FCC SAR TEST REPORT Report No: STS1705024H01 # Issued for ### Santok Limited Santok House, Unit L, Braintree Industrial Estate, Braintree Road, South Ruislip, Middlesex, HA4 0EJ United Kingdom | Product Name: | Feature phone | | | | | |----------------|-----------------------------|--|--|--|--| | Brand Name: | stk | | | | | | Model Name: | M PHONE | | | | | | Series Model: | N/A | | | | | | FCC ID: | 2AE7RMPHONE | | | | | | | ANSI/IEEE Std. C95.1 | | | | | | Test Standard: | FCC 47 CFR Part 2 (2.1093) | | | | | | | IEEE 1528: 2013 | | | | | | Max. Report | Head:0.701 W/kg | | | | | | SAR (1g): | Body:0.874 W/kg | | | | | Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from BZT, All Test Data Presented in this report is only applicable to presented Test sample. BZT Testing Technology Co., Ltd Add.: Buliding 17, Xinghua Road Xingwei industrial Park Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755 3307 1680 FAX: +86-755 27341758 E-mail:bruce@bzt.cn # **Test Report Certification** | Applicant's name: | Santok Li | mited | |--|-------------------------|---| | Address: | Santok H
Road, So | ouse, Unit L, Braintree Industrial Estate, Braintree
uth Ruislip, Middlesex, HA4 0EJ United Kingdom | | Manufacture's Name: | | | | Address: | Santok H
Road, So | ouse, Unit L, Braintree Industrial Estate, Braintree
uth Ruislip, Middlesex, HA4 0EJ United Kingdom | | Product description | | | | Product name: | Feature p | hone | | Trademark: | stk | | | Model and/or type reference : | M PHONI | Ē | | Series Model: | N/A | | | Standards: | | | | measurement methods and pro
apply only to the tested sample | ocedures see of the sta | BZT Test Services Co., Ltd. in accordance with the specified in KDB 865664 The test results in this report ated device/equipment. Other similar device/equipment esults due to production tolerance and measurement | | Date of Test | : | | | Date (s) of performance of tests. | : | 10 May. 2017 | | Date of Issue | ·····: | 11 May. 2017 | | Test Result | : | Pass | | | | | | Testing Engine | eer : | Hann 13u | | | | (Aaron Bu) | | Technical Man | ager : | John . Zon | | | | (John Zou) | | Authorized Sig | gnatory: | Meali | (Vita Li) # **Table of Contents** | 1.General Information | 4 | |---|----| | 1.1 EUT Description | 4 | | 1.2 Test Environment | 5 | | 1.3 Test Factory | 5 | | 2.Test Standards And Limits | 6 | | 3. SAR Measurement System | 7 | | 3.1 Definition Of Specific Absorption Rate (SAR) | 7 | | 3.2 SAR System | 7 | | 4. Tissue Simulating Liquids | 9 | | 4.1 Simulating Liquids Parameter Check | 10 | | 5. SAR System Validation | 12 | | 5.1 Validation System | 12 | | 5.2 Validation Result | 12 | | 6. SAR Evaluation Procedures | 13 | | 7. EUT Test Position | 14 | | 7.1 Define Two Imaginary Lines On The Handset | 14 | | 7.2 Hotspot mode exposure position condition | 15 | | 8. Uncertainty | 16 | | 8.1 Measurement Uncertainty | 16 | | 8.2 System validation Uncertainty | 17 | | 9. Conducted Power Measurement | 18 | | 9.1 Test Result | 18 | | 9.2 Tune-up Power | 19 | | 9.3 SAR Test Exclusions Applied | 20 | | 10. EUT And Test Setup Photo | 21 | | 10.1 EUT Photo | 21 | | 10.2 Setup Photo | 24 | | 11. SAR Result Summary | 28 | | 11.1 Head SAR | 28 | | 11.2 Body-worn and Hotspot SAR | 28 | | 12. Equipment List | 31 | | Appendix A. System Validation Plots | 32 | | Appendix B. SAR Test Plots | 40 | | Appendix C. Probe Calibration And Dipole Calibration Report | 44 | # 1.General Information Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). ### 1.1 EUT Description | 1.1 EUT Description | | | | | | | | | | |-----------------------|----------|---|--|-----------------------|--|--|--|--|--| | Equipment | Feature | Feature phone | | | | | | | | | Brand Name | stk | stk | | | | | | | | | Model No. | М РНО | M PHONE | | | | | | | | | Series Model | N/A | | | | | | | | | | FCC ID | 2AE7RI | MPHONE | | | | | | | | | Model Difference | N/A | | | | | | | | | | Adapter | Output: | C100-240V,200mA
DC 5V, 1000mA | , 50/60 Hz | | | | | | | | Battery | Charge | 'oltage: 3.7V;
Limit: 4.2V;
y: 800mAh | | | | | | | | | Device Category | Portable | Э | | | | | | | | | Product stage | Product | ion unit | | | | | | | | | Exposure Environment | | Population / Uncont | rolled | | | | | | | | IMEI | | 085948173
085948181 | | | | | | | | | Hardware Version | DF13_\ | /10a_V0.01 | | | | | | | | | Software Version | DF13_N | /lphone_V0.01_2017 | 0118 | | | | | | | | Frequency Range | PCS190 | 50:824.2~848.8MHz
)0:1850.2~1909.8MH
th:2402~ 2480MHz | lz | | | | | | | | Max. Reported | Band | Mode | Head
(W/kg) | Body Worn (W/kg) | | | | | | | SAR(1g) | PCE | GSM 850 | 0.701 | 0.874 | | | | | | | (Limit:1.6W/kg) | PCE | GSM 1900 | 0.238 | 0.573 | | | | | | | 4 a Com CAD | DSS | Bluetooth ^{Note} | 0.007 | 0.003 | | | | | | | 1-g Sum SAR | 1 | | 0.708 | 0.877 | | | | | | | FCC Equipment Class | | ed Portable Transmit
Spread Spectrum T | tter Held to Ear (PCE)
ransmitter (DSS) | | | | | | | | Operating Mode | Bluetoc | , | Class 12;
SK, π/4DQPSK, 8DPS | SK); | | | | | | | Antenna Specification | BT: Dip | PIFA Antenna
ole Antenna | | | | | | | | | SIM Card | | t dual-SIM, dual sta
transmitting at the s | | M card with two lines | | | | | | | Note: | | | | | | | | | | #### Note: - 1. Bluetooth SAR was estimated - 2. The dual SIM card mobile has 2 SIM slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by either one SIM at a time (Single active) - 3. After pre-scan two SIM cards power, we found test result of the SIM1 was the worse, so we chose SIM1 card to perform all tests. - 4. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power ### 1.2 Test Environment Ambient conditions in the SAR laboratory: | Items | Required | Actual | |------------------|----------|--------| | Temperature (°C) | 18-25 | 22~23 | | Humidity (%RH) | 30-70 | 55~65 | # 1.3 Test Factory BZT Testing Technology Co., Ltd Add.: Buliding 17, Xinghua Road Xingwei industrial Park Fuyong, Baoan District, Shenzhen, Guangdong, China FCC Registration No.: 701733 ### 2.Test Standards And Limits | No. | Identity | Document Title | |-----|---------------------------|--| | 1 | 47 CFR Part 2 | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations | | 2 | ANSI/IEEE Std. C95.1-1992 | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz | | 3 | IEEE Std. 1528-2013 | Recommended Practice for Determining the Peak
Spatial-Average Specific Absorption Rate (SAR) in the
Human Head from Wireless Communications Devices:
Measurement Techniques | | 4 | FCC KDB 447498 D01 v06 | Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies | | 5 | FCC KDB 865664 D01 v01r04 | SAR Measurement 100 MHz to 6 GHz | | 6 | FCC KDB 865664 D02 v01r02 | RF Exposure Reporting | (A). Limits for Occupational/Controlled Exposure (W/kg) Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.4 8.0 20.0 (B). Limits for General Population/Uncontrolled Exposure (W/kg) Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.08 1.6 4.0 Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. #### **Population/Uncontrolled Environments:** are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. #### **Occupational/Controlled Environments:** are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation). NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg # 3. SAR Measurement System ### 3.1 Definition Of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma E^2}{\rho}$$ Where: σ is the conductivity of the tissue; ρ is the mass density of the tissue and E is the RMS electrical field strength. ### 3.2 SAR System SATIMO SAR System Diagram: Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items: - Main computer to control all the system - 6 axis robot - Data acquisition system - Miniature E-field probe - Phone holder - Head simulating tissue The following figure shows the system. The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass. #### 3.2.1 Probe For the measurements the Specific Dosimetric E-Field Probe SN 14/16 EP309 with following specifications is used - Dynamic range: 0.01-100 W/kg - Tip Diameter: 5 mm - Length of Individual Dipoles: 4.5 mm - Maximum external diameter: 8 mm - Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 2.7mm) - Probe linearity: 0±2.27%(±0.10dB) - Axial Isotropy: < 0.10 dB - Spherical Isotropy: < 0.10 dB - Calibration range: 400 MHz to 3 GHz for head & body simulating liquid. - Angle between probe axis (evaluation axis) and surface normal line: less than 30° Figure 1-MVG COMOSAR Dosimetric E field Dipole #### 3.2.2 Phantom For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. 3.2.3 Device Holder The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. # 4. Tissue Simulating Liquids # 4.1 Simulating Liquids Parameter Check The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528. | Frequency | Bactericide | DGBE | HEC | NaCl | Sucrose 1,2-Propanediol | | X100 | Water | Conductivity | Permittivity | |-----------|-------------|-------|-----|------|-------------------------|-------|-------|-------|--------------|--------------| | (MHz) | % | % | % | % | % | % | % | % | σ | εr | | 750 | / | / | / | 0.79 | / | 64.81 | / | 34.40 | 0.97 | 41.8 | | 835 | / | / | / | 0.79 | / | 64.81 | / | 34.40 | 0.97 | 41.8 | | 900 | / | / | / | 0.79 | / | 64.81 | 1 | 34.40 | 0.97 | 41.8 | | 1800 | / | 13.84 | / | 0.35 | / | / | 30.45 | 55.36 | 1.38 | 41.0 | | 1900 | / | 13.84 | / | 0.35 | / | / | 30.45 | 55.36 | 1.38 | 41.0 | | 2000 | / | 7.99 | / | 0.16 | / | / | 19.97 | 71.88 | 1.55 | 41.1 | | 2450 | / | 7.99 | / | 0.16 | / | / | 19.97 | 71.88 | 1.88 | 40.3 | | 2600 | / | 7.99 | / | 0.16 | / | / | 19.97 | 71.88 | 1.88 | 40.3 | | Tissue dielectric parameters for head and body phantoms | | | | | | | | | | | | |---|------|------|----------|------|--|--|--|--|--|--|--| | Frequency | ε | r | σ
S/m | | | | | | | | | | rioquoney | Head | Body | Head | Body | | | | | | | | | 300 | 45.3 | 58.2 | 0.87 | 0.92 | | | | | | | | | 450 | 43.5 | 58.7 | 0.87 | 0.94 | | | | | | | | | 900 | 41.5 | 55.0 | 0.97 | 1.05 | | | | | | | | | 1450 | 40.5 | 54.0 | 1.20 | 1.30 | | | | | | | | | 1800 | 40.0 | 53.3 | 1.40 | 1.52 | | | | | | | | | 2450 | 39.2 | 52.7 | 1.80 | 1.95 | | | | | | | | | 3000 | 38.5 | 52.0 | 2.40 | 2.73 | | | | | | | | | 5800 | 35.3 | 48.2 | 5.27 | 6.00 | | | | | | | | # Report No.: STS1705024H01 # **LIQUID MEASUREMENT RESULTS** | Date | Ambient condition | | Head Simulating
Liquid | | Parameters | Target | Measured | Deviation | Limited | | |------------|-------------------|-----------------|---------------------------|---------------|---------------|--------|----------|-----------|---------|--| | Date | Temp.
[°C] | Humidity
[%] | Frequency | Temp.
[°C] | Farameters | raigei | Measured | [%] | [%] | | | 2017-05-10 | 23.3 | 52 | 835 MHz | 22.9 | Permitivity: | 41.50 | 42.14 | 1.54 | ±5 | | | 2017-05-10 | | 3 32 | OSS IVITZ | 22.9 | Conductivity: | 0.90 | 0.93 | 3.33 | ± 5 | | | 2017.05.10 | 22.2 | 50 | 1000 MU- | 22.0 | Permitivity: | 40.00 | 39.57 | -1.08 | ± 5 | | | 2017-05-10 | 23.3 | 52 | 1900 MHz | 22.9 | Conductivity: | 1.40 | 1.38 | -1.43 | ± 5 | | | Date | Tomp Humidity | | Body Simulating
Liquid | | Parameters | Target | Measured | Deviation | Limited | |------------|-----------------|-----|---------------------------|---------------|--------------|--------|----------|-----------|---------| | Date | | | Frequency | Temp.
[°C] | Parameters | rarget | Measured | [%] | [%] | | 2017-05-10 | 23.3 | 52 | 835 MHz | 22.9 | Permitivity: | 55.20 | 56.11 | 1.65 | ± 5 | | 2017-05-10 | 23.3 52 | 52 | OSS IVITZ | | Conductivit: | 0.97 | 0.98 | 1.03 | ± 5 | | 2017 05 10 | 22.2 | F.0 | 1000 MU- | 22.0 | Permitivity: | 53.30 | 54.24 | 1.76 | ± 5 | | 2017-05-10 | 23.3 52 190 | | 1900 MHz 22.9 | | Conductivity | 1.52 | 1.53 | 0.66 | ± 5 | # 5. SAR System Validation ### 5.1 Validation System Each SATIMO system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below. #### 5.2 Validation Result Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. | Freq.(MHz) | Power(mW) | Tested Value
(W/Kg) | Normalized
SAR (W/kg) | Target(W/Kg) | Tolerance(%) | Date | |------------|-----------|------------------------|--------------------------|--------------|--------------|------------| | 835 Head | 100 | 0.961 | 9.61 | 9.56 | 0.52 | 2017-05-10 | | 835 Body | 100 | 0.964 | 9.64 | 9.56 | 0.84 | 2017-05-10 | | 1900 Head | 100 | 3.991 | 39.91 | 39.7 | 0.53 | 2017-05-10 | | 1900 Body | 100 | 4.013 | 40.13 | 39.7 | 1.08 | 2017-05-10 | Note: The tolerance limit of System validation $\pm 10\%$. ### 6. SAR Evaluation Procedures The procedure for assessing the average SAR value consists of the following steps: - Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface. - Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. - Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. #### Area Scan& Zoom Scan: First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. #### 7. EUT Test Position This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face. #### 7.1 Define Two Imaginary Lines On The Handset - 1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset. - 2)The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A. - 3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets. #### Cheek Position - 1)To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. - 2)To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost #### Title Position - (1)To position the device in the "cheek" position described above. - (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost. #### **Body-worn Position Conditions:** Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset. #### 7.2 Hotspot mode exposure position condition For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25mm form that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm)is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration(surface). # 8. Uncertainty # 8.1 Measurement Uncertainty The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | NO | Source | Tol(%) | Prob. Dist. | Div. k | ci (1g) | ci (10g) | 1gUi | 10gUi | Veff | |-------|---|--------|-------------|----------------------------------|---------------------------------|-----------------|--------|--------|------| | Measu | rement System | | | | | | | | | | 1 | Probe calibration | 5.8 | N | 1 | 1 | 1 | 5.8 | 5.8 | ∞ | | 2 | Axial isotropy | 3.5 | R | √3 | (1-cp)1/
2 | (1-cp)1/ | 1.43 | 1.43 | ∞ | | 3 | Hemispherical isotropy | 5.9 | R | √3 | √Ср | √Ср | 2.41 | 2.41 | ∞ | | 4 | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | 5 | Linearity | 4.7 | R | √3 | 1 | 1 | 2.71 | 2.71 | 8 | | 6 | System Detection limits | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | 8 | | 7 | Readout electronics | 0.5 | N | 1 | 1 | 1 | 0.50 | 0.50 | 8 | | 8 | Response time | 0 | R | √3 | 1 | 1 | 0 | 0 | 8 | | 9 | Integration time | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | 8 | | 10 | Ambient noise | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | 11 | Ambient reflections | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | 12 | Probe positioner mech. restrictions | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | 8 | | | Probe positioning with respect to phantom shell | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | 14 | Max.SAR evaluation | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | 8 | | Test | sample related | | | | | | | | | | 15 | Device positioning | 2.6 | N | 1 | 1 | 1 | 2.6 | 2.6 | 11 | | 16 | Device holder | 3 | N | 1 | 1 | 1 | 3.0 | 3.0 | 7 | | 17 | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.89 | 2.89 | ∞ | | Phan | tom and set-up | | | | | | | | | | 18 | Phantom uncertainty | 4.0 | R | √3 | 1 | 1 | 2.31 | 2.31 | ∞ | | 19 | Liquid conductivity (target) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 5 | | 20 | Liquid conductivity (meas) | 4 | N | 1 | 0.23 | 0.26 | 0.92 | 1.04 | 5 | | 21 | Liquid Permittivity (target) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | ∞ | | 22 | Liquid Permittivity (meas) | 5.0 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | 8 | | Coml | pined standard | | RSS | U_{c} | $C_i = \sqrt{\sum_{i=1}^n C_i}$ | $^{2}U_{i}^{2}$ | 10.63% | 10.54% | | | Expa | nded uncertainty (P=95%) | | U = | $k\; U_{\scriptscriptstyle C}$, | <= 2 | | 21.26% | 21.08% | | # 8.2 System validation Uncertainty | NO | Source | Tol(%) | Prob. Dist. | Div. k | ci (1g) | ci (10g) | 1gUi | 10gUi | Veff | |-------|---|--------|-------------|-------------------|-------------------------------------|---------------|--------|--------|------| | Measu | rement System | | | | | | | | | | 1 | Probe calibration | 5.8 | N | 1 | 1 | 1 | 5.8 | 5.8 | ∞ | | 2 | Axial isotropy | 3.5 | R | √3 | (1-cp)1
/2 | (1-cp)1
/2 | 1.43 | 1.43 | 8 | | 3 | Hemispherical isotropy | 5.9 | R | √3 | √Ср | √Ср | 2.41 | 2.41 | 8 | | 4 | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | 8 | | 5 | Linearity | 4.7 | R | √3 | 1 | 1 | 2.71 | 2.71 | ∞ | | 6 | System Detection limits | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | 8 | | 7 | Modulation response | 0 | N | 1 | 1 | 1 | 0 | 0 | 8 | | 8 | Readout electronics | 0.5 | N | 1 | 1 | 1 | 0.50 | 0.50 | 8 | | 9 | Response time | 0 | R | √3 | 1 | 1 | 0 | 0 | ∞ | | 10 | Integration time | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | 8 | | 11 | Ambient noise | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | 12 | Ambient reflections | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | 13 | Probe positioner mech. restrictions | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | | Probe positioning with respect to phantom shell | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | 8 | | | Max.SAR evaluation | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | 8 | | Dipol | e | | | | | | | | | | 16 | Deviation of experimental source from | 4 | N | 1 | 1 | 1 | 4.00 | 4.00 | ∞ | | 17 | Input power and SAR drift mea. | 5 | R | √3 | 1 | 1 | 2.89 | 2.89 | 8 | | 18 | Dipole Axis to liquid Distance | 2 | R | √3 | 1 | 1 | | | 8 | | Phan | tom and set-up | | | | | | | | | | 19 | Phantom uncertainty | 4.0 | R | √3 | 1 | 1 | 2.31 | 2.31 | ∞ | | 20 | Uncertainty in SAR correction for deviation(in | 2.0 | N | 1 | 1 | 0.84 | 2 | 1.68 | ∞ | | 21 | Liquid conductivity (target) | 2 | N | 1 | 1 | 0.84 | 2.00 | 1.68 | ∞ | | 22 | Liquid conductivity (temperature uncertainty) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 5 | | 23 | Liquid conductivity (meas) | 4 | Z | 1 | 0.23 | 0.26 | 0.92 | 1.04 | 5 | | 24 | Liquid Permittivity (target) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | ∞ | | 25 | Liquid Permittivity (temperature uncertainty) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 5 | | 26 | Liquid Permittivity (meas) | 5.0 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | ∞ | | Com | bined standard | | RSS | | $= \sqrt{\sum_{i=1}^{n} C_{i}^{2}}$ | U_i^2 | 10.15% | 10.05% | | | Ехра | nded uncertainty (P=95%) | | U = 0 | $U = k U_{c,k=2}$ | | | | 20.10% | | ### 9. Conducted Power Measurement #### 9.1 Test Result | Burst Average Power (dBm) | | | | | | | | | | |---------------------------|-------|---------|-------|----------|--------|--------|--|--|--| | Band | | GSM 850 | | PCS 1900 | | | | | | | Channel | 128 | 190 | 251 | 512 | 661 | 810 | | | | | Frequency (MHz) | 824.2 | 836.6 | 848.8 | 1850.2 | 1880.0 | 1909.8 | | | | | GSM(GMSK, 1-Slot) | 29.42 | 29.38 | 29.59 | 29.56 | 29.48 | 29.51 | | | | | GPRS (GMSK, 1-Slot) | 29.41 | 29.36 | 29.56 | 29.55 | 29.46 | 29.49 | | | | | GPRS (GMSK, 2-Slot) | 28.92 | 28.87 | 29.15 | 29.09 | 29.03 | 29.07 | | | | | GPRS (GMSK, 3-Slot) | 27.44 | 27.38 | 27.72 | 27.69 | 27.60 | 27.66 | | | | | GPRS (GMSK, 4-Slot) | 27.02 | 26.89 | 27.24 | 27.26 | 27.20 | 27.26 | | | | | EGPRS(8PSK, 1-Slot) | - | - | - | - | - | - | | | | | EGPRS(8PSK, 2-Slot) | - | - | - | - | - | - | | | | | EGPRS(8PSK, 3-Slot) | - | - | - | - | - | - | | | | | EGPRS(8PSK, 4-Slot) | - | - | - | - | - | - | | | | Remark: GPRS, CS4 coding scheme. EGPRS, MCS9 coding scheme. Multi-Slot Class 8, Support Max 4 downlink, 1 uplink, 5 working link Multi-Slot Class 10, Support Max 4 downlink, 2 uplink, 5 working link Multi-Slot Class 12, Support Max 4 downlink, 4 uplink, 5 working link | Fram- Average Power(dBm) | | | | | | | | | | |--------------------------|-------|---------|-------|----------|--------|--------|--|--|--| | Band | | GSM 850 | | PCS 1900 | | | | | | | Channel | 128 | 190 | 251 | 512 | 661 | 810 | | | | | Frequency (MHz) | 824.2 | 836.6 | 848.8 | 1850.2 | 1880.0 | 1909.8 | | | | | GSM(GMSK, 1-Slot) | 20.39 | 20.35 | 20.56 | 20.53 | 20.45 | 20.48 | | | | | GPRS (GMSK, 1-Slot) | 20.38 | 20.33 | 20.53 | 20.52 | 20.43 | 20.46 | | | | | GPRS (GMSK, 2-Slot) | 22.90 | 22.85 | 23.13 | 23.07 | 23.01 | 23.05 | | | | | GPRS (GMSK, 3-Slot) | 23.18 | 23.12 | 23.46 | 23.43 | 23.34 | 23.40 | | | | | GPRS (GMSK, 4-Slot) | 24.01 | 23.88 | 24.23 | 24.25 | 24.19 | 24.25 | | | | | EGPRS(8PSK, 1-Slot) | - | - | - | - | - | - | | | | | EGPRS(8PSK, 2-Slot) | - | - | - | - | - | - | | | | | EGPRS(8PSK, 3-Slot) | - | - | - | - | - | - | | | | | EGPRS(8PSK, 4-Slot) | - | - | - | - | - | - | | | | | Damark. | | | 1 | 1 | | | | | | #### Remark: - 1. SAR testing was performed on the maximum frame-averaged power mode. - 2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = Burst averaged power (1 Tx Slot) – 9.03 dB Frame-averaged power = Burst averaged power (2 Tx Slots) - 6.02 dB Frame-averaged power = Burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Burst averaged power (4 Tx Slots) - 3.01 dB ### Bluetooth | Mode | Channel Number | Frequency (MHz) | Average Power
(dBm) | |------------------|----------------|-----------------|------------------------| | | 0 | 2402 | -9.91 | | GFSK(1Mbps) | 39 | 2441 | -9.84 | | | 78 | 2480 | -9.79 | | | 0 | 2402 | -11.78 | | π/4-DQPSK(2Mbps) | 39 | 2441 | -11.77 | | | 78 | 2480 | -11.73 | | | 0 | 2402 | -12.02 | | 8DPSK(3Mbps) | 39 | 2441 | -11.98 | | | 78 | 2480 | -11.95 | # 9.2 Tune-up Power | Mode | GSM850(AVG) | GSM1900(AVG) | | | |---------------|-------------|--------------|--|--| | GSM/PCS | 29±1dBm | 29±1dBm | | | | GPRS (1 Slot) | 29±1dBm | 29±1dBm | | | | GPRS (2 Slot) | 29±1dBm | 29±1dBm | | | | GPRS (3 Slot) | 27±1dBm | 27±1dBm | | | | GPRS (4 Slot) | 27±1dBm | 27±1dBm | | | | Mode | BT(AVG) | | | | |------------------|----------|--|--|--| | GFSK | -9±1dBm | | | | | π/4-DQPSK(2Mbps) | -11±1dBm | | | | | 8DPSK(3Mbps) | -12±1dBm | | | | ### 9.3 SAR Test Exclusions Applied Per FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHZ)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where: - f(GHZ) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. $$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$ Based on the maximum conducted power of **Bluetooth Head** (rounded to the nearest mW) and the antenna to user separation distance, **Bluetooth Head SAR was not required**; $[(0.158/5)^* \sqrt{2.480}] = 0.05 < 3.0$. Based on the maximum conducted power of **Bluetooth Body** (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth Body SAR was not required; $[(0.158/10)^* \sqrt{2.480}] = 0.02 < 3.0$. # 10. EUT And Test Setup Photo ### 10.1 EUT Photo Back side Bottom side Left side Right side # 10.2 Setup Photo Right Tilt # Left Touch Left Tilt Body Front side(separation distance is 10mm) Body Back side(separation distance is 10mm) Liquid depth (15 cm) # 11. SAR Result Summary ### 11.1 Head SAR | Band | Mode | Test Position | Ch. | Result 1g
(W/Kg) | Power
Drift(%) | Max.Turn-up
Power(dBm) | Meas.Output
Power(dBm) | Scaled
SAR
(W/Kg) | Meas.
No. | |--------------|-------|---------------|-----|---------------------|-------------------|---------------------------|---------------------------|-------------------------|--------------| | | Voice | Right Cheek | 251 | 0.638 | -1.47 | 30 | 29.59 | 0.701 | 1 | | GSM 850 Voic | | Right Tilt | 251 | 0.327 | 2.08 | 30 | 29.59 | 0.359 | / | | | | Left Cheek | 251 | 0.615 | 0.03 | 30 | 29.59 | 0.676 | / | | | | Left Tilt | 251 | 0.313 | -0.79 | 30 | 29.59 | 0.344 | / | | | | Right Cheek | 512 | 0.213 | 3.14 | 30 | 29.51 | 0.238 | 3 | | CSM4000 | Voice | Right Tilt | 512 | 0.107 | -2.58 | 30 | 29.51 | 0.120 | / | | GSM1900 | Voice | Left Cheek | 512 | 0.198 | -3.69 | 30 | 29.51 | 0.222 | / | | | | Left Tilt | 512 | 0.099 | -0.47 | 30 | 29.51 | 0.111 | / | 11.2 Body-worn SAR | Band | Mode | Test Position | Ch. | Result 1g
(W/Kg) | Power
Drift(%) | Max.Turn-up
Power(dBm) | Meas.Output
Power(dBm) | Scaled
SAR
(W/Kg) | Meas.
No. | |-----------|-------------|---------------|-----|---------------------|-------------------|---------------------------|---------------------------|-------------------------|--------------| | GSM 850 | GPRS | Front side | 251 | 0.382 | -1.77 | 28 | 27.24 | 0.455 | / | | GSIVI 650 | Data-4 Slot | Back side | 251 | 0.734 | -2.37 | 28 | 27.24 | 0.874 | 2 | | CCM4000 | GPRS | Front side | 512 | 0.245 | 0.69 | 28 | 27.26 | 0.291 | / | | GSM1900 | Data-4 Slot | Back side | 512 | 0.483 | -4.11 | 28 | 27.26 | 0.573 | 4 | ### Note: - 1. The test separation of all above table is 10mm. - 2. Per KDB865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg ### **Repeated SAR** | Band | Mode | Test
Position | Channel | Result 1g
(W/Kg) | Power
Drift(%) | Max.Turn-up
Power(dBm) | Meas.Output
Power(dBm) | Scaled
SAR
(W/Kg) | Meas.
No. | |---------|---------------------|------------------|---------|---------------------|-------------------|---------------------------|---------------------------|-------------------------|--------------| | GSM 850 | GPRS
Data-4 Slot | Back
side | 251 | 0.721 | -2.33 | 28 | 27.24 | 0.859 | / | # 11.3 repeated SAR measurement | Band | Mode | Test
Position | Channel | Original
Measured
SAR
1g(mW/g) | 1 st
Repeated
SAR 1g | Ratio | Original
Measured
SAR
1g(mW/g) | 2nd
Repeated
SAR 1g | Ratio | |---------|---------------------|------------------|---------|---|----------------------------|-------|---|---------------------------|-------| | GSM 850 | GPRS
Data-4 Slot | Back
side | 251 | 0.734 | 0.721 | 1.02 | / | / | / | #### Note: - 1. Per KDB 865664 D01,for each frequency band ,repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg. - 2. Per KDB 865664 D01,if the ratio of largest to smallest SAR for the original and first repeated measurement is≤1.2and the measured SAR<1.45W/Kg, only one repeated measurement is required. - 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥ 1.45W/Kg - 4. The ratio is the difference in percentage between original and repeated measured SAR. #### **Simultaneous Multi-band Transmission Evaluation:** Application Simultaneous Transmission information: | Position | Simultaneous state | |----------|--------------------| | Head | 1. GSM + Bluetooth | | Body | 1. GSM + Bluetooth | #### NOTE: - 1. For simultaneous transmission at head and body exposure position, 2 transmitters simultaneous transmission was the worst state. - 2. Based upon KDB 447498 D01 v05, BT SAR is excluded as below table. - 3. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation. - 4. For minimum test separation distance \leq 50mm,Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)·[\sqrt{f} (GHz) /x] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR - 5. The reported SAR summation is calculated based on the same configuration and test position. - 6. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: - a) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[\sqrt{f} (GHz) /x] W/kg for test separation distances \leq 50 mm;Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm. | Estimat | Estimated SAR | | ım Power | Antenna
to user(mm) | Frequency(GHz) | Stand alone
SAR(1g) [W/kg] | | |---------|---------------|----|----------|------------------------|----------------|-------------------------------|--| | DT | Head | c | 0.150 | 5 | 2.480 | 0.007 | | | BT | Body | -8 | 0.158 | 10 | 2.480 | 0.003 | | | Simultaneous Mode | Position | Mode | Max. 1-g SAR
(W/kg) | 1-g Sum SAR
(W/kg) | |-------------------|-----------|-----------|------------------------|-----------------------| | | Head | GSM Voice | 0.701 | 0.708 | | GSM + Bluetooth | | Bluetooth | 0.007 | 0.708 | | Body | GSM Data | 0.874 | 0.877 | | | | Bluetooth | 0.003 | 0.077 | | Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR-1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR-1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR. # 12. Equipment List | Kind of Equipment | Manufacturer | Type No | Serial No. | Last Calibration | Calibrated Until | |-----------------------------|--------------|--|--------------------------|------------------|------------------| | Kind of Equipment | Manufacturer | Type No. | | Last Calibration | Cambrated Until | | 835MHz Dipole | SATIMO | SID835 | SN 30/14
DIP0G835-332 | 2014.09.01 | 2017.08.31 | | 1900MHz Dipole | SATIMO | SID1900 | SN 30/14
DIP1G900-333 | 2014.09.01 | 2017.08.31 | | Antenna | SATIMO | ANTA3 | SN 07/13
ZNTA52 | 2014.09.01 | 2017.08.31 | | Waveguide | SATIMO | SWG5500 | SN 13/14
WGA32 | 2014.09.01 | 2017.08.31 | | E-Field Probe | MVG | SSE2 | SN 45/15
EP309 | 2016.12.05 | 2017.12.04 | | Phantom1 | SATIMO | SAM | SN 32/14
SAM115 | N/A | N/A | | Phantom2 | SATIMO | SAM | SN 32/14
SAM116 | N/A | N/A | | SAR TEST BENCH | SATIMO | MOBILE
PHONE
POSITIONNIN
G SYSTEM | SN 32/14
MSH97 | N/A | N/A | | SAR TEST BENCH | SATIMO | LAPTOP
POSITIONNIN
G SYSTEM | SN 32/14
LSH29 | N/A | N/A | | Dielectric Probe Kit | SATIMO | SCLMP | SN 32/14
OCPG52 | 2016.08.30 | 2017.08.29 | | Multi Meter | Keithley | Multi Meter
2000 | 4050073 | 2016.10.23 | 2017.10.22 | | Signal Generator | Agilent | N5182A | MY50140530 | 2016.10.23 | 2017.10.22 | | Power Meter | R&S | NRP | 100510 | 2016.10.23 | 2017.10.22 | | Power Meter | HP | EPM-442A | GB37170267 | 2016.10.23 | 2017.10.22 | | Power Sensor | R&S | NRP-Z11 | 101919 | 2016.10.23 | 2017.10.22 | | Power Sensor | HP | 8481A | 2702A65976 | 2016.10.23 | 2017.10.22 | | Power Sensor | R&S | NRP-Z21 | 103971 | 2016.10.23 | 2017.10.22 | | Network Analyzer | Agilent | 8753ES | US38432810 | 2017.03.16 | 2018.03.15 | | Attenuator 1 | PE | PE7005-10 | N/A | 2016.10.23 | 2017.10.22 | | Attenuator 2 | PE | PE7005-3 | N/A | 2016.10.23 | 2017.10.22 | | Attenuator 3 | Woken | WK0602-XX | N/A | 2016.10.23 | 2017.10.22 | | Dual Directional
Coupler | Agilent | 778D | 50422 | 2016.10.23 | 2017.10.22 | # **Appendix A. System Validation Plots** # **System Performance Check Data (835MHz Head)** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017-05-10 Measurement duration: 13 minutes 27 seconds ### **Experimental conditions** | Phantom | Validation plane | |-----------------------|------------------| | Device Position | - | | Band | 835MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 835MHz | | Relative permittivity | 42.14 | | Conductivity (S/m) | 0.93 | | Power drift (%) | 0.19 | | Probe | SN 14/16 EP309 | | ConvF: | 5.74 | | Crest factor: | 1:1 | Maximum location: X=1.00, Y=-1.00 | SAR 10g (W/Kg) | 0.642557 | |----------------|----------| | SAR 1g (W/Kg) | 0.961179 | # Z Axis Scan # **System Performance Check Data (835MHz Body)** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017-05-10 Measurement duration: 14 minutes 13 seconds # **Experimental conditions.** | Probe | | |-----------------------|------------------| | Phantom | Validation plane | | Device Position | - | | Band | 835MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 835MHz | | Relative permittivity | 56.11 | | Conductivity (S/m) | 0.98 | | Power drift (%) | 0.19 | | Probe | SN 14/16 EP309 | | ConvF: | 5.90 | | Crest factor: | 1:1 | Maximum location: X=-7.00, Y=-1.00 | SAR 10g (W/Kg) | 0.637922 | |----------------|----------| | SAR 1g (W/Kg) | 0.963728 | # **Z** Axis Scan # System Performance Check Data (1900MHz Head) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017-05-10 Measurement duration: 14 minutes 12 seconds # **Experimental conditions.** | Phantom | Validation plane | |-----------------------|------------------| | Device Position | - | | Band | 1900MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 1900MHz | | Relative permittivity | 39.57 | | Conductivity (S/m) | 1.38 | | Power drift (%) | -0.43 | | Probe | SN 14/16 EP309 | | ConvF: | 5.46 | | Crest factor: | 1:1 | Maximum location: X=5.00, Y=1.00 | SAR 10g (W/Kg) | 2.112487 | |----------------|----------| | SAR 1g (W/Kg) | 3.991277 | # System Performance Check Data (1900MHz Body) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017-05-10 Measurement duration: 14 minutes 46 seconds # **Experimental conditions.** | Device Position | - | |-----------------------|----------------| | Band | 1900MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 1900 | | Relative permittivity | 54.24 | | Conductivity (S/m) | 1.53 | | Power drift (%) | -0.60 | | Probe | SN 14/16 EP309 | | ConvF: | 5.67 | | Crest factor: | 1:1 | Maximum location: X=-3.00, Y=-2.00 | SAR 10g (W/Kg) | 2.173595 | |----------------|----------| | SAR 1g (W/Kg) | 4.012764 | # **Z** Axis Scan # **Appendix B. SAR Test Plots** # Plot 1: DUT: Feature phone; EUT Model: M PHONE | 2017-05-10 | |--| | SN 14/16 EP309 | | 5.74 | | dx=8mm dy=8mm, h= 5.00 mm | | 5x5x7,dx=8mm dy=8mm dz=5mm,
Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Right head | | Cheek | | GSM850 | | High | | TDMA (Crest factor: 8.32) | | 848.8 | | 41.5 | | 0.90 | | -1.47 | | | Maximum location: X=-40.00, Y=-25.00 SAR Peak: 1.17 W/kg | 0.4.5.4.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | 0.407454 | |---|----------| | SAR 10g (W/Kg) | 0.427151 | | | 0.007574 | | SAR 1g (W/Kg) | 0.637574 | Page 41 of 44 Plot 2: DUT: Feature phone; EUT Model: M PHONE | Test Date | 2017-05-10 | |-----------------------------------|--| | Probe | SN 14/16 EP309 | | ConvF | 5.90 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomScan | 5x5x7,dx=8mm dy=8mm dz=5mm,
Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Body Back | | Band | GPRS 850 | | Channels | High | | Signal | Duty Cycle: 1:2.00 (Crest factor: 2.0) | | Frequency (MHz) | 848.8 | | Relative permittivity (real part) | 55.20 | | Conductivity (S/m) | 0.97 | | Variation (%) | -2.37 | Maximum location: X=3.00, Y=-31.00 SAR Peak: 1.28 W/kg | SAR 10g (W/Kg) | 0.514261 | |----------------|----------| | SAR 1g (W/Kg) | 0.733615 | Plot 3: DUT: Feature phone; EUT Model: M PHONE | 2017-05-10 | |-------------------------------------| | SN 14/16 EP309 | | 5.46 | | dx=8mm dy=8mm, h= 5.00 mm | | 5x5x7,dx=8mm dy=8mm dz=5mm, | | Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Right head | | Cheek | | GSM1900 | | Low | | TDMA (Crest factor: 8.32) | | 1850.2 | | 40.00 | | 1.40 | | 3.14 | | | Maximum location: X=-61.00, Y=-43.00 SAR Peak: 0.33 W/kg | | <u> </u> | |----------------|----------| | SAR 10g (W/Kg) | 0.122357 | | SAR 1g (W/Kg) | 0.212725 | Plot 4: DUT: Feature phone; EUT Model: M PHONE | Test Date | 2017-05-10 | |-----------------------------------|--| | Probe | SN 14/16 EP309 | | ConvF | 5.67 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomScan | 5x5x7,dx=8mm dy=8mm dz=5mm,
Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Body Behind | | Band | GPRS 1900 | | Channels | Low | | Signal | Duty Cycle: 1:2.00 (Crest factor: 2.0) | | Frequency (MHz) | 1850.2 | | Relative permittivity (real part) | 53.30 | | Conductivity (S/m) | 1.52 | | Variation (%) | -4.11 | | | | Maximum location: X=1.00, Y=-5.00 SAR Peak: 0.81 W/kg | SAR 10g (W/Kg) | 0.050704 | |-----------------|----------| | SAIN TOG (W/Ng) | 0.250791 | | SAR 1g (W/Kg) | 0.482983 | # **Appendix C. Probe Calibration And Dipole Calibration Report** Refer the appendix Calibration Report. *****END OF THE REPORT***