Shenzhen Huatongwei International Inspection Co., Ltd. 1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn # TEST REPORT Report No.: CHTEW20050076 Report Verification: Project No...... SHT2004155101EW FCC ID.....: 2AVTH-HTN4000MPC Applicant's name.....: Hyundai Technology Group, Inc. Manufacturer...... Hyundai Technology Group, Inc. Test item description: HYUNDAI Mini PC Trade Mark HYUNDAI Model/Type reference...... HTN4000MPC Listed Model(s) - Standard: FCC CFR Title 47 Part 15 Subpart E Section 15.407 Date of receipt of test sample.......... May 09, 2020 Date of testing...... May 09, 2020- May 19, 2020 Date of issue...... May 20, 2020 Result.....: PASS (Position+Printed name+Signature): Compiled by (Position+Printed name+Signature): File administrator Echo Wei Supervised by Approved by (Position+Printed name+Signature): RF Manager Hans Hu Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd. Project Engineer Kiki Kong Tianliao, Gongming, Shenzhen, China Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report merely correspond to the test sample. Page: 1 of 32 Report No.: CHTEW20050076 Page: 2 of 32 Issued: 2020-05-20 # **Contents** | <u>1.</u> | IEST STANDARDS AND REPORT VERSION | 3 | |-----------|--|----| | | To at Otan danda | 2 | | 1.1. | Test Standards | 3 | | 1.2. | Report version | 3 | | <u>2.</u> | TEST DESCRIPTION | 4 | | _ | | _ | | <u>3.</u> | SUMMARY | 5 | | 3.1. | Client Information | 5 | | 3.2. | Product Description | 5 | | 3.3. | Radio Specification Description | 5 | | 3.4. | Testing Laboratory Information | 6 | | <u>4.</u> | TEST CONFIGURATION | 7 | | 4.4 | To at the much pay list | 7 | | 4.1. | Test frequency list | 7 | | 4.2. | Descriptions of Test mode | 7 | | 4.3. | Test mode | 7 | | 4.4. | Support unit used in test configuration and system | 8 | | 4.5. | Testing environmental condition | 8 | | 4.6. | Measurement uncertainty | 8 | | 4.7. | Equipment Used during the Test | 9 | | <u>5.</u> | TEST CONDITIONS AND RESULTS | 11 | | 5.1. | Antenna Requirement | 11 | | 5.2. | AC Conducted Emission | 12 | | 5.3. | Maximum Conducted Output Power | 15 | | 5.4. | Power Spectral Density | 16 | | 5.5. | 26dB bandwidth and 99% Occupy bandwidth | 18 | | 5.6. | 6dB Bandwidth | 19 | | 5.7. | Band edge | 20 | | 5.8. | Radiated Spurious Emissions | 23 | | 5.9. | Frequency stability | 29 | | <u>6.</u> | TEST SETUP PHOTOS | 30 | | <u>7.</u> | EXTERANAL AND INTERNAL PHOTOS | 32 | | 8. | APPENDIX REPORT | 32 | | | | | Report No.: CHTEW20050076 Page: 3 of 32 Issued: 2020-05-20 # 1. TEST STANDARDS AND REPORT VERSION ## 1.1. Test Standards The tests were performed according to following standards: - FCC Rules Part 15.407: General technical requirements. - ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices - KDB789033 D02 v02r01: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E # 1.2. Report version | Revision No. | Date of issue | Description | |--------------|---------------|-------------| | N/A | 2020-05-20 | Original | | | | | | | | | | | | | | | | | Report No.: CHTEW20050076 Page: 4 of 32 Issued: 2020-05-20 # 2. TEST DESCRIPTION | Report clause | Test Items | Standard Requirement | Result | |---------------|--|----------------------|--------| | 5.1 | Antenna Requirement | 15.203/15.247(c) | PASS | | 5.2 | AC Conducted Emission | 15.207 | PASS | | 5.3 | Maximum Conducted Output Power | 15.407(a) | PASS | | 5.4 | Maximum Power Spectral Density | 15.407(a) | PASS | | 5.5 | 26dB Bandwidth and 99% Ocuppy bandwith | 15.407(a) | PASS | | 5.6 | 6dB Bandwidth | 15.407(a) | PASS | | 5.7 | Band edge | 15.407(b) | PASS | | 5.8 | Radiated Spurious Emissions | 15.209 | PASS | | 5.9 | Frequency Stability | 15.407(g) | PASS | ## Note: The measurement uncertainty is not included in the test result. Report No.: CHTEW20050076 Page: 5 of 32 Issued: 2020-05-20 # 3. **SUMMARY** # 3.1. Client Information | Applicant: | Hyundai Technology Group, Inc. | |---|--------------------------------| | Address: 2601 Walnut Ave. Tustin, CA, USA | | | Manufacturer: | Hyundai Technology Group, Inc. | | Address: 2601 Walnut Ave. Tustin, CA, USA | | # 3.2. Product Description | Name of EUT: | HYUNDAI Mini PC | | |-------------------|-----------------|--| | Trade Mark: | HYUNDAI | | | Model No.: | HTN4000MPC | | | Listed Model(s): | - | | | Power supply: | AC 120V | | | Hardware version: | IP3-GB3-MB-V30 | | | Software version: | GB3V35 | | # 3.3. Radio Specification Description | Support type ^{*1} | ⊠ 802.11a | ⊠ 802.11n(HT20) | ⊠ 802.11n(HT40) | | | |----------------------------|----------------------------------|-----------------|------------------|--|--| | | ⊠ 802.11ac(HT20) | 802.11ac(HT40) | ⊠ 802.11ac(HT80) | | | | Function: | Outdoor AP | ☐ Indoor AP | ☐ Fixed P2P | | | | | | | | | | | Modulation: | BPSK, QPSK, 16QAM, 64QAM | | | | | | Operation frequency: | ☐ Band I: 5150MHz~5250MHz | | | | | | Operation frequency: | Band IV: 5725MHz~5850MHz | | | | | | | 20MHz: 802.11ac,802.11n, 802.11a | | | | | | Supported Bandwidth | 40MHz: 802.11ac,802.11n | | | | | | | 80MHz: 802.11ac | | | | | | Antenna type: | FPC Antenna | | | | | | Antenna gain: | 1.28dBi | | | | | Note: ^{*1:} only show the RF function associated with this report. Report No.: CHTEW20050076 Page: 6 of 32 Issued: 2020-05-20 # 3.4. Testing Laboratory Information | Laboratory Name | Shenzhen Huatongwei International Inspection Co., Ltd. | | | | |---------------------|--|----------------------|--|--| | Laboratory Location | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China | | | | | | Туре | Accreditation Number | | | | | CNAS | L1225 | | | | Qualifications | A2LA | 3902.01 | | | | | FCC | 762235 | | | | | Canada | 5377A | | | Report No.: CHTEW20050076 Page: 7 of 32 Issued: 2020-05-20 # 4. TEST CONFIGURATION # 4.1. Test frequency list According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below . | | Test | 20MHz | | 40MHz | | 80MHz | | |------|-----------------|---------|--------------------|---------|--------------------|---------|--------------------| | Band | Channel | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | | CH∟ | 36 | 5180 | 38 | 5190 | - | - | | I | CH _M | 44 | 5220 | 1 | - | 42 | 5210 | | | CH _H | 48 | 5240 | 46 | 5230 | - | - | | | CH∟ | 149 | 5745 | 151 | 5755 | - | - | | IV | CH _M | 157 | 5785 | - | - | 155 | 5775 | | | CH _H | 165 | 5825 | 159 | 5795 | - | - | ## 4.2. Descriptions of Test mode Preliminary tests were performed in different data rates, final test modes are considering the modulation and worse data rates as below table. | Modulation | Data rate | |-------------------------------|-----------| | 802.11a | 6Mbps | | 802.11n(HT20)/ 802.11ac(HT20) | MCS0 | | 802.11n(HT40)/ 802.11ac(HT40) | MCS0 | | 802.11ac(HT80) | MCS0 | #### 4.3. Test mode For RF test items The engineering test program was provided and enabled to make EUT continuous transmit. For AC power line conducted emissions: The EUT was set to connect with the WLAN AP under large package sizes transmission. For Radiated spurious emissions test item: The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report. Report No.: CHTEW20050076 Page: 8 of 32 Issued: 2020-05-20 # 4.4. Support unit used in test configuration and system The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. The following peripheral devices and interface cables were connected during the measurement: | Wheth | Whether support unit is used? | | | | | | |-------|-------------------------------|------------|-----------|--------|------------|--| | ✓ | ✓ No | | | | | | | Item | Equipement | Trade Name | Model No. | FCC ID | Power cord | | | 1 | | | | | | | | 2 | | | | | | | # 4.5. Testing environmental condition | Туре | Requirement | Actual | |--------------------|--------------|----------| | Temperature: | 15~35°C | 25°C | | Relative Humidity: | 25~75% | 50% | | Air Pressure: | 860~1060mbar | 1000mbar | # 4.6. Measurement uncertainty | Test Item | Measurement Uncertainty | |--------------------------------------|-------------------------| | AC Conducted Emission (150kHz~30MHz) | 3.02 dB | | Radiated Emission (30MHz~1000MHz | 4.90 dB | | Radiated Emissions (1GHz~25GHz) | 4.96 dB | | Peak Output Power | 0.51 dB | | Power Spectral Density | 0.51 dB | | Conducted Spurious Emission | 0.51 dB | | 6dB Bandwidth | 70 Hz | | Frequency error | 70 Hz | This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96. Report No.: CHTEW20050076 Page: 9 of 32 Issued: 2020-05-20 # 4.7. Equipment Used during the Test | • | Conducted Emission | | | | | | | | | | |------|------------------------|--------------------|---------------|--------------------|-------------------|------------------------------|------------------------------|--|--|--| | Used | Test Equipment | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | | | | • | Shielded Room | Albatross projects | HTWE0114 | N/A | N/A | 2018/09/28 | 2023/09/27 | | | | | • | EMI Test Receiver | R&S | HTWE0111 | ESCI | 101247 | 2019/10/26 | 2020/10/25 | | | | | • | Artificial Mains | SCHWARZBECK | HTWE0113 | NNLK 8121 | 573 | 2019/10/23 | 2020/10/22 | | | | | • | Pulse Limiter | R&S | HTWE0033 | ESH3-Z2 | 100499 | 2019/10/23 | 2020/10/22 | | | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0113-02 | ENVIROFLE
X_142 | EF-NM-
BNCM-2M | 2019/10/23 | 2020/10/22 | | | | | • | Test Software | R&S | N/A | ES-K1 | N/A | N/A | N/A | | | | | • | Radiated emission-6th test site | | | | | | | | | |------|---------------------------------|--------------------|------------------|-----------------|------------|------------------------------|------------------------------|--|--| | Used | Test Equipment | Manufacturer | Equipment
No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | | | • | Semi-Anechoic
Chamber | Albatross projects | HTWE0127 | SAC-3m-02 | C11121 | 2018/09/30 | 2021/09/29 | | | | • | EMI Test Receiver | R&S | HTWE0099 | ESCI | 100900 | 2019/10/26 | 2020/10/25 | | | | • | Loop Antenna | R&S | HTWE0170 | HFH2-Z2 | 100020 | 2018/04/02 | 2021/04/01 | | | | • | Ultra-Broadband
Antenna | SCHWARZBECK | HTWE0123 | VULB9163 | 538 | 2018/04/04 | 2021/04/03 | | | | • | Pre-Amplifer | SCHWARZBECK | HTWE0295 | BBV 9742 | N/A | 2019/11/14 | 2020/11/13 | | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0062-
01 | N/A | N/A | 2019/08/21 | 2020/08/20 | | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0062-
02 | SUCOFLEX
104 | 501184/4 | 2019/05/27 | 2020/05/26 | | | | • | Test Software | R&S | N/A | ES-K1 | N/A | N/A | N/A | | | | • | Radiated emis | sion-7th test site | | | | | | |------|-----------------------------|--------------------|---------------|----------------------|-------------|------------------------------|------------------------------| | Used | Test Equipment | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | • | Semi-Anechoic
Chamber | Albatross projects | HTWE0122 | SAC-3m-01 | N/A | 2018/09/27 | 2021/09/26 | | • | Spectrum
Analyzer | R&S | HTWE0098 | FSP40 | 100597 | 2019/10/26 | 2020/10/25 | | • | Horn Antenna | SCHWARZBECK | HTWE0126 | 9120D | 1011 | 2020/04/01 | 2023/03/31 | | • | Horn Antenna | SCHWARZBECK | HTWE0103 | BBHA9170 | 25841 | 2018/10/11 | 2021/10/10 | | • | Broadband Horn
Antenna | SCHWARZBECK | HTWE0103 | BBHA9170 | BBHA9170472 | 2018/10/11 | 2021/10/10 | | • | Pre-amplifier | CD | HTWE0071 | PAP-0102 | 12004 | 2019/11/14 | 2020/11/13 | | • | Broadband Pre-
amplifier | SCHWARZBECK | HTWE0201 | BBV 9718 | 9718-248 | 2019/05/23 | 2020/05/22 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-01 | 6m 18GHz
S Serisa | N/A | 2020/05/10 | 2021/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-02 | 6m 3GHz
RG Serisa | N/A | 2020/05/10 | 2021/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-03 | 6m 3GHz
RG Serisa | N/A | 2020/05/10 | 2021/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-04 | 6m 3GHz
RG Serisa | N/A | 2020/05/10 | 2021/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0121-01 | 6m 18GHz
S Serisa | N/A | 2020/05/10 | 2021/05/09 | | • | Test Software | Audix | N/A | E3 | N/A | N/A | N/A | Report No.: CHTEW20050076 Page: 10 of 32 Issued: 2020-05-20 | • | RF Conducted Method | | | | | | | | | | |------|------------------------------|--------------|-----------|------------|------------------------------|------------------------------|--|--|--|--| | Used | Test Equipment | Manufacturer | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | | | | | • | Signal and spectrum Analyzer | R&S | FSV40 | 100048 | 2019/10/26 | 2020/10/25 | | | | | | • | Spectrum Analyzer | Agilent | N9020A | MY50510187 | 2019/10/26 | 2020/10/25 | | | | | | • | Power Meter | Anritsu | ML249A | N/A | 2019/10/26 | 2020/10/25 | | | | | | 0 | Radio communication tester | R&S | CMW500 | 137688-Lv | 2019/10/26 | 2020/10/25 | | | | | Report No.: CHTEW20050076 Page: 11 of 32 Issued: 2020-05-20 # 5. TEST CONDITIONS AND RESULTS ## 5.1. Antenna Requirement ## Requirement ## FCC CFR Title 47 Part 15 Subpart C Section 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. ## **TEST RESULT** | ■ Not Applicable | |------------------| | | The antenna type is a FPC antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo. Report No.: CHTEW20050076 Page: 12 of 32 Issued: 2020-05-20 #### 5.2. AC Conducted Emission #### LIMIT # FCC CFR Title 47 Part 15 Subpart C Section 15.207 | Fraguesey range (MHz) | Limit (dBuV) | | | | | |-----------------------|--------------|-----------|--|--|--| | Frequency range (MHz) | Quasi-peak | Average | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | 0.5-5 | 56 | 46 | | | | | 5-30 | 60 | 50 | | | | ^{*} Decreases with the logarithm of the frequency. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. The EUT was setup according to ANSI C63.10 requirements. - 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. - The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. - 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) - 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. - 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. - 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. - 8. During the above scans, the emissions were maximized by cable manipulation. #### TEST MODE: Please refer to the clause 4.3 ## **TEST RESULT** Report No.: CHTEW20050076 Page: 13 of 32 Issued: 2020-05-20 Report No.: CHTEW20050076 Page: 14 of 32 Issued: 2020-05-20 Report No.: CHTEW20050076 Page: 15 of 32 Issued: 2020-05-20 # 5.3. Maximum Conducted Output Power #### LIMIT ## FCC CFR Title 47 Part 15 Subpart E Section 15.407(a): #### For the 5.15~5.25GHz band: Outdoor AP The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx} >6dBi, then P_{out} =30-(G_{Tx} -6). e.i.r.p. at any elevation angle above 30 degrees \leq 125mW (21dBm) Indoor AP The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx} >6dBi, then Pout =30-(G_{Tx} -6). Point-to-point AP The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx} >23dBi, then Pout =30-(G_{Tx} -23). Client devices The maximum conducted output power (P_{out}) shall not exceed the lesser of 250W (24dBm). if G_{Tx} >6dBi, then Pout =24-(G_{Tx} -6). #### For the 5.725~5.85GHz band: Point-to-multipoint systems (P2M) The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx} >6dBi, then P_{out} =30-(G_{Tx} -6). Point-to-point systems (P2P) The maximum conducted output power (Pout) shall not exceed the lesser of 1W (30dBm). #### **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1. The EUT was tested according to KDB789033 Section E-3-b) - 2. The maximum conducted output power may be measured using a broadband AVG RF power meter. - 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. - 4. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. - 5. Record the measurement data. #### 6. TEST MODE: Please refer to the clause 4.3 ## **TEST RESULT** # TEST Data Please refer to appendix A on the appendix report Report No.: CHTEW20050076 Page: 16 of 32 Issued: 2020-05-20 ## 5.4. Power Spectral Density #### LIMIT FCC CFR Title 47 Part 15 Subpart E Section 15.407(a): #### For the 5.15~5.25GHz band: Outdoor AP The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. if G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6). Indoor AP The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. if G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6). Point-to-point AP The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. if G_{Tx} >23dBi, then PSD =17-(G_{Tx} -23). Client devices The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. if G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6). ## For the 5.725~5.85GHz band: • Point-to-multipoint systems (P2M) The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz. if $G_{Tx}>6dBi$, then PSD = $30-(G_{Tx}-6)$. Point-to-point systems (P2P) The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. According KDB 789033 D02 Section F - 2. Analyzer was setting as follow: Center frequency: test channel Span was set to encompass the entire emission bandwidth of the signal RBW=1MHz for devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz RBW=500kHz for devices operating in the band 5.725-5.85 GHz VBW ≥ 3 RBW Number of sweep points > 2 x (span/RBW) Sweep time = auto Detector = Peak Trigger was set to free run for all modes, trace was averaged over 100 sweeps 3. The peak search function of the spectrum analyzer was used to find the peak of the spectrum. | Report No.: | CHTEW20050076 | Page: | 17 of 32 | Issued: | 2020-05-20 | |-----------------|--------------------------|-----------|----------|---------|------------| | | | | | | | | TEST MODE: | | | | | | | Please refer to | the clause 4.3 | | | | | | | | | | | | | TEST RESULT | <u>[</u> | | | | | | ⊠ Passed | ☐ Not Applicable | | | | | | □ I doocd | | | | | | | TEST Data | | | | | | | Please refer to | appendix B on the append | ix report | | | | Report No.: CHTEW20050076 Page: 18 of 32 Issued: 2020-05-20 # 5.5. 26dB bandwidth and 99% Occupy bandwidth #### LIMIT The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. According KDB 789033 D02 Section C, 26dB bandwidth test as follow - a) Set RBW = approximately 1% of the emission bandwidth. - b) Set the VBW > RBW. - c) Detector = Peak. - d) Trace mode = max hold. - e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. - 2. According KDB 789033 D02 Section D, 99% bandwidth test as follow - a). Set center frequency to the nominal EUT channel center frequency. - b). Set span = 1.5 times to 5.0 times the OBW. - c). Set RBW = 1% to 5% of the OBW - d). Set $VBW \ge 3$ RBW - e). Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. - f). Use the 99% power bandwidth function of the instrument #### TEST MODE: Please refer to the clause 4.3 #### **TEST RESULT** #### **TEST Data** Please refer to appendix C and D on the appendix report Report No.: CHTEW20050076 Page: 19 of 32 Issued: 2020-05-20 #### 5.6. 6dB Bandwidth #### **LIMIT** #### FCC CFR Title 47 Part 15 Subpart E Section 15.407(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. C Connect the antenna port(s) to the spectrum analyzer input. - 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer). Center Frequency =test channel center frequency Span=2 x emission bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold - 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer. - 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements. #### **TEST MODE:** Please refer to the clause 4.3 #### **TEST RESULT** #### **TEST Data** Please refer to appendix E on the appendix report Report No.: CHTEW20050076 Page: 20 of 32 Issued: 2020-05-20 # 5.7. Band edge ## **LIMIT** FCC CFR Title 47 Part 15 Subpart E Section 15.407(b) | Un-restricted band emissions above 1GHz | | | | | | | | | |---|-------------------|--|-------|--|--|--|--|--| | Operating Band | Frequency | EIRP Limit | Value | | | | | | | 5150-5250MHz | Above 1GHz | -27dBm/MHz(68.2dBuV/m)@3m | Peak | | | | | | | 5250-5350MHz | Above 1GHz | -27dBm/MHz(68.2dBuV/m)@3m | Peak | | | | | | | 5470-5725MHz | Above 1GHz | -27dBm/MHz(68.2dBuV/m)@3m | Peak | | | | | | | | 1GHz-5.65GHz | -27 dBm/MHz(68.2dBuV/m)@3m | Peak | | | | | | | | 5.65GHz-5.7GHz | -27*dBm/MHz to 10dBm/MHz
(68.2* dBuV/m to 105.6dBuV/m) | Peak | | | | | | | | 5.7GHz-5.72GHz | 10*dBm/MHz to 15.6dBm/MHz
(105.6*dBuV/m to 110.8dBuV/m) | Peak | | | | | | | 5725 5050 MLI- | 5.72GHz-5.725GHz | 15.6*dBm/MHz to 27dBm/MHz
(110.8dBuV/m to* 122.2dBuV/m) | Peak | | | | | | | 5725-5850 MHz | 5.85GHz-5.855GHz | 27dBm/MHz to 15.6*dBm/MHz
(122.2dBuV/m to110.8* dBuV/m) | Peak | | | | | | | | 5.855GHz-5.875GHz | 15.6dBm/MHz to 10*dBm/MHz
(110.8dBuV/m to 105.6* dBuV/m | Peak | | | | | | | | 5.875GHz-5.925GHz | 10dBm/MHz to -27*dBm/MHz
(105.6dBuV/m to 68.2* dBuV/m) | Peak | | | | | | | | Above 5.925GHz | -27 dBm/MHz(68.2dBuV/m)@3m | Peak | | | | | | ^{*} Increase/Decreases with the linearly of the frequency. For emission above 1GHz and in restricted band, according to FCC KDB 789033 D02 General UNII Test Procedure, all emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit. $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters. ## **TEST CONFIGURATION** #### Radiated: Report No.: CHTEW20050076 Page: 21 of 32 Issued: 2020-05-20 #### Conducted: #### **TEST PROCEDURE** - 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements. - 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. - 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters. - 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement. - The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value. #### TEST MODE: Please refer to the clause 4.3 #### **TEST RESULTS** ### **Conducted Band Edge Test Data** Please refer to appendix F on the appendix report Report No.: CHTEW20050076 Page: 22 of 32 Issued: 2020-05-20 # Radiated Band Edge Test Data | Band: I | Band: I Worst mode: 802.11a | | | | Test o | | | |--------------------|-----------------------------|-------------------|------------------------|----------------------|----------------|------------|--------------| | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 5150.00 | 24.96 | 33.85 | 68.20 | 34.35 | 8.89 | Vertical | Peak | | 5150.00 | 18.97 | 27.86 | 54.00 | 26.14 | 8.89 | Vertical | Average | | 5150.00 | 26.07 | 34.96 | 68.20 | 33.24 | 8.89 | Horizontal | Peak | | 5150.00 | 21.19 | 30.08 | 54.00 | 23.92 | 8.89 | Horizontal | Average | | Band: I Worst mode: 802 | | | | 2.11a | Test o | hannel: CH _H | | |-------------------------|-------------------------|-------------------|------------------------|----------------------|----------------|-------------------------|--------------| | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 5350.00 | 25.38 | 33.92 | 54.00 | 20.08 | 8.54 | Vertical | Peak | | 5350.00 | 18.55 | 27.09 | 54.00 | 26.91 | 8.54 | Vertical | Average | | 5350.00 | 23.91 | 32.45 | 68.20 | 35.75 | 8.54 | Horizontal | Peak | | 5350.00 | 18.71 | 27.25 | 54.00 | 26.75 | 8.54 | Horizontal | Average | | Band: IV Worst mode: 802.11a | | | | | Test o | | | |------------------------------|-------------------------|-------------------|------------------------|----------------------|----------------|------------|--------------| | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 5725.00 | 24.26 | 33.26 | 68.20 | 34.94 | 9.00 | Vertical | Peak | | 5725.00 | 19.11 | 28.11 | 54.00 | 25.89 | 9.00 | Vertical | Average | | 5725.00 | 24.99 | 33.99 | 68.20 | 34.21 | 9.00 | Horizontal | Peak | | 5725.00 | 18.64 | 27.64 | 54.00 | 26.36 | 9.00 | Horizontal | Average | | Band: IV | | Wo | orst mode: 802 | 2.11a | Test o | hannel: CH _H | | |--------------------|-------------------------|-------------------|------------------------|----------------------|----------------|-------------------------|--------------| | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 5850.00 | 27.18 | 36.95 | 68.20 | 31.25 | 9.77 | Vertical | Peak | | 5850.00 | 17.70 | 27.47 | 54.00 | 26.53 | 9.77 | Vertical | Average | | 5850.00 | 24.81 | 34.58 | 68.20 | 33.62 | 9.77 | Horizontal | Peak | | 5850.00 | 17.44 | 27.21 | 54.00 | 26.79 | 9.77 | Horizontal | Average | ## Remark: - 1. Final Level =Receiver Read level + Factor - 2. The emission levels of other frequencies are very lower than the limit and not show in test report. - 3. Test 802.11a, 802.11n, 802.11ac mode, all modulations have been tested, only worst case is reported Report No.: CHTEW20050076 Page: 23 of 32 Issued: 2020-05-20 # 5.8. Radiated Spurious Emissions ## **LIMIT** FCC CFR Title 47 Part 15 Subpart C Section 15.209 and Part 15 Subpart E Section 15.407 | Frequency | Limit (dBuV/m) | Value | | |----------------------|-------------------|------------|--| | 0.009 MHz ~0.49 MHz | 2400/F(kHz) @300m | Quasi-peak | | | 0.49 MHz ~ 1.705 MHz | 24000/F(kHz) @30m | Quasi-peak | | | 1.705 MHz ~30 MHz | 30 @30m | Quasi-peak | | Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80, Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40. | Unwanted emissions below 1GHz and Restricted band emissions above 1GHz | | | | | | |--|--------------------|------------|--|--|--| | Frequency | Limit (dBuV/m @3m) | Value | | | | | 30MHz-88MHz | 40.00 | Quasi-peak | | | | | 88MHz-216MHz | 43.50 | Quasi-peak | | | | | 216MHz-960MHz | 46.00 | Quasi-peak | | | | | 960MHz-1GHz | 54.00 | Quasi-peak | | | | | Above 1GHz | 54.00 | Average | | | | | Above IGHZ | 74.00 | Peak | | | | # **TEST CONFIGURATION** ## ➤ 9KHz ~30MHz ## > 30MHz ~ 1GHz Report No.: CHTEW20050076 Page: 24 of 32 Issued: 2020-05-20 #### Above 1GHz #### **TEST PROCEDURE** - 1. The EUT was setup and tested according to ANSI C63.10:2013 - 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. - 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. - 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. - 5. Set to the maximum power setting and enable the EUT transmit continuously. - 6. Use the following spectrum analyzer settings - a) Span shall wide enough to fully capture the emission being measured; - b) Below 1 GHz: RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. c) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value. #### TEST MODE: Please refer to the clause 4.3 #### **TEST RESULT** Report No.: CHTEW20050076 Page: 25 of 32 Issued: 2020-05-20 # **TEST Data** # TEST DATA FOR 9 kHz ~ 30 MHz The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported. # **TEST DATA FOR 30MHz-1GHz** Report No.: CHTEW20050076 Page: 26 of 32 Issued: 2020-05-20 #### Remark: Transd=Cable lose+ Antenna factor- Pre-amplifier; Margin=Limit -Level Report No.: CHTEW20050076 Page: 27 of 32 Issued: 2020-05-20 # **TEST DATA FOR Above 1GHz** | Band: I | | | Worst mode | : 802.11a | Test | t channel: CH | <u></u> | |--------------------|-------------------------|-------------------|------------------------|----------------------|----------------|---------------|--------------| | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 1346.63 | 23.39 | 17.82 | 74.00 | 56.18 | -5.57 | Vertical | Peak | | 3185.50 | 29.92 | 30.68 | 68.20 | 37.52 | 0.76 | Vertical | Peak | | 5200.63 | 28.05 | 37.03 | 68.20 | 31.17 | 8.98 | Vertical | Peak | | 7133.50 | 29.27 | 43.89 | 68.20 | 24.31 | 14.62 | Vertical | Peak | | 1312.84 | 23.31 | 17.74 | 74.00 | 56.26 | -5.57 | Horizontal | Peak | | 3203.13 | 30.14 | 30.94 | 68.20 | 37.24 | 0.80 | Horizontal | Peak | | 5136.00 | 27.70 | 36.56 | 74.00 | 37.44 | 8.86 | Horizontal | Peak | | 7026.28 | 28.65 | 42.89 | 68.20 | 25.31 | 14.24 | Horizontal | Peak | | Band: I | | | Worst mode | : 802.11a | Test | channel: CH | М | | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 1223.25 | 23.17 | 17.40 | 74.00 | 56.60 | -5.77 | Vertical | Peak | | 3192.84 | 29.92 | 30.72 | 68.20 | 37.48 | 0.80 | Vertical | Peak | | 5081.66 | 28.06 | 36.69 | 74.00 | 37.31 | 8.63 | Vertical | Peak | | 6642.94 | 28.55 | 41.84 | 68.20 | 26.36 | 13.29 | Vertical | Peak | | 1396.56 | 24.03 | 18.45 | 74.00 | 55.55 | -5.58 | Horizontal | Peak | | 3182.56 | 30.36 | 31.11 | 68.20 | 37.09 | 0.75 | Horizontal | Peak | | 5153.63 | 27.88 | 36.78 | 68.20 | 31.42 | 8.90 | Horizontal | Peak | | 7157.00 | 28.95 | 43.70 | 68.20 | 24.50 | 14.75 | Horizontal | Peak | | Band: I | | | Worst mode | : 802.11a | Test | channel: CH | Н | | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 1314.31 | 23.09 | 17.52 | 74.00 | 56.48 | -5.57 | Vertical | Peak | | 3144.38 | 30.07 | 30.62 | 68.20 | 37.58 | 0.55 | Vertical | Peak | | 4865.75 | 28.69 | 35.83 | 74.00 | 38.17 | 7.14 | Vertical | Peak | | 6685.53 | 28.44 | 41.86 | 68.20 | 26.34 | 13.42 | Vertical | Peak | | 1239.41 | 23.90 | 18.17 | 74.00 | 55.83 | -5.73 | Horizontal | Peak | | 3166.41 | 30.42 | 31.09 | 68.20 | 37.11 | 0.67 | Horizontal | Peak | | 4865.75 | 27.92 | 35.06 | 74.00 | 38.94 | 7.14 | Horizontal | Peak | | 6801.56 | 29.04 | 42.25 | 68.20 | 25.95 | 13.21 | Horizontal | Peak | #### Remark: - 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor - 2. The emission levels of other frequencies are very lower than the limit and not show in test report. - 3. Measuring frequencies from 1 GHz to 40GHz. - 4. Test 802.11a, 802.11n ,802.11ac mode, all modulations have been tested, only worst case is reported Report No.: CHTEW20050076 Page: 28 of 32 Issued: 2020-05-20 | Band: IV | | Worst mode: 802.11a | | Test channel: CH _L | | | | |--------------------|-------------------------|---------------------|------------------------|-------------------------------|----------------|-------------|--------------| | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 1251.16 | 23.43 | 17.73 | 68.20 | 50.47 | -5.70 | Vertical | Peak | | 3141.44 | 30.33 | 30.87 | 68.20 | 37.33 | 0.54 | Vertical | Peak | | 5227.06 | 27.78 | 36.62 | 68.20 | 31.58 | 8.84 | Vertical | Peak | | 6645.88 | 28.94 | 42.24 | 68.20 | 25.96 | 13.30 | Vertical | Peak | | 1293.75 | 23.71 | 18.12 | 68.20 | 50.08 | -5.59 | Horizontal | Peak | | 3209.00 | 30.41 | 31.14 | 68.20 | 37.06 | 0.73 | Horizontal | Peak | | 5089.00 | 27.71 | 36.41 | 74.00 | 37.59 | 8.70 | Horizontal | Peak | | 6662.03 | 29.45 | 42.80 | 68.20 | 25.40 | 13.35 | Horizontal | Peak | | Band: IV | | | Worst mode | : 802.11a | Test | channel: CH | М | | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 1252.63 | 24.13 | 18.44 | 68.20 | 49.76 | -5.69 | Vertical | Peak | | 3125.28 | 30.32 | 30.77 | 68.20 | 37.43 | 0.45 | Vertical | Peak | | 4780.56 | 28.47 | 35.39 | 74.00 | 38.61 | 6.92 | Vertical | Peak | | 6710.50 | 29.83 | 43.27 | 68.20 | 24.93 | 13.44 | Vertical | Peak | | 1277.59 | 23.90 | 18.27 | 68.20 | 49.93 | -5.63 | Horizontal | Peak | | 3164.94 | 31.61 | 32.27 | 68.20 | 35.93 | 0.66 | Horizontal | Peak | | 5125.72 | 28.37 | 37.22 | 74.00 | 36.78 | 8.85 | Horizontal | Peak | | 7187.84 | 28.49 | 43.41 | 68.20 | 24.79 | 14.92 | Horizontal | Peak | | Band: IV | | | Worst mode | : 802.11a | Test | channel: CH | Н | | Frequency
(MHz) | Read
Level
(dBuV) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Margin
Limit (dB) | Factor
(dB) | Test value | Polarization | | 1276.13 | 23.36 | 17.73 | 68.20 | 50.47 | -5.63 | Vertical | Peak | | 3159.06 | 30.55 | 31.18 | 68.20 | 37.02 | 0.63 | Vertical | Peak | | 5228.53 | 28.08 | 36.91 | 68.20 | 31.29 | 8.83 | Vertical | Peak | | 7287.72 | 28.82 | 43.86 | 74.00 | 30.14 | 15.04 | Vertical | Peak | | 1271.72 | 23.88 | 18.24 | 68.20 | 49.96 | -5.64 | Horizontal | Peak | | 3147.31 | 30.58 | 31.15 | 68.20 | 37.05 | 0.57 | Horizontal | Peak | | 5096.34 | 27.66 | 36.43 | 74.00 | 37.57 | 8.77 | Horizontal | Peak | | 6988.09 | 27.99 | 42.15 | 68.20 | 26.05 | 14.16 | Horizontal | Peak | #### Remark: - 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor - 2. The emission levels of other frequencies are very lower than the limit and not show in test report. - 3. Measuring frequencies from 1 GHz to 40GHz. - 4. Test 802.11a, 802.11n, 802.11ac mode, all modulations have been tested, only worst case is reported Report No.: CHTEW20050076 Page: 29 of 32 Issued: 2020-05-20 ## 5.9. Frequency stability #### LIMIT Within Operation Band #### **TEST CONFIGURATION** Note: Measurement setup for testing on Antenna connector ### **TEST PROCEDURE** - 1. The equipment under test was connected to an external power supply. - 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. - 3. The EUT was placed inside the temperature chamber. - Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25[°]C operating frequency as reference frequency. - 5. Turn EUT off and set the chamber temperature to −20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. - 6. Repeat step measure with 10 ℃ increased per stage until the highest temperature of +50 ℃ reached... #### **TEST MODE:** Please refer to the clause 4.3 # TEST RESULT Please refer to appendix G on the appendix report Report No.: CHTEW20050076 Page: 30 of 32 Issued: 2020-05-20 # 6. TEST SETUP PHOTOS Radiated Emission Report No.: CHTEW20050076 Page: 31 of 32 Issued: 2020-05-20 # AC Conducted Emission Report No.: CHTEW20050076 Page: 32 of 32 Issued: 2020-05-20 # 7. EXTERANAL AND INTERNAL PHOTOS Reference to the test report No. : CHTEW20050073. # 8. APPENDIX REPORT