FCC RF Test Report

APPLICANT: Nokia Shanghai Bell Co., Ltd.

EQUIPMENT: NOKIA WiFi Beacon 19

BRAND NAME : NOKIA

MODEL NAME : Beacon 19

FCC ID : 2ADZRBEACON19

STANDARD : FCC Part 15 Subpart E §15.407 TEST DATE(S) : Jun. 06, 2024 ~ Jul. 15, 2024

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

This report contains data that were produced under subcontract by Sporton International Inc. (ShenZhen)

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Approved by: Jason Jia

Report No.: FR452305C

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 1 of 43 Issued Date : Aug. 12, 2024

Report Version : 01

Table of Contents

1	Gene	eral Description	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	9
	1.6	Testing Location	10
	1.7	Test Software	10
	1.8	Applicable Standards	11
2	Test	Configuration of Equipment Under Test	12
	2.1	Carrier Frequency and Channel	12
	2.2	Test Mode	14
	2.3	Connection Diagram of Test System	16
	2.4	Support Unit used in test configuration and system	16
	2.5	EUT Operation Test Setup	16
	2.6	Measurement Results Explanation Example	17
3	Test	Result	18
	3.1	26dB & 99% Occupied Bandwidth Measurement	18
	3.2	Maximum conducted Output Power and Fundamental Maximum EIRP Measurement	
	3.3	Fundamental Power Spectral Density Measurement	
	3.4	In-Band Emissions (Channel Mask)	23
	3.5	Contention Based Protocol	25
	3.6	Unwanted Emissions Measurement	34
	3.7	AC Conducted Emission Measurement	39
	3.8	Antenna Requirements	41
4	List	of Measuring Equipment	42
5	Meas	surement Uncertainty	43
Ар	pendi	x A. Conducted Test Results	
Ар	pendi	x B. AC Conducted Emission Test Result	
αA	pendi	x C. Radiated Spurious Emission	

Appendix D. Duty Cycle Plots
Appendix E. Setup Photographs

Page Number : 2 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

History of this test report

Report No.: FR452305C

Report No.	Version	Description	Issued Date
FR452305C	01	Initial issue of report	Aug. 12, 2024

 Sporton International Inc. (Kunshan)
 Page Number
 : 3 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.407(a)(11)	26dB Emission Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Pass	-
3.2	15.407(a)(5)(6)	Fundamental Maximum EIRP	Pass	-
3.3	15.407(a)(5)(6)	Fundamental Power Spectral Density	Pass	-
3.4	15.407(b)(7)	In-Band Emissions (Channel Mask)	Pass	-
3.5	15.407(d)(6)	Contention Based Protocol	Pass	
3.6	15.407(b)	Unwanted Emissions	Pass	Under limit 0.16 dB at 7125.000 MHz
3.7	15.207	AC Conducted Emission	Pass	Under limit 11.62 dB at 0.510 MHz
3.8	15.203 15.407(a)	Antenna Requirement	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or
 in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of
 non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158

FCC ID: 2ADZRBEACON19

Page Number : 4 of 43
Issued Date : Aug. 12, 2024

Report Version : 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

1 General Description

1.1 Applicant

Nokia Shanghai Bell Co., Ltd.

No.388, Ningqiao Rd, Pilot Free Trade Zone, Shanghai, 201206 P.R. China

1.2 Manufacturer

Nokia of America Corporation

2301 Sugar Bush Rd. Raleigh, NC 27612

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment	NOKIA WiFi Beacon 19				
Brand Name	NOKIA				
Model Name	Beacon 19				
FCC ID 2ADZRBEACON19					
	Conducted/Conduction/Radiation:				
SN Code	ALCLEB401AC4				
	CBP: ALCLEB401AC8				
EUT Stage	Production Unit				

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2. All tests were performed using the EUT with AOT antenna.

Power Adapter							
AC Adapter 1	Brand Name	HONOR	Model Name	ADS-40FKJ-12N 12036EPCU			
AC Adapter 1	Power Rating	I/P: 100-240 Vac, 1000mA, O/P: 12Vdc,3000mA					
AC Adapter 2	Brand Name	KELI	Model Name	KL-WA120300-A1			
AC Adapter 2	Power Rating	I/P: 100-240 Vac, 2000mA, O/P: 12Vdc,3000mA					

 Sporton International Inc. (Kunshan)
 Page Number
 : 5 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification							
Standards-r							
	U-NII-5: 6105 MHz – 6425 MHz						
Tx/Rx Frequency Range	U-NII-6: 6425 MHz – 6525 MHz						
	U-NII-7: 6525 MHz – 6875 MHz						
	U-NII-8: 6875 MHz - 7125 MHz						
	For 1S4T						
	MIMO <ant.1+2+3+4></ant.1+2+3+4>						
	802.11ax HE20 : 12.44 dBm / 0.0175 W						
	802.11ax HE40 : 15.37 dBm / 0.0344 W						
	802.11ax HE80 : 18.42 dBm / 0.0695 W						
	802.11ax HE160 : 21.07 dBm / 0.1279 W						
	802.11be EHT20: 12.49 dBm / 0.0177 W						
	802.11be EHT40 : 15.42 dBm / 0.0348 W 802.11be EHT80 : 18.46 dBm / 0.0701 W						
	802.11be EHT160 : 16.46 dBill / 0.0701 W						
	802.11be EHT100 : 21.12 dBm / 0.1294 W						
	For 4S4T						
	MIMO <ant.1+2+3+4></ant.1+2+3+4>						
	802.11ax HE20 : 16.86 dBm / 0.0485 W						
	802.11ax HE40 : 19.89 dBm / 0.0975 W						
	802.11ax HE80 : 23.06 dBm / 0.2023 W						
Maximum EIRP	802.11ax HE160 : 25.87 dBm / 0.3864 W						
	802.11be EHT20 : 16.90 dBm / 0.0490 W						
	802.11be EHT40 : 19.94 dBm / 0.0986 W						
	802.11be EHT80 : 23.10 dBm / 0.2042 W						
	802.11be EHT160 : 25.92 dBm / 0.3908 W						
	802.11be EHT320 : 28.82 dBm / 0.7621 W						
	TX Beamforming						
	802.11ax HE20 : 17.02 dBm / 0.0504 W						
	802.11ax HE40 : 19.70 dBm / 0.0933 W						
	802.11ax HE80 : 22.81 dBm / 0.1910 W						
	802.11ax HE160 : 25.86 dBm / 0.3855 W						
	802.11be EHT20 : 17.07 dBm / 0.0509 W						
	802.11be EHT40 : 19.75 dBm / 0.0944 W						
	802.11be EHT80 : 22.85 dBm / 0.1928 W						
	802.11be EHT160 : 25.91 dBm / 0.3899 W						
	802.11be EHT320 : 28.08 dBm / 0.6427 W						
	MIMO <ant.1+2+3+4></ant.1+2+3+4>						
	802.11 be EHT20 : 19.500 MHz						
	802.11 be EHT40 : 38.761 MHz						
	802.11 be EHT80 : 79.121 MHz						
	802.11be EHT160 : 159.520 MHz						
99% Occupied Bandwidth	802.11be EHT320: 317.123 MHz						
,	TX Beamforming						
	802.11 be EHT20 : 19.500 MHz						
	802.11 be EHT40 : 39.001 MHz						
	802.11 be EHT80 : 79.600 MHz						
	802.11be EHT160 : 161.439 MHz						
Antonno Timo	802.11be EHT320: 319.680 MHz						
Antenna Type	Dipole Antenna						
Type of Modulation	802.11ax: OFDM (BPSK / QPSK / 16QAM / 64QAM /						

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 6 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

256QAM / 1024QAM) 802.11be: OFDM (BPSK / QPSK / 16QAM / 64QAM /
256QAM / 1024QAM / 4096QAM)

Report No.: FR452305C

Remark:

- For SISO&MIMO mode, the whole testing has assessed only MIMO mode by referring to their higher conducted power.
- 2. WLAN MIMO support CDD mode and Tx Beamforming mode and SDM mode for 802.11ax/be.
- 3. For 802.11ax & 11be mode, the whole testing has assessed only 802.11be EHT20 / EHT40 / EHT80 / EHT160MHz / EHT320MHz by referring to the higher output power.
- 4. The device does not support CH01-CH31 (5945MHz ~ 6105MHz) for UNII-5.
- 5. The device support UNII-8 CH233 (BW=20M, Center Frequency = 7115MHz).
- 6. The device supports 1S4T(CDD&TXBF) and 4S4T(SDM) mode; 1S4T: NSS=1, MIMO 4Tx; 4S4T: NSS=4, MIMO 4Tx
- 7. The device supports multiple spatial streams, the worst cases directional gain will occur when NSS = 1, therefore, the 1S4T(CDD&TXBF) mode is the worst; 1S4T: NSS=1, MIMO 4Tx.
- 8. The channel puncturing mode is for improving network performance and not available for CBP, the CBP will apply channel bandwidth reduction mechanism to protect incumbent operations
- 9. This device supports full RU and OFDMA modes for 802.11ax/be, the PSD of OFDMA modes is reduced to be smaller than full RU, therefore the full RU perform full test to cover OFDMA except for Power/PSD.
- 10. Please refer to the antenna report for the maximum Single antenna gain and CDD (Cyclic Delay Diversity) directional gain and TXBF (Tx Beamforming) directional gain and SDM (Space Division Multiplexing) directional gain.

Frequency	Maxii	mum Singl (d	le Antenna Bi)	gain	CDD DG (dBi)		TXBF DG (dBi)		SDM DG (dBi)	
Band	ANT1	ANT2	ANT3	ANT4	For Power	For PSD	For Power	For PSD	For Power	For PSD
6GHz UNII-5	3.59	3.60	3.52	3.12	-0.16	4.7	4.7	4.7	-0.16	-0.16
6GHz UNII-6	2.44	2.60	2.52	2.78	0.07	4.78	4.78	4.78	0.07	0.07
6GHz UNII-7	2.44	2.60	2.52	2.78	0.07	4.78	4.78	4.78	0.07	0.07
6GHz UNII-8	3.34	3.50	3.32	3.66	0.09	5.03	5.03	5.03	0.09	0.09

CBP test with antenna path of minimum gain (Antenna 1, Minimum gain= 2.44 dBi).

11. The Ant.1 in this report is the corresponding antenna report is Ant. A, Ant. 2 corresponding antenna report is Ant. B, Ant. 3 corresponding antenna report is Ant. C, Ant. 4 corresponding antenna report is Ant D.

 Sporton International Inc. (Kunshan)
 Page Number
 : 7 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

12. This device supports channel puncturing for 802.11be EHT80/EHT160//EHT320 as below, which is less than full RU PSD, therefore have assessed only EIRP/PSD/MASK/RSE.

Report No.: FR452305C

<80M BW Puncturing 20MHz>:

Bandwidth	Tone	Inde	x	For test modes configure	
80MHz	242	484	62	66	1
80MHz	242	484	61	66	2
80MHz	484	242	65	64	3
80MHz	484	242	65	63	4

<160M BW Puncturing 20MHz>:

CTOOM BW Functuring 20MHz>.									
Bandwidth	ndwidth Tones				Index	For test modes configure			
160MHz	242-Left	484-Left	996-Right	62-Left	66-Left	67-Right	1		
160MHz	242-Left	484-Left	996-Right	61-Left	66-Left	67-Right	2		
160MHz	484-Left	242-Left	996-Right	65-Left	64-Left	67-Right	3		
160MHz	484-Left	242-Left	996-Right	65-Left	63-Left	67-Right	4		
160MHz	996-Left	242-Right	484-Right	67-Left	62-Right	66-Right	5		
160MHz	996-Left	242-Right	484-Right	67-Left	61-Right	66-Right	6		
160MHz	996-Left	484-Right	242-Right	67-Left	65-Right	64-Right	7		
160MHz	996-Left	484-Right	242-Right	67-Left	65-Right	63-Right	8		

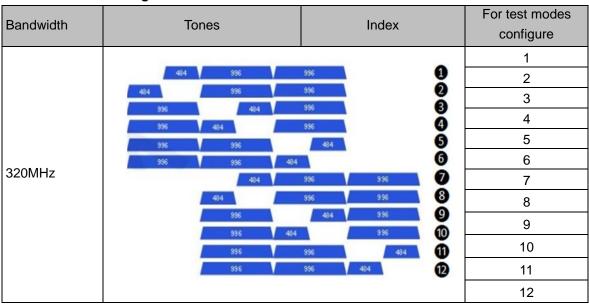
<160M BW Puncturing 40MHz>:

Bandwidth	Tone	Inde	ex	For test modes configure	
160MHz	484-Left	996-Right	66-Left	67-Right	1
160MHz	484-Left	996-Right	65-Left	67-Right	2
160MHz	996-Left	484-Right	67-Left	66-Right	3
160MHz	996-Left	484-Right	67-Left	65-Right	4

<320M BW Puncturing 40MHz>:

Colon By Full Colon By Full L.									
Bandwidth	То	nes		Index	For test modes configure				
			F-00		1				
	454	9%	996	996	2				
	484	286	98	V6 2	_				
	996	484	996	9 %	3				
320MHz	996	454	¥6	188 4	4				
320WII 12	996	9%	454	9%	5				
	995	9%	484	98 6	6				
	996	9%	9%	44 7	7				
			707	•	8				

Sporton International Inc. (Kunshan)Page NumberTEL: +86-512-57900158Issued Date


Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 8 of 43

<320M BW Puncturing 80MHz>:

Bandwidth		Tones	For test modes configure		
		996	9%	9%	1
320MHz	9%		996	9% 2	2
320101112	996	9%		96 3	3
	996	9%	996	4	4

<320M BW Puncturing 80+40MHz>:

Only the worse cases are shown in this report.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 9 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FR452305C

Test Firm	Sporton International Inc. (Kunshan)						
	No. 1098, Pengxi North	n Road, Kunshan Econom	ic Development Zone				
Test Site Location Jiangsu Province 215300 People's Republic of China							
	TEL: +86-512-579001	58					
	Sporton Site No.	FCC Designation No.	FCC Test Firm				
Test Site No.	Sporton Site No.	rec besignation No.	Registration No.				
rest one NO.	CO01-KS 03CH08-KS TH01-KS	CN1257	314309				

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (ShenZhen)							
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595							
	Sporton Site No.	FCC Designation No.	FCC Test Firm					
Test Site No.	Sporton Site No.	1 CC Designation No.	Registration No.					
	DFS01-SZ	CN1256	421272					

Test data subcontracted: CBP test case in section 3.5 of this report

1.7 Test Software

Item	Site	Manufacture	Name	Version
1.	TH01-KS	Tonscend	JS1120-3 test system China_210602	3.3.10
2.	03CH08-KS	AUDIX	E3	6.2009-8-24al
3.	CO01-KS	AUDIX	E3	6.2009-8-24

 Sporton International Inc. (Kunshan)
 Page Number
 : 10 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR452305C

- FCC Part 15 Subpart E
- FCC KDB 987594 D02 U-NII 6 GHz EMC Measurement v02r01
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 Sporton International Inc. (Kunshan)
 Page Number
 : 11 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

<U-NII-5, 6, 7, 8>

BW 20M	Channel	33	37	41	45	49	53	57	61	
DVV ZUIVI	Freq. (MHz)	6115	6135	6155	6175	6195	6215	6235	6255	
BW 40M	Channel	3	5	4	3	51		59		
DVV 4UIVI	Freq. (MHz)	61	25	61	65	62	05	62	45	
BW 80M	Channel		3	9		55				
DAA OOIAI	Freq. (MHz)		61	45			6225			
BW 160M	Channel		47							
DAA LOOM	Freq. (MHz)				61	85				
BW 320M	Channel				6	3				
DVV 32UIVI	Freq. (MHz)		6265							

BW 20M	Channel	65	69	73	77	81	85	89	93	
DVV ZUIVI	Freq. (MHz)	6275	6295	6315	6335	6355	6375	6395	6415	
BW 40M	Channel	6	7	7	5	83		91		
DVV 40IVI	Freq. (MHz)	62	85	63	25	63	65	64	05	
BW 80M	Channel		7	1			8	7		
DAA OOIAI	Freq. (MHz)		63	05		6385				
BW 160M	Channel		79							
DAA LOOM	Freq. (MHz)	6345								
BW 320M	Channel	95								
DVV 320IVI	Freq. (MHz)	6425								

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 12 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

Freq. (MHz)

_										
BW 20M	Channel	97	101	105	109	113	117	121	125	
DVV ZUIVI	Freq. (MHz)	6435	6455	6475	6495	6515	6535	6555	6575	
BW 40M	Channel	9	9	10	07	11	15	12	123	
BW 4UW	Freq. (MHz)	64	45	64	85	65	25	65	65	
BW 80M	Channel		10	03			11	19		
DAA OOIAI	Freq. (MHz)		64	65			65	45		
BW 160M	Channel				11	11				
DVV 100IVI	Freq. (MHz)	6505								
BW 20M										
	Channel	129	133	137	141	145	149	153	157	
BW 20M	Freq. (MHz)	129 6595	133 6615	137 6635	141 6655	145 6675	149 6695	153 6715	157 6735	
			6615		6655		6695		6735	
BW 20M	Freq. (MHz)	6595	6615 31	6635	6655 39	6675	6695	6715	6735 55	
BW 40M	Freq. (MHz) Channel	6595 13	6615 31 05	6635 13	6655 39	6675 14	6695	6715 15	6735 55	
	Freq. (MHz) Channel Freq. (MHz)	6595 13	6615 31 05	6635 13 66 35	6655 39	6675 14	6695 7 85	6715 15 67	6735 55	
BW 40M	Freq. (MHz) Channel Freq. (MHz) Channel	6595 13	6615 31 05	6635 13 66 35	6655 39	6675 14 666	6695 -7 85	6715 15 67	6735 55	
BW 40M	Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz)	6595 13	6615 31 05	6635 13 66 35	6655 39 45	6675 14 666	6695 -7 85	6715 15 67	6735 55	

BW 20M	Channel	161	165	169	173	177	181	185	189
DVV ZOIVI	Freq. (MHz)	6755	6775	6795	6815	6835	6855	6875	6895
BW 40M	Channel	16	33	17	71	179		187	
DVV 4UIVI	Freq. (MHz)	67	65	68	05	68	45	68	85
BW 80M	Channel		16	67		183			
DAA OOIAI	Freq. (MHz)		67	85		6865			
BW 160M	Channel		175						
DVV 100IVI	Freq. (MHz)	6825							
BW 320M	Channel				15	59			
DVV 320IVI	Freq. (MHz)		6745						

6585

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 13 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

BW 20M	Channel	193	197	201	205	209	213	217	221	
DVV ZUIVI	Freq. (MHz)	6915	6935	6955	6975	6995	7015	7035	7055	
BW 40M	Channel	195		20)3	21	11	219		
DVV 40IVI	Freq. (MHz)	69	25	69	65	70	05	70	45	
BW 80M	Channel		19	99			21	15		
DAA OOIAI	Freq. (MHz)		69	45			70	25		
BW 160M	Channel	207								
DAA LOOM	Freq. (MHz)									
BW 320M	Channel	191								
DVV 320IVI	Freq. (MHz)				69	005				
DW 0014	Channel		225		22	29		233		
BW 20M	Freq. (MHz)		7075		7095			7115		
DW 4084	Channel			227						
BW 40M	Freq. (MHz)			7085						

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

CDD & SDM & TXBF Mode

Modulation	Data Rate
802.11ax EHT20(Covered by EHT20)	MCS0
802.11ax EHT40(Covered by EHT40)	MCS0
802.11ax EHT80(Covered by EHT80)	MCS0
802.11ax EHT160(Covered by EHT160)	MCS0
802.11be EHT20	MCS0
802.11be EHT40	MCS0
802.11be EHT80	MCS0
802.11be EHT160	MCS0
802.11be EHT320	MCS0

	Test Cases					
AC						
Conducted	Mode 1: WLAN Link(6G) + Power From Adaptor					
Emission						
Remark: For	r Radiated Test Cases, the tests were performed with Adapter.					

 Sporton International Inc. (Kunshan)
 Page Number
 : 14 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

	Ch #	UNII-5	UNII-6	UNII-7	UNII-8
	Ch. # 20M BW		20M BW	20M BW	20M BW
L	Low	033	097	117	189
M	Middle	065	105	149	209
Н	High	093	113	181	229/233
	Straddle	-	-	-	185

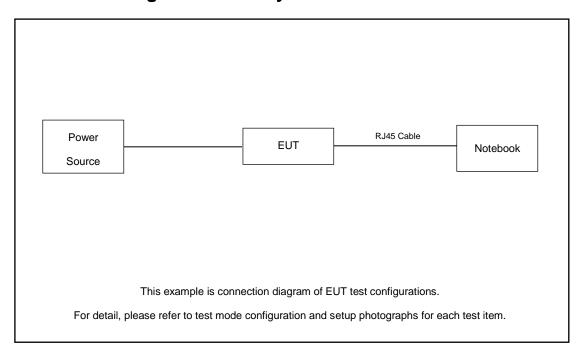
	UNII-5		UNII-6	UNII-7	UNII-8
	Ch. #	40M BW	40M BW	40M BW	40M BW
L	Low	035	099	123	195
M	Middle	067	-	147	203
Н	High	091	107	179	227
9	Straddle	=	115	-	187

	UNII-5		UNII-6	UNII-7	UNII-8
	Ch. #	80M BW	80M BW	80M BW	80M BW
L	Low	039		135	199
M	Middle	055	103	151	-
Н	High	087		167	215
9	Straddle	-	119	183	-

	Ch. #	UNII-5	UNII-6	UNII-7	UNII-8
	Cn. #	160M BW	160M BW	160M BW	160M BW
L	Low	047			
М	Middle		-	143	207
Н	High	079			
9	Straddle	-	111	175	-

	Ch #	UNII-5	UNII-6	UNII-7	UNII-8
	Ch. #	320M BW	320M BW	320M BW	320M BW
L	Low	-			
M	Middle	063	-	-	-
Н	High	-			
	Straddle	095	127	159	191

Remark: For radiation spurious emission, the final modulation and the worst data rate was reference the max EIRP power.


Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 15 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	G480	N/A	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
2.	Notebook	acer	N20C5	QDS-BRCM1050I	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
3.	PC	Adwantech	IPC-610MB-L	N/A	N/A	Unshielded,1.8m
4.	(USB)Mouse	Dell	MS111-P	N/A	Fcc DoC	Shielded, 1.8m
5.	(USB)Keyboard	Dell	SK-8120	N/A	Fcc DoC	Shielded, 1.8m
6.	RJ45 Cable	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For WLAN MIMO mode, an engineering test program "QSPR.5.0-00202" TX Tool was provided and enabled to make EUT continuously transmit.

For AC power line conducted emissions, the EUT was set to connect with the notebook under large package sizes transmission.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 16 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5.44 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 5.44 + 10 = 15.44 (dB)

 Sporton International Inc. (Kunshan)
 Page Number
 : 17 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

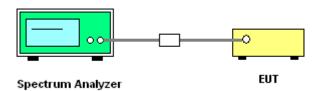
Report Template No.: BU5-FR15EWL AC MA Version 2.0

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 CFR 15.407 (a)(11)

The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \geq 3 * RBW.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

 Sporton International Inc. (Kunshan)
 Page Number
 : 18 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

3.2 Maximum EIRP Measurement

3.2.1 Limit of Fundamental Maximum EIRP

<FCC 14-30 CFR 15.407>

(a)(5) For an indoor access point operating in the 5.925-7.125 GHz band, the maximum e.i.r.p. over the frequency band of operation must not exceed 30dBm.

Report No.: FR452305C

(a)(6) For a subordinate device operating under the control of an indoor access point operating in the 5.925-7.125 GHz band, the maximum e.i.r.p. over the frequency band of operation must not exceed 30dBm.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

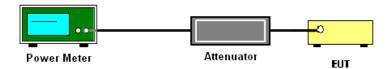
Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.
- 4. For MIMO mode, the measure-and-sum technique should be used for measuring the in-band transmit power of a device.

<TXBF Modes>

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 for TXBF modes.

Method PM-G (Measurement using a gated RF average power meter):


- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

 Sporton International Inc. (Kunshan)
 Page Number
 : 19 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

3.2.4 Test Setup

3.2.5 Test Result of Fundamental Maximum EIRP

Please refer to Appendix A.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 20 of 43
Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

3.3 Fundamental Power Spectral Density Measurement

3.3.1 Limit of Fundamental Power Spectral Density

<FCC 14-30 CFR 15.407>

(a)(5) For an indoor access point operating in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5dBm e.i.r.p. in any 1-megahertz band.

(a)(6) For a subordinate device operating under the control of an indoor access point operating in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5dBm e.i.r.p. in any 1-megahertz band.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

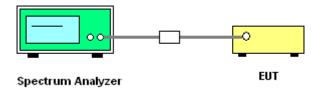
Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the
 average power during the actual transmission times. For example, add 10 log(1/0.25) = 6
 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, attenuator loss and duty factor. Measure the PPSD and record it.
- For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is the bin-by-bin summation to obtain the combined spectrum. For the device with 4 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum

 Sporton International Inc. (Kunshan)
 Page Number
 : 21 of 43


 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2, output 3 and output 4 to obtain the value for the first frequency bin of the summed spectrum.

Report No.: FR452305C

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 22 of 43
Issued Date : Aug. 12, 2024

Report Version : 01

3.4 In-Band Emissions (Channel Mask)

3.4.1 Limit of Unwanted Emissions

<FCC 14-30 CFR 15.407>

(b)(7) For transmitters operating within the 5.925-7.125 GHz bands: Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

The testing follows FCC KDB 987594 D02 U-NII 6GHz EMC Measurement.

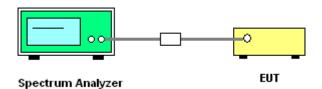
Section J) In-Band Emissions.

- 1. Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth
- 2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.
 - b) Set RBW = same RBW used for 26 dB EBW measurement.
 - c) Set VBW ≥ 3 X RBW
 - d) Number of points in sweep ≥ [2 X span / RBW].
 - e) Sweep time = auto.
 - f) Detector = RMS (i.e., power averaging)
 - g) Trace average at least 100 traces in power averaging (rms) mode.
 - h) Use the peak search function on the instrument to find the peak of the spectrum.
- 3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
 - a. Suppressed by 20 dB at 1 MHz outside of the channel edge.
 - b. Suppressed by 28 dB at one channel bandwidth from the channel center.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 23 of 43 Issued Date : Aug. 12, 2024

Report Version : 01


O1

c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.

Report No.: FR452305C

- 4. Adjust the span to encompass the entire mask as necessary.
- Clear trace.
- 6. Trace average at least 100 traces in power averaging (rms) mode.
- 7. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

3.4.4 Test Setup

3.4.5 Test Result

Please refer to Appendix A.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 24 of 43 Issued Date : Aug. 12, 2024

Report Version : 01

3.5 Contention Based Protocol

3.5.1 Limit of Contention Based Protocol

<FCC 14-30 CFR 15.407>

(d)(6) Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band must employ a contention-based protocol.

Report No.: FR452305C

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel and stay off the channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm). The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain. To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz- wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

Table 1. Criteria to determine number of times detection threshold test may be performed

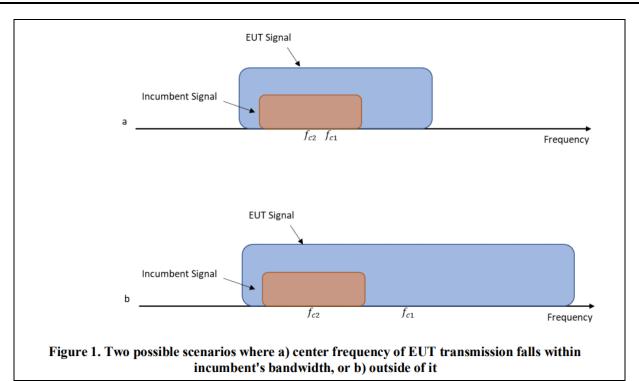
If	Number of Tests	Placement of Incumbent Transmission
$BW_{EUT} \le BW_{Inc}$	Once	Tune incumbent and EUT transmissions ($f_{c1} = f_{c2}$)
$BW_{Inc} < BW_{EUT} \le 2BW_{Inc}$	Once	Incumbent transmission is contained within BW_{EUT}
$2BW_{Inc} < BW_{EUT} \le 4BW_{Inc}$	Twice. Incumbent transmission is contained within BW_{EUT}	Incumbent transmission is located as closely as possible to the lower edge and upper edge, respectively, of the EUT channel
$BW_{EUT} > 4BW_{Inc}$	Three times	Incumbent transmission is located as closely as possible to the lower edge of the EUT channel, in the middle of EUT channel, and as closely as possible to the upper edge of the EUT channel

where:

BWEUT: Transmission bandwidth of EUT signal

BWInc: Transmission bandwidth of the simulated incumbent signal (10 MHz wide AWGN signal)

fc1: Center frequency of EUT transmission


fc2: Center frequency of simulated incumbent signal

 Sporton International Inc. (Kunshan)
 Page Number
 : 25 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

3.5.2 Measuring Instruments

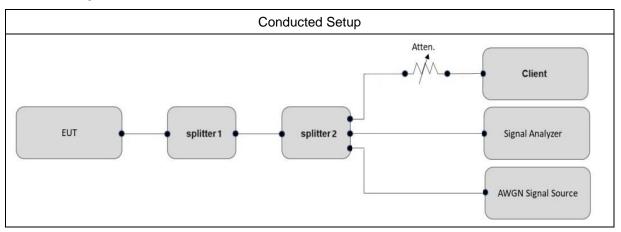
See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. To ensure EUT reliably detects an incumbent signal in both scenarios shown in Figure 1, the detection threshold test may be repeated more than once with the incumbent signal (having center frequency fc2) tuned to different center frequencies within the UT transmission bandwidth. The criteria specified in Table 1 determines how many times the detection threshold test must be performed
- Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- Monitor the signal analyzer to verify if the AWGN signal has been detected and the EUT has
 ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN
 signal power level until the EUT stops transmitting.
- 4. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- 5. Refer to Table 1 to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step 2, choose a different center

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 26 of 43 Issued Date : Aug. 12, 2024


Report No.: FR452305C

Report Version : 01

frequency for the AWGN signal and repeat the process.

6. EUT was driven in MIMO mode, the interferer signal was injected to both chains to monitor the performance, while the interferer level is determined according to the lowest antenna gain among both antennas.

3.5.4 Test Setup

3.5.5 Support Unit used in test configuration and system

Instrument	Brand Name	Model No.	Characteristics
Signal Generator	Keysight	5182B/5182BX07	9KHz~7.2GHz
Spectrum Analyzer	R&S	FSV40	10kHz~40GHz
Terminal (NB Server)	Dell	Vostro 3500	N/A
Combiner (splitter1)	TiTan	4-T0510E4w 0526A	500M~18GHz
Combiner (splitter2)	TiTan	4-T0510E4w 0526A	500M~18GHz
Attenuator	N/A	8494B	DC-18GHz
Client (phone)	N/A	N/A	N/A

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 27 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

3.5.6 Test Summary of Contention Based Protocol Test

	Channel	Channel	Incumbent	Injected	Detection	Regulated	Adjusted	Marain							
Band	Freq.	BW	freq.	AWGN Level	Rate	Threshold level	Power	Margin							
	(MHz)	(MHz)	(MHz)	(dBm)	(%)	(dBm)	(dBm)	(dB)							
				-69.40	100	-62	-71.84	9.84							
				(worst)	Res	ult: Stop Transr	nission								
	6135	20	6135	-70.40	<90	-62	-72.84	10.84							
	0133	20	0133	-70.40	Res	sult: Minimal Op	eration								
				-71.40	=0	-62	-73.84	11.84							
				-71.40	Res	sult: Normal Ope	eration								
				-71.20	100	-62	-73.64	11.64							
				-71.20	Res	ult: Stop Transr	nission								
			6110	-72.20	<90	-62	-74.64	12.64							
			6110	-72.20	Res	sult: Minimal Op	eration								
					-73.20	=0	-62	-75.64	13.64						
UNII					-73.20	Res	sult: Normal Ope	eration							
Band 5							-71.26	100	-62	-73.70	11.70				
				-71.20	Result: Stop Transmission										
		6105	6105	320	320	320	6265	6265	6265	6265	6265	-72.26	<90	-62	-74.70
	0103	320	0203	-12.20	Res	sult: Minimal Op	eration								
				-73.26	=0	-62	-75.70	13.70							
				70.20	Res	sult: Normal Ope	eration								
				-71.85	100	-62	-74.29	12.29							
				71.00	Result: Stop Transmission										
			6420	-72.85	<90	-62	-75.29	13.29							
				0420 -72.80	Res	sult: Minimal Op	eration								
				-73.85	=0	-62	-76.29	14.29							
				. 0.00	Res	sult: Normal Ope	eration								

Note 1: Adjusted Power = Injected AWGN Level - minimum antenna gain (gain =2.44dBi)

Note 2: Path Loss between antenna and RF connector is negligible. (0 dB)

Note 3: Margin = Regulated Threshold level - Adjusted Power

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 28 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

Band	Channel Freq. (MHz)	Channel BW (MHz)	Incumbent freq. (MHz)	Injected AWGN Level (dBm)	Detection Rate (%)	Regulated Threshold level (dBm)	Adjusted Power (dBm)	Margin (dB)		
				72.20	100	-62	-75.74	13.74		
				-73.30	Res	sult: Stop Ti	ransmission	•		
UNII	6455	20	6455	-74.30	<90	-62	-76.74	14.74		
Band 6	0433	20	0433	-74.50	Res	sult: Minima	al Operation			
				-75.30	=0	-62	-77.74	15.74		
			-73.30	Res	sult: Norma	I Operation				
				-73.95	100	-62	-76.39	14.39		
			6270	70.00	Res	sult: Stop Ti	ransmission			
				-74.95	<90	-62	-77.39	15.39		
	0270	74.55	Result: Minimal Operation							
						-75.95	=0	-62	-78.39	16.39
							Re	sult: Norma	I Operation	
						-73.63	100	-62	-76.07	14.07
UNII				70.00	Res	sult: Stop Ti	ransmission			
Band	6425	320	6425	-74.63	<90	-62	-77.07	15.07		
5/6/7	0423	320	0425	74.00	Res	sult: Minima	al Operation			
3/0/1				-75.63	=0	-62	-78.07	16.07		
				70.00	Re	sult: Norma	I Operation			
				-74.41	100	-62	-76.85	14.85		
	6580			-74.41	Res	sult: Stop Ti	ransmission			
		75 44	<90	-62	-77.85	15.85				
			6580	6580 -75.41	Res	sult: Minima	al Operation			
				-76.41	=0	-62	-78.85	16.85		
				70.71	Res	sult: Norma	l Operation			

Note 1: Adjusted Power = Injected AWGN Level - minimum antenna gain (gain = 2.44dBi)

Note 2: Path Loss between antenna and RF connector is negligible. (0 dB)

Note 3: Margin = Regulated Threshold level - Adjusted Power

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 29 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

Regulated Channel Channel Incumbent Injected Detection Adjusted Threshold Margin Band BW AWGN Level Rate Power Freq. freq. level (dB) (MHz) (MHz) (MHz) (dBm) (%) (dBm) (dBm) 100 -78.59 16.59 -62 -76.15 Result: Stop Transmission -62 -79.59 17.59 UNII <90 6695 20 6695 -77.15 Band 7 **Result: Minimal Operation** =0-80.59 18.59 -78.15 **Result: Normal Operation** 100 -62 -79.09 17.09 -76.65 Result: Stop Transmission <90 -62 -80.09 18.09 6590 -77.65 Result: Minimal Operation -62 -81.09 19.09 =0 -78.65 **Result: Normal Operation** 100 -62 -79.34 17.34 -76.90 Result: Stop Transmission UNII <90 -62 -80.34 18.34 6745 320 6745 -77.90 Band 7(8) **Result: Minimal Operation** -62 -81.34 19.34 =0-78.90 **Result: Normal Operation** 100 -62 -77.92 15.92 -75.48 Result: Stop Transmission -62 <90 -78.92 16.92 6900 -76.48 **Result: Minimal Operation** -62 -79.92 17.92 =0 -77.48 **Result: Normal Operation**

Note 1: Adjusted Power = Injected AWGN Level - minimum antenna gain (gain = 2.44dBi)

Note 2: Path Loss between antenna and RF connector is negligible. (0 dB)

Note 3: Margin = Regulated Threshold level - Adjusted Power

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 30 of 43
Issued Date : Aug. 12, 2024

Report No.: FR452305C

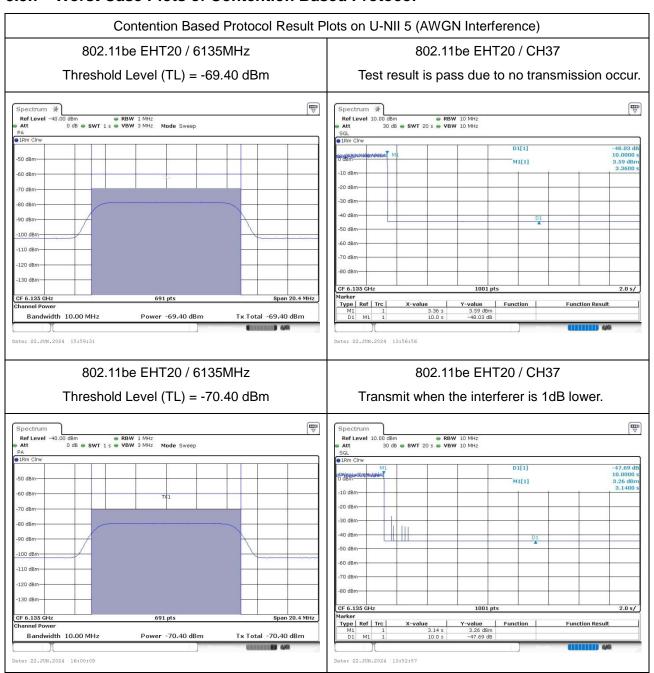
Report Version : 01

Band	Channel Freq. (MHz)	Channel BW (MHz)	Incumbent freq. (MHz)	Injected AWGN Level (dBm)	Detection Rate (%)	Regulated Threshold level (dBm)	Adjusted	Margin (dB)		
				-76.55	100	-62	-78.99	16.99		
				-76.55	Res	sult: Stop T	ransmission			
UNII	7015	20	7015	-77.55	<90	-62	-79.99	17.99		
Band 8	7013	20	7013	-17.55	Res	sult: Minima	al Operation			
				-78.55	=0	-62	-80.99	18.99		
				-70.55	Res	sult: Norma	l Operation			
			-76.65	100.00	-62.00	-79.09	17.09			
	6590		-76.65	Res	sult: Stop T	ransmission				
		6500	-77.65	<90	-62.00	-80.09	18.09			
		0390		Result: Minimal Operation						
				-78.65	=0	-62.00	-81.09	19.09		
					-70.03	Res	sult: Norma	l Operation		
						-76.90	100.00	-62.00	-79.34	17.34
UNII				-70.90	Res	sult: Stop T	ransmission			
Band	6745	320	6745	6745	6745	-77.90	<90	-62.00	-80.34	18.34
8(7)	0743	15 320	520 6/45	-11.30	Res	sult: Minima	al Operation			
0(1)				-78.90	=0	-62.00	-81.34	19.34		
				70.50	Re	sult: Norma	l Operation			
			-75.48	100.00	-62.00	-77.92	15.92			
		-13.40	Res	sult: Stop T	ransmission					
		6900	76.40	<90	-62.00	-78.92	16.92			
			6900	6900 -76.48	Res	sult: Minima	al Operation			
				-77.48	=0	-62.00	-79.92	17.92		
				77.40	Re	sult: Norma	l Operation			

Note 1: Adjusted Power = Injected AWGN Level - minimum antenna gain (gain = 2.44dBi)

Note 2: Path Loss between antenna and RF connector is negligible. (0 dB)

Note 3: Margin = Regulated Threshold level - Adjusted Power


Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 31 of 43 Issued Date : Aug. 12, 2024

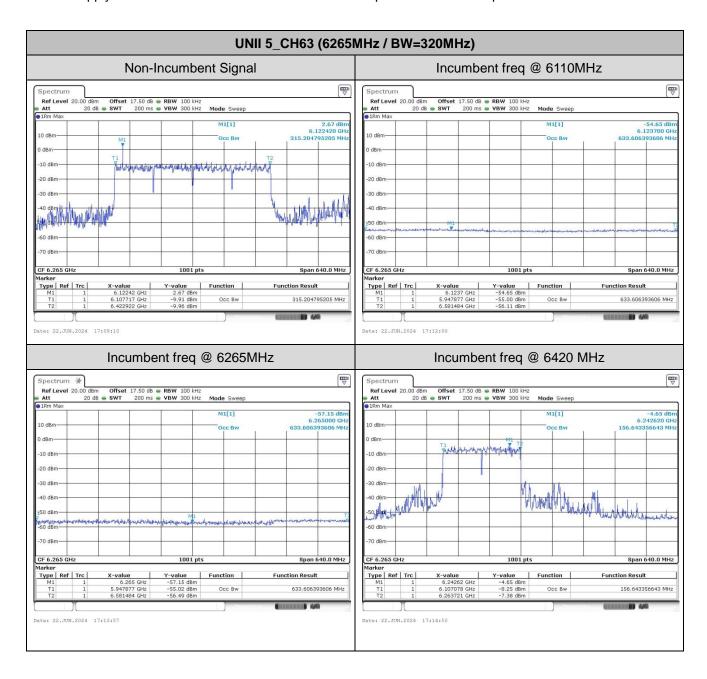
Report No.: FR452305C

Report Version : 01

3.5.7 Worst Case Plots of Contention Based Protocol

Remark: M1: Injection of AWGN signal, D2: Removal of AWGN signal

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 32 of 43 Issued Date : Aug. 12, 2024


Report No.: FR452305C

Report Version : 01

3.5.8 Verify Contention Based Protocol Transmission Bandwidth

Verify transmission absence when Incumbent signal at different frequency (frequency domain plots).

- 1. When Incumbent Signal inject at lowest frequency, the whole 320MHz bandwidth stop transmission;
- 2. When Incumbent Signal inject at middle frequency, the whole 320MHz bandwidth stop transmission;
- 3. When Incumbent Signal inject at highest frequency, the transmission bandwidth reduced to 80MHz;
- 4. The channel puncturing mode is for improving network performance and not available for CBP, the CBP will apply channel bandwidth reduction mechanism to protect incumbent operations

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 33 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

3.6 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR452305C

3.6.1 Limit of Unwanted Emissions

(1) For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of −27 dBm/MHz.

EIRP (dBm)	Field Strength at 3m (dBµV/m)		
- 27 (RMS)	68.2		
- 7 (Peak)	88.2		

Unwanted emissions outside of restricted bands are measured with a RMS detector.

In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

 Sporton International Inc. (Kunshan)
 Page Number
 : 34 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

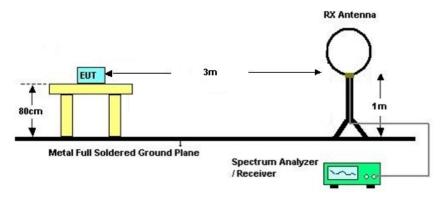
FCC ID: 2ADZRBEACON19 Report Version : 01

3.6.3 Test Procedures

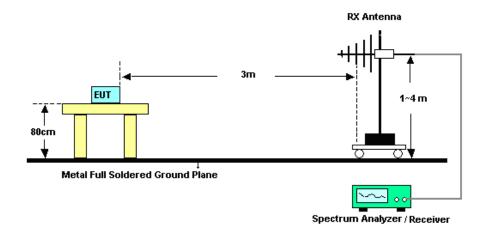
The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.

Report No.: FR452305C

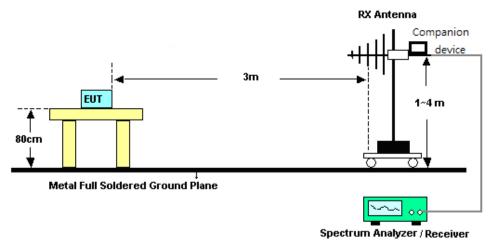
- (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


 Sporton International Inc. (Kunshan)
 Page Number
 : 35 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024


FCC ID: 2ADZRBEACON19 Report Version : 01

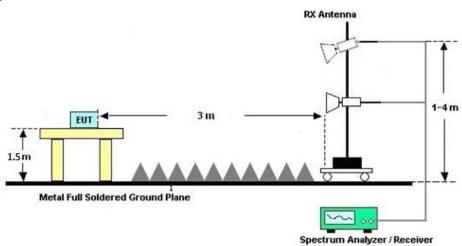
3.6.4 Test Setup


For radiated emissions below 30MHz

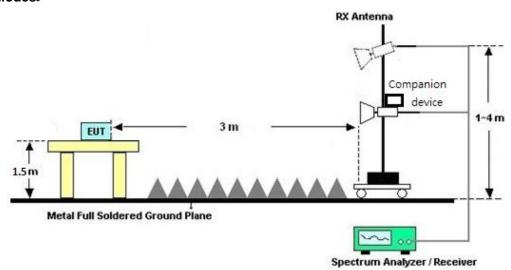
For radiated emissions from 30MHz to 1GHz <CDD Mode>

<TXBF Modes>

Sporton International Inc. (Kunshan)


TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 36 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C


Report Version : 01

For radiated emissions above 1GHz

<CDD Mode>

<TXBF Modes>

3.6.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 37 of 43
Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

3.6.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C

3.6.7 Duty Cycle

Please refer to Appendix D.

3.6.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

The emission level above 18GHz is checked that the emission level is noise floor only, so it is not reflected in the report.

 Sporton International Inc. (Kunshan)
 Page Number
 : 38 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

3.7 AC Conducted Emission Measurement

3.7.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

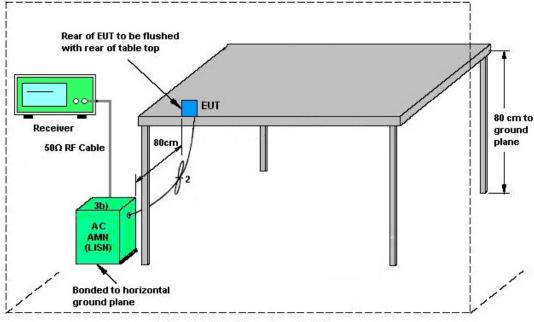
Eroquonov of omission (MUz)	Conducted limit (dBμV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedures


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). 2.
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- The FCC states that a 50 ohm, 50 microhenry LISN should be used. 5.
- Both sides of AC line were checked for maximum conducted interference. 6.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

Sporton International Inc. (Kunshan) : 39 of 43 Page Number : Aug. 12, 2024 TEL: +86-512-57900158 Issued Date FCC ID: 2ADZRBEACON19

: 01 Report Version

Report Template No.: BU5-FR15EWL AC MA Version 2.0

3.7.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.7.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19 Page Number : 40 of 43 Issued Date : Aug. 12, 2024

Report No.: FR452305C

Report Version : 01

3.8 Antenna Requirements

3.8.1 Standard Applicable

§15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: FR452305C

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used. The EUT complies with the requirement of 15.203.

3.8.3 Antenna Gain

Maximum Single Antenna gain Frequency (dBi)		CDD DG (dBi)		TXBF DG (dBi)		SDM DG (dBi)				
Band	ANT1	ANT2	ANT3	ANT4	For Power	For PSD	For Power	For PSD	For Power	For PSD
6GHz UNII-5	3.59	3.60	3.52	3.12	-0.16	4.7	4.7	4.7	-0.16	-0.16
6GHz UNII-6	2.44	2.60	2.52	2.78	0.07	4.78	4.78	4.78	0.07	0.07
6GHz UNII-7	2.44	2.60	2.52	2.78	0.07	4.78	4.78	4.78	0.07	0.07
6GHz UNII-8	3.34	3.50	3.32	3.66	0.09	5.03	5.03	5.03	0.09	0.09

Note:

- 1. Please refer to the antenna report for the maximum Single antenna gain and CDD (Cyclic Delay Diversity) directional gain and TXBF (Tx Beamforming) directional gain and SDM (Space Division Multiplexing) directional gain.
- 2. The device supports 1S4T(CDD&TXBF) and 4S4T(SDM) mode;

1S4T: NSS=1, MIMO 4Tx; 4S4T: NSS=4, MIMO 4Tx

Sporton International Inc. (Kunshan) : 41 of 43 Page Number TEL: +86-512-57900158 Issued Date : Aug. 12, 2024 FCC ID: 2ADZRBEACON19

: 01 Report Version

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 11, 2023	Jun. 06, 2024~ Jul. 11, 2024	Oct. 10, 2024	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 02, 2024	Jun. 06, 2024~ Jul. 11, 2024	Jan. 01, 2025	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 02, 2024	Jun. 02, 2024~ Jul. 08, 2024	Jan. 01, 2025	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY56400023	3Hz~8.5GHz;M ax 30dBm	Jan. 04, 2024	Jul. 15, 2024	Jan. 03, 2025	Radiation (03CH08-KS)
Spectrum Analyzer	R&S	FSV40	101932	10kHz~40GHz; Max 30dBm	Oct. 10, 2023	Jul. 15, 2024	Oct. 09, 2024	Radiation (03CH08-KS)
Loop Antenna	R&S	HFH2-Z2E	101125	9kHz~30MHz	Oct. 10, 2023	Jul. 15, 2024	Oct. 09, 2024	Radiation (03CH08-KS)
Bilog Antenna	TESEQ& VGT	CBL 61110	59915	30MHz-1GHz	Aug. 12, 2023	Jul. 15, 2024	Aug. 11, 2024	Radiation (03CH08-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Mar. 01, 2024	Jul. 15, 2024	Feb. 28, 2025	Radiation (03CH08-KS)
high gain Amplifier	EM	EM01G18GA	060845	1Ghz-18Ghz	Jan. 05, 2024	Jul. 15, 2024	Jan. 04, 2025	Radiation (03CH08-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2024	Jul. 15, 2024	Jan. 04, 2025	Radiation (03CH08-KS)
Amplifier	SONOMA	310N	413741	9KHz-1GHz	Jan. 05, 2024	Jul. 15, 2024	Jan. 04, 2025	Radiation (03CH08-KS)
Amplifier	EM	EM01G18GA	060834	1Ghz-18Ghz	Oct. 10, 2023	Jul. 15, 2024	Oct. 09, 2024	Radiation (03CH08-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 04, 2024	Jul. 15, 2024	Jan. 03, 2025	Radiation (03CH08-KS)
6db attenuator	TOJOIN	SMA(JK)	EMC01	2W/DC-18G	Jan. 09, 2024	Jul. 15, 2024	Jan. 08, 2025	Radiation (03CH08-KS)
AC Power Source	Chroma	61601	61601000247 3	N/A	NCR	Jul. 15, 2024	NCR	Radiation (03CH08-KS)
Turn Table	EM	EM 1000-T	N/A	0~360 degree	NCR	Jul. 15, 2024	NCR	Radiation (03CH08-KS)
Antenna Mast	EM	EM 1000-A	N/A	1 m~4 m	NCR	Jul. 15, 2024	NCR	Radiation (03CH08-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 18, 2024	Jun. 06, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 11, 2023	Jun. 06, 2024	Oct. 10, 2024	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Apr. 18, 2024	Jun. 06, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000081 1	AC 0V~300V, 45Hz~1000Hz	Oct. 11, 2023	Jun. 06, 2024	Oct. 10, 2024	Conduction (CO01-KS)
Spectrum Analyzer	R&S	FSV40	101164	10Hz~40GHz	Dec. 27, 2023	Jun. 22, 2024	Dec. 26, 2024	CBP (DFS01-SZ)
MXG-B RF Vector Signal Generator	Keysight	5182B/5182B X07	MY62220115/ MY61500133	9kHz~7.2GHz	Aug. 21, 2023	Jun. 22, 2024	Aug. 20, 2024	CBP (DFS01-SZ)
Combiner	TiTan	4-T0510E4w 0526A	N/A	500M~18GHz	NCR	Jun. 22, 2024	NCR	CBP (DFS01-SZ)
Combiner	TiTan	4-T0510E4w 0526A	N/A	500M~18GHz	NCR	Jun. 22, 2024	NCR	CBP (DFS01-SZ)
Attenuator	N/A	8494B	N/A	DC-18GHz	NCR	Jun. 22, 2024	NCR	CBP (DFS01-SZ)

NCR: No Calibration Required

 Sporton International Inc. (Kunshan)
 Page Number
 : 42 of 43

 TEL: +86-512-57900158
 Issued Date
 : Aug. 12, 2024

FCC ID: 2ADZRBEACON19 Report Version : 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

5 **Measurement Uncertainty**

Uncertainty of Conducted Measurement

Conducted Spurious Emission & Bandedge	±2.26 dB
Occupied Channel Bandwidth	±0.1%
Conducted Power	±0.50 dB
Conducted Power Spectral Density	±0.90 dB
Frequency	±0.4 Hz
Conducted Generated signal Levels	±0.56 dB
Conducted Time	0.54%

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.84 dB
of 95% (U = 2Uc(y))	2.04 UB

<u>Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	3.30 dB
of 95% (U = 2Uc(y))	

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	6.04 dB
of 95% (U = 2Uc(y))	6.04 db

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence	5.26 dB
of 95% (U = 2Uc(y))	5.20 UB

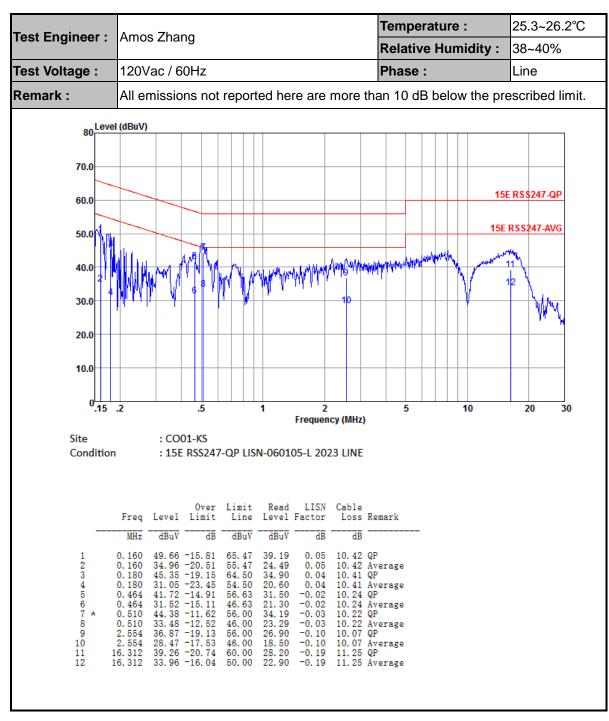
Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	5.40 dB
of 95% (U = 2Uc(y))	3.40 UB

----- THE END -----

Sporton International Inc. (Kunshan) Page Number : 43 of 43 TEL: +86-512-57900158 Issued Date : Aug. 12, 2024 FCC ID: 2ADZRBEACON19

Report Version : 01


Report Template No.: BU5-FR15EWL AC MA Version 2.0

Appendix A. Conducted Test Results

Sporton International Inc. (Kunshan) TEL: +86-512-57900158

FCC ID: 2ADZRBEACON19

Appendix B. AC Conducted Emission Test Results

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19

Test Engineer :	Amos Zhang		Temperature :	25.3~26.2°C
rest Engineer .	Amos Zhang		Relative Humidity:	38~40%
Test Voltage :	120Vac / 60Hz		Phase :	Neutral
Remark :	All emissions not	reported here are	more than 10 dB below the p	rescribed limit.
_{go} Leve	l (dBuV)			
00				
70.0				
60.0			1	5E RS\$247-QP
53.0				
50.0				SE RSS247-AVG
40.0	Martin Long Army Ca	MATERIAL MATERIAL DIPLE	hother with my the all the first and the will be a second with the first of the fir	11
₽ '`\	41,144WW, ".y.l. 14,1	Man March	9	12
30.0	1 1 8		10	T.M.
20.0				——"
10.0				
10.0				
0.15	.2 .5	1 2	5 10	20 30
Site	: CO01-KS	Frequenc	cy (MHz)	
Condition		7-QP LISN-060105-N 202	23 NEUTRAL	
	0ver	Limit Read LISN	Cable	
	Freq Level Limit MHz dBuV dB	Line Level Factor dBuV dBuV dB	Loss Remark dB	
1	0.153 50.06 -15.76	65.82 39.60 0.04	10. 42 QP	
2 3 4 5 *	0. 153 34. 06 -21. 76 0. 497 42. 35 -13. 70	55. 82 23. 60 0. 04 56. 05 32. 20 -0. 07	10.42 Average 10.22 QP	
4 5 * 6	0. 497 31. 35 -14. 70 0. 529 43. 64 -12. 36 0. 529 33. 44 -12. 56	56.00 33.50 -0.07	10. 22 Average 10. 21 QP 10. 21 Average	
7 8	0.570 36.32 -19.68 0.570 25.02 -20.98	56.00 26.20 -0.07 46.00 14.90 -0.07	10.19 QP 10.19 Average	
	3.584 26.44 -19.56	56.00 23.90 -0.13 46.00 16.50 -0.13 60.00 27.20 -0.15	10.07 Average	
		50.00 21.30 -0.15		

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

TEL: +86-512-57900158 FCC ID: 2ADZRBEACON19