

# **TEST REPORT**

# No. I21N00360-BT

for

unitech Electronics Co., Ltd.

Wearable Computer

Model Name: WD200

with

Hardware Version: DVT2

Software Version: v117-0

FCC ID: HLEWD200BTNF

Issued Date: 2021-03-29

#### **Designation Number: CN1210**

## Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

## Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001 Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.



# **CONTENTS**

| С  | ONTE   | NTS                                                   | 2  |
|----|--------|-------------------------------------------------------|----|
| 1  | . SUI  | MMARY OF TEST REPORT                                  | 3  |
|    | 1.1.   | Test Items                                            | 3  |
|    | 1.2.   | TEST STANDARDS                                        | 3  |
|    | 1.3.   | TEST RESULT                                           | 3  |
|    | 1.4.   | TESTING LOCATION                                      | 3  |
|    | 1.5.   | Project data                                          | 3  |
|    | 1.6.   | SIGNATURE                                             | 3  |
| 2. | CL     | IENT INFORMATION                                      | 4  |
|    | 2.1.   | APPLICANT INFORMATION                                 | 4  |
|    | 2.2.   | MANUFACTURER INFORMATION                              | 4  |
| 3. | EQ     | UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 5  |
|    | 3.1.   | About EUT                                             | 5  |
|    | 3.2.   | INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST   | 5  |
|    | 3.3.   | INTERNAL IDENTIFICATION OF AE USED DURING THE TEST    | 5  |
|    | 3.4.   | GENERAL DESCRIPTION                                   | 6  |
| 4  | . RE   | FERENCE DOCUMENTS                                     | 7  |
|    | 4.1.   | DOCUMENTS SUPPLIED BY APPLICANT                       | 7  |
|    | 4.2.   | Reference Documents for testing                       | 7  |
| 5. | . TE   | ST RESULTS                                            | 8  |
|    | 5.1.   | TESTING ENVIRONMENT                                   | 8  |
|    | 5.2.   | TEST RESULTS                                          | 8  |
|    | 5.3.   | STATEMENTS                                            | 8  |
| 6  | . TE   | ST EQUIPMENTS UTILIZED                                | 9  |
| 7. | LA     | BORATORY ENVIRONMENT1                                 | 0  |
| 8  | ME     | ASUREMENT UNCERTAINTY1                                | 1  |
| A  | NNEX   | A: DETAILED TEST RESULTS 1                            | 2  |
|    | TEST ( | Configuration1                                        | 2  |
|    | A.0 A  | NTENNA REQUIREMENT                                    | 4  |
|    | A.1 M  | IAXIMUM PEAK OUTPUT POWER 1                           | 5  |
|    | A.2 B. | AND EDGES COMPLIANCE                                  | 6  |
|    | A.3 C  | ONDUCTED EMISSION                                     | 23 |
|    | A.4 R. | ADIATED EMISSION                                      | 39 |
|    | A.5 20 | DB BANDWIDTH                                          | 51 |
|    | A.6 TI | IME OF OCCUPANCY (DWELL TIME)                         | 56 |
|    | A.7 N  | UMBER OF HOPPING CHANNELS $\epsilon$                  | 50 |
|    | A.8 C. | ARRIER FREQUENCY SEPARATION                           | 54 |
|    | A.9 A  | C Power line Conducted Emission                       | 66 |



## 1. Summary of Test Report

## 1.1. Test Items

| Description         | Wearable Computer             |
|---------------------|-------------------------------|
| Model Name          | WD200                         |
| Applicant's name    | unitech Electronics Co., Ltd. |
| Manufacturer's Name | unitech Electronics Co., Ltd. |

## 1.2. Test Standards

FCC Part15-2019; ANSI C63.10-2013

## 1.3. Test Result

#### Pass

Please refer to "5.2.Test Results"

## 1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

#### 1.5. Project data

| Testing Start Date: | 2021-02-16 |
|---------------------|------------|
| Testing End Date:   | 2021-03-26 |

## 1.6. Signature

Lin Zechuang (Prepared this test report)

Tang Weisheng (Reviewed this test report)

Zhang Bojun (Approved this test report)



# 2. Client Information

# 2.1. Applicant Information

| Company Name: unitech Electronics Co., Ltd. |                                                                    |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Addrooo                                     | 5F., No. 136, Ln. 235, Baoqiao Rd., Xindian Dist., New Taipei City |  |  |  |
| Address:                                    | 231, Taiwan, China                                                 |  |  |  |
| Contact Person                              | Ben Chiang                                                         |  |  |  |
| E-Mail                                      | BenC@tw.ute.com                                                    |  |  |  |
| Telephone:                                  | 886-2-8912-1122                                                    |  |  |  |
| Fax:                                        | /                                                                  |  |  |  |

## 2.2. Manufacturer Information

| Company Name: unitech Electronics Co., Ltd. |                                                                    |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Address:                                    | 5F., No. 136, Ln. 235, Baoqiao Rd., Xindian Dist., New Taipei City |  |  |  |
| Address.                                    | 231, Taiwan, China                                                 |  |  |  |
| Contact Person                              | Ben Chiang                                                         |  |  |  |
| E-Mail                                      | BenC@tw.ute.com                                                    |  |  |  |
| Telephone:                                  | 886-2-8912-1122                                                    |  |  |  |
| Fax:                                        | /                                                                  |  |  |  |



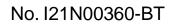
# 3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

## 3.1.<u>About EUT</u>

| Description                  | Wearable Computer            |
|------------------------------|------------------------------|
| Model Name                   | WD200                        |
| Frequency Band               | 2400MHz~2483.5MHz            |
| Type of Modulation           | GFSK/π/4 DQPSK/8DPSK         |
| Number of Channels           | 79                           |
| Antenna Type                 | Integrated                   |
| Antenna Gain                 | 0.88dBi                      |
| Power Supply                 | 3.85V DC by Battery          |
| FCC ID                       | HLEWD200BTNF                 |
| Condition of EUT as received | No abnormality in appearance |

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

## 3.2. Internal Identification of EUT used during the test


| EUT ID* | IMEI         | <b>HW Version</b> | SW Version | <b>Receive Date</b> |
|---------|--------------|-------------------|------------|---------------------|
| UT04aa  | 950105210046 | DVT2              | v117-0     | 2021-02-07          |
| UT05aa  | 950104210109 | DVT2              | v117-0     | 2021-02-05          |
| UT06aa  | 950104210038 | DVT2              | v117-0     | 2021-02-05          |

\*EUT ID: is used to identify the test sample in the lab internally.

UT04aa is used for conduction test, UT05aa is used for radiation test, and UT06aa is used for AC Power line Conducted Emission test.

#### 3.3. Internal Identification of AE used during the test

| AE ID*         | Description    | AE ID*             |
|----------------|----------------|--------------------|
| AE1            | Battery        | /                  |
| AE2            | Charger        | /                  |
| AE3            | Data Cable     | /                  |
|                |                |                    |
| AE1            |                |                    |
| Model          | 206546G        |                    |
| Manufacturer   | Sichuan iGreen | Technology Co.,Ltd |
| Capacity       | 2050mAh        |                    |
| Nominal Voltag | ge 3.85V       |                    |
| AE2            |                |                    |
| Model          | S018BYV12007   | 150                |
| Manufacturer   | Ten Pao Indust | rial Co., Ltd      |
| AE3            |                |                    |
| Model          | USB 3.0 A T0 C | 5 1M               |
| Manufacturer   | JHEN VEI ELE   | CTRONIC CO., LTD.  |





\*AE ID: is used to identify the test sample in the lab internally. AE2: just for testing.

## 3.4. <u>General Description</u>

The Equipment under Test (EUT) is a model of Wearable Computer with integrated antenna and battery.

It consists of normal options: Lithium Battery and USB Cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.



## 4. <u>Reference Documents</u>

## 4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

## 4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

| Reference   | Title                                                   | Version |  |  |  |
|-------------|---------------------------------------------------------|---------|--|--|--|
| FCC Part 15 | FCC CFR 47, Part 15, Subpart C:                         | 2019    |  |  |  |
|             | 15.205 Restricted bands of operation;                   |         |  |  |  |
|             | 15.209 Radiated emission limits, general requirements;  |         |  |  |  |
|             | 15.247 Operation within the bands 902-928MHz,           |         |  |  |  |
|             | 2400–2483.5 MHz, and 5725–5850 MHz                      |         |  |  |  |
| ANSI C63.10 | American National Standard of Procedures for Compliance | 2013    |  |  |  |
|             | Testing of Unlicensed Wireless Devices                  |         |  |  |  |



## 5. Test Results

## 5.1. Testing Environment

| Normal Temperature: | 15~35°C |
|---------------------|---------|
| Relative Humidity:  | 20~75%  |

# 5.2. Test Results

| Test cases                                     | Sub-clause of<br>Part 15C                                                                                                                                                                                                                                       | Verdict                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antenna Requirement                            | 15.203                                                                                                                                                                                                                                                          | Р                                                                                                                                                                                                                                                                                                                                                                                          |
| Maximum Peak Output Power                      | 15.247 (b)                                                                                                                                                                                                                                                      | Р                                                                                                                                                                                                                                                                                                                                                                                          |
| Band Edges Compliance                          | 15.247 (d)                                                                                                                                                                                                                                                      | Р                                                                                                                                                                                                                                                                                                                                                                                          |
| Conducted Spurious Emission                    | 15.247 (d)                                                                                                                                                                                                                                                      | Р                                                                                                                                                                                                                                                                                                                                                                                          |
| Radiated Spurious Emission                     | 15.247,15.205,15.209                                                                                                                                                                                                                                            | Р                                                                                                                                                                                                                                                                                                                                                                                          |
| Occupied 20dB bandwidth                        | 15.247(a)                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                          |
| Time of Occupancy(Dwell Time)                  | 15.247(a)                                                                                                                                                                                                                                                       | Р                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of Hopping Channel                      | 15.247(a)                                                                                                                                                                                                                                                       | Р                                                                                                                                                                                                                                                                                                                                                                                          |
| Carrier Frequency Separation                   | 15.247(a)                                                                                                                                                                                                                                                       | Р                                                                                                                                                                                                                                                                                                                                                                                          |
| AC Power line Conducted Emission 15.107,15.207 |                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                | Antenna Requirement<br>Maximum Peak Output Power<br>Band Edges Compliance<br>Conducted Spurious Emission<br>Radiated Spurious Emission<br>Occupied 20dB bandwidth<br>Time of Occupancy(Dwell Time)<br>Number of Hopping Channel<br>Carrier Frequency Separation | Test casesPart 15CAntenna Requirement15.203Maximum Peak Output Power15.247 (b)Band Edges Compliance15.247 (d)Conducted Spurious Emission15.247 (d)Radiated Spurious Emission15.247,15.205,15.209Occupied 20dB bandwidth15.247(a)Time of Occupancy(Dwell Time)15.247(a)Number of Hopping Channel15.247(a)Carrier Frequency Separation15.247(a)AC Power line Conducted Emission15.107,15.207 |

See **ANNEX A** for details.

## 5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.



# 6. Test Equipments Utilized

## Conducted test system

| No. | Equipment                 | Model   | Serial<br>Number | Manufacturer    | Calibration<br>Due date | Calibration<br>Period |
|-----|---------------------------|---------|------------------|-----------------|-------------------------|-----------------------|
| 1   | Vector Signal<br>Analyzer | FSV40   | 100903           | Rohde & Schwarz | 2021-12-30              | 1 year                |
| 2   | Power Sensor              | U2021XA | MY55430013       | Agilent         | 2022-01-13              | 1 year                |
| 3   | Data Acquisiton           | U2531A  | TW55443507       | Agilent         | /                       | /                     |
| 4   | Bluetooth Tester          | CBT32   | 100584           | Rohde & Schwarz | 2021-12-30              | 1 year                |
| 5   | Test Receiver             | ESCI    | 100701           | Rohde & Schwarz | 2021-08-09              | 1 year                |
| 6   | LISN                      | ENV216  | 102067           | Rohde & Schwarz | 2021-07-16              | 1 year                |

## **Radiated test system**

| No. | Equipment            | Model                   | Serial<br>Number | Manufacturer    | Calibration<br>Due date | Calibration<br>Period |
|-----|----------------------|-------------------------|------------------|-----------------|-------------------------|-----------------------|
| 1   | Loop Antenna         | HLA6120                 | 35779            | TESEQ           | 2022-04-25              | 3 years               |
| 2   | BiLog Antenna        | 3142E                   | 00224831         | ETS-Lindgren    | 2021-05-17              | 3 years               |
| 3   | Horn Antenna         | 3117                    | 00066577         | ETS-Lindgren    | 2022-04-02              | 3 years               |
| 4   | Horn Antenna         | QSH-SL-18<br>-26-S-20   | 17013            | Q-par           | 2023-01-06              | 3 years               |
| 5   | Horn Antenna         | QSH-SL-8-<br>26-40-K-20 | 17014            | Q-par           | 2023-01-06              | 3 years               |
| 6   | Test Receiver        | ESR7                    | 101676           | Rohde & Schwarz | 2021-11-25              | 1 year                |
| 7   | Spectrum<br>Analyser | FSV40                   | 101192           | Rohde & Schwarz | 2022-01-13              | 1 year                |
| 8   | Chamber              | FACT3-2.0               | 1285             | ETS-Lindgren    | 2021-07-19              | 2 years               |

## Test software

| No. | Equipment        | Manufacturer    | Version  |
|-----|------------------|-----------------|----------|
| 1   | TechMgr Software | CAICT           | 2.1.1    |
| 2   | EMC32            | Rohde & Schwarz | 10.50.40 |

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

#### Anechoic chamber

Fully anechoic chamber by ETS-Lindgren



# 7. Laboratory Environment

## Semi-anechoic chamber

| Temperature                       | Min. = 15 °C, Max. = 35 °C                      |  |
|-----------------------------------|-------------------------------------------------|--|
| Relative humidity                 | Min. = 20 %, Max. = 75 %                        |  |
| Shielding effectiveness           | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB       |  |
| Electrical insulation             | > 2MΩ                                           |  |
| Ground system resistance          | <4 Ω                                            |  |
| Normalised site attenuation (NSA) | $< \pm 4$ dB, 3 m distance, from 30 to 1000 MHz |  |

#### Shielded room

| Temperature              | Min. = 15 °C, Max. = 35 °C               |
|--------------------------|------------------------------------------|
| Relative humidity        | Min. = 20 %, Max. = 75 %                 |
| Shielding effectiveness  | 0.014MHz-1MHz> 60 dB; 1MHz-1000MHz>90 dB |
| Electrical insulation    | > 2MΩ                                    |
| Ground system resistance | <4 Ω                                     |

#### Fully-anechoic chamber

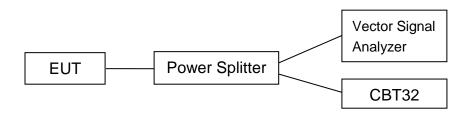
| Temperature                           | Min. = 15 °C, Max. = 35 °C                  |  |
|---------------------------------------|---------------------------------------------|--|
| Relative humidity                     | Min. = 20 %, Max. = 75 %                    |  |
| Shielding effectiveness               | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB   |  |
| Electrical insulation                 | > 2MΩ                                       |  |
| Ground system resistance              | <4 Ω                                        |  |
| Voltage Standing Wave Ratio<br>(VSWR) | $\leq$ 6 dB, from 1 to 18 GHz, 3 m distance |  |
| Uniformity of field strength          | Between 0 and 6 dB, from 80 to 6000 MHz     |  |



# 8. <u>Measurement Uncertainty</u>

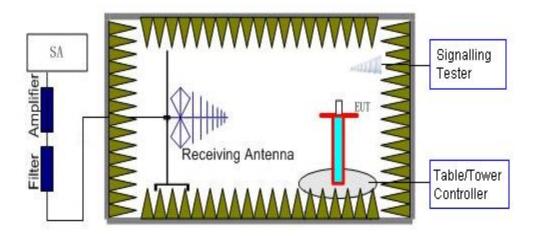
| Test Name                                   | Uncertainty ( <i>k</i> =2) |        |
|---------------------------------------------|----------------------------|--------|
| 1. RF Output Power - Conducted              | 1.32dB                     |        |
| 2. Time of Occupancy - Conducted            | 0.58ms                     |        |
| 3. Occupied channel bandwidth - Conducted   | 66Hz                       |        |
|                                             | 30MHz≤f<1GHz               | 1.41dB |
| 4 Transmitter Spurious Emission Conducted   | 1GHz≤f<7GHz                | 1.92dB |
| 4 Transmitter Spurious Emission - Conducted | 7GHz≤f<13GHz               | 2.31dB |
|                                             | 13GHz≤f≤26GHz              | 2.61dB |
|                                             | 9kHz≤f<30MHz               | 1.74dB |
| 5. Transmitter Spurious Emission - Radiated | 30MHz≤f<1GHz               | 4.84dB |
| 5. Transmiller Spundus Emission - Radialed  | 1GHz≤f<18GHz               | 4.68dB |
|                                             | 18GHz≤f≤40GHz              | 3.76dB |
| 6. AC Power line Conducted Emission         | 150kHz≤f≤30MHz             | 3.00dB |




# **ANNEX A: Detailed Test Results**

## **Test Configuration**

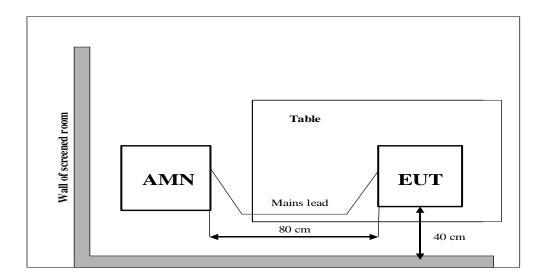
## The measurement is made according to ANSI C63.10.

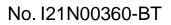

#### 1) Conducted Measurements

- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the EUT hopping mode (hopping on or hopping off).
- 5. Set the spectrum analyzer to start measurement.
- 6. Record the values.



## 2) Radiated Measurements


**Test setup:** EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.






## 3) AC Power line Conducted Emission Measurement

The EUT is working as Bluetooth terminal. A communication link of Bluetooth is set up with a System Simulator (SS). The EUT is commanded to operate at maximum transmitting power.







## A.0 Antenna requirement

#### Measurement Limit:

| iator shall be designed to ensure that no antenna other than that<br>responsible party shall be used with the device. The use of a                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ched antenna or of an antenna that uses a unique coupling to the<br>or shall be considered sufficient to comply with the provisions of<br>manufacturer may design the unit so that a broken antenna can<br>he user, but the use of a standard antenna jack or electrical<br>ibited. This requirement does not apply to carrier current devices<br>perated under the provisions of §15.211, §15.213, §15.217,<br>.221. Further, this requirement does not apply to intentional<br>ust be professionally installed, such as perimeter protection |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Conclusion: The Directional gains of antenna used for transmitting is 0.88dBi. The RF transmitter uses an integrate antenna without connector.



## A.1 Maximum Peak Output Power

#### Method of Measurement: See ANSI C63.10-clause 7.8.5.

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

#### **Measurement Limit:**

| Standard               | Limit (dBm) |  |
|------------------------|-------------|--|
| FCC CRF Part 15.247(b) | < 30        |  |

#### **Measurement Results:**

| Mode      | R             | F output power (dBm | ו)             |
|-----------|---------------|---------------------|----------------|
| wode      | 2402MHz (Ch0) | 2441MHz (Ch39)      | 2480MHz (Ch78) |
| GFSK      | 10.54         | 10.44               | 10.37          |
| π/4 DQPSK | 10.11         | 9.86                | 9.95           |
| 8DPSK     | 10.35         | 10.16               | 10.21          |

**Conclusion: Pass** 

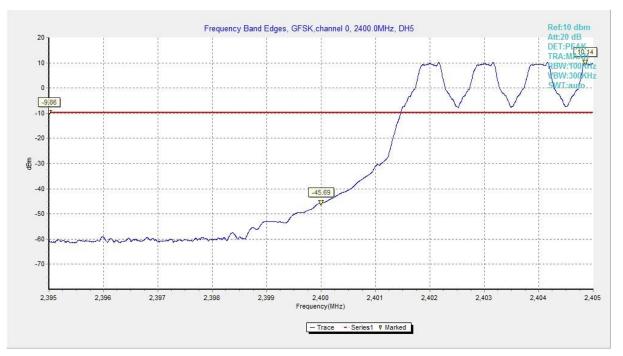


## A.2 Band Edges Compliance

#### Measurement Limit:

| Standard                   | Limit (dB) |
|----------------------------|------------|
| FCC 47 CFR Part 15.247 (d) | > 20       |

#### Measurement Result:


| Mode      | Channel | Hopping | Test Results | Conclusion |
|-----------|---------|---------|--------------|------------|
| GFSK      | 0       | ON      | Fig.1        | Р          |
|           | 78      | ON      | Fig.2        | Р          |
| π/4 DQPSK | 0       | ON      | Fig.3        | Р          |
|           | 78      | ON      | Fig.4        | Р          |
| 8DPSK     | 0       | ON      | Fig.5        | Р          |
|           | 78      | ON      | Fig.6        | Р          |

| Mode       | Channel | Hopping | Test Results | Conclusion |
|------------|---------|---------|--------------|------------|
| OFOK       | 0       | OFF     | Fig.7        | Р          |
| GFSK       | 78      | OFF     | Fig.8        | Р          |
| π/4 DQPSK  | 0       | OFF     | Fig.9        | Р          |
| 11/4 DQP3K | 78      | OFF     | Fig.10       | Р          |
| 8DPSK      | 0       | OFF     | Fig.11       | Р          |
| ODPSK      | 78      | OFF     | Fig.12       | Р          |

See below for test graphs.

**Conclusion: Pass** 







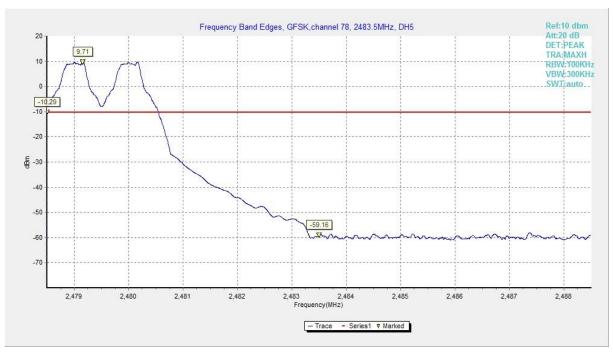



Fig. 2 Band Edges (GFSK, Ch 78, Hopping ON)



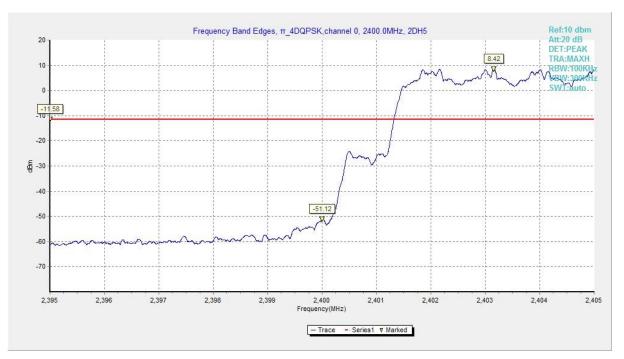



Fig. 3 Band Edges ( $\pi$ /4 DQPSK, Ch 0, Hopping ON)

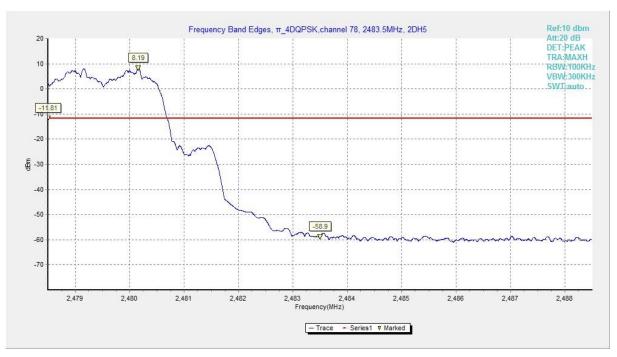



Fig. 4 Band Edges (π/4 DQPSK, Ch 78, Hopping ON)



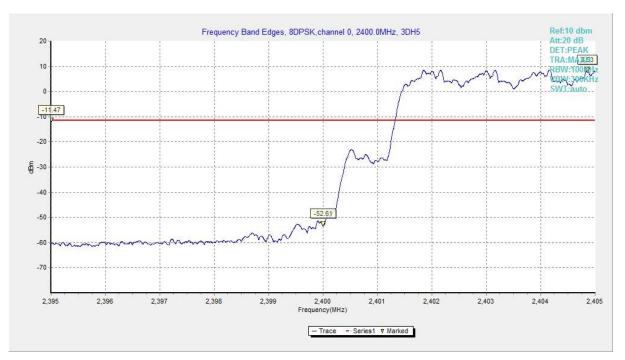



Fig. 5 Band Edges (8DPSK, Ch 0, Hopping ON)

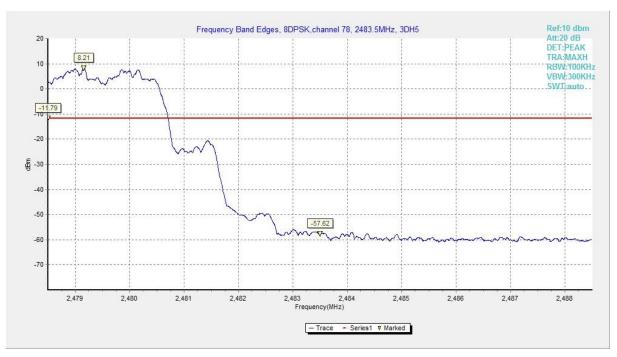



Fig. 6 Band Edges (8DPSK, Ch 78, Hopping ON)



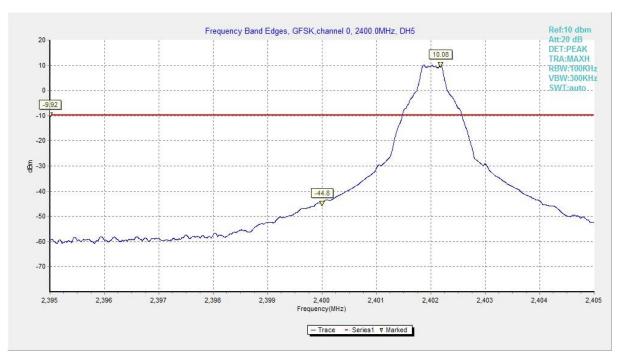



Fig. 7 Band Edges (GFSK, Ch 0, Hopping OFF)

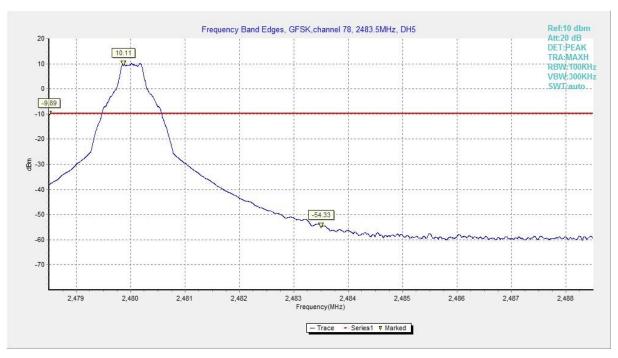



Fig. 8 Band Edges (GFSK, Ch 78, Hopping OFF)



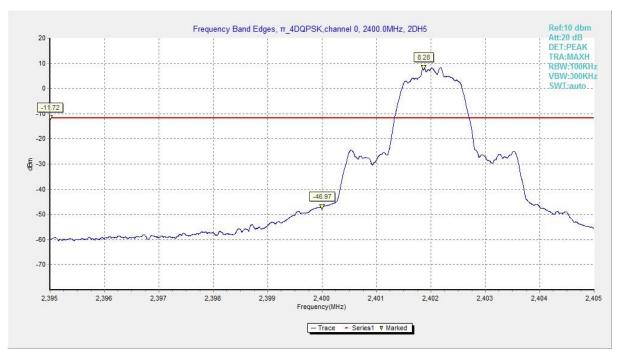



Fig. 9 Band Edges ( $\pi$ /4 DQPSK, Ch 0, Hopping OFF)



Fig. 10 Band Edges ( $\pi$ /4 DQPSK, Ch 78, Hopping OFF)



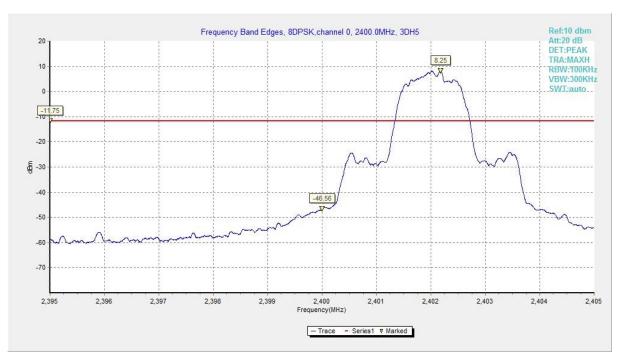



Fig. 11 Band Edges (8DPSK, Ch 0, Hopping OFF)

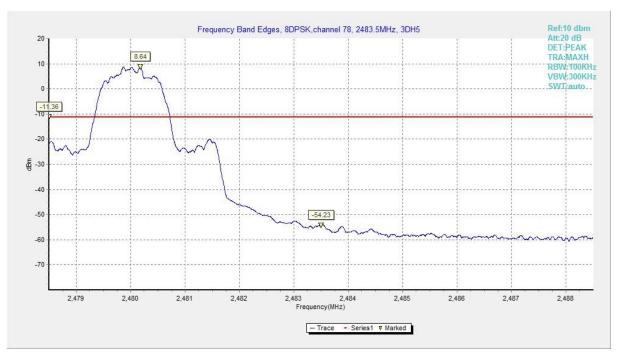



Fig. 12 Band Edges (8DPSK, Ch 78, Hopping OFF)



## A.3 Conducted Emission

#### Measurement Limit:

| Standard                   | Limit                                   |  |
|----------------------------|-----------------------------------------|--|
| FCC 47 CFR Part 15.247 (d) | 20dB below peak output power in 100 kHz |  |
|                            | bandwidth                               |  |

## **Measurement Results:**

| MODE         | Channel      | Frequency Range | Test Results | Conclusion |
|--------------|--------------|-----------------|--------------|------------|
|              |              | 2.402 GHz       | Fig.13       | Р          |
|              | 0            | 1GHz-3GHz       | Fig.14       | Р          |
|              |              | 3GHz-10GHz      | Fig.15       | Р          |
|              |              | 2.441 GHz       | Fig.16       | Р          |
| GFSK         | 39           | 1GHz-3GHz       | Fig.17       | Р          |
|              |              | 3GHz-10GHz      | Fig.18       | Р          |
|              |              | 2.480 GHz       | Fig.19       | Р          |
|              | 78           | 1GHz-3GHz       | Fig.20       | Р          |
|              |              | 3GHz-10GHz      | Fig.21       | Р          |
|              |              | 2.402 GHz       | Fig.22       | Р          |
|              | 0            | 1GHz-3GHz       | Fig.23       | Р          |
|              |              | 3GHz-10GHz      | Fig.24       | Р          |
|              |              | 2.441 GHz       | Fig.25       | Р          |
| π/4<br>DQPSK | 39           | 1GHz-3Ghz       | Fig.26       | Р          |
| DQPSK        |              | 3GHz-10GHz      | Fig.27       | Р          |
|              |              | 2.480 GHz       | Fig.28       | Р          |
|              | 78           | 1GHz-3Ghz       | Fig.29       | Р          |
|              |              | 3GHz-10GHz      | Fig.30       | Р          |
|              |              | 2.402 GHz       | Fig.31       | Р          |
|              | 0            | 1GHz-3GHz       | Fig.32       | Р          |
|              |              | 3GHz-10GHz      | Fig.33       | Р          |
|              |              | 2.441 GHz       | Fig.34       | Р          |
| 8DPSK        | 39           | 1GHz-3GHz       | Fig.35       | Р          |
| ODROK        |              | 3GHz-10GHz      | Fig.36       | Р          |
|              |              | 2.480 GHz       | Fig.37       | Р          |
|              | 78           | 1GHz-3GHz       | Fig.38       | Р          |
|              |              | 3GHz-10GHz      | Fig.39       | Р          |
| 1            | All channels | 30 MHz-1GHz     | Fig.40       | Р          |
| /            | All channels | 10GHz-26GHz     | Fig.41       | Р          |

## See below for test graphs.

**Conclusion: Pass** 



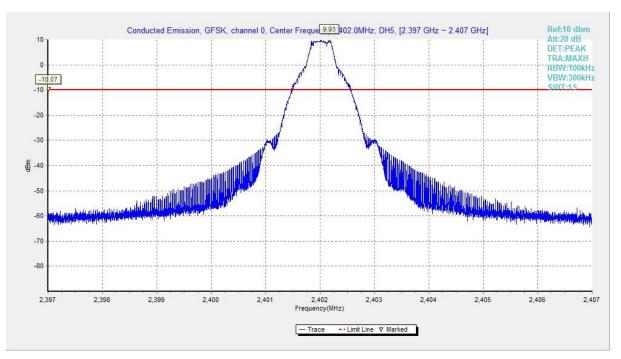



Fig. 13 Conducted Spurious Emission (GFSK, Ch0, 2.402GHz)

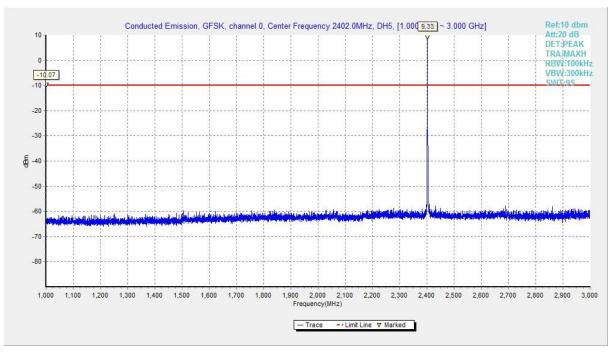



Fig. 14 Conducted Spurious Emission (GFSK, Ch0, 1 GHz-3 GHz)

# TTL

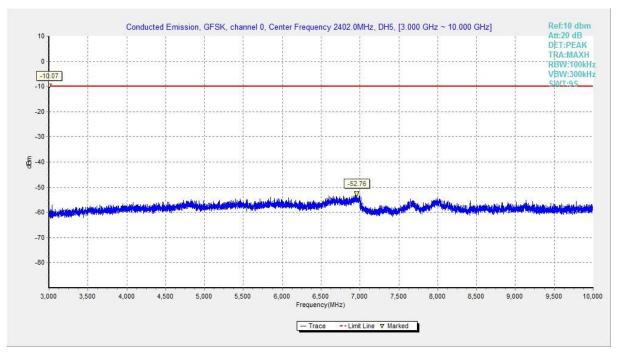



Fig. 15 Conducted Spurious Emission (GFSK, Ch0, 3GHz-10 GHz)

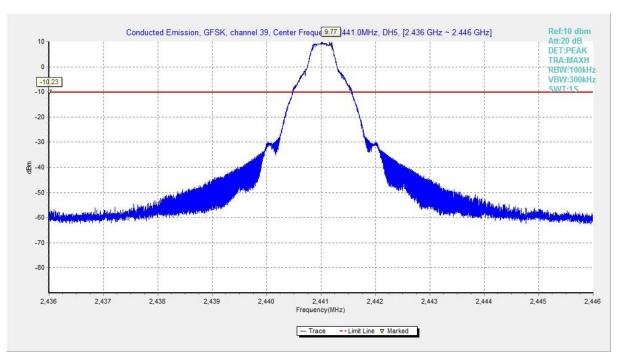



Fig. 16 Conducted Spurious Emission (GFSK, Ch39, 2.441GHz)



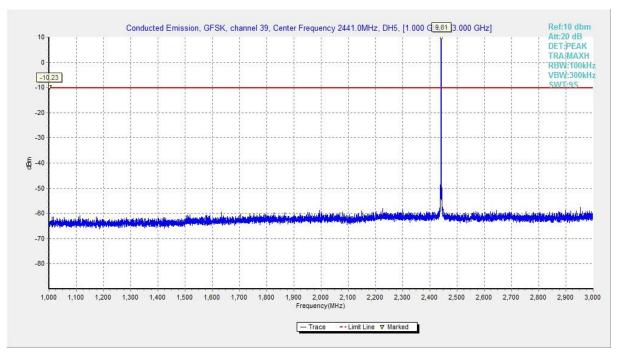



Fig. 17 Conducted Spurious Emission (GFSK, Ch39, 1GHz-3 GHz)

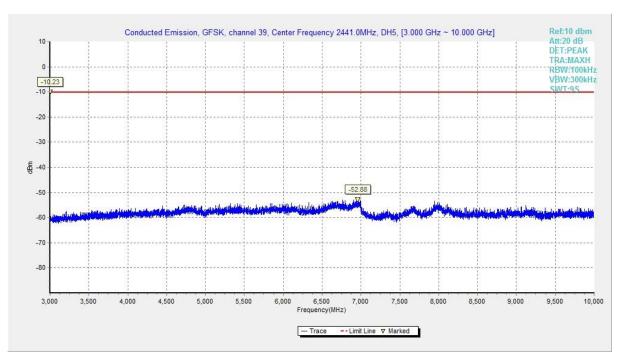



Fig. 18 Conducted Spurious Emission (GFSK, Ch39, 3GHz-10 GHz)



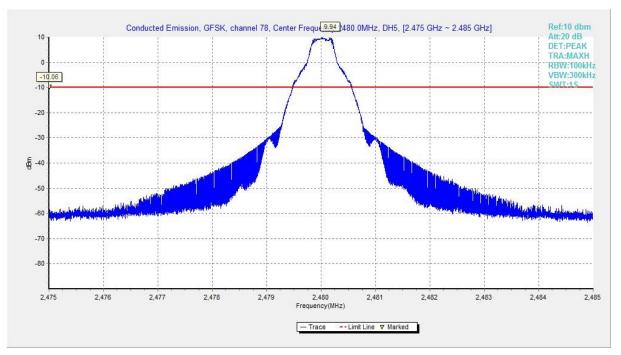



Fig. 19 Conducted Spurious Emission (GFSK, Ch78, 2.480GHz)

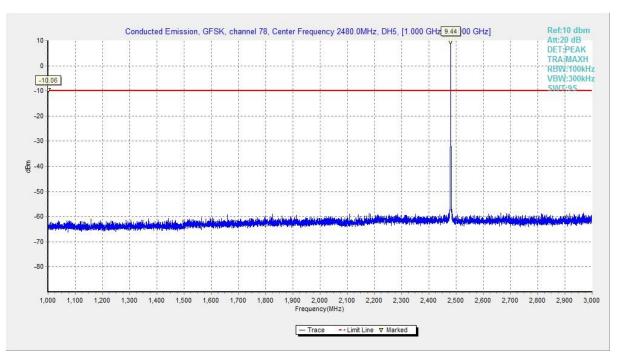



Fig. 20 Conducted Spurious Emission (GFSK, Ch78, 1GHz-3 GHz)



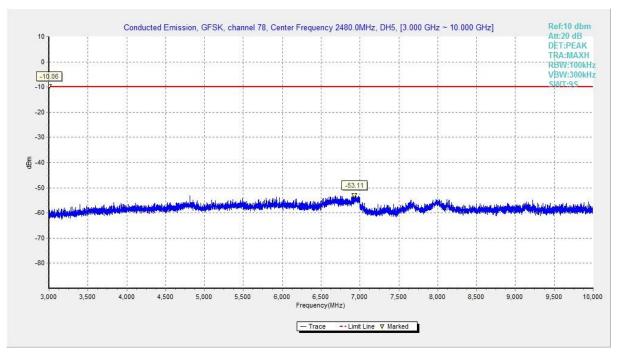



Fig. 21 Conducted Spurious Emission (GFSK, Ch78, 3GHz-10 GHz)

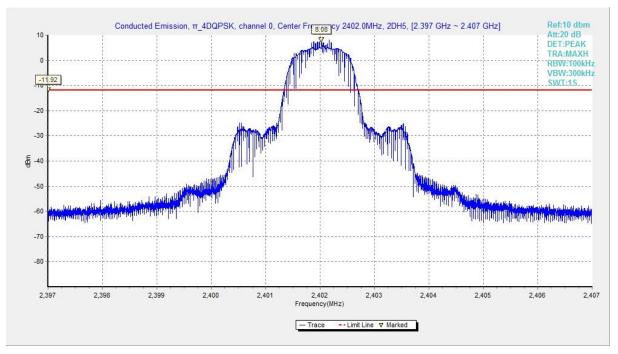



Fig. 22 Conducted Spurious Emission (π/4 DQPSK, Ch0, 2.402GHz)



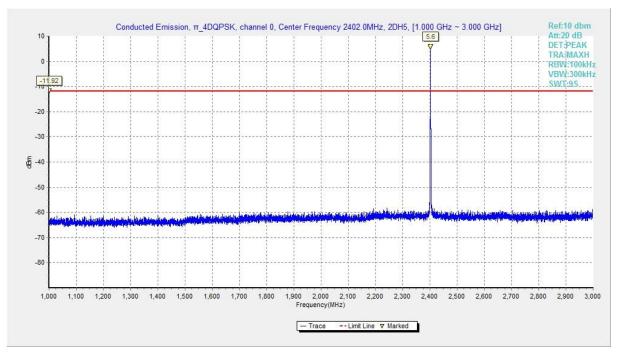



Fig. 23 Conducted Spurious Emission ( $\pi$ /4 DQPSK, Ch0, 1GHz-3 GHz)

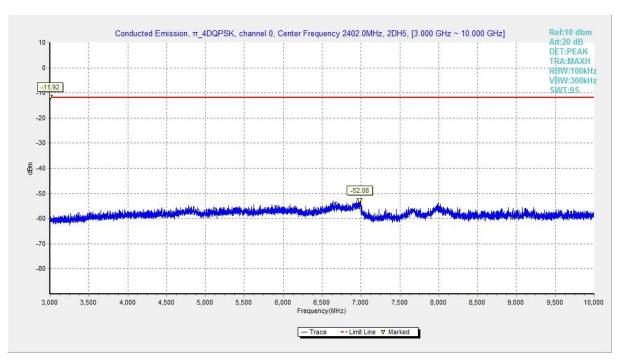



Fig. 24 Conducted Spurious Emission ( $\pi$ /4 DQPSK, Ch0, 3GHz-10 GHz)



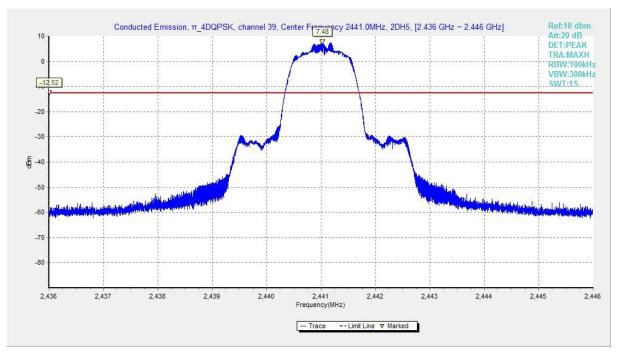



Fig. 25 Conducted Spurious Emission ( $\pi$ /4 DQPSK, Ch39, 2.441GHz)

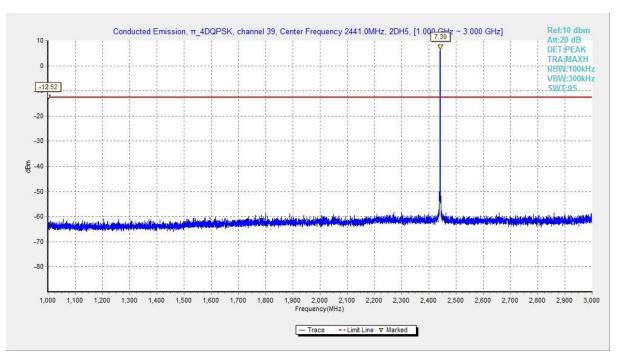



Fig. 26 Conducted Spurious Emission (π/4 DQPSK, Ch39, 1GHz-3 GHz)



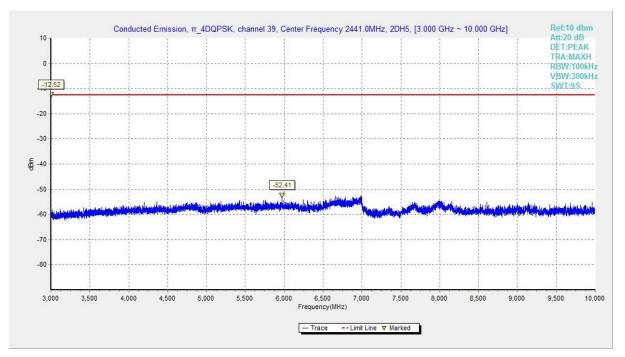



Fig. 27 Conducted Spurious Emission (π/4 DQPSK, Ch39, 3GHz-10 GHz)

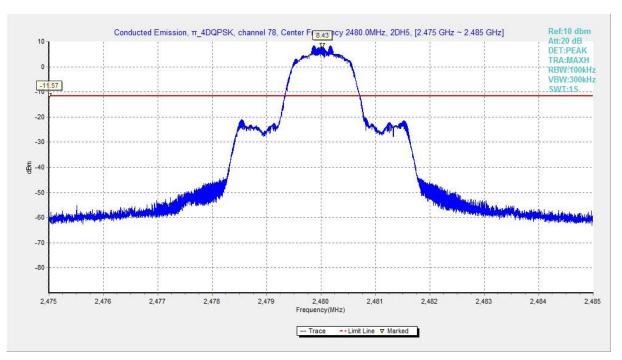



Fig. 28 Conducted Spurious Emission (π/4 DQPSK, Ch78, 2.480GHz)



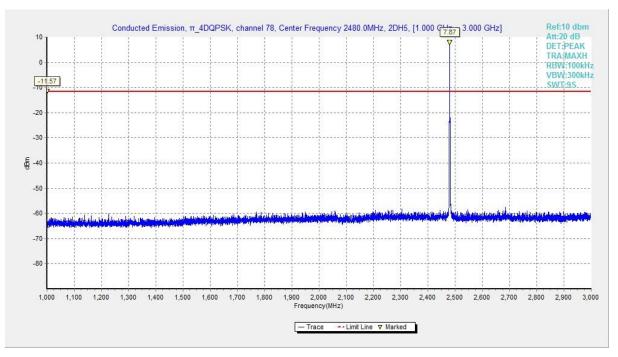



Fig. 29 Conducted Spurious Emission ( $\pi$ /4 DQPSK, Ch78, 1GHz-3 GHz)

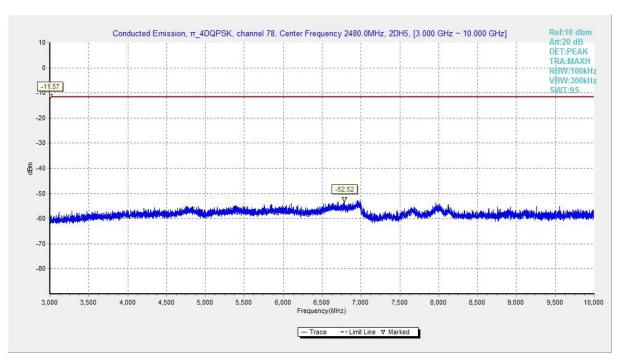



Fig. 30 Conducted Spurious Emission (π/4 DQPSK, Ch78, 3GHz-10 GHz)



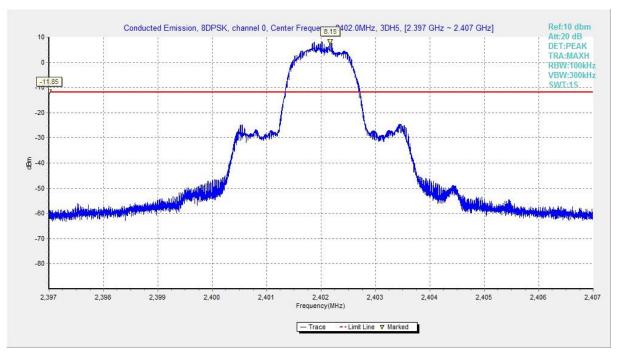



Fig. 31 Conducted Spurious Emission (8DPSK, Ch0, 2.402GHz)

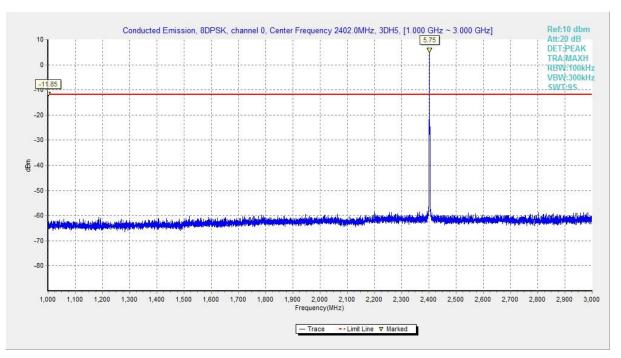



Fig. 32 Conducted Spurious Emission (8DPSK, Ch0, 1GHz-3 GHz)



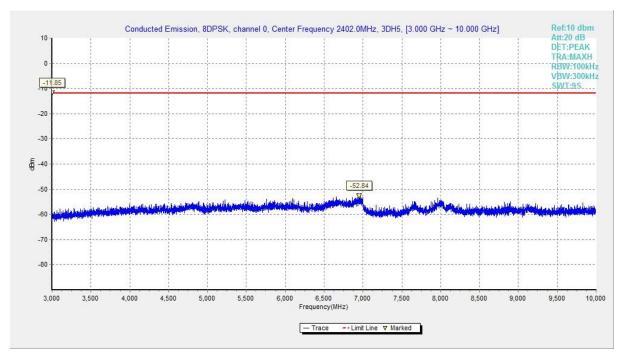



Fig. 33 Conducted Spurious Emission (8DPSK, Ch0, 3GHz-10 GHz)

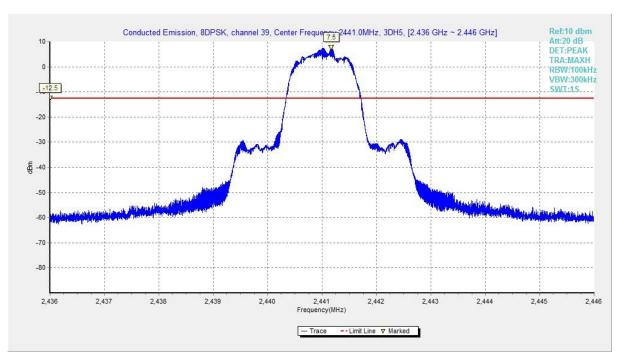



Fig. 34 Conducted Spurious Emission (8DPSK, Ch39, 2.441GHz)



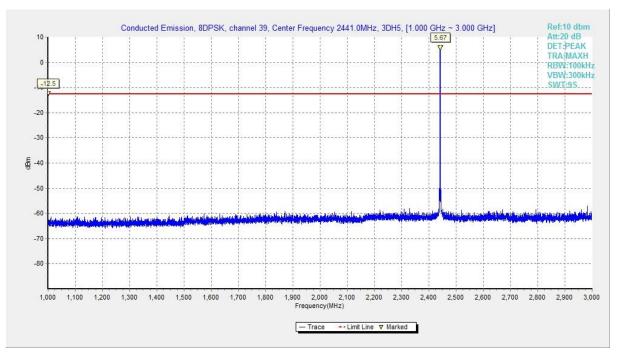



Fig. 35 Conducted Spurious Emission (8DPSK, Ch39, 1GHz-3 GHz)

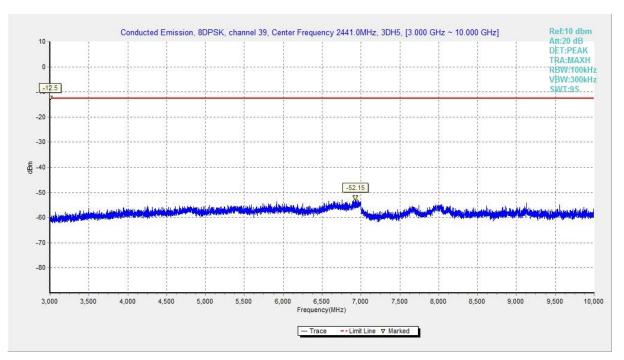



Fig. 36 Conducted Spurious Emission (8DPSK, Ch39, 3GHz-10 GHz)



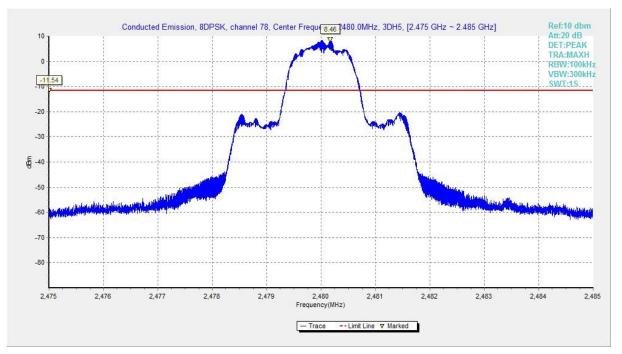



Fig. 37 Conducted Spurious Emission (8DPSK, Ch78, 2.480GHz)

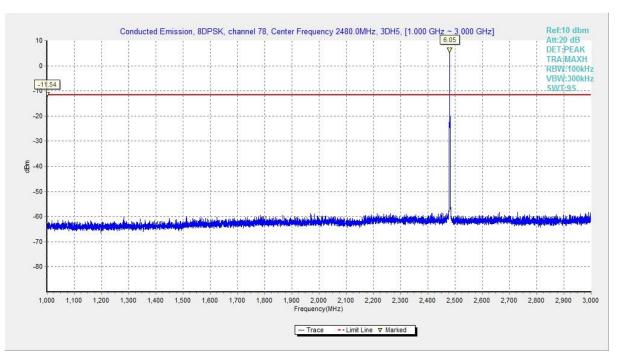



Fig. 38 Conducted Spurious Emission (8DPSK, Ch78, 1GHz-3 GHz)



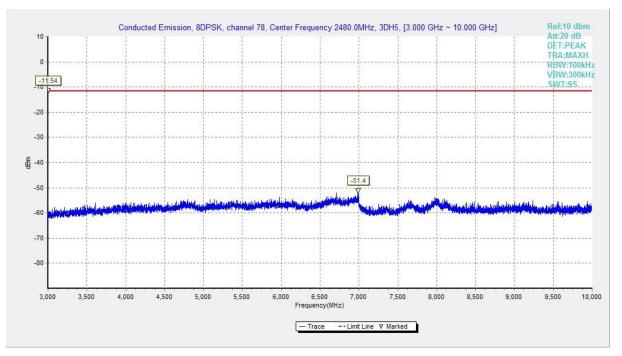



Fig. 39 Conducted Spurious Emission (8DPSK, Ch78, 3GHz-10 GHz)

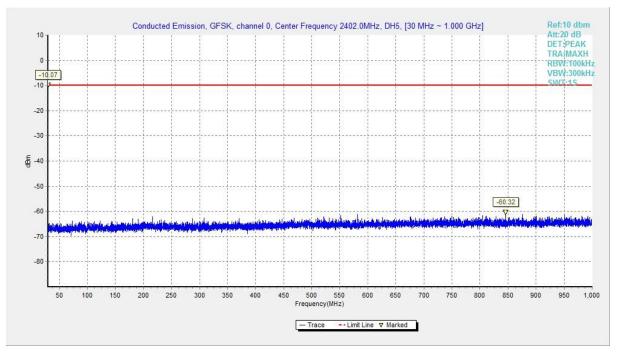



Fig. 40 Conducted Spurious Emission (All channel, 30 MHz-1 GHz)



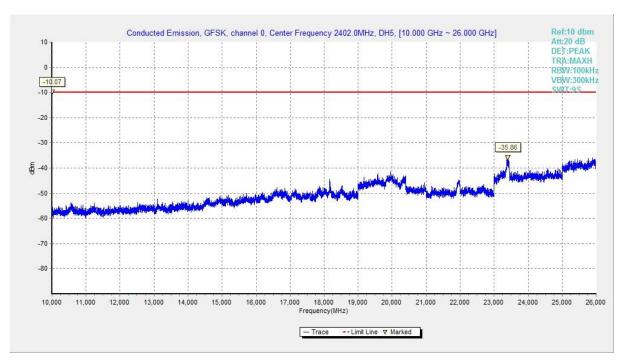



Fig. 41 Conducted Spurious Emission All channel, 10 GHz-26 GHz,)



## A.4 Radiated Emission

#### Measurement Limit:

| Standard                               | Limit                        |  |
|----------------------------------------|------------------------------|--|
| FCC 47 CFR Part 15.247, 15.205, 15.209 | 20dB below peak output power |  |

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

#### Limit in restricted band:

| Frequency of emission<br>(MHz) | Field strength(µV/m) | Measurement<br>distance(meters) |
|--------------------------------|----------------------|---------------------------------|
| 0.009-0.490                    | 2400/F(kHz)          | 300                             |
| 0.490-1.705                    | 24000/F(kHz)         | 30                              |
| 1.705-30.0                     | 30                   | 30                              |
| 30-88                          | 100                  | 3                               |
| 88-216                         | 150                  | 3                               |
| 216-960                        | 200                  | 3                               |
| Above 960                      | 500                  | 3                               |

#### **Test Condition:**

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

| Frequency of emission<br>(MHz) | RBW/VBW       | Sweep Time(s) |
|--------------------------------|---------------|---------------|
| 30-1000                        | 120kHz/300kHz | 5             |
| 1000-4000                      | 1MHz/3MHz     | 15            |
| 4000-18000                     | 1MHz/3MHz     | 40            |
| 18000-26500                    | 1MHz/3MHz     | 20            |

**Note**: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.



## **Measurement Results:**

| Mode  | Channel                | Frequency Range     | Test<br>Results | Conclusion |
|-------|------------------------|---------------------|-----------------|------------|
|       | 0                      | 1 GHz ~18 GHz       | Fig.42          | Р          |
|       | 39                     | 1 GHz ~18 GHz       | Fig.43          | Р          |
| GFSK  | 78                     | 1 GHz ~18 GHz       | Fig.44          | Р          |
|       | Restricted Band(CH0)   | 2.38 GHz ~ 2.45 GHz | Fig.45          | Р          |
|       | Restricted Band (CH78) | 2.45 GHz ~ 2.5 GHz  | Fig.46          | Р          |
|       | 0                      | 1 GHz ~18 GHz       | Fig.47          | Р          |
| π/4   | 39                     | 1 GHz ~18 GHz       | Fig.48          | Р          |
| DQPSK | 78                     | 1 GHz ~18 GHz       | Fig.49          | Р          |
| DQFSK | Restricted Band (CH0)  | 2.38 GHz ~ 2.45 GHz | Fig.50          | Р          |
|       | Restricted Band (CH78) | 2.45 GHz ~ 2.5 GHz  | Fig.51          | Р          |
|       | 0                      | 1 GHz ~18 GHz       | Fig.52          | Р          |
|       | 39                     | 1 GHz ~18 GHz       | Fig.53          | Р          |
| 8DPSK | 78                     | 1 GHz ~18 GHz       | Fig.54          | Р          |
|       | Restricted Band (CH0)  | 2.38 GHz ~ 2.45 GHz | Fig.55          | Р          |
|       | Restricted Band (CH78) | 2.45 GHz ~ 2.5 GHz  | Fig.56          | Р          |
|       |                        | 9 kHz ~30 MHz       | Fig.57          | Р          |
| /     | All channels           | 30 MHz ~1 GHz       | Fig.58          | Р          |
|       |                        | 18 GHz ~26.5 GHz    | Fig.59          | Р          |

## Worst Case Result GFSK CH0 (1-18GHz)

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Pol | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----|-----------------|
| 5296.500000        | 48.38               | 74.00             | 25.62          | V   | 14.9            |
| 6291.000000        | 50.11               | 74.00             | 23.89          | Н   | 18.1            |
| 13523.937500       | 45.85               | 74.00             | 28.15          | V   | 12.4            |
| 14416.000000       | 46.55               | 74.00             | 27.45          | V   | 13.0            |
| 15742.500000       | 48.75               | 74.00             | 25.25          | V   | 14.4            |
| 17207.250000       | 49.70               | 74.00             | 24.30          | V   | 17.0            |

| Frequency<br>(MHz) | Average<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Pol | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----|-----------------|
| 5385.000000        | 38.23               | 54.00             | 15.77          | Н   | 15.3            |
| 6194.000000        | 41.21               | 54.00             | 12.79          | Н   | 18.9            |
| 13570.750000       | 36.69               | 54.00             | 17.31          | V   | 12.3            |
| 14409.437500       | 36.67               | 54.00             | 17.33          | V   | 13.0            |
| 15630.062500       | 37.56               | 54.00             | 16.44          | Н   | 13.9            |
| 17369.562500       | 39.46               | 54.00             | 14.54          | V   | 17.0            |



## π/4 DQPSK CH0 (1-18GHz)

| Frequency    | MaxPeak  | Limit    | Margin | Pol  | Corr.  |
|--------------|----------|----------|--------|------|--------|
| (MHz)        | (dBµV/m) | (dBµV/m) | (dB)   | 1.01 | (dB/m) |
| 5397.000000  | 48.34    | 74.00    | 25.66  | Н    | 15.3   |
| 6248.000000  | 51.30    | 74.00    | 22.70  | V    | 18.5   |
| 13356.812500 | 46.70    | 74.00    | 27.30  | Н    | 12.6   |
| 14286.500000 | 45.65    | 74.00    | 28.35  | V    | 12.8   |
| 15738.562500 | 49.72    | 74.00    | 24.28  | Н    | 14.4   |
| 16939.937500 | 49.44    | 74.00    | 24.56  | V    | 16.4   |

| Frequency    | Average  | Limit    | Margin | Pol | Corr.  |
|--------------|----------|----------|--------|-----|--------|
| (MHz)        | (dBµV/m) | (dBµV/m) | (dB)   |     | (dB/m) |
| 5475.000000  | 38.45    | 54.00    | 15.55  | Н   | 15.2   |
| 6209.500000  | 41.12    | 54.00    | 12.88  | Н   | 18.8   |
| 13472.312500 | 36.14    | 54.00    | 17.86  | Н   | 12.5   |
| 14519.687500 | 36.91    | 54.00    | 17.09  | V   | 13.0   |
| 15784.062500 | 38.08    | 54.00    | 15.92  | V   | 14.5   |
| 17310.500000 | 39.44    | 54.00    | 14.56  | Н   | 16.9   |

#### 8DPSK CH0 (1-18GHz)

| Frequency    | MaxPeak  | Limit    | Margin | Pol | Corr.  |
|--------------|----------|----------|--------|-----|--------|
| (MHz)        | (dBµV/m) | (dBµV/m) | (dB)   | FOI | (dB/m) |
| 5084.500000  | 48.62    | 74.00    | 25.38  | Н   | 14.6   |
| 6237.000000  | 51.46    | 74.00    | 22.54  | Н   | 18.6   |
| 13366.000000 | 45.92    | 74.00    | 28.08  | Н   | 12.6   |
| 14468.937500 | 47.40    | 74.00    | 26.60  | V   | 13.0   |
| 15774.000000 | 49.46    | 74.00    | 24.54  | V   | 14.5   |
| 16947.375000 | 49.06    | 74.00    | 24.94  | V   | 16.4   |

| Frequency<br>(MHz) | Average<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Pol | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----|-----------------|
| 5079.500000        | 38.31               | 54.00             | 15.69          | V   | 14.6            |
| 6196.000000        | 41.68               | 54.00             | 12.32          | Н   | 18.9            |
| 13505.562500       | 36.66               | 54.00             | 17.34          | Н   | 12.5            |
| 14454.937500       | 36.77               | 54.00             | 17.23          | V   | 13.0            |
| 15782.312500       | 38.21               | 54.00             | 15.79          | Н   | 14.5            |
| 17213.812500       | 39.23               | 54.00             | 14.77          | V   | 17.0            |

#### Note:

A "reference path loss" is established and the  $A_{Rpl}$  is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss.  $P_{Mea}$  is the field strength recorded from the instrument. The measurement results are obtained as described below:

Result= P<sub>Mea</sub> +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

#### **Conclusion: Pass**



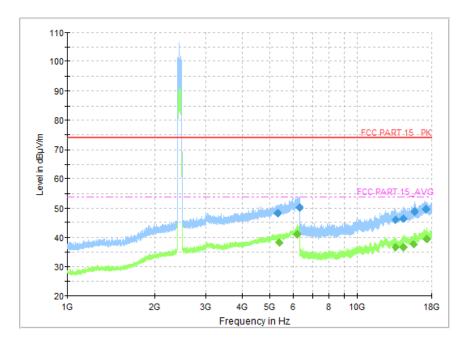



Fig. 42 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz)

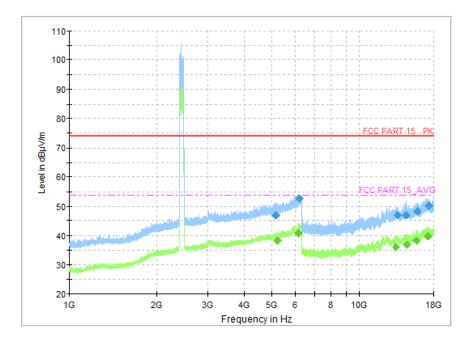



Fig. 43 Radiated Spurious Emission (GFSK, Ch39, 1 GHz ~18 GHz)



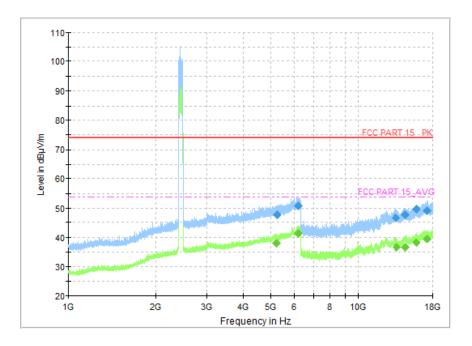



Fig. 44 Radiated Spurious Emission (GFSK, Ch78, 1 GHz ~18 GHz)

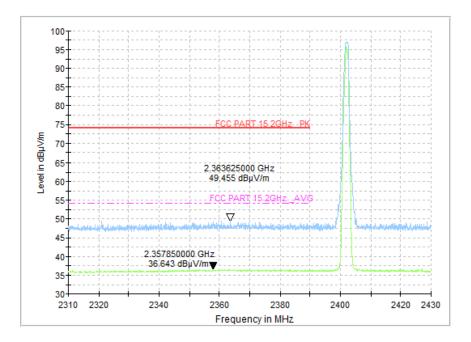



Fig. 45 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz)



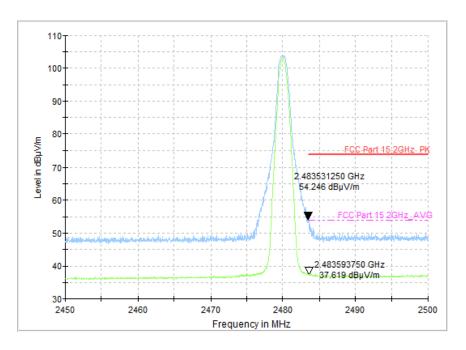



Fig. 46 Radiated Band Edges (GFSK, Ch78, 2450GHz~2500GHz)

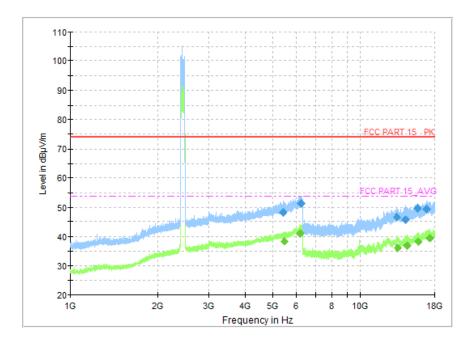



Fig. 47 Radiated Spurious Emission (π/4 DQPSK, Ch0, 1 GHz ~18 GHz)