ANNEX F System Validation The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. Table F.1: System Validation for 7307 | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | |-----------|--------------|-----------------|-----------------|--------------------| | 7307 | Head 750MHz | June 14,2019 | 750 MHz | OK | | 7307 | Head 850MHz | June 14,2019 | 835 MHz | OK | | 7307 | Head 900MHz | June 14,2019 | 900 MHz | OK | | 7307 | Head 1750MHz | June 14,2019 | 1750 MHz | OK | | 7307 | Head 1810MHz | June 14,2019 | 1810 MHz | OK | | 7307 | Head 1900MHz | June 15,2019 | 1900 MHz | OK | | 7307 | Head 2000MHz | June 15,2019 | 2000 MHz | OK | | 7307 | Head 2100MHz | June 15,2019 | 2100 MHz | OK | | 7307 | Head 2300MHz | June 15,2019 | 2300 MHz | OK | | 7307 | Head 2450MHz | June 15,2019 | 2450 MHz | OK | | 7307 | Head 2600MHz | June 16,2019 | 2600 MHz | OK | | 7307 | Head 3500MHz | June 16,2019 | 3500 MHz | OK | | 7307 | Head 3700MHz | June 16,2019 | 3700 MHz | OK | | 7307 | Head 5200MHz | June 16,2019 | 5250 MHz | OK | | 7307 | Head 5500MHz | June 16,2019 | 5600 MHz | OK | | 7307 | Head 5800MHz | June 16,2019 | 5800 MHz | OK | | 7307 | Body 750MHz | June 16,2019 | 750 MHz | OK | | 7307 | Body 850MHz | June 13,2019 | 835 MHz | OK | | 7307 | Body 900MHz | June 13,2019 | 900 MHz | OK | | 7307 | Body 1750MHz | June 13,2019 | 1750 MHz | OK | | 7307 | Body 1810MHz | June 13,2019 | 1810 MHz | OK | | 7307 | Body 1900MHz | June 13,2019 | 1900 MHz | OK | | 7307 | Body 2000MHz | June 17,2019 | 2000 MHz | OK | | 7307 | Body 2100MHz | June 17,2019 | 2100 MHz | OK | | 7307 | Body 2300MHz | June 17,2019 | 2300 MHz | OK | | 7307 | Body 2450MHz | June 17,2019 | 2450 MHz | OK | | 7307 | Body 2600MHz | June 17,2019 | 2600 MHz | OK | | 7307 | Body 3500MHz | June 12,2019 | 3500 MHz | OK | | 7307 | Body 3700MHz | June 12,2019 | 3700 MHz | OK | | 7307 | Body 5200MHz | June 12,2019 | 5250 MHz | OK | | 7307 | Body 5500MHz | June 12,2019 | 5600 MHz | OK | | 7307 | Body 5800MHz | June 12,2019 | 5800 MHz | OK | ## **ANNEX G** Probe Calibration Certificate #### **Probe 7307 Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates CTTL (Auden) Certificate No: EX3-7307_May19/2 #### CALIBRATION CERTIFICATE (Replacement of No: EX3-7307_May19) EX3DV4 - SN:7307 Object Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: May 24, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-19 (No. 217-02894) | Apr-20 | | DAE4 | SN: 660 | 19-Dec-18 (No. DAE4-660_Dec18) | Dec-19 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | Calibrated by: Laboratory Technician Jeton Kastrati Katja Pokovic Technical Manager Approved by: Issued: August 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7307_May19/2 Page 1 of 20 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point DCP CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices - EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7307_May19/2 Page 2 of 20 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7307 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.43 | 0.56 | 0.61 | ± 10.1 % | | DCP (mV) ^B | 102.1 | 99.1 | 102.7 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |----------------|-----------------------------|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 174.7 | ± 2.7 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 199.0 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 181.2 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 2.78 | 66.95 | 10.51 | 10.00 | 60.0 | ± 3.4 % | ± 9.6 % | | AAA | | Y | 8.27 | 78.51 | 15.51 | | 60.0 | 1 | | | | | Z | 6.37 | 75.82 | 14.32 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 1.94 | 66.73 | 9.52 | 6.99 | 80.0 | ± 2.3 % | ± 9.6 % | | AAA | | Y | 15.00 | 85.43 | 16.34 | | 80.0 |] | | | | | Z | 15.00 | 84.89 | 16.05 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 15.00 | 82.10 | 12.96 | 3.98 | 95.0 | ± 1.2 % | ± 9.6 % | | AAA | No. | Y | 15.00 | 85.52 | 14.80 | | 95.0 | | | | | A. | Z | 15.00 | 87.52 | 16.05 | | 95.0 | | | | 10355- Pulse V | Pulse Waveform (200Hz, 60%) | X | 15.00 | 82.12 | 11.97 | 2.22 | 120.0 | ± 1.1 % | ± 9.6 % | | AAA | | Y | 15.00 | 80.75 | 11.37 | | 120.0 | 1 | | | | | Z | 15.00 | 91.49 | 16.77 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 0.49 | 60.00 | 6.70 | 0.00 | 150.0 | ± 2.8 % | ± 9.6 % | | AAA | | Y | 0.51 | 60.00 | 6.52 | | 150.0 | | | | | | Z | 0.64 | 61.71 | 8.47 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.22 | 69.09 | 16.38 | 0.00 | 150.0 | ± 1.3 % | ± 9.6 % | | AAA | | Y | 1.93 | 66.26 | 14.71 | | 150.0 | | | | | | Z | 2.36 | 69.67 | 16.64 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.89 | 72.05 | 19.45 | 3.01 | 150.0 | ± 1.4 % | ± 9.6 % | | AAA | | Y | 2.27 | 66.70 | 17.18 | | 150.0 | | | | | | Z | 3.00 | 72.32 | 19.69 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.49 | 67.60 | 16.07 | 0.00 | 150.0 | ± 2.2 % | ± 9.6 % | | AAA | *** | Y | 3.32 | 66.34 | 15.32 | | 150.0 | | | | | | Z | 3.45 | 67.29 | 15.94 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.76 | 66.03 | 15.76 | 0.00 | 150.0 | ± 4.1 % | ± 9.6 % | | AAA | | Y | 4.66 | 65.25 | 15.33 | | 150.0 | | | | | | Z | 4.72 | 65.62 | 15.56 | | 150.0 |] | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7307_May19 Page 3 of 20 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7307 #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | X | 34.6 | 254.28 | 34.68 | 6.78 | 0.00 | 5.01 | 1.80 | 0.04 | 1.00 | | Υ | 37.0 | 283.14 | 36.99 | 6.23 | 0.12 | 5.06 | 0.00 | 0.34 | 1.01 | | Z | 39.0 | 286.91 | 34.71 | 9.13 | 0.00 | 5.03 | 1.41 | 0.12 | 1.01 | #### **Other Probe Parameters** | Sensor Arrangement | 4 ² | Triangular | |---|----------------|------------| | Connector Angle (°) | | 27.8 | | Mechanical Surface Detection Mode | | enabled | | Optical Surface Detection Mode | | disabled | | Probe Overall Length | | 337 mm | | Probe Body Diameter | | 10 mm | | Tip Length | | 9 mm | | Tip Diameter | | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 4 | 1 mm | | Probe Tip to Sensor Y Calibration Point | | 1 mm | | Probe Tip to Sensor Z Calibration Point | | 1 mm | | Recommended Measurement Distance from Surface | | 1.4 mm | Certificate No: EX3-7307_May19/2 Page 4 of 20 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7307 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 64 | 54.2 | 0.75 | 14.19 | 14.19 | 14.19 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 11.97 | 11.97 | 11.97 | 0.08 | 1.25 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.38 | 11.38 | 11.38 | 0.12 | 1.25 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.58 | 10.58 | 10.58 | 0.61 | 0.86 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.45 | 10.45 | 10.45 | 0.55 | 0.88 | ± 12.0 9 | | 900 | 41.5 | 0.97 | 10.12 | 10.12 | 10.12 | 0.55 | 0.90 | ± 12.0 9 | | 1450 | 40.5 | 1.20 | 9.07 | 9.07 | 9.07 | 0.35 | 0.80 | ± 12.0 9 | | 1640 | 40.2 | 1.31 | 8.99 | 8.99 | 8.99 | 0.32 | 0.83 | ± 12.0 9 | | 1750 | 40.1 | 1.37 | 8.86 | 8.86 | 8.86 | 0.31 | 0.85 | ± 12.0 9 | | 1810 | 40.0 | 1.40 | 8.64 | 8.64 | 8.64 | 0.25 | 0.86 | ± 12.0 ° | | 1900 | 40.0 | 1.40 | 8.56 | 8.56 | 8.56 | 0.25 | 0.86 | ± 12.0 ° | | 2000 | 40.0 | 1.40 | 8.50 | 8.50 | 8.50 | 0.29 | 0.85 | ± 12.0 ° | | 2100 | 39-8 | 1.49 | 8.47 | 8.47 | 8.47 | 0.24 | 0.85 | ± 12.0 ° | | 2300 | 39.5 | 1.67 | 8.10 | 8.10 | 8.10 | 0.35 | 0.88 | ± 12.0 ° | | 2450 | 39.2 | 1.80 | 7.83 | 7.83 | 7.83 | 0.36 | 0.90 | ± 12.0 ° | | 2600 | 39.0 | 1.96 | 7.65 | 7.65 | 7.65 | 0.35 | 0.90 | ± 12.0 ° | | 3300 | 38.2 | 2.71 | 7.35 | 7.35 | 7.35 | 0.30 | 1.30 | ± 13.1 ° | | 3500 | 37.9 | 2.91 | 6.98 | 6.98 | 6.98 | 0.30 | 1.30 | ± 13.1 ° | | 3700 | 37.7 | 3.12 | 6.71 | 6.71 | 6.71 | 0.30 | 1.30 | ± 13.1 ° | | 3900 | 37.5 | 3.32 | 6.57 | 6.57 | 6.57 | 0.40 | 1.60 | ± 13.1 ° | | 4100 | 37.2 | 3.53 | 6.45 | 6.45 | 6.45 | 0.40 | 1.60 | ± 13.1 ° | | 4200 | 37.1 | 3.63 | 6.38 | 6.38 | 6.38 | 0.40 | 1.60 | ± 13.1 ° | | 4400 | 36.9 | 3.84 | 6.36 | 6.36 | 6.36 | 0.40 | 1.70 | ± 13.1 ° | | 4600 | 36.7 | 4.04 | 6.24 | 6.24 | 6.24 | 0.40 | 1.70 | ± 13.1 ° | | 4800 | 36.4 | 4.25 | 6.15 | 6.15 | 6.15 | 0.40 | 1.70 | ± 13.1 ° | | 4950 | 36.3 | 4.40 | 5.99 | 5.99 | 5.99 | 0.40 | 1.80 | ± 13.1 ° | | 5200 | 36.0 | 4.66 | 5.71 | 5.71 | 5.71 | 0.40 | 1.80 | ± 13.1 ° | | 5250 | 35.9 | 4.71 | 5.61 | 5.61 | 5.61 | 0.40 | 1.80 | ± 13.1 ° | | 5300 | 35.9 | 4.76 | 5.48 | 5.48 | 5.48 | 0.40 | 1.80 | ± 13.1 ° | | 5500 | 35.6 | 4.96 | 5.25 | 5.25 | 5.25 | 0.40 | 1.80 | ± 13.1 ° | | 5600 | 35.5 | 5.07 | 5.12 | 5.12 | 5.12 | 0.40 | 1.80 | ± 13.1 | | 5750 | 35.4 | 5.22 | 5.15 | 5.15 | 5.15 | 0.40 | 1.80 | ± 13.1 ° | | 5800 | 35.3 | 5.27 | 5.02 | 5.02 | 5.02 | 0.40 | 1.80 | ± 13.1 ° | C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7307_May19/2 Page 5 of 20 diameter from the boundary. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7307 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 300 | 58.2 | 0.92 | 11.62 | 11.62 | 11.62 | 0.04 | 1.25 | ± 13.3 % | | 450 | 56.7 | 0.94 | 11.24 | 11.24 | 11.24 | 0.07 | 1.25 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.51 | 10.51 | 10.51 | 0.52 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.17 | 10.17 | 10.17 | 0.46 | 0.87 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.15 | 10.15 | 10.15 | 0.40 | 0.89 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 9.02 | 9.02 | 9.02 | 0.31 | 0.80 | ± 12.0 9 | | 1640 | 53.7 | 1.42 | 8.92 | 8.92 | 8.92 | 0.28 | 0.86 | ± 12.0 9 | | 1750 | 53.4 | 1.49 | 8.44 | 8.44 | 8.44 | 0.28 | 0.86 | ± 12.0 9 | | 1810 | 53.3 | 1.52 | 8.29 | 8.29 | 8.29 | 0.30 | 0.85 | ± 12.0 9 | | 1900 | 53.3 | 1.52 | 8.07 | 8.07 | 8.07 | 0.30 | 0.85 | ± 12.0 9 | | 2000 | 53.3 | 1.52 | 8.04 | 8.04 | 8.04 | 0.32 | 0.86 | ± 12.0 ° | | 2100 | 53.2 | 1.62 | 8.20 | 8.20 | 8.20 | 0.30 | 0.86 | ± 12.0 ° | | 2300 | 52.9 | 1.81 | 7.87 | 7.87 | 7.87 | 0.33 | 0.86 | ± 12.0 ° | | 2450 | 52.7 | 1.95 | 7.80 | 7.80 | 7.80 | 0.35 | 0.90 | ± 12.0 ° | | 2600 | 52.5 | 2.16 | 7.54 | 7.54 | 7.54 | 0.40 | 0.90 | ± 12.0 ° | | 3300 | 51.6 | 3.08 | 6.86 | 6.86 | 6.86 | 0.35 | 1.30 | ± 13.1 ° | | 3500 | 51.3 | 3.31 | 6.47 | 6.47 | 6.47 | 0.35 | 1.30 | ± 13.1 ° | | 3700 | 51.0 | 3.55 | 6.27 | 6.27 | 6.27 | 0.35 | 1.30 | ± 13.1 ° | | 3900 | 51.2 | 3.78 | 6.26 | 6.26 | 6.26 | 0.45 | 1.60 | ± 13.1 ° | | 4100 | 50.5 | 4.01 | 6.14 | 6.14 | 6.14 | 0.45 | 1.60 | ± 13.1 ° | | 4200 | 50.4 | 4.13 | 6.08 | 6.08 | 6.08 | 0.45 | 1.60 | ± 13.1 ° | | 4400 | 50.1 | 4.37 | 6.03 | 6.03 | 6.03 | 0.45 | 1.70 | ± 13.1 ° | | 4600 | 49.8 | 4.60 | 5.83 | 5.83 | 5.83 | 0.40 | 1.80 | ± 13.1 ° | | 4800 | 49.6 | 4.83 | 5.62 | 5.62 | 5.62 | 0.45 | 1.90 | ± 13.1 ° | | 4950 | 49.4 | 5.01 | 5.41 | 5.41 | 5.41 | 0.50 | 1.90 | ± 13.1 ° | | 5200 | 49.0 | 5.30 | 4.85 | 4.85 | 4.85 | 0.50 | 1.90 | ± 13.1 ° | | 5250 | 48.9 | 5.36 | 4.72 | 4.72 | 4.72 | 0.50 | 1.90 | ± 13.1 ° | | 5300 | 48.9 | 5.42 | 4.69 | 4.69 | 4.69 | 0.50 | 1.90 | ± 13.1 ° | | 5500 | 48.6 | 5.65 | 4.40 | 4.40 | 4.40 | 0.50 | 1.90 | ± 13.1 | | 5600 | 48.5 | 5.77 | 4.30 | 4.30 | 4.30 | 0.50 | 1.90 | ± 13.1 | | 5750 | 48.3 | 5.94 | 4.44 | 4.44 | 4.44 | 0.50 | 1.90 | ± 13.1 ° | | 5800 | 48.2 | 6.00 | 4.39 | 4.39 | 4.39 | 0.50 | 1.90 | ± 13.1 ° | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to Certificate No: EX3-7307_May19/2 Page 6 of 20 measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 10% in liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:7307 May 24, 2019 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2) Certificate No: EX3-7307_May19/2 Page 7 of 20 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7307_May19/2 Page 8 of 20 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7307_May19/2 Page 9 of 20 ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Certificate No: EX3-7307_May19/2 Page 10 of 20 #### **Appendix: Modulation Calibration Parameters** | סוע | Rev | Communication System Name | Group | PAR
(dB) | Unc ^E
(k=2) | |-------|-----|--|-----------|-------------|---------------------------| |) | | CW | CW | 0.00 | ± 4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 0013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 0021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 0023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 0024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 0025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 0026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 | | 0027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 ° | | 0028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 ° | | 0029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 | | 0030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 | | 0030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 1.87 | ± 9.6 | | | | | Bluetooth | 1.16 | ± 9.6 | | 0032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 7.74 | ± 9.6 | | 0033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | | | | | 0034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 | | 0035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 | | 0036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 | | 0037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 | | 0038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ± 9.6 | | 0039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ± 9.6 | | 0042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ± 9.6 | | 0044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ± 9.6 | | 0048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 | | 0049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 | | 0056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ± 9.6 | | 0058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ± 9.6 | | 0059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 | | 0060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ± 9.6 | | 0061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 | | 0062 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 | | 0063 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 | | 0064 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 | | | | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.00 | ± 9.6 | | 0065 | CAC | | WLAN | 9.38 | ± 9.6 | | 0066 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | | | | | 0067 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 | | 0068 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 | | 0069 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 | | 0071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 | | 0072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 | | 0073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 | | 0074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 | | 0075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 | | 0076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 | | 0077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 | | 0082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 | | 0090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 | | 0097 | CAB | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ± 9.6 | | 0098 | CAB | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 | | 0099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 | | 0100 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 | | 0100 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 | | | | | LTE-FDD | 6.60 | ± 9.6 | | 10102 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | | | | | | | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 | | 10103 | | 1 TE TOD (00 EDMA 4000) DE 00 MIL 40 0 MA | I TE TOO | 0.07 | | | | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 | Certificate No: EX3-7307_May19/2 Page 11 of 20 May 24, 2019 EX3DV4-SN:7307 | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | |----------------|-----|---|---------|-------|---------| | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAC | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAC | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAC | IEEE 802.11n (HT Greenfield, 81 Mbps, 76-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAC | IEEE 802.11n (HT Mixed, 13.5 Mbps, 64-QAM) | WLAN | 8.07 | ± 9.6 % | | | | | | | | | 10118 | CAC | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAC | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 10140 | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10141 | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | 10142 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10145 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ± 9.6 % | | 10147 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10151 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ± 9.6 % | | 10152 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10153 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ± 9.6 % | | 10154 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10156 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ± 9.6 % | | 10157 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ± 9.6 % | | 10160 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 % | | 10161 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ± 9.6 % | | 10166 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ± 9.6 % | | 10167 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | | | 10169 | | | | | ± 9.6 % | | | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10170 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | AAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10172 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10173 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10174 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10175 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10176 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAI | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10178 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10181 | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10182 | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | AAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | AAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10189 | AAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAC | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ± 9.6 % | | 10193 | CAC | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10194 | CAC | IEEE 802.11n (HT Greenfield, 35 Mbps, 16-QAM) | | | | | | | | WLAN | 8.21 | ± 9.6 % | | 10196 | CAC | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | CAC | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10198
10219 | CAC | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | | CAC | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | Certificate No: EX3-7307_May19/2 Page 12 of 20 | 10000 | 040 | IEEE 200 44 - /III Missed 42 2 Mbrs 46 OAM | WLAN | 0.10 | ± 9.6 % | |--|--------------------------|---|--|---------------------------------------|---| | 10220 | CAC | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | | 8.13 | | | 10221 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAC | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAC | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAB | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ± 9.6 % | | 10227 | CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ± 9.6 % | | 10228 | CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ± 9.6 % | | 10229 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ± 9.6 % | | 10232 | CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10238 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | | 10242 | CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10243 | CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | CAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10247 | CAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10248 | CAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ± 9.6 % | | 10249 | CAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10250 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10254 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ± 9.6 % | | | | | LTE-TDD | 9.96 | ± 9.6 % | | 10256 | CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 10.08 | ± 9.6 % | | 10257 | CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.34 | ± 9.6 % | | 10258 | CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.98 | | | 10259 | CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | | | ± 9.6 % | | 10260 | CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10261 | CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10263 | CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ± 9.6 % | | 10264 | CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 9.23 | ± 9.6 % | | 10265 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10269 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.13 | ± 9.6 % | | 10270 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ± 9.6 % | | 10210 | CAA | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10277 | | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | | CAA | | DLIC | 12.18 | ± 9.6 % | | 10277 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.10 | | | 10277
10278
10279 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10277
10278
10279
10290 | CAA | CDMA2000, RC1, SO55, Full Rate | | | ± 9.6 % | | 10277
10278
10279
10290
10291 | CAA
AAB
AAB | CDMA2000, RC1, SO55, Full Rate
CDMA2000, RC3, SO55, Full Rate | CDMA2000
CDMA2000 | 3.91
3.46 | ± 9.6 %
± 9.6 % | | 10277
10278
10279
10290
10291
10292 | CAA
AAB
AAB
AAB | CDMA2000, RC1, SO55, Full Rate CDMA2000, RC3, SO55, Full Rate CDMA2000, RC3, SO32, Full Rate | CDMA2000
CDMA2000
CDMA2000 | 3.91
3.46
3.39 | ± 9.6 %
± 9.6 %
± 9.6 % | | 10277
10278
10279
10290
10291
10292
10293 | CAA
AAB
AAB
AAB | CDMA2000, RC1, SO55, Full Rate CDMA2000, RC3, SO55, Full Rate CDMA2000, RC3, SO32, Full Rate CDMA2000, RC3, SO3, Full Rate | CDMA2000
CDMA2000
CDMA2000
CDMA2000 | 3.91
3.46
3.39
3.50 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10277
10278
10279
10290
10291
10292
10293
10295 | CAA AAB AAB AAB AAB AAB | CDMA2000, RC1, SO55, Full Rate CDMA2000, RC3, SO55, Full Rate CDMA2000, RC3, SO32, Full Rate CDMA2000, RC3, SO32, Full Rate CDMA2000, RC3, SO3, Full Rate CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000
CDMA2000
CDMA2000
CDMA2000
CDMA2000 | 3.91
3.46
3.39
3.50
12.49 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10277
10278
10279
10290
10291
10292
10293 | CAA
AAB
AAB
AAB | CDMA2000, RC1, SO55, Full Rate CDMA2000, RC3, SO55, Full Rate CDMA2000, RC3, SO32, Full Rate CDMA2000, RC3, SO3, Full Rate | CDMA2000
CDMA2000
CDMA2000
CDMA2000 | 3.91
3.46
3.39
3.50 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | Certificate No: EX3-7307_May19/2 Page 13 of 20