

FCC TEST REPORT

Product Name: Enterprise Key-Based Touch Mobile

Report No.: 210520024RFC-3

Computer

Trade Mark:

BLUEBIRD

Model No.: EK430

Add. Model No.: N/A

Report Number: 210520024RFC-3

Test Standards: FCC 47 CFR Part 15 Subpart C

FCC ID: SS4EK430

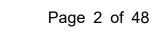
Test Result: PASS

Date of Issue: September 30, 2021

Prepared for:

Bluebird Inc.

3F, 115, Irwon-ro, Gangnam-gu, Seoul, Republic of Korea


Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:	Kierin Lio	Reviewed by:	stul m
_	Kieron Luo		Henry Lu
	Project Engineer		Team Leader
Approved by:	2	Date:	September 30, 2021
	Kevin Liang		
	Assistant Manager		

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Version

Version No.	Date	Description
V1.0	September 30, 2021	Original

CONTENTS

1.	GENE	ERAL INFORMATION	4
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	CLIENT INFORMATION	4 4 5 6 6 7 7
2		SUMMARY	
2. 3.		PMENT LIST	
ა. 4.		CONFIGURATION	
→ .			
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
		4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	
	4.4	PRE-SCAN	
		4.4.1 PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL	
		4.4.2 WORST-CASE DATA PACKETS	
	4.5	4.4.3 TESTED CHANNEL DETAIL	
	4.3	4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED EMISSIONS TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	
_		O TECHNICAL REQUIREMENTS SPECIFICATION	
5.	KAUI		
	5.1	REFERENCE DOCUMENTS FOR TESTING	16
	5.2	ANTENNA REQUIREMENT	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	20 dB Bandwidth	
	5.5	CARRIER FREQUENCIES SEPARATION	_
	5.6	NUMBER OF HOPPING CHANNEL	_
	5.7	DWELL TIME	
	5.8	CONDUCTED OUT OF BAND EMISSION	
	5.9	RADIATED SPURIOUS EMISSIONS	
		BAND EDGE MEASUREMENTS (RADIATED)	
		CONDUCTED EMISSION	
API API	PENDI	X 1 PHOTOS OF TEST SETUP	48 48

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant:	Bluebird Inc.
Address of Applicant:	3F, 115, Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
Manufacturer:	Bluebird Inc.
Address of Manufacturer:	3F, 115, Irwon-ro, Gangnam-gu, Seoul, Republic of Korea

Report No.: 210520024RFC-3

1.2 EUT INFORMATION

1.2.1 General Description of EUT

	.2.1 General Description of EU1				
Product Name:	Enterprise Key-Based Touch Mobile Computer				
Model No.:	EK430				
Add. Model No.:	N/A				
Trade Mark:	BLUEBIRD				
DUT Stage:	Identical Prototype				
	UTRA Bands:	Band II/ Band V			
	E-UTRA Bands:	FDD Band 2/ Band 4/ Band 5/ Band 7			
	2.4 GHz ISM Band:	IEEE 802.11b/g/n			
		Bluetooth 5.0			
EUT Supports Function:	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz	IEEE 802.11a/n/ac		
EOT Supports Function.		5 250 MHz to 5 350 MHz	IEEE 802.11a/n/ac		
	5 GHZ O-MII Ballus.	5 470 MHz to 5 725 MHz	IEEE 802.11a/n/ac		
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n/ac		
	RNSS Bands:	1559 MHz to 1610 MHz	GPS/ GLONASS/ BDS		
	NFC:	13.553 MHz to 13.567 MHz			
Software Version:	EK430-VX500-AND10-EN-20210510_R1.00-user				
Hardware Version:	0.2				
Sample Received Date:	May 21, 2021				
Sample Tested Date:	May 31, 2021 to June 18, 2021				

1.2.2 Description of Accessories

1.2.2 Description of Accessories		
Adapter		
Model No.:	XSD-0503000DEXU	
Input:	100-240 V~50/60 Hz 0.5 A Max	
Output:	5.0 V == 3.0A	
AC Cable:	N/A	
DC Cable:	N/A	

Report No.: 210520024RFC-3

Battery (Main)			
Model No.:	BAT-680001		
Battery Type:	/ Type: Lithium-ion Rechargeable Battery		
Rated Voltage:	3.6 Vdc		
Limited Charge Voltage:	4.2 Vdc		
Rated Capacity:	6700 mAh		

Battery (Sub)				
Model No.: VK401324PH-Q5				
Battery Type:	y Type: Lithium-ion Rechargeable Battery			
Rated Voltage:	3.7 Vdc			
Limited Charge Voltage:	4.2 Vdc			
Rated Capacity:	65 mAh			

Cable				
Model No.:	N/A			
Description: USB Type-C Plug Cable				
Cable Type:	Shielded without ferrite			
Length:	1 Meter			

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz	
Frequency Range:	2402 MHz to 2480 MHz	
Bluetooth Version:	Bluetooth BR + EDR	
Modulation Technique:	Frequency Hopping Spread Spectrum (FHSS)	
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK	
Number of Channels:	79	
Channel Separation:	1 MHz	
Hopping Channel Type:	Adaptive Frequency Hopping Systems	
Antenna Type:	PIFA Antenna	
Antenna Gain:	1.55 dBi	
Maximum Peak Power:	6.05 dBm	
Normal Test Voltage:	3.9 Vdc	

Page 6 of 48 Report No.: 210520024RFC-3

1.4 OTHER INFORMATION

Operation Frequency Each of Channel

f = 2402 + k MHz, k = 0,...,78

Note:

f is the operating frequency (MHz);

k is the operating channel.

Modulation Configure				
Modulation	Packet	Packet Type	Packet Size	
	1-DH1	4	27	
GFSK	1-DH3	11	183	
	1-DH5	15	339	
π/4 DQPSK	2-DH1	20	54	
	2-DH3	26	367	
	2-DH5	30	679	
	3-DH1	24	83	
8DPSK	3-DH3	27	552	
	3-DH5	31	1021	

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	n Manufacturer	Model No.	Serial Number	Supplied by
Notebook	DELL	Inspiron 5409	N/A	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	SMA Cable	SMA	0.2 Meter	Bluebird

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district,

Shenzhen, China

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

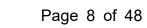
Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.


1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9kHz-150kHz	±3.2 dB
2	Conducted emission 150kHz-30MHz	±2.7 dB
3	Radiated emission 9kHz-30MHz	±4.7 dB
4	Radiated emission 30MHz-1GHz	±4.6 dB
5	Radiated emission 1GHz-18GHz	±4.4 dB
6	Radiated emission 18GHz-26GHz	±4.6 dB
7	Radiated emission 26GHz-40GHz	±4.6 dB

2. TEST SUMMARY

TEOT GOWNARY					
	FCC 47 CFR Part 15 Subpart C Tes	t Cases			
Test Item	Test Requirement	Test Method	Result		
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	PASS		
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Section 6.2	PASS		
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.5	PASS		
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 6.9.2	PASS		
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.2	PASS		
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.3	PASS		
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.4	PASS		
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8	PASS		
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS		
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.10.5	PASS		

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
	3m SAC	ETS-LINDGREN	3m	N/A	Jan. 22, 2021	Jan. 21, 2024
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 18, 2020	Nov. 17, 2021
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	Nov. 14, 2020	Nov. 13, 2022
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Nov. 14, 2020	Nov. 13, 2022
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Nov. 14, 2020	Nov. 13, 2022
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 10, 2020	Nov. 9, 2021
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201541	Apr. 30, 2021	Apr. 29, 2023
\boxtimes	Pre-amplifier	ETS-LINDGREN	00118385	00201874	Nov. 10, 2020	Nov. 9, 2021
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Nov. 17, 2020	Nov. 16, 2022
	Pre-amplifier	ETS-LINDGREN	00118384	00202652	Nov. 17, 2020	Nov. 16, 2022
	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
	Test Software	Audix	e3	Software Version: 9.160323		0323

	Conducted Emission Test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 18, 2020	Nov. 17, 2021
	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 18, 2020	Nov. 17, 2021
	LISN	R&S	ESH2-Z5	860014/024	Nov. 18, 2020	Nov. 17, 2021
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

	Conducted RF test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
	EXA Spectrum Analyzer	KEYSIGHT	N9020B	MY57120179	Apr. 22, 2021	Apr. 21, 2022
	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Apr. 22, 2021	Apr. 21, 2022
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 10, 2020	Nov. 9, 2021
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Nov. 10, 2020	Nov. 9, 2021

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests			
Test Condition Ambient				
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)	
NT/NV	+15 to +35	3.9	20 to 75	
Remark: 1) NV: Normal Voltage; NT: Normal Temperature				

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
AC Power Line Conducted Emission	27.2	52	99.4	David Zhang
Conducted Peak Output Power				
20 dB Bandwidth				
Carrier Frequencies Separation	26.1	47	101.8	Evan Ouyang
Number of Hopping Channel				
Dwell Time				
Conducted Out of Band Emission				
Radiated Emissions	25.6	51	100.1	Fire Huo
Band Edge Measurement	23.0	31	100.1	File Huo

4.2TEST CHANNELS

Mode	Tx/Rx Frequency	To	est RF Channel Lis	ts
Wiode	13/KX Frequency	Lowest(L)	Middle(M)	Highest(H)
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
(DH1, DH3, DH5)	2402 IVITIZ (U 2400 IVITIZ	2402 MHz	2441 MHz	2480 MHz
π/4DQPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
(DH1, DH3, DH5)	2402 WITZ 10 2460 WITZ	2402 MHz	2441 MHz	2480 MHz
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
(DH1, DH3, DH5)	2402 WITZ 10 2400 WITZ	2402 MHz	2441 MHz	2480 MHz

4.3EUT TEST STATUS

Type of Modulation	Tx Function	Description
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency.

Power Setting	
Power Setting: 7	

	Test Software
Test software name: QRCT 4;	

4.4 PRE-SCAN

4.4.1 Pre-scan under all packets at middle channel

Conducted Average Power (dBm) for packets										
Type of Modulation	GFSK			Т	π/4DQPSK			8DPSK		
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5	
Power (dBm)	-0.06	3.23	3.91	-3.17	-0.09	0.57	-3.16	-1.10	0.58	

Report No.: 210520024RFC-3

4.4.2 Worst-case data packets

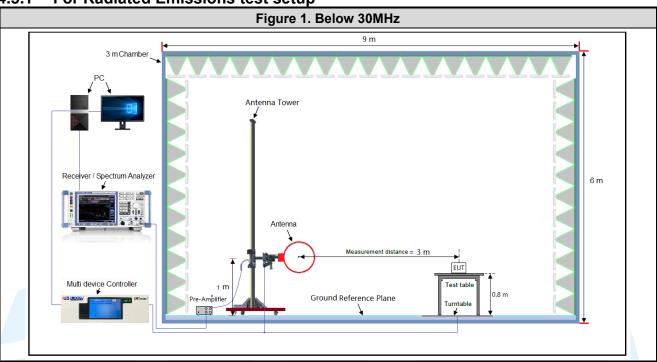
Type of Modulation	Worst-case data rates		
GFSK	1-DH5		
π/4DQPSK	2-DH5		
8DPSK	3-DH5		

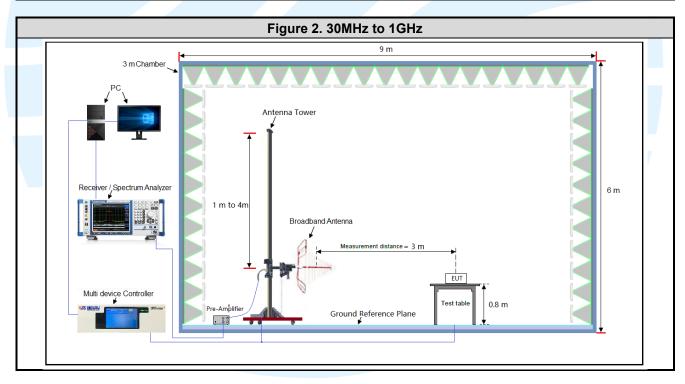
4.4.3 Tested channel detail

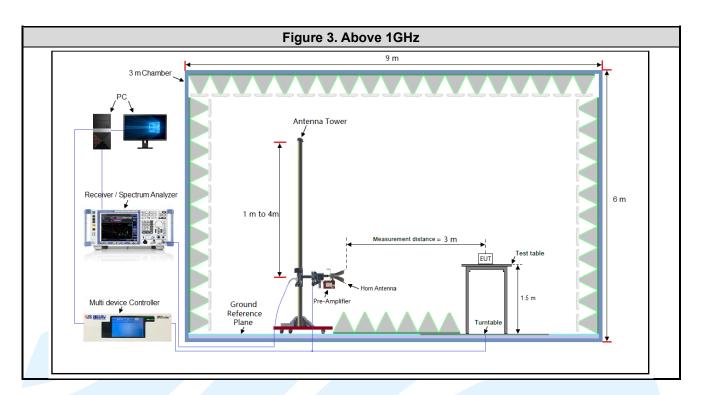
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Type of Modulation		GFSK		П	/4DQPS	K	8DPSK		
Data Packets	1-DH 1	1-DH 3	1-DH 5	2-DH	2-DH 3	2-DH 5	3-DH 1	3-DH 3	3-DH 5
Available Channel		3	3		0 to 78		<u>'</u>	<u> </u>	3
Test Item			Test cha	nnel and	d choose	of data	packets		
AC Power Line Conducted			Freq	uency Ho	pping Ch	nannel 0	to 78		
Emission					Link				
Conducted Peak Output				Chanr	nel 0 & 39	9 & 78			
Power	\boxtimes				\boxtimes				\boxtimes
20 dB Bandwidth	Channel 0 & 39 & 78								
20 db Baildwidtii	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes
Carrier Frequencies	Frequency Hopping Channel 0 to 78								
Separation	\boxtimes	\boxtimes		\boxtimes	\boxtimes				\boxtimes
Number of Hopping Channel	Frequency Hopping Channel 0 to 78								
Number of Hopping Charmer	\boxtimes	\boxtimes					\boxtimes		\boxtimes
Dwell Time	Channel 39								
Dwell Time	\boxtimes	\boxtimes				\boxtimes			\boxtimes
Conducted Out of Band	Channel 0 & 39 & 78								
Emission	\boxtimes	\boxtimes	\boxtimes		\boxtimes				\boxtimes
Padiated Emissions	Channel 0 & 39 & 78								
Radiated Emissions	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes
Band Edge Measurements				Cha	annel 0 &	78			
(Radiated)	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes

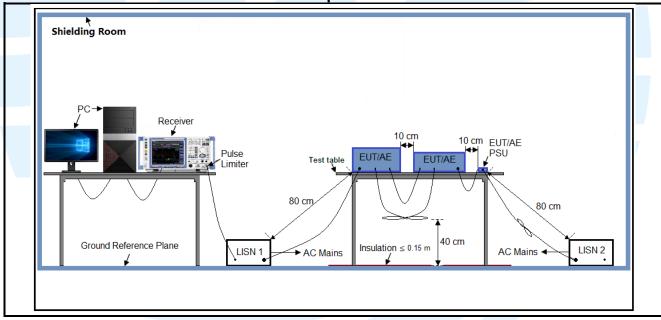
Remark:

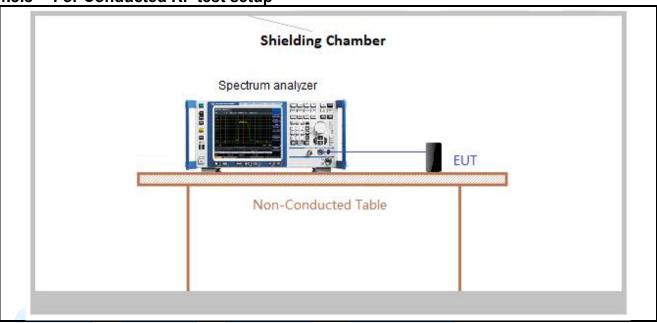

^{1.} The mark "⊠" means is chosen for testing;


^{2.} The mark "⊠" means is not chosen for testing.


4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup





4.5.2 For Conducted Emissions test setup

For Conducted RF test setup 4.5.3

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.9V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning		
Above 1GHz	1TX	Chain 0	Y axis		

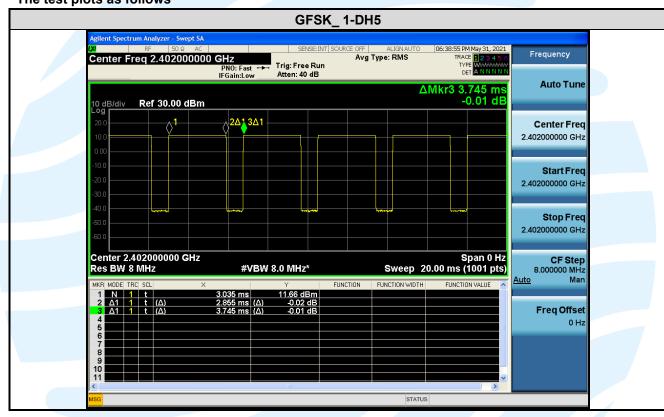
All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.

Test Results


Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1-DH5	2.8550	3.7450	0.76	76.23	1.18	0.35	-2.36

Report No.: 210520024RFC-3

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plots as follows

Page 16 of 48 Report No.: 210520024RFC-3

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title					
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations					
2	FCC 47 CFR Part 15	Radio Frequency Devices					
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices					
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules					

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 1.55 dBi

Page 17 of 48 Report No.: 210520024RFC-3

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1)

Test Method: ANSI C63.10-2013 Section 7.8.5

Limit: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at

least 75 non-overlapping hopping channels, and all frequency hopping systems in the

5725-5850 MHz band: 1 watt.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

a) Use the following spectrum analyzer settings:

1) Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW ≥ RBW.

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

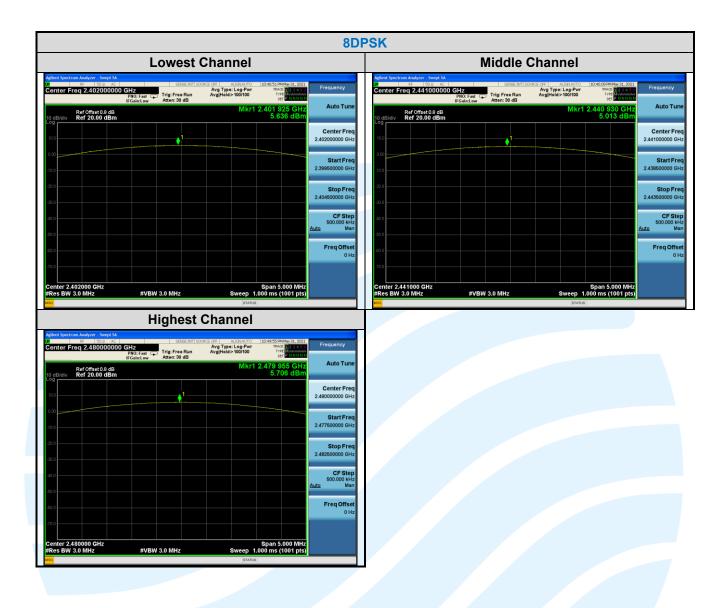
d) The indicated level is the peak output power, after any corrections for external

attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass


	root recounter	1 400						
Type of Pea			Output Power (dBm)	Peak Output Power (mW)			
	Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
	GFSK	5.98	5.38	6.05	3.96	3.45	4.03	
V	π/4 DQPSK	5.18	4.60	5.28	3.30	2.88	3.38	
١	8DPSK	5.64	5.01	5.71	3.66	3.17	3.72	

Note: The antenna gain of 1.55 dBi less than 6dBi maximum permission antenna gain value based on 125 mW peak output power limit.

The test plots as follows: **GFSK** π/4 DQPSK **Lowest Channel** ast Trig: Free Run Ref Offset 0.8 dB Ref 20.00 dBm Center Fre #VBW 3.0 MHz **Middle Channel** Avg Type: Log-Pw Avg|Hold:>100/100 Avg Type: Log-Pwr Avg|Hold>100/100 Trig: Free Run Ref Offset 0.8 dB Ref 20.00 dBm Ref Offset 0.8 dB Ref 20.00 dBm Center Fre 2.441000000 GH Center Fre 2.441000000 GH Stop Fre 2.443500000 GH CF Step 00.000 kH: Freq Offse Freq Offse Center 2.441000 GHz #Res BW 3.0 MHz Center 2.441000 GHz #Res BW 3.0 MHz **Highest Channel** enter Freq 2.480000000 GHz enter Freq 2.480000000 GHz Avg Type: Log-Pwi Avg|Hold:>100/100 Avg Type: Log-Pwr Avg|Hold>100/100 Ref Offset 0.8 dB Ref 20.00 dBm Ref Offset 0.8 dB Ref 20.00 dBm Center Fre Center Fre Freq Offse #VBW 3.0 MHz

Page 20 of 48 Report No.: 210520024RFC-3

5.420 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Method: ANSI C63.10-2013 Section 6.9.2 **Limit:** None; for reporting purposes only.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel.

b) RBW = 1% to 5% of the OBW.

c) VBW ≥ 3 x RBWd) Sweep = auto;

e) Detector function = peak

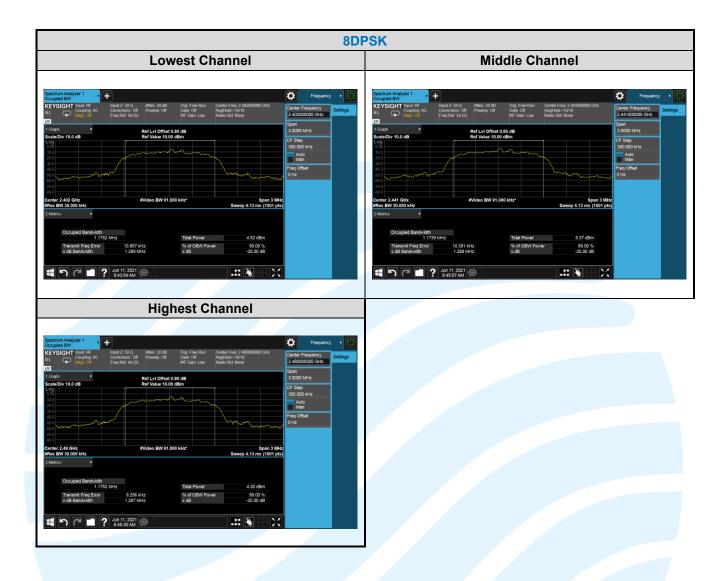
f) Trace = max hold

g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

Type of	20 d	B Bandwidth (N	ЛHz)	99% Bandwidth (MHz)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	0.9353	0.9339	0.9354	0.84292	0.84689	0.84377	
π/4 DQPSK	1.277	1.280	1.277	1.1732	1.1700	1.1708	
8DPSK	1.289	1.288	1.287	1.1752	1.1739	1.1752	

The test plots as follows: **GFSK** π/4 DQPSK **Lowest Channel** KEYSIGHT Input: RF Span 3 MHz Sweep 4.13 ms (1001 pts) Span 3 MHz Sweep 4.13 ms (1001 pts 7.13 dBm 4.28 dBm ... 🐧 **Middle Channel Highest Channel**

Page 23 of 48 Report No.: 210520024RFC-3

5.5 CARRIER FREQUENCIES SEPARATION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Method: ANSI C63.10-2013 Section 7.8.2

Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have

hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the

20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: Wide enough to capture the peaks of two adjacent channels.

- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.
- h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of Modulation	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)				
Type of Modulation	Channel 39	Channel 39				
GFSK	1.000	0.623				
π/4 DQPSK	1.000	0.853				
8DPSK	1.000	0.859				
Note: The minimum limit is two-third 20 dB bandwidth.						

Page 24 of 48 Report No.: 210520024RFC-3

Page 25 of 48 Report No.: 210520024RFC-3

5.6 NUMBER OF HOPPING CHANNEL

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)

Test Method: ANSI C63.10-2013 Section 7.8.3

Limit: Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15

non-overlapping channels.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

c) VBW ≥ RBW.

d) Sweep: Auto.

e) Detector function: Peak.

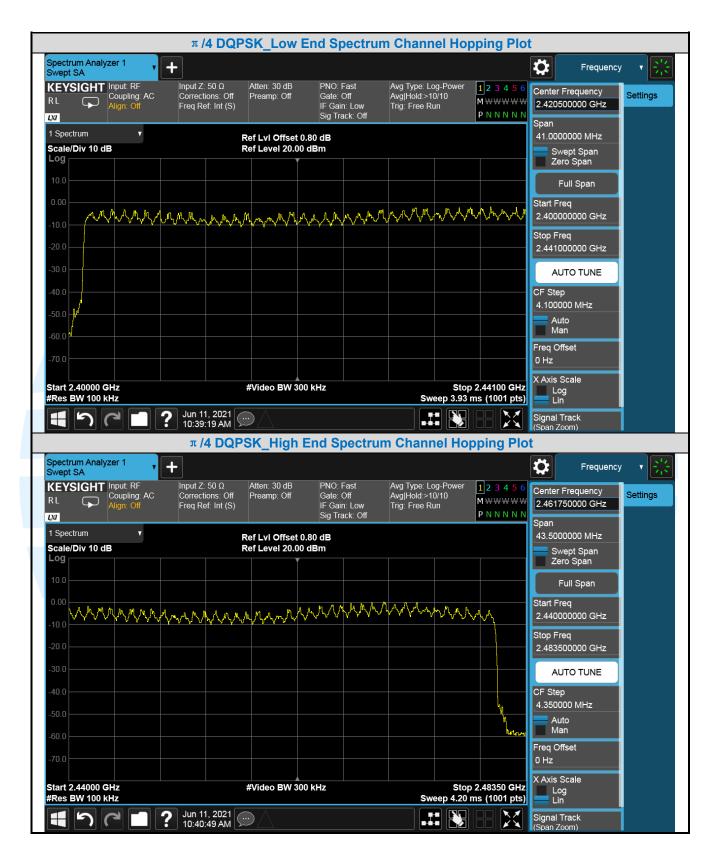
f) Trace: Max hold.

g) Allow the trace to stabilize.

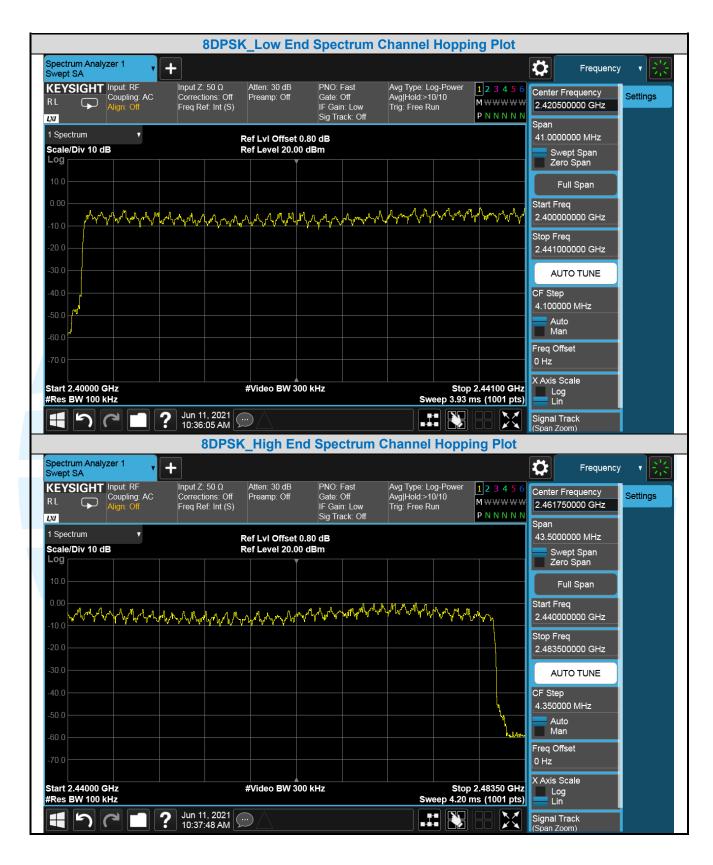
Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

Type of Modulation	Number of Hopping Channel				
GFSK	79				
π/4 DQPSK	79				
8DPSK	79				



The test plots as follows: **GFSK_Low End Spectrum Channel Hopping Plot** Spectrum Analyzer 1 Swept SA ***** Avg Type: Log-Power Avg|Hold:>10/10 Trig: Free Run Input Z: 50 Ω Atten: 30 dB PNO: Fast KEYSIGHT Input: RF 1 2 3 4 5 Center Frequency Corrections: Off Freq Ref: Int (S) Gate: Off IF Gain: Low Settings Coupling: AC Preamp: Off MWWWW 2.420500000 GHz PNNNN LXI 1 Spectrum 41.0000000 MHz Ref Lvi Offset 0.80 dB Scale/Div 10 dB Ref Level 20.00 dBm Swept Span Zero Span Loc Full Span Start Freq 2.400000000 GHz Stop Freq 2.441000000 GHz AUTO TUNE 4.100000 MHz Freq Offset 0 Hz X Axis Scale Stop 2.44100 GHz Sweep 3.93 ms (1001 pts) #Video BW 300 kHz Start 2.40000 GHz Log Lin #Res BW 100 kHz ? Š Signal Track **GFSK_High End Spectrum Channel Hopping Plot** Spectrum Analyzer 1 Swept SA + Ö Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) Avg Type: Log-Power Avg|Hold:>10/10 KEYSIGHT Input: RF Atten: 30 dB 1 2 3 4 5 6 Center Frequency Settings Coupling: AC Gate: Off Preamp: Off $M \times \times \times \times$ 2.461750000 GHz IF Gain: Low Trig: Free Run PNNNN L)XI Sig Track: Off Span 1 Spectrum 43.5000000 MHz Ref LvI Offset 0.80 dB Scale/Div 10 dB Ref Level 20.00 dBm Swept Span Zero Span Log Full Span Start Freq 2.440000000 GHz Stop Freq 2.483500000 GHz AUTO TUNE CF Step 4.350000 MHz Freq Offset 0 Hz X Axis Scale Start 2.44000 GHz #Video BW 300 kHz Stop 2.48350 GHz Log Lin Sweep 4.20 ms (1001 pts) #Res BW 100 kHz Jun 11, 2021 10:42:05 AM ? ÷ Signal Track

Page 29 of 48 Report No.: 210520024RFC-3

5.7 DWELL TIME

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1)

Test Method: ANSI C63.10-2013 Section 7.8.4

Limit: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15

channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels

employed.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span = zero span, centered on a hopping channel

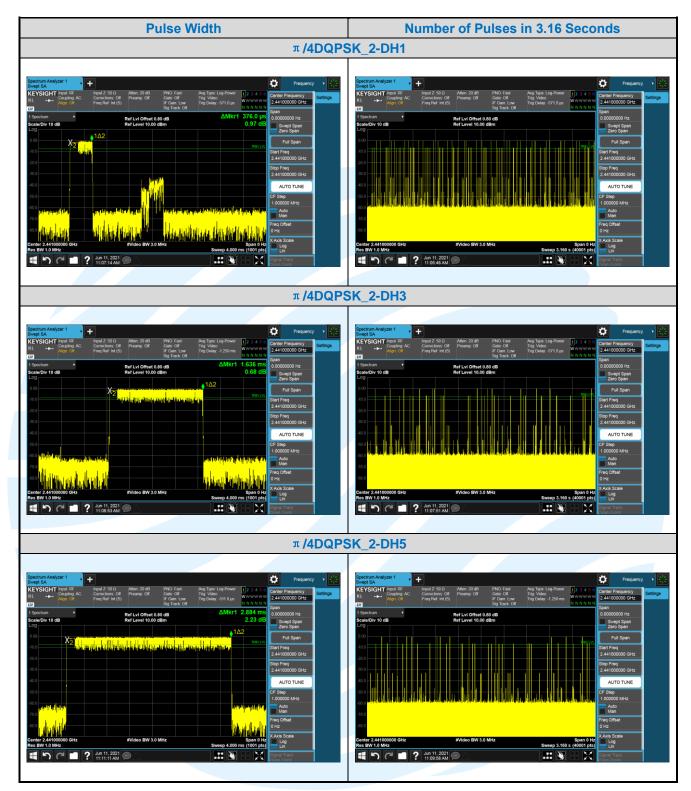
b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

- c) Sweep = As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function = peak
- e) Trace = max hold
- f) Use the marker-delta function to determine the dwell time

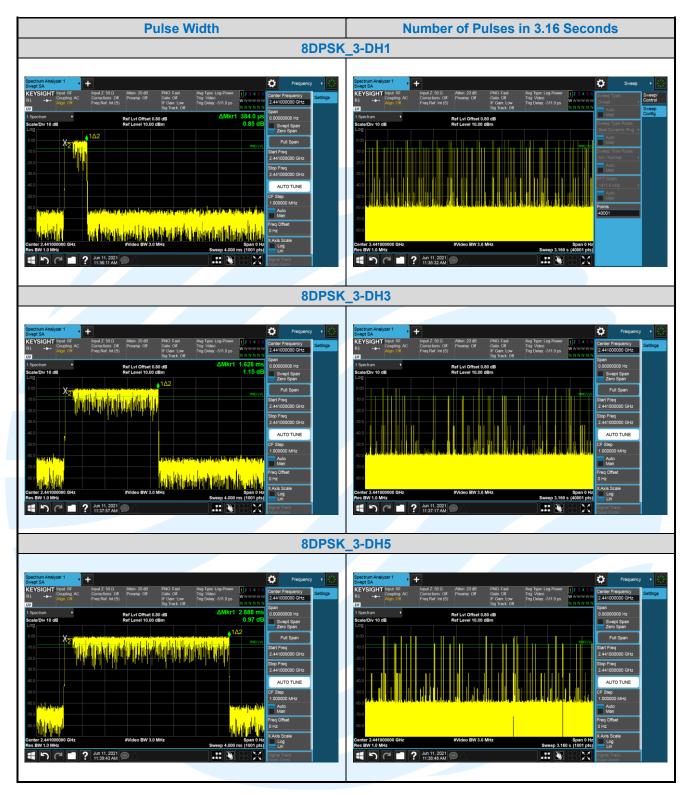
Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

rest results.	1 433					
Type of	Test	Packet	Pulse Width	Number of Pulses in 3.16	Dwell Time	Limit
Modulation	Frequency	Packet	ms	seconds	ms	ms
		1-DH1	0.376	30.000	112.80	< 400
GFSK	2441MHz	1-DH3	1.628	21.000	341.88	< 400
		1-DH5	2.880	13.000	374.40	< 400
		2-DH1	0.376	32.000	120.32	< 400
π/4 DQPSK	2441MHz	2-DH3	1.636	14.000	229.04	< 400
		2-DH5	2.884	12.000	346.08	< 400
		3-DH1	0.384	33.000	126.72	< 400
8DPSK	2441MHz	3-DH3	1.628	13.000	211.64	< 400
		3-DH5	2.888	13.000	375.44	< 400



The test plots as follows: **Pulse Width Number of Pulses in 3.16 Seconds** GFSK_1-DH1 GFSK_1-DH3 .:: N GFSK_1-DH5

Page 33 of 48 Report No.: 210520024RFC-3

5.8 CONDUCTED OUT OF BAND EMISSION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(d) **Test Method:** ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8

Limit: In any 100kHz bandwidth outside the frequency bands in which the spread spectrum

intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the

band that contains the highest level of the desired power.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

Step 1: Measurement Procedure REF

a) Set instrument center frequency to 2400 MHz or 2483.5 MHz.

- b) Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Sweep points ≥ 2 x Span/RBW
- h) Trace mode = max hold.
- i) Allow the trace to stabilize.
- j) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.

Step 2: Measurement Procedure OOBE

- a) Set RBW = 100 kHz.
- b) Set VBW ≥ 300 kHz.
- c) Detector = peak.
- d) Sweep = auto couple.
- e) Trace Mode = max hold.
- f) Allow trace to fully stabilize.
- g) Use the peak marker function to determine the maximum amplitude level.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Hopping Frequencies Transmitter mode

Test Results: Pass