

EMC Test Report-EAR Controlled Data

Application for FCC Grant of Equipment Authorization Canada Certification

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-210 Issue 11 FCC Part 15 Subpart C

Model: DELLFMFHP

IC CERTIFICATION #: FCC ID:	8392A- DELLFMFHP XFJDELLFMFHP
APPLICANT:	XP Metal Detectors 8 rue du développement ZI de VIC 31320 Castanet-Tolosan, France
TEST SITE(S):	Element Materials Technology Fremont AKA: NTS Labs, LLC 41039 Boyce Road Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-5 & 2845B-7
PROJECT NUMBER:	PR185702
REPORT DATE:	April 24, 2025
RE-ISSUED DATE:	April 28, 2025
FINAL TEST DATES:	October 23, 28, November 1, 6, 7 and December 9, 2024 and January 7, 2025
TOTAL NUMBER OF PAGES:	45

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. Element Materials Technology Fremont (herein after referred to as "Element"), and also known as NTS Labs, LLC makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by Element of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from Element.

EAR-Controlled Data These items are controlled by the U.S. Government and authorized for export only to the country of ultimate destination for use by the ultimate consignee or end-user(s) herein identified. They may not be resold, transferred, or otherwise disposed of, to any other country or to any person other than the authorized ultimate consignee or end-user(s), either in their original form or after being incorporated into other items, without first obtaining approval from the U.S. government or as otherwise authorized by U.S. law and regulations.

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	April 24, 2025	First release	
1	April 28, 2025	Corrected references in summary table.	dwb

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
	2
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	7
DEVIATIONS FROM THE STANDARDS	7
TEST RESULTS SUMMARY	8
DEVICES OPERATING UNDER THE GENERAL LIMITS	8
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	9
ANTENNA SYSTEM	9
ENCLOSURE	9
OTHER EUT INFORMATION	9
MODIFICATIONS	9
SUPPORT EQUIPMENT	9
EUT OPED ATION	.10
	.10
TEST SITE	.11
GENERAL INFORMATION	.11
RADIATED EMISSIONS CONSIDERATIONS	.11
MEACUDEMENT INCTDUMENT ATION	13
MEASUKEMENT INSTRUMENTATION	12
INSTRUMENT CONTROL COMPLITER	12
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	12
FILTERS/ATTENUATORS.	.12
ANTENNAS	.13
ANTENNA MAST AND EQUIPMENT TURNTABLE	.13
INSTRUMENT CALIBRATION	.13
TEST PROCEDURES	.14
EUT AND CABLE PLACEMENT	.14
CONDUCTED EMISSIONS	.14
RADIATED EMISSIONS	.14
CONDUCTED EMISSIONS FROM ANTENNA PORT	.18
BANDWIDTH MEASUREMENTS	.18
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	.19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	10
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	20
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	.20
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	.21
SAMPLE CALCULATIONS - RADIATED EMISSIONS	.21
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	.22
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	.23
APPENDIX B TEST DATA	.25
FND OF REPORT	0
EID OF REI ORI	.43

SCOPE

An electromagnetic emissions test has been performed on the XP Metal Detectors model DELLFMFHP, pursuant to the following rules:

RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS-210 Issue 11 "Licence-Exempt Radio Apparatus: Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Element Materials Technology Fremont test procedures: ANSI C63.10-2013

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

Element Materials Technology Fremont is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of XP Metal Detectors model DELLFMFHP complied with the requirements of the following regulations:

RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS-210 Issue 11 "Licence-Exempt Radio Apparatus: Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of XP Metal Detectors model DELLFMFHP and therefore apply only to the tested samples. The samples were selected and prepared by Huong Monnier of XP Metal Detectors.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DEVICES OPERATING UNDER THE GENERAL LIMITS

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.209		Transmitter Radiated Fundamental and Spurious Emissions, 9 kHz - 30 MHz	35.7 dBµV/m @ 0.033 MHz (-1.6 dB)	Refer to table in limits section	Complies
	RSS-GEN	Transmitter Radiated Fundamental and Spurious Emissions, 9 kHz - 30 MHz	-15.2 dBµA/m @ 0.033 MHz (-1.6 dB)	Refer to table in limits section	Complies
Note 1 Pass/Fail criteria defined by standards listed above.					

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral antennas	Unique or integral antenna required	Complies
15.207	RSS-Gen Table 4	AC Conducted Emissions	21.6 dBµV @ 0.499 MHz (-24.4 dB)	Refer to page 19	Complies
2.1093	RSS 102	RF Exposure Requirements	Refer to SAR exclusion calculations and NS measurements in separate exhibit, RSS 102 declaration	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSS-Gen 6.8	User Manual	Integrated antennas	Statement for products with detachable antenna	N/A
-	RSS-Gen 8.4	User Manual		Statement for all products	Complies
-	RSP-100 RSS-Gen 6.7	Occupied Bandwidth	0 kHz	Information only	N/A
Note 1 Pass/F	ail criteria defin	ed by standards listed ab	ove.		

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated omission (field strongth)	dBu\//m	25 to 1000 MHz	± 3.6 dB
	ασμν/π	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The XP Metal Detectors model DELLFMFHP is a metal detector that is designed to be used with a remote control unit for locating metal objects. Since the EUT could be placed in any position during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.7 VDC supplied by an internal rechargeable battery.

The samples were received on October 18, 2024 and tested on October 23, 28, November 1, 6, 7 and December 9, 2024 and January 7, 2025. The following samples of the EUT were used during testing:

Company	Model	Description	Serial Number	FCC ID
XPLORER	DELLFMFHP	Metal detector	4C000D	XFJDELLFMFHP
XPLORER	DELLFMFHP	Metal detector	CE000E	XFJDELLFMFHP
XPLORER	DELLFMFHP	Metal detector	CE001D	XFJDELLFMFHP

ANTENNA SYSTEM

The antenna system consists of an integrated 24 x13 cm loop for the detection radio and an integrated trace for the 2.4 GHz ISM band radio.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 24 cm wide by 13 cm deep by 5 cm high.

OTHER EUT INFORMATION

The detection radio in the EUT can operate from 8.8 - 90kHz or 110 - 120.3kHz. The 2.4GHz ISM radio can operate between 2404 and 2476MHz with a 2MHz channel separation.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
XPLORER	None	Control Box	None	-
or				

Company	Model	Description	Serial Number	FCC ID
XPLORER	DEUS II	Remote Control	020FFS	XFJRSW

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)		
FUIL		Description	Shielded or Unshielded	Length(m)
Charge	Not connected			

EUT OPERATION

During emissions testing the EUT was configured to transmit continuously a GFSK modulated signal on a selected channel in the 2.4 GHz ISM band at maximum power setting for rated power using the Control Box or to transmit continuously an unmodulated signal on a selected frequency from 8.8 to 120.3 kHz using the DEUS II Remote Control at maximum power setting for rated power. Note that this radio does not have sweep capability. The Control Box was disconnected after programming the EUT for testing.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS.

Site	Company / Registration Numbers FCC Canada		Location
Chamber 5 & 7	US1031	2845B (Wireless Test Lab #US0027)	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for testing below 1 GHz and 1.5m for testing above 1 GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

SIDE VIEW

Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

	Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
	Linear decrease on 0.150 to 0.500 logarithmic frequency axis between 56.0 and 46.0		Linear decrease on logarithmic frequency axis between 66.0 and 56.0
ľ	0.500 to 5.000	46.0	56.0
	5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands1.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

Below 30 MHz, the RSS-Gen general field strength limits are expressed in terms of magnetic field in uA/m equivalent to the electric field limits in the table assuming free space conditions.

¹ The restricted bands are detailed in FCC §15.205 and RSS-Gen Table 7

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. For FCC, fixed point to point applications using the 2400-2483.5 MHz band may use antennas with more than 6 dBi gain but output power is reduced by 1 dB for every 3dB that the antenna gain exceeds 6 dBi. For Canada, fixed point-to-point applications using the 2400-2483.5 MHz band are not subject to this restriction. Fixed point-to-point applications using the 5725 – 5850 MHz band are also not subject to this restriction. Certification of DTS systems operating in the 5725-5850 MHz band is no longer allowed under FCC Rules per §15.37(h).

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS GEN. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$\begin{split} R_r - S &= M \\ where: \\ R_r &= Receiver Reading in dBuV \\ S &= Specification Limit in dBuV \\ M &= Margin to Specification in +/- dB \end{split}$$

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$
 and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer Radiated Emissions	Description	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
National Technical Systems	NTS EMI Software (rev 2 10)	N/A	WC022452	N/A	
ETS-Lindgren	EMC Chamber #5, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 5 (FACT-5)	WC055567	5/24/2024	5/24/2027
Hewlett Packard	Spectrum Analyzer (Purple)	8564E	WC055660	6/7/2024	6/30/2025
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	WC064416	10/7/2024	10/7/2025
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blue)	3115	WC064442	11/18/2022	11/18/2024
Hewlett Packard Semflex Microwave Solutions	High Pass filter, 3.5 GHz RF Coaxial Cable, 1 m blue	84300-80038 N1S3HPT19039 .4 (HPT 190)	WC064495 WC064542	9/6/2024 4/12/2024	9/6/2025 4/12/2025
Semflex Microwave Solutions	RF Coaxial Cable, 3.5m blue	N1N1HPT30138 (HPT 305)	WC064587	3/11/2024	3/11/2025
Conducted Emission	ns - AC Power Ports, 23-Oct	-24			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
ETS-Lindgren	EMĆ Chamber #5, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 5 (FACT-5)	WC055567	5/24/2024	5/24/2027
EMCO Rohde & Schwarz Andrew Coleman Company Belden	LISN, 10 kHz-100 MHz Pulse Limiter LDF4-50A, Heliax 17m RG223, Coax, 4.0m RG214, coaxial cable, 4.0	3825/2 ESH3 Z2 Cable Assembly Cable Assembly Cable Assembly	WC064399 WC064445 WC064471 WC064824 WC064843	1/25/2024 6/21/2024 2/8/2024 3/11/2024 4/12/2024	1/25/2025 6/21/2025 2/8/2025 3/11/2025 4/12/2025
Rhode & Schwarz	m EMI Test Receiver, 20Hz- 26.5GHz	ESI	WC071498	7/17/2024	7/17/2025
Radiated Emissions.	9 kHz - 30.000 MHz. 28-Oct	-24			
National Technical Systems	NTS EMI Software (rev 2 10)	N/A	WC022452	N/A	
ETS-Lindgren	EMC Chamber #5, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 5 (FACT-5)	WC055567	5/24/2024	5/24/2027
Rhode & Schwarz Rhode & Schwarz	Loop Antenna EMI Test Receiver, 20Hz- 26.5GHz	HFH2-Z2 ESI	WC062457 WC071498	1/24/2024 7/17/2024	1/24/2026 7/17/2025
Radiated Emissions,	1 - 25 GHz, 01-Nov-24				
National Technical	NTS EMI Software (rev	N/A	WC022452	N/A	
Hewlett Packard Hewlett Packard	Spectrum Analyzer (Red) Microwave Preamplifier	8564E (84125C) 84125C Head	WC055584 WC055610	7/29/2024 6/12/2024	7/31/2025 6/12/2025
Hewlett Packard	Spectrum Analyzer	8564E	WC055660	6/7/2024	6/30/2025
EMCO	Antenna, Horn, 1-18 GHz	3115	WC064432	5/16/2023	5/16/2025

Element Materials Technology Fremont

Project number PR185702 Report Date: April 24, 2025, Re-issued Date: April 28, 2025

сı	nun	iber	Γ	KI (557	02
Б		4	.1	20	20	25

		Report Dute. Apri	a 24, 2025, Re-a	ssueu Duie. Apri	i 20, 2023
Manufacturer Hewlett Packard A. H. Systems Agilent Technologies	Description High Pass filter, 3.5 GHz Antenna, Horn, 18-40GHz Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 84300-80038 SAS-574 8449B	<u>Asset #</u> WC064495 WC064555 WC064574	Calibrated 9/6/2024 8/28/2023 4/18/2024	<u>Cal Due</u> 9/6/2025 8/28/2025 4/18/2025
Radiated Emissions	, 1 - 25 GHz, 05-Nov-24				
National Technical	NTS EMI Software (rev	N/A	WC022452	N/A	
Systems Hewlett Packard	2.10) Microwave Preamplifier Head 18-40 GHz (Purple)	84125C Head	WC055610	6/12/2024	6/12/2025
Hewlett Packard	Spectrum Analyzer (Purple)	8564E	WC055660	6/7/2024	6/30/2025
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	WC064416	10/7/2024	10/7/2025
EMCO A. H. Systems Hewlett Packard	Antenna, Horn, 1-18 GHz Antenna, Horn, 18-40GHz High Pass filter, 3.5 GHz	3115 SAS-574 84300-80038	WC064417 WC064555 WC064495	9/10/2024 8/28/2023 9/6/2024	9/10/2026 8/28/2025 9/6/2025
Radio Antenna Port	(Power and Spurious Emiss	sions), 06-Nov-24			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
National Technical Systems	NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A	
National Technical Systems	EMC Lab #4A	None	WC055574	N/A	
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055650	11/10/2023	11/30/2024
Fairview Microwave	Attenuator 6dB 5Watt	SA18N5W-06	WC078729	N/A	
Radiated Emissions	, 30 - 1,000 MHz, 07-Nov-24				
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Sunol Sciences Rohde & Schwarz	Biconilog, 30-3000 MHz EMI Test Receiver, 20Hz-	JB3 ESIB 7	WC064478 WC064989	1/18/2024 12/28/2023	1/18/2026 12/28/2024
Com-Power	Preamplifier, 1-1000MHz	PAM-103	WC080961	4/18/2024	4/18/2025
Radio Antenna Port	(Power and Spurious Emiss	sions), 19-Nov-24			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
National Technical Systems	NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A	
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055670	10/14/2024	10/14/2025
Radio Antenna Port	(Bandwidth), 09-Dec-24				
National Technical Systems	NTS Capture Analyzer	N/A	WC022706	N/A	
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055670	10/14/2024	10/14/2025
OTA, 07-Jan-25					
<u>Manufacturer</u> Rohde & Schwarz	Description Signal Analyzer OTA	<u>Model</u> FSV13	<u>Asset #</u> WC064873	<u>Calibrated</u> 10/10/2024	<u>Cal Due</u> 10/31/2025

Appendix B Test Data

TL185702-RA-HF2-2413 Pages 26 – 44

element

EMC Test Data

Client:	XPLORER	PR Number:	PR185702			
Product	DELLFMFHP	T-Log Number:	TL185702-RA-HF2-2413			
System Configuration:		Project Manager:	Christine Krebill			
Contact:	Huong Monnier	Project Engineer:	David Bare			
Emissions Standard(s):	FCC Part 15, RSS-210, RSS-247	Class:	-			
Immunity Standard(s):	-	Environment:	Any			
"EAR-Controlled Data" These items are controlled by the U.S. Government and authorized for export only to the country of ultimate destination for use by the ultimate consignee or end-user(s) herein identified. They may not be resold, transferred, or otherwise disposed of, to any other country or to any person other than the authorized ultimate consignee or end- user(s), either in their original form or after being incorporated into other items, without first obtaining approval from the U.S. government or as otherwise authorized by U.S. law and regulations.						
EMC Test						

EMC Test Data

For The

XPLORER

Product

DELLFMFHP

Date of Last Test: 12/13/2024

	ele	ment			ЕМС	C Test Data
Client:	XPLORER				PR Number:	PR185702
Model:		Þ		T-	Log Number:	TL185702-RA-HF2-
WOUCI.		·		Proj	ect Manager:	Christine Krebill
Contact:	Huong Monr	nier		Proj	ect Engineer:	David Bare
Standard:	FCC Part 15	, RSS-210, RSS-247			Class:	-
		Condu (NTS Silicon Valley, Fremo	cted Emissions ont Facility, Semi-Anec	hoic Cham	ber)	
Test Spec	ific Detail Objective:	S The objective of this test session is to specification listed above.	o perform final qualificati	on testing o	f the EUT with	n respect to the
D Tes Te	ate of Test: st Engineer: st Location:	10/23/2024 M. Birgani Fremont Chamber #5	Config. Used: Config Change: EUT Voltage:	1 None Refer to inc	dividual run	
General T The EUT v LISN.	est Config vas located o	guration on a foam table inside the semi-anec	hoic chamber, 40 cm fro	m a vertical	coupling plan	e and 80cm from the
Amhient (Conditions	Temperature:	24-25 °C			
		Rel Humidity.	36-37 %			
		r ton training.				
Summary	of Result	S				
Rur	n #	Test Performed	Limit	Result	Margin	
1		CE, AC Power, 230V/50Hz	Class B	Pass	23.3 dBµV ((-22.7 dB)	@ 0.503 MHz
2		CE, AC Power,120V/60Hz	Class B	Pass	21.6 dBµV ((-24.4 dB)	@ 0.499 MHz
Modificati No modific Deviation No deviatio	ons Made ations were s From Th ons were ma	e During Testing made to the EUT during testing the Standard ade from the requirements of the stan	dard.			

Frequency (MHz)

element

EMC Test Data

Client:	XPLORER	PR Number:	PR185702				
Model:		T-Log Number:	TL185702-RA-HF2-				
	DELLFWIFTF	Project Manager:	Christine Krebill				
Contact:	Huong Monnier	Project Engineer:	David Bare				
Standard:	FCC Part 15, RSS-210, RSS-247	Class:	-				
Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz							

Peak readings captured during pre-scan (peak readings vs. average limit)

Frequency	Level	AC	Clas	ss A	Detector	Comments
MHz	dBμV	Line	Limit	Margin	QP/AVG	
0.433	35.1	Line	47.2	-12.1	Peak	
0.495	37.5	Line	46.1	-8.6	Peak	
0.500	31.2	Neutral	46.0	-14.8	Peak	
0.500	29.2	Neutral	46.0	-16.8	Peak	
0.503	37.3	Line	46.0	-8.7	Peak	
0.672	33.8	Line	46.0	-12.2	Peak	
0.689	27.2	Neutral	46.0	-18.8	Peak	

Final quasi-peak and average readings

Frequency	Level	AC	Clas	ss A	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/AVG	
0.503	23.3	Line	46.0	-22.7	AVG	AVG (0.10s)
0.503	33.0	Line	56.0	-23.0	QP	QP (1.00s)
0.495	22.4	Line	46.1	-23.7	AVG	AVG (0.10s)
0.495	32.2	Line	56.1	-23.9	QP	QP (1.00s)
0.672	28.8	Line	56.0	-27.2	QP	QP (1.00s)
0.672	18.6	Line	46.0	-27.4	AVG	AVG (0.10s)
0.500	18.6	Neutral	46.0	-27.4	AVG	AVG (0.10s)
0.500	18.5	Neutral	46.0	-27.5	AVG	AVG (0.10s)
0.433	19.6	Line	47.2	-27.6	AVG	AVG (0.10s)
0.433	28.9	Line	57.2	-28.3	QP	QP (1.00s)
0.500	25.3	Neutral	56.0	-30.7	QP	QP (1.00s)
0.500	25.2	Neutral	56.0	-30.8	QP	QP (1.00s)
0.689	12.3	Neutral	46.0	-33.7	AVG	AVG (0.10s)
0.689	20.0	Neutral	56.0	-36.0	QP	QP (1.00s)

element **EMC** Test Data PR Number: PR185702 Client: XPLORER T-Log Number: TL185702-RA-HF2-Model: DELLFMFHP Project Manager: Christine Krebill Project Engineer: David Bare Contact: Huong Monnier Standard: FCC Part 15, RSS-210, RSS-247 Class:

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

30.0

20.0

10.0-0.15

Frequency (MHz)

1.00

30.00

10.00

element

EMC Test Data

Client:	XPLORER	PR Number:	PR185702
Madal		T-Log Number:	TL185702-RA-HF2-
MOUEI.		Project Manager:	Christine Krebill
Contact:	Huong Monnier	Project Engineer:	David Bare
Standard:	FCC Part 15, RSS-210, RSS-247	Class:	-

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Peak readings captured during pre-scan (peak readings vs. average limit)

Frequency	Level	AC	Clas	ss A	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/AVG	
0.151	42.2	Neutral	56.0	-13.8	Peak	
0.438	31.7	Line	47.1	-15.4	Peak	
0.468	34.5	Neutral	46.5	-12.0	Peak	
0.499	34.9	Line	46.0	-11.1	Peak	
0.527	30.2	Neutral	46.0	-15.8	Peak	
0.536	34.6	Line	46.0	-11.4	Peak	
0.915	31.1	Line	46.0	-14.9	Peak	
5.551	27.2	Line	50.0	-22.8	Peak	

Final quasi-peak and average readings

Frequency	Level	AC	Clas	ss A	Detector	Comments
MHz	dBμV	Line	Limit	Margin	QP/AVG	
0.499	21.6	Line	46.0	-24.4	AVG	AVG (0.10s)
0.499	29.6	Line	56.0	-26.4	QP	QP (1.00s)
0.438	18.6	Line	47.1	-28.5	AVG	AVG (0.10s)
0.438	26.0	Line	57.1	-31.1	QP	QP (1.00s)
0.536	14.8	Line	46.0	-31.2	AVG	AVG (0.10s)
0.915	13.2	Line	46.0	-32.8	AVG	AVG (0.10s)
0.536	22.5	Line	56.0	-33.5	QP	QP (1.00s)
0.915	22.4	Line	56.0	-33.6	QP	QP (1.00s)
0.527	11.0	Neutral	46.0	-35.0	AVG	AVG (0.10s)
0.468	10.7	Neutral	46.5	-35.8	AVG	AVG (0.10s)
0.151	29.1	Neutral	66.0	-36.9	QP	QP (1.00s)
0.527	19.0	Neutral	56.0	-37.0	QP	QP (1.00s)
0.468	17.8	Neutral	56.5	-38.7	QP	QP (1.00s)
5.551	11.2	Line	50.0	-38.8	AVG	AVG (0.10s)
5.551	19.4	Line	60.0	-40.6	QP	QP (1.00s)
0.151	12.4	Neutral	56.0	-43.6	AVG	AVG (0.10s)

🕒 ele	ment					EM	C Test Da	
Client: XPLORER						PR Number:	PR185702	
		T-	Log Number:	1L103/02-KA-HF				
		Proj	ect Manager:	Christine Krebill				
Contact: Huong Monn	ier	Proj	ect Engineer:	David Bare				
Standard: FCC Part 15	, RSS-210, RSS-247		Class:	N/A				
		Radia	ted Emis	sions				
est Specific Detail Objective:	S The objective of this test specification listed above	t session is to e.	perform final	qualificatior	n testing of t	he EUT with i	respect to the	
General Test Config The EUT was located of	juration on the turntable for radiat	ted emissions	stesting. The	EUT was te	ested in all t	nree orthogor	nal orientations.	
Note, preliminary testin antenna. Maximized te antenna, and manipula	g indicates that the emis sting indicated that the ε tion of the EUT's interfac	sions were m emissions wer ce cables.	aximized by o re maximized	prientation c by orientati	of the EUT a on of the EL	nd elevation o JT, elevation o	of the measuremen of the measuremen	
Ambient Conditions	з: Т	emperature:	21	°C				
	R	el. Humidity:	41 9	%				
	_							
	5 Test Perform	ed	lim	it	Result	Value / Mar	ain	
2 Call #	Radiated Fundamer	ntal and	FCC 1	5.209	Duri	35.7 dBµV/i	BµV/m @ 0.033 MHz	
3	Spurious Emiss	ions	RSS 210/RSS GEN Pass			(-1.6 dB)		
Indifications Made	During Testing							
No modifications water No modifications were Deviations From Th No deviations were ma	made to the EUT during e Standard de from the requirement	testing s of the stand	lard.					
No modifications wate Deviations From Th No deviations were ma Date of Test:	made to the EUT during e Standard de from the requirements 10/28/2024	testing s of the stand	lard. Co	nfig. Used:	1			
No modifications water Deviations From Th No deviations were ma Date of Test: Test Engineer:	made to the EUT during e Standard de from the requirement 10/28/2024 M.Birgani	testing s of the stand	lard. Con 	nfig. Used: ig Change:	1 None			
No modifications ware Deviations From Th No deviations were ma Date of Test: Test Engineer: Test Location:	made to the EUT during e Standard de from the requirement 10/28/2024 M.Birgani Fremont Chamber #5	testing s of the stand	lard. Con El	nfig. Used: ig Change: JT Voltage:	1 None Battery			
No modifications water Deviations From Th No deviations were ma Date of Test: Test Engineer: Test Location: Free	made to the EUT during e Standard de from the requirement 10/28/2024 M.Birgani Fremont Chamber #5 <u>quency Range</u>	testing s of the stand	lard. Con El istance	nfig. Used: ig Change: JT Voltage: Limit D	1 None Battery	Extrapola	tion Factor	
No modifications water Deviations From Th No deviations were ma Date of Test: Test Engineer: Test Location: Free 0.0	made to the EUT during e Standard de from the requirement 10/28/2024 M.Birgani Fremont Chamber #5 <u>quency Range</u> 109 - 0.49 MHz	testing s of the stand Test Di	lard. Con El istance	nfig. Used: ig Change: JT Voltage: Limit D 3(1 None Battery istance 00	Extrapola Per ANS	tion Factor SI C63.10	

EAR-Controlled Data FCC 15C 28-Oct-24

element EMC Test Data										
Client:	XPLORER			т	PR Number: PR185702					
Model:	DELLFMFH	P		Proi	Project Manager: Christine Krebill					
Contact:	Huona Monr	nier	Proi	Project Engineer: David Bare						
Standard:	FCC Part 15	, RSS-210,	Class: N/A							
		,,								
Frequency	Level	Pol	RSS 210 / I	-CC 15.209	Detector	Azimuth	Height	Comments	Orientation	
MHz	dBµV/m	O/C/P	Limit	Margin	Pk/QP/Avg	degrees	meters			
0.033	36.3	0	37.2	-0.9	Peak	195	1.3	Fundamenta	al Side	
0.099	16.3	0	27.7	-11.4	Peak	195	1.3		Side	
0.165	5.6	0	23.2	-17.6	Peak	187	1.3		Side	
0.231	-1.4	0	20.3	-21.7	Peak	182	1.3		Side	
0.490	-4.6	0	13.8	-18.4	Peak	185	1.3		Side	
0.033	25.2	0	37.2	-12.0	Peak	360	1.3	Fundamenta	al Flat	
0.098	5.4	0	27.7	-22.3	Peak	360	1.3		Flat	
0.166	-5.8	0	23.2	-29.0	Peak	4	1.3		Flat	
0.231	-12.6	0	20.3	-32.9	Peak	4	1.3		Flat	
0.490	-15.4	0	13.8	-29.2	Peak	8	1.3		Flat	
0.033	36.0	0	37.2	-1.2	Peak	198	1.3	Fundamenta	al Upright	
0.098	16.1	0	27.7	-11.6	Peak	193	1.3		Upright	
0.165	5.3	0	23.2	-17.9	Peak	188	1.3		Upright	
0.232	-1.9	0	20.3	-22.2	Peak	186	1.3		Upright	
0.426	-6.2	0	15.0	-21.2	Peak	195	1.3		Upright	
0.489	-6.7	0	13.8	-20.5	Peak	186	1.3		Upright	
Fraguanay	Loval	Dol	DCC 210 / I	CC 15 200	Detector	Azimuth	Hoight	Commonto	Orientation	
			Limit	Margin		Azimum	meters	Comments	Uneritation	
0.033	α <u>υμν/</u> π 32.0	0/0/P	37.2	101aryin 13	Doak	07/	1 3	Fundament	al Sido	
0.000	12.9	<u> </u>	27.7	-4.5	Poak	214	1.3		side	
0.099	2.5	<u> </u>	21.1	-14.0	Poak	203	1.3		side	
0.100	-4.8	<u> </u>	20.2	-25.1	Peak	261	1.0		side	
0.201	-8.0	<u> </u>	13.8	-21.8	Peak	258	1.3		side	
0.430	9.6	<u> </u>	37.2	-27.6	Peak	116	1.0	Fundament	al Flat	
0.000	-4 1	<u>с</u>	27.9	-32.0	Peak	256	1.3	1 unuumona	Flat	
0.000	-20.5	<u>с</u>	23.2	-43.7	Peak	96	1.3		Flat	
0.033	32.7	C C	37.2	-4.5	Peak	274	1.3	Fundamenta	al Upright	
0.099	12.6	<u> </u>	27.7	-15.1	Peak	280	1.3	i unuuniona	Upright	
0.165	1.9	C	23.2	-21.3	Peak	270	1.3		Upright	
0.231	-5.0	C	20.3	-25.3	Peak	270	1.3		Upright	
0.490	-8.3	С	13.8	-22.1	Peak	261	1.3		Upright	
									1.0	
Note 1:	O/C/P indica	ites loop ant	enna orientat	ion (Open, C	Closed or Per	pendicular)				
Note 0	As the devic	e can be ha	nd-held or as	the device of	an be operat	ed in differer	t orientatio	ns, measurem	ents were made with	
NOLE Z:	the device in	<u>all three o</u> ri	entations, Up	oright, Side a	nd Flat.					

	element	EM	C Test Data
Client:	XPLORER	PR Number: T-L og Number:	PR185702
Model:	DELLFMFHP	Project Manager:	2/13 Christine Krebill
Contact:	Huong Monnier	Project Engineer:	David Bare
Standard:	FCC Part 15, RSS-210, RSS-247	Class:	N/A
Amplitude (dBuV/m)	(Loop antenna Open) 40.0- 20.0- 10.0- 0.0- -10.0- 0.49 1.00 Frequency (MHz)	u/wu/~/www.mu/lu	

	_									
	ele	me	ent					EMC T	est Data	
Client:	XPLORER							PR Number: PR185702		
Model:	DELLEMEN	Р		Project Manager: Christine Krebill						
Contact:	Huona Monr	nier		Project Engineer: David Bare						
Ctandard	ECC Dort 15		000 017	Class: N/A						
Standard.	FUC Fait 10), KSS-210, I	K33-241					Class. IN/A		
Dun #2. M	avimized De	odingo Eur	ndomontal a	nd Tranami	ttor Sourious	Emissions	0 000 20	MU-		
Rull #3. 10		auniys - rui	iluainentai a		tter Spurious		, 0.009 - 30	WITZ		
Fundame	ental and Sp	urious Emis	sions							
Frequency	Level	Pol	FCC 2	15.209	Detector	Azimuth	Height	Comments	Orientation	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
0.033	35.7	0	37.3	-1.6	QP	194	1.3	Fundamental	Side	
0.098	15.9	0	27.8	-11.9	QP	193	1.3		Side	
0.165	4.9	0	23.3	-18.4	QP	194	1.3		Side	
0.033	35.4	0	37.3	-1.9	QP	200	1.3	Fundamental	Upright	
0.098	15.6	0	27.8	-12.2	QP	193	1.3		Upright	
0.165	4.5	0	23.3	-18.8	QP	199	1.3		Upright	
0.490	23.3	С	33.8	-10.5	QP	280	1.3		Upright	
0.490	27.4	0	33.8	-6.4	QP	196	1.3		Upright	
1.209	13.1	0	30.7	-17.6	QP	174	1.3		Upright	
15.390	3.6	Р	29.5	-25.9	QP	28	1.0	Noise Floor	Flat	
Francianav	Laval	Del		010	Detector	A —i.ee. ith	Llaight	Commonto	Orientetion	
		P01	Limit	-210 Morain		Azimum	meigni	Comments	Unentation	
0.033	ασμΑ/Π -15.8	0	1/ 2			10/	1 3	Fundamental	Sido	
0.033	-15.0	0	-14.2	-1.0		104	1.3	Tunuamentai	Side	
0.030	-46.6	0	-23.7	-18.4		194	1.3		Side	
0.100	-16.1	0	-14.2	_1 9		200	1.3	Fundamental	Linright	
0.000	-35.9	0	-23.7	-12.2		193	1.3	i undamenta	Upright	
0.000	-47.0	0	-28.2	-18.8	QP	199	1.0		Upright	
0.100	-28.2	C C	-17.7	-10.5	QP	280	1.0		Upright	
0.490	-24.1	0	-17.7	-6.4	QP	196	1.0		Upright	
1 209	-38.4	0	-20.8	-17.6	QP	174	1.3		Upright	
15,390	-47.9	P	-22.0	-25.9	QP	28	1.0	Noise Floor	Flat	
		•		_0.0	<u>ц</u> .		•			
Note 1:	O/C/P indica	ates loop ant	enna orientai	tion (Open, (Closed or Per	pendicular)				

End of Report

This page is intentionally blank and marks the last page of this test report.