

FCC TEST REPORT FCC ID: 2A2IU-JJ-D19K

Product	:	Fan remote control				
Model Name	:	JJ-D19K				
Brand	:	N/A				
Report No.	:	PTC22120503801E-FC01				
	Prepared for					
Zhor	ngsł	nan Xiaolan Qixin Electronics Co., Ltd.				
No.2 in 7 building,Ke	nna	n all the way,West District, Xiaolan Town ,Zhongshan				
Prepared by						
Precise Testing & Certification Co., Ltd.						
Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China						

1 TEST RESULT CERTIFICATION

Applicant's name	:	Zhongshan Xiaolan Qixin Electronics Co., Ltd.
Address	:	No.2 in 7 building,Kennan all the way,West District, Xiaolan Town ,Zhongshan
Manufacture's name	:	Zhongshan Xiaolan Qixin Electronics Co., Ltd.
Address	:	No.2 in 7 building,Kennan all the way,West District, Xiaolan Town ,Zhongshan
Product name	:	Fan remote control
Model name	:	JJ-D19K
Standards	:	FCC CFR47 Part 15 Section 15.247
Test procedure	:	ANSI C63.10:2013
Test Date	:	Dec. 13, 2022 to Dec. 22, 2022
Date of Issue	:	Feb. 10, 2023
Test Result	:	Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Simon th

Simon Pu/Engineer

Ronnie Liu/Manager

Technical Manager:

Contents

Page

1 TEST RESULT CERTIFICATION	2
2 TEST SUMMARY	5
2.1 Test Site	6
3 GENERAL INFORMATION	7
3.1 GENERAL DESCRIPTION OF E.U.T.	
3.2 Channel List	
4 EQUIPMENT DURING TEST	
4.1 EQUIPMENTS LIST	
4.2 MEASUREMENT UNCERTAINTY	. 11
4.3 DESCRIPTION OF SUPPORT UNITS	12
5 CONDUCTED EMISSION	13
5.1 E.U.T. OPERATION	13
5.2 EUT SETUP	13
5.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
5.4 MEASUREMENT PROCEDURE	14
5.5 CONDUCTED EMISSION LIMIT	14
5.6 MEASUREMENT DESCRIPTION	14
5.7 CONDUCTED EMISSION TEST RESULT	14
6 RADIATED SPURIOUS EMISSIONS	15
6.1 EUT OPERATION	15
6.2 TEST SETUP	16
6.3 Spectrum Analyzer Setup	17
6.4 Test Procedure	18
6.5 SUMMARY OF TEST RESULTS	20
7 CONDUCT BAND EDGE AND SPURIOUS EMISSIONS MEASUREMENT	26
7.1 Test Procedure	26
7.2 TEST SETUP	
7.3 TEST RESULT	
8 6DB BANDWIDTH MEASUREMENT	31

TEST PROCEDURE	
TEST SETUP	
TEST RESULT	
9 MAXIMUM PEAK OUTPUT POWER	
9.1 Test Procedure	
9.2Test Setup	
9.3 TEST RESULT	
10 POWER SPECTRAL DENSITY	
10.1 Test Procedure	
10.2 TEST SETUP	
10.3 TEST RESULT	
11 ANTENNA APPLICATION	
11.1 ANTENNA REQUIREMENT	
11.2 RESULT	
12 TEST SETUP	
13 EUT PHOTOS	

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Conducted Spurious Emission	15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3)	PASS
Power Spectral Density	15.247(e)	PASS
Antenna Requirement	15.203	PASS

Remark:

1. The EUT is powered by full-charged battery during the test.

2.1 Test Site

Precise Testing & Certification Co., Ltd Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A FCC Designation Number: CN1219

3 General Information

3.1 General Description of E.U.T.

Product Name	:	Fan remote control
Model Name	:	JJ-D19K
Additional model name	:	N/A
Operating frequency		2402MHz
Number of Channels	:	1 channels For DTS
Type of Modulation	:	GFSK, For DTS
Antenna installation	:	PCB Antenna
Antenna Gain	:	-1.29dBi
Power supply	:	DC 3V(AAA*2)
Hardware Version	:	N/A
Software Version	:	N/A
Test sample No.	:	PTC22120503801E-1/2, PTC22120503801E-2/2.

3.2 Channel List

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

The details of test channels and bandwidth were for RF conductive measurement.

Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	/	/	/	/

Note:

1. Test of channel was the 2402MHz.

4 Equipment During Test

4.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due	Calibration period
MXG Signal	Agilopt	N9020A	SER	10Hz-30GHz	Aug 21 2022	1 year
Analyzer	Agilent	N9020A	MY5111038		Aug. 21, 2023	,
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Aug. 21, 2023	1 year
Power Meter	Anritsu	ML2495A	0949003	300MHz-40GHz	Aug. 21, 2023	1 year
Power Sensor	Anritsu	MA2411B	0917017	300MHz-40GHz	Aug. 21, 2023	1 year
Test S/W	Tonscend	JS1120-3	1	/	/	/

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Name of Equipment	Manufacturer	Model	Serial No.	Characteristi cs	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Aug. 21, 2023	1 year
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Aug. 21, 2023	1 year
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Aug. 21, 2023	1 year
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Aug. 21, 2023	1 year
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Aug. 21, 2023	1 year
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Aug. 21, 2023	1 year
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Aug. 21, 2023	1 year
Power Amplifier	LUNAR EM	LNA1G18- 40	J101000008 1	1GHz-26.5GH z	Aug. 21, 2023	1 year

Radiated Emissions(Test Frequency from 9KHz-18GHz)

Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	14GHz-40GH z	Aug. 21, 2023	1 year
Amplifier	SCHWARZBECK	BBV 9721	9721-205	18GHz-40GH z	Aug. 21, 2023	1 year
Cable	H+S	CBL-26	N/A	1GHz-26.5GH z	Aug. 21, 2023	1 year
RF Cable	R&S	R204	R21X	1GHz-40GHz	Aug. 21, 2023	1 year
Test S/W	Tonscend	TS+	1	1	/	/

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Aug. 21, 2023	1 year
Artificial Mains Network	Rohde&Schwarz	ENV216	102453	9KHz-300MHz	Aug. 21, 2023	1 year
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Aug. 21, 2023	1 year
Test S/W	Tonscend	JS32-CE	/	1	1	/

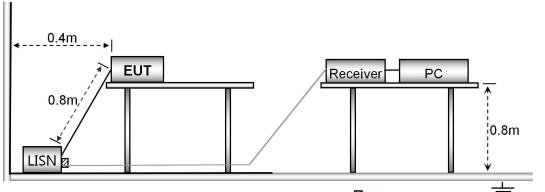
4.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(9kHz~30MHz)	±3.15dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB
Remark: The coverage Factor (k=2), and measure	ment Uncertainty for a level of Confidence of 95%

4.3 Description of Support Units

Equipment	Model No.	Series No.
N/A	N/A	N/A

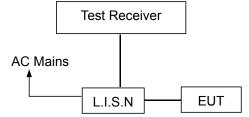
5 Conducted Emission


Test Requirement	:	FCC CFR 47 Part 15 Section 15.207
Test Method	:	ANSI C63.10: 2013
Test Result	:	PASS
Frequency Range	:	150kHz to 30MHz
Class/Severity	:	Class B

5.1 E.U.T. Operation

Operating Environment :				
Temperature	:	25.5 °C		
Humidity	:	51 % RH		
Atmospheric Pressure	:	101.2kPa		

5.2 EUT Setup


The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013

 $\mathbf{2}$:50 Ω Terminator

5.3 Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.7 Conducted Emission Test Result

N/A.

Note: EUT Powered by AAA*2(DC 3V).

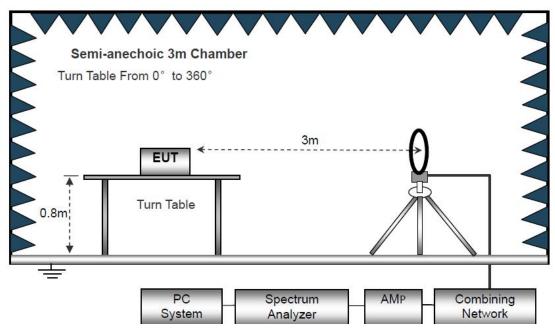
6 Radiated Spurious Emissions

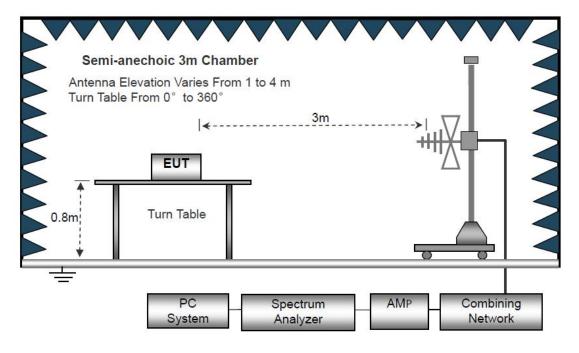
Test Requirement	:	FCC CFR47 Part 15 Section 15.209 & 15.247
Test Method	:	ANSI C63.10:2013
Test Result	:	PASS
Measurement Distance	:	3m
Limit	:	See the follow table

	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

6.1 EUT Operation

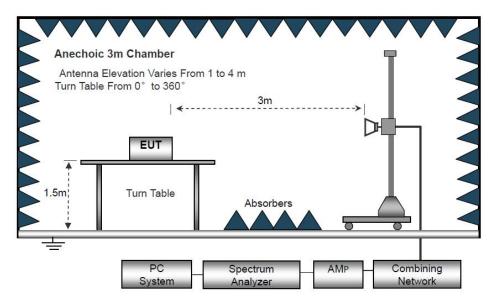
Operating Environment :


Temperature	:	23.5 °C
Humidity	:	51.1 % RH
Atmospheric Pressure	:	101.2kPa


6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz

6.3 Spectrum Analyzer Setup

	Frequency	Detector	RBW	VBW	Remark
	Below 30MHz		10kHz	10kHz	
Receiver Setup	30MHz ~ 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value

6.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
- 8. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

For Average Measurement:

VBW=10Hz, when duty cycle is no less than 98 percent.

VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(µs)	1/T(KHz)	Average Correction Factor	VBW Setting
2402-2480	100	-	-	0	10Hz

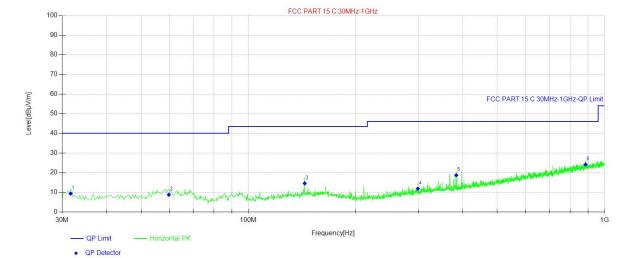
6.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

Pass.

Please refer to the following test plots for the worst test mode (GFSK (CH00: 2402MHz)).

Antenna Polarization: Horizontal GFSK(CH00: 2402MHz)

Final Data List[QP]									
		QP							
NO.	Freq.	Reading	Factor	QP Value	QP Limit	QP Margin	Polarity		
NO.	[MHz]	[dBµV/m	[dB]	[dBµV/m]	[dBµV/m]	[dB]	rolanty		
]							
1	31.70	27.54	-18.25	9.29	40.00	30.71	Horizontal		
2	59.83	26.54	-17.81	8.73	40.00	31.27	Horizontal		
3	143.98	30.97	-16.46	14.51	43.50	28.99	Horizontal		
4	299.18	27.25	-15.49	11.76	46.00	34.24	Horizontal		
5	383.57	32.28	-13.63	18.65	46.00	27.35	Horizontal		
6	884.57	27.3	-3.19	24.11	46.00	21.89	Horizontal		

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Antenna Polarization: Vertical GFSK(CH00: 2402MHz)

Final Data List[QP]								
		QP						
NO.	Freq. [MHz]	Reading	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	
		[dBµV/m]						
1	31.21	32.13	-18.27	13.86	40.00	26.14	Vertical	
2	62.01	27.22	-18.10	9.12	40.00	30.88	Vertical	
3	165.07	24.94	-15.93	9.01	43.50	34.49	Vertical	
4	294.81	25.09	-15.67	9.42	46.00	36.58	Vertical	
5	556.47	25.87	-9.30	16.57	46.00	29.43	Vertical	
6	984.97	25.05	-1.69	23.36	54.00	30.64	Vertical	

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Test Frequency 1GHz-25GHz:

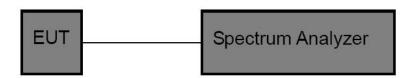
Test Mode:	CH00 GFSK			Те	Test channel:Low Channel (2402MHz)				
			I	Peak Valu	e				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4804	44.59	30.16	6.58	34.09	47.24	74	-26.76	V	
7206	41.34	37.11	7.73	34.5	51.68	74	-22.32	V	
9608	37.75	39.31	9.23	34.79	51.50	74	-22.50	V	
4804	46.11	34.04	6.58	34.09	52.64	74	-21.36	Н	
7206	36.93	37.11	7.73	34.5	47.27	74	-26.73	Н	
9608	39.64	39.31	9.23	34.79	53.39	74	-20.61	Н	
			Av	verage Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4804	33.46	34.04	6.58	34.09	39.99	54	-14.01	V	
7206	29.45	37.11	7.73	34.5	39.79	54	-14.21	V	
9608	24.64	39.31	9.23	34.79	38.39	54	-15.61	V	
4804	33.49	34.04	6.58	34.09	40.02	54	-13.98	Н	
7206	27.28	37.11	7.73	34.5	37.62	54	-16.38	Н	
9608	24.19	39.31	9.23	34.79	37.94	54	-16.06	Н	

Note: 1. The testing has been conformed to 10*2402MHz=24020MHz.

- 2. All other emissions more than 30dB below the limit.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit

Spurious Emission in Restricted Band 2310-2390MHz

Test Mode: BLE Low Channel 2402MHz									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Polarity H/V	Test Value
2390.00	55.76	28.08	6.81	37.12	53.53	74	-20.47	Н	Peak
2390.00	33.77	28.08	6.81	37.12	31.54	54	-22.46	Н	Average
2390.00	55.47	28.67	6.72	37.26	53.60	74	-20.40	V	Peak
2390.00	36.26	28.67	6.72	37.26	34.39	54	-19.61	V	Average

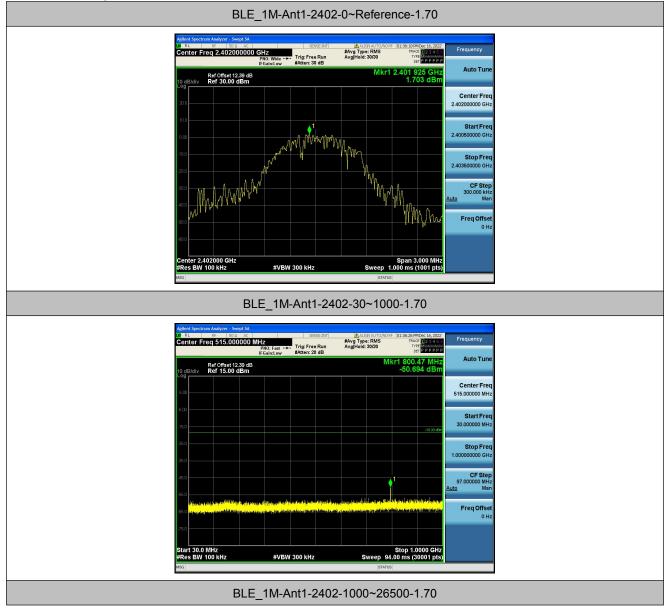

7 Conduct Band Edge And Spurious Emissions Measurement

Test Requirement	:	Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

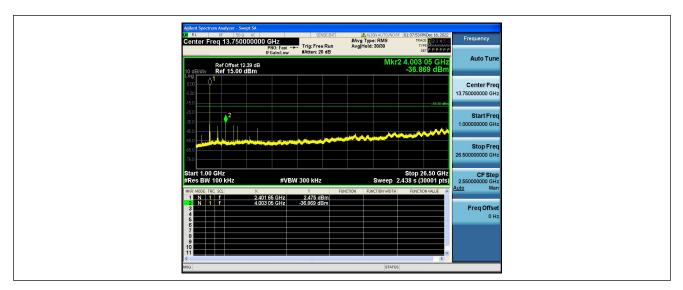
7.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

7.2 Test Setup



7.3 Test Result

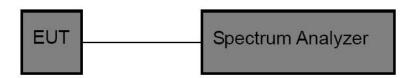

TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant1	2402	0~Reference	1.70	1.70		PASS
BLE_1M	Ant1	2402	30~1000	1.70	-50.69	≤-18.3	PASS
BLE_1M	Ant1	2402	1000~26500	1.70	-36.87	≤-18.3	PASS

Test Graphs:

Band edge:

Balla	oago.						
TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant1	Low	2402	4.07	-35.49	≤-15.93	PASS

	BLE_1M-Ant1-	-Low-2402-4	.07		
Aglent Spectrum Analyzer - S 2 III - State - State - State Center Freq 2.3525	Ω AC SENSE:INT	ALIGN AUTO/NORF #Avg Type: RMS Avg[Hold: 100/100	01:27:10 PMDac 16, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P	Frequency	
to dB/div Ref 20.00	2.39 dB dBm	Mkr5 2	.399 960 GHz -35.494 dBm	Auto Tune	
100 100 100			-15 81 dBm	Center Freq 2.352500000 GHz	
000 0 400 0 400 0 400 0 400 0 400 0 400 0	19 19 20 40 40 40 10 10 10 10 10 10 10 10 10 10 10 10 10	elvere oburger of the end of	3 5 ↓	Start Freq 2.30000000 GHz Stop Freq	
-700 Start 2.30000 GHz #Res BW 100 kHz	#VBW 300 kHz	Si Sweep 10.	top 2.40500 GHz 07 ms (1001 pts)	2.40500000 GHz CF Step 10.500000 MHz	
	× Y 2.401 745 GHz 4.072 dBm	FUNCTION FUNCTION WIDTH		uto Man	
2 N 1 7 3 N 1 7 4 N 1 7 5 N 1 7 6 N 1 7 6 N 1 7 7 8 N 1 7 8 N	2.400 000 GHz 35.494 dBm 2.390 000 GHz 36.802 dBm 2.310 000 GHz 50.418 dBm 2.399 960 GHz 35.494 dBm			Freq Offset 0 Hz	
€ MSG	0	STATUS	× .		

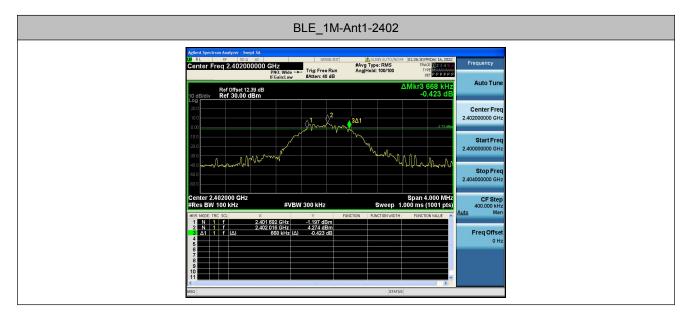

8 6dB Bandwidth Measurement

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit		Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

Test Setup



Test Result

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M	Ant1	2402	0.668	2401.692	2402.360	0.5	PASS

Test Graphs:


9 Maximum Peak Output Power

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

9.1 Test Procedure

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

9.2Test Setup

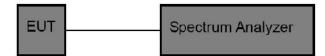
9.3 Test Result

TestMode	Antenna	Frequency[MHz]	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	EIRP[dBm]	EIRP Limit[dBm]	Verdict
BLE_1M	Ant1	2402	5.07	≤30	5.07	≤36	PASS

Test Graphs:

10 Power Spectral density

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247(f) The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

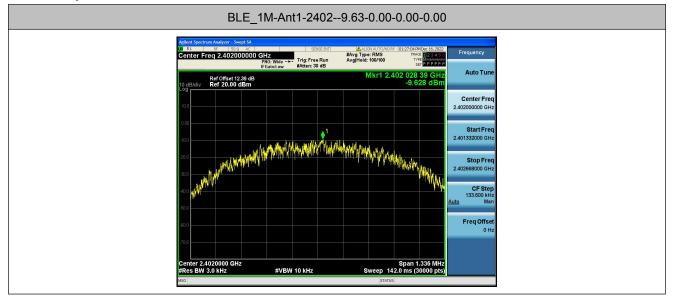

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

10.2 Test Setup



10.3 Test Result

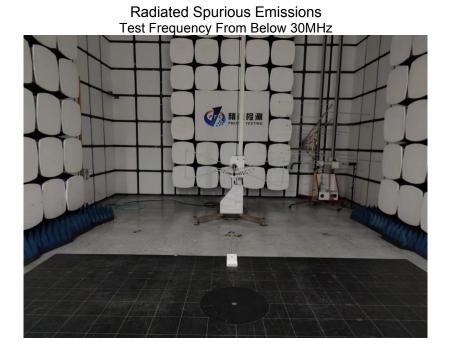
TestMode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-9.63	≤8.00	PASS

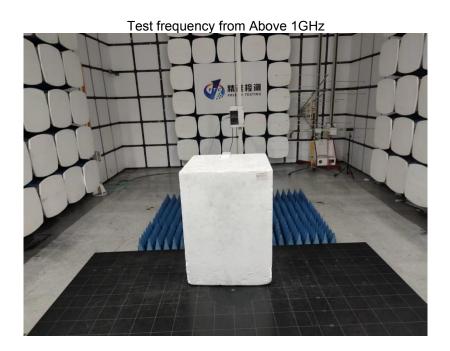
Test Graphs:

11 Antenna Application

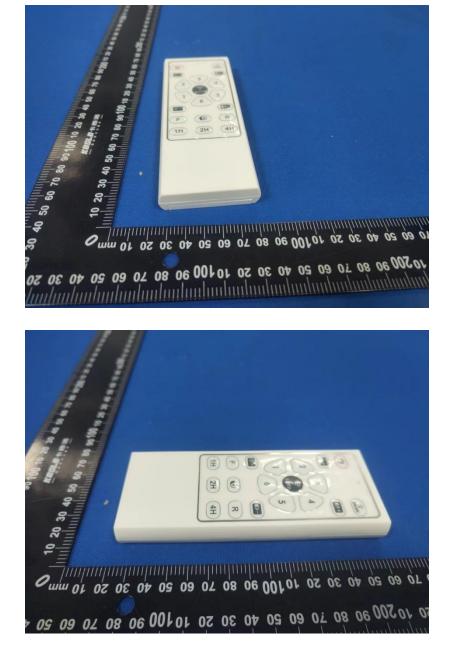
11.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

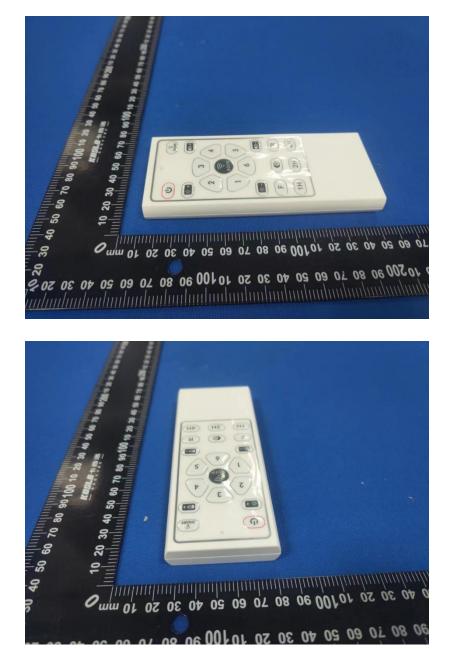

11.2 Result

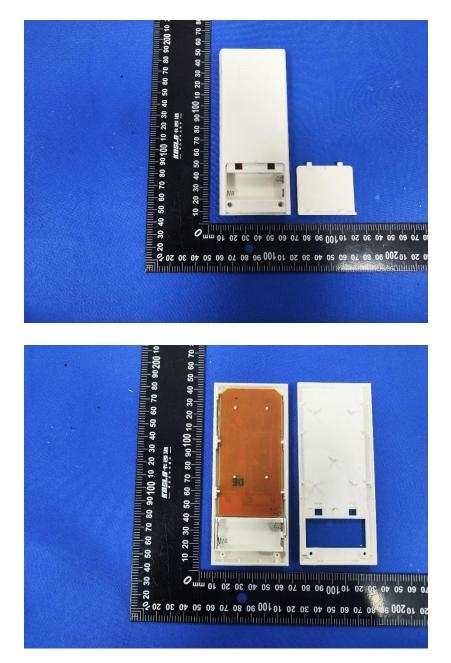

The EUT'S antenna, permanent attached antenna, is internal PCB antenna. The antenna's gain is -1.29dBi and meets the requirement.

12 Test Setup

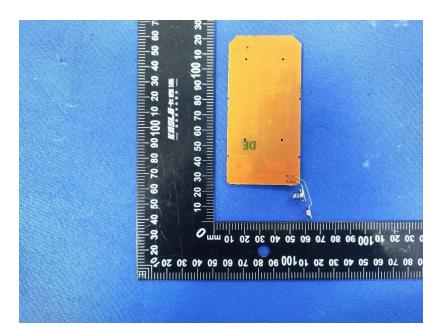


13 EUT Photos





Page 41 of 44



*****THE END REPORT*****