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 1a recorded.

Project No.: DLE-250410005R Page 28 of 38

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 7.74V	Test Mode:	Mode 1a

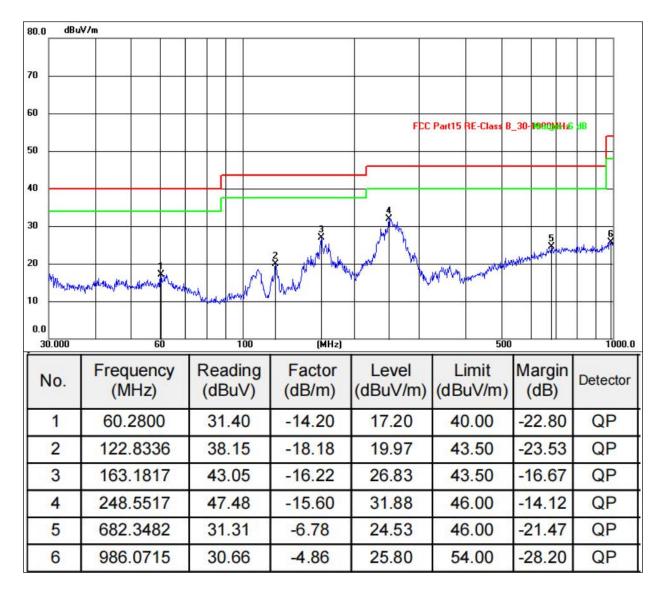

- 1.An initial pre-scan was performed on the peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3.Final Level = Reading level + Correct Factor.
- 4. Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 1a recorded.

Project No.: DLE-250410005R Page 29 of 38

ANT2-A: 9 kHz~30 MHz

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101 kPa	Polarization :	coaxial
Test Voltage :	DC 20V	Test Mode :	Mode 16

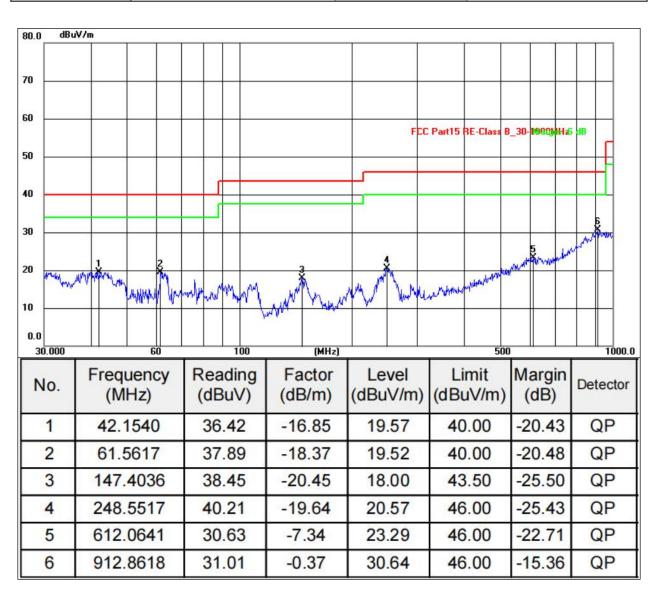
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.0160	54.07	20.49	74.56	123.52	-48.96	peak
2	0.0592	46.44	19.80	66.24	112.16	-45.92	peak
3	0.3290	65.46	20.13	85.59	97.26	-11.67	peak
4	1.0354	29.51	19.94	49.45	67.30	-17.85	peak
5	4.8357	23.64	19.49	43.13	69.54	-26.41	peak
6	11.3338	20.82	18.99	39.81	69.54	-29.73	peak


- 1.An initial pre-scan was performed on the peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3.Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 16 recorded.

Project No.: DLE-250410005R Page 30 of 38

30MHz-1GHz

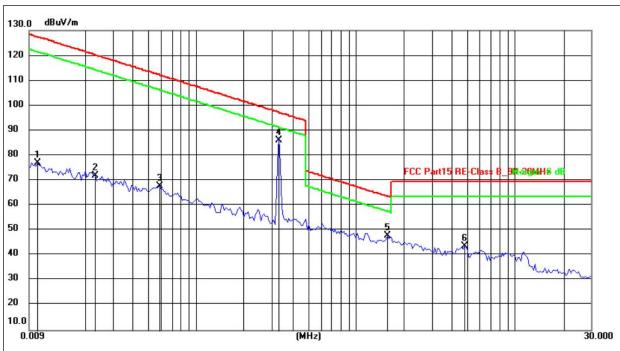
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 20V	Test Mode:	Mode 16



- 1.An initial pre-scan was performed on the peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 16 recorded.

Project No.: DLE-250410005R Page 31 of 38

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 20V	Test Mode:	Mode 16

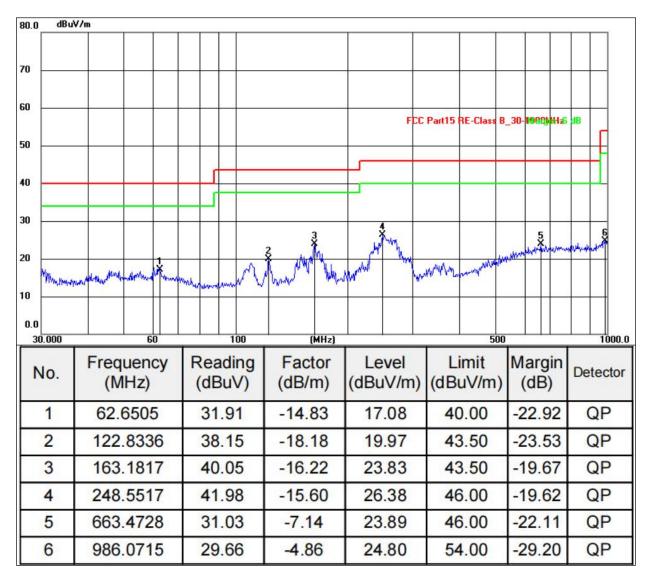

- 1.An initial pre-scan was performed on the peak detector.
- 2.Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 16 recorded.

Project No.: DLE-250410005R Page 32 of 38

ANT2-B: 9 kHz~30 MHz

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	coaxial
Test Voltage:	DC 7.74V	Test Mode:	Mode 4a

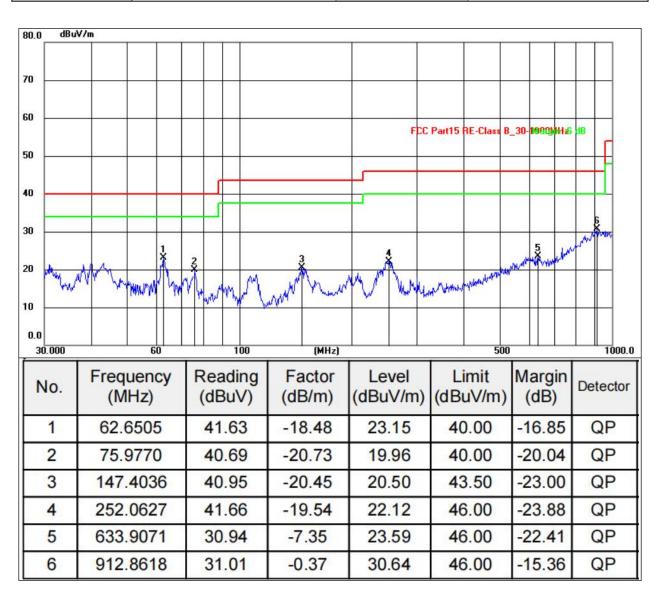
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	0.0100	56.42	20.55	76.97	127.60	-50.63	peak
2	0.0233	51.70	20.37	72.07	120.26	-48.19	peak
3	0.0592	47.94	19.80	67.74	112.16	-44.42	peak
4	0.3290	65.78	20.13	85.91	97.26	-11.35	peak
5	1.5846	28.06	19.86	47.92	63.61	-15.69	peak
6	4.8357	24.14	19.49	43.63	69.54	-25.91	peak


- 1.An initial pre-scan was performed on the peak detector.
- 2.Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3.Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 4a recorded.

Project No.: DLE-250410005R Page 33 of 38

30MHz-1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 7.74V	Test Mode:	Mode 4a



- 1.An initial pre-scan was performed on the peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 4a recorded.

Project No.: DLE-250410005R Page 34 of 38

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 7.74V	Test Mode:	Mode 4a

- 1.An initial pre-scan was performed on the peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4.Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 5.Margin= Measurement Level-Limit.
- 6.All test modes were tested, with only the worst Mode 4a recorded.

Project No.: DLE-250410005R Page 35 of 38

6. 20DB BANDWIDTH TEST

6.1 TEST PROCEDURE

- 1. Se span = $1.5 \sim 5$ times OBW.
- 2. Set RBW = 1%~5% OBW.
- 3. Set the video bandwidth (VBW) \geq 3 x RBW.
- 4. Detector = peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

6.2 LIMIT

N/A

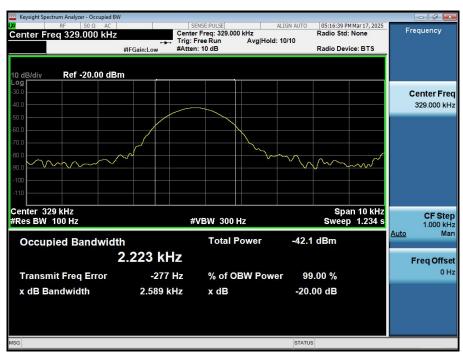
6.3 TEST SETUP

6.4 DEVIATION FROM STANDARD

No deviation.

Project No.: DLE-250410005R Page 36 of 38

6.5 TEST RESULT


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Test Voltage:	DC 7.74V

Test Coil	Frequency (kHz)	20dB Bandwidth (kHz)	Result
ANT 1	146.00	2.521	Pass
ANT 2	329.00	2.589	Pass

ANT1:

ANT2:

Project No.: DLE-250410005R Page 37 of 38

7. ANTENNA REQUIREMENT

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Loop Coil antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details

Project No.: DLE-250410005R Page 38 of 38

8. TEST SETUP PHOTO

Reference to the appendix I for details.

9. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

**** END OF REPORT ****