

Report No.: EED32Q81957302 Page 1 of 42

TEST REPORT

Product seeed studio reCamera 2002 Series

Trade mark Seeed Studio Model/Type reference See section 4.2

Serial Number : N/A

Report Number EED32Q81957302

FCC ID Z4T-RECAMERA2002W

Date of Issue Dec. 19, 2024

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Seeed Technology Co., Ltd 9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

pproved b Report Seal Gerazer. Li

Frazer Li anon Ma

Aaron Ma

Reviewed by:

Date:

Tom Chen

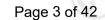
Tom chen

Dec. 19, 2024

Check No.: 9744271124

Contents

	Page
1 CONTENTS	 2
2 VERSION	
3 TEST SUMMARY	 4
4 GENERAL INFORMATION	 5
4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNITS	5
5 TEST RESULTS AND MEASUREMENT DATA	 13
5.1 Antenna Requirement	13 14
6 PHOTOGRAPHS OF TEST SETUP	 40
7 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	42



	Version No.	Date	Descript
_ _	version	(3)	

Version No.	Date	Description		
00	Dec. 19, 2024	Original		
			(0)	

Page 4 of 42

3 Test Summary

Test Ham	Total Domit	D. "
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	NOTE
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	NOTE
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	NOTE
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	NOTE
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	NOTE
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	NOTE
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	NOTE
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	NOTE
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

NOTE: The test data refer to the report of No.RFBECO-WTW-P22120330-2.(The module's FCC ID:TLZ-AM497617)

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

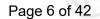
Model No.: reCamera 2002w 64GB, reCamera 2002w 8GB, reCamera Core 2002w 64GB, reCamera Core 2002w 8GB

Only the model reCamera Core 2002w 64GB was tested. The following description shows the difference between each model and the reCamera 2002w 64GB.

Model	100	EMMC	Difference description
reCamera 2002w 64GB	(1	64GB	Normal
reCamera 2002w 8GB	10.	8GB	The emmc sizes are different
reCamera Core 2002w 64GB		64GB	No lens board and interface board and supporting structural parts
reCamera Core 2002w 8GB		8GB	The emmc sizes are different and no lens board
\cdot\;		/07	and interface board and supporting structural parts

4 General Information

4.1 Client Information


	Applicant:	Seeed Technology Co., Ltd	
2070	Address of Applicant:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen	
Manufacturer: Seeed Technology Co., Ltd			
	Address of Manufacturer:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen	
	Factory:	Shenzhen Xinxian Technology Co.,Limited	
	Address of Factory:	F5, Building B17, Hengfeng Industrial City,No. 739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.	

4.2 General Description of EUT

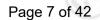
 Ocheral Description	o. _			
Product Name: seeed studio reCamera 2002 Series				
Model No.:	reCamera 2002w 64GB, reCamera 2002w 8GB, reCamera Core 2002w 64GB, reCamera Core 2002w 8GB	(0,)		
Test Model No.:	reCamera Core 2002w 64GB			
Trade Mark:	Seeed Studio			
Product Type:	☐ Mobile ☐ Portable ☒ Fixed Location			
Operation Frequency:	2402MHz~2480MHz			
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)			
Modulation Type:	GFSK, π/4DQPSK, 8DPSK			
Number of Channel:	79			
Hopping Channel Type:	Adaptive Frequency Hopping systems			
Antenna Type:	PIFA antenna			
Antenna Gain:	-1.06dBi			
Power Supply:	USB port: DC 5.0V			
Test Voltage:	DC 5.0V			
Sample Received Date:	Dec. 03, 2024			
Sample tested Date:	Dec. 03, 2024 to Dec. 13, 2024			
 1 27% 7.1		7 7 7 7		

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz



Test Configuration 4.3

EUT Test Software Settings	:	
Software:	MobaXterm_Personal_22.1.exe	
EUT Power Grade:	Default (Power level is built-in s selected)	et parameters and cannot be changed and
Use test software to set the lot transmitting of the EUT.	west frequency, the middle frequen	cy and the highest frequency keep
Mode	Channel	Frequency(MHz)
	CH0	2402
DH1/DH3/DH5	CH39	2441
	CH78	2480
	CH0	2402
2DH1/2DH3/2DH5	CH39	2441
	CH78	2480
	CH0	2402
3DH1/3DH3/3DH5	CH39	2441
	CH78	2480

Report No. : EED32Q81957302 Page 8 of 42

4.4 Test Environment

	Operating Environment	Operating Environment:								
	Radiated Spurious Emissions:									
	Temperature:	22~25.0 °C								
\	Humidity:	50~55 % RH		(1)		(1)				
)	Atmospheric Pressure:	1010mbar		(62)		(6,2)				
	Conducted Emissions:									
	Temperature:	22~25.0 °C								
	Humidity:	50~55 % RH	735		100					
	Atmospheric Pressure:	1010mbar	(25)		(47)					
	RF Conducted:									
	Temperature:	22~25.0 °C								
	Humidity:	50~55 % RH				1.000				
1	Atmospheric Pressure:	1010mbar								

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	DESKTOP- H31GDCQ	FCC&CE	СТІ
AC adapter	МІ	MDY-14-EU	FCC&CE	СТІ

4.6 Test Location

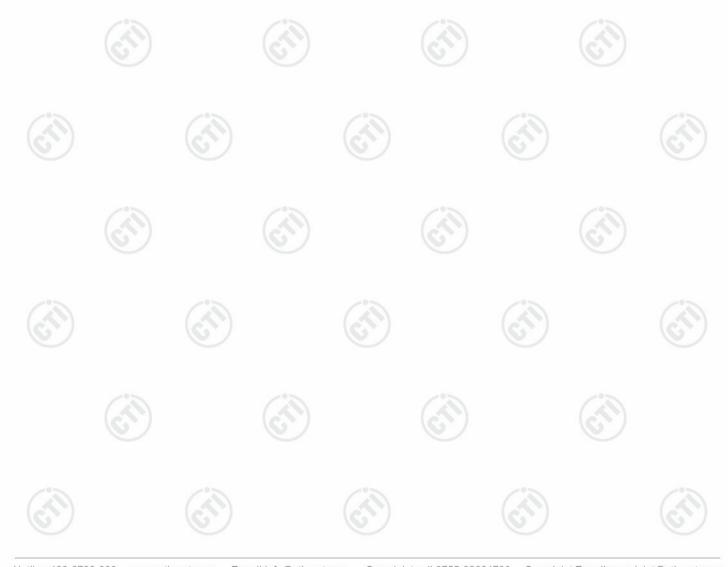
All tests were performed at:

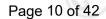
Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164





4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-40GHz)		
	(87)	3.3dB (9kHz-30MHz)		
3	Dedicted Country amicaian test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)		
-°>		3.4dB (18GHz-40GHz)		
((()	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		
	120	19.9		

4.8 Equipment List

	Con	ducted disturba	nce Test			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025	
Temperature/ Humidity Indicator	Defu	TH128	/	04-25-2024	04-24-2025	
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025	
Barometer	changchun	DYM3	1188	((T)	
Test software	Fara	EZ-EMC	EMC-CON 3A1.1			
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025	
ISN	TESEQ	ISN T800	30297	12/14/2023 12/05/2024	12/13/2024 12/04/2025	

Page 11 of 42

3M	Semi-anechoic	Chamber (2)- Rad	diated distur	bance Test	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
		F14005464505	000000	12/14/2023	12/13/2024
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	(0)	
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025

Cable line

Cable line

Cable line

Times

Times

Times

Report No.: EED32Q81957302

3M full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025	
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023 12-05-2024	12-13-2024 12-04-2025	
Communication R&S CM		CMW500	102898	12-14-2023	12-13-2024	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025	
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0			
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	05/22/2022	05/21/2025	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	05/22/2022	05/21/2025	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	05/22/2022	05/21/2025	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	05/22/2022	05/21/2025	
Cable line	Times	EMC104-NMNM-1000	SN160710	05/22/2022	05/21/2025	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	05/22/2022	05/21/2025	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

SFT205-NMNM-1.50M

SFT205-NMSM-7.00M

HF160-KMKM-3.00M

05/21/2025

05/21/2025

05/21/2025

05/22/2022

05/22/2022

05/22/2022

381964-0001

394815-0001

393493-0001

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

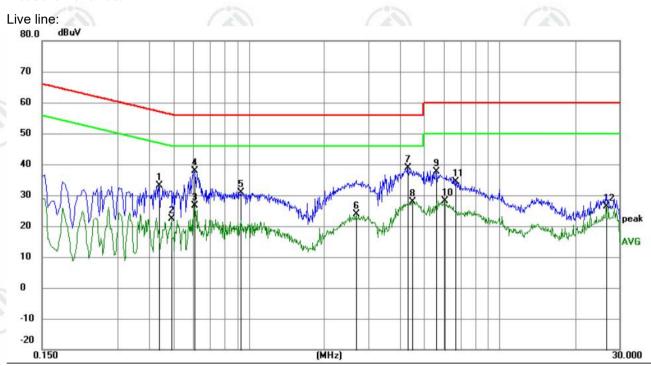
The antenna is PIFA antenna. The best case gain of the antenna is -1.06dBi.

Report No.: EED32Q81957302 Page 14 of 42

Test Requirement:	47 CFR Part 15C Section 15.	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Ran	ge: 150kHz to 30MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto					
Limit:		Limit (c	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithr	n of the frequency.	(0,)				
	AC Mains LISN1	Ground Reference Plane	Mains				
Test Procedure:	 The mains terminal disturroom. The EUT was connected to Impedance Stabilization Not impedance. The power case connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Lexceeded. The tabletop EUT was plant. 	o AC power source throetwork) which provides bles of all other units of SN 2, which was bondene way as the LISN 1 for et outlet strip was used ISN provided the rating ced upon a non-metallic	ough a LISN 1 (Line is a $50\Omega/50\mu\text{H} + 5\Omega$ ling the EUT were id to the ground or the unit being id to connect multiple in of the LISN was not it to case the control of the LISN was not in the control of the LISN was not in				
	ground reference plane. A placed on the horizontal g 4) The test was performed w of the EUT shall be 0.4 m	round reference plane, ith a vertical ground ref	erence plane. The rea				

vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the

unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

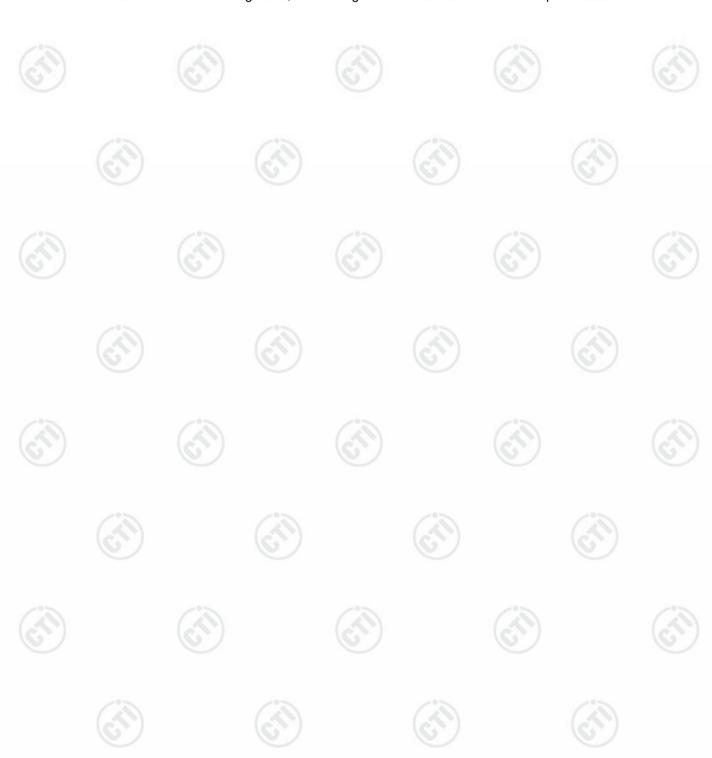

5) In order to find the maximum emission, the relative positions of

Page 1	5	of	42
--------	---	----	----

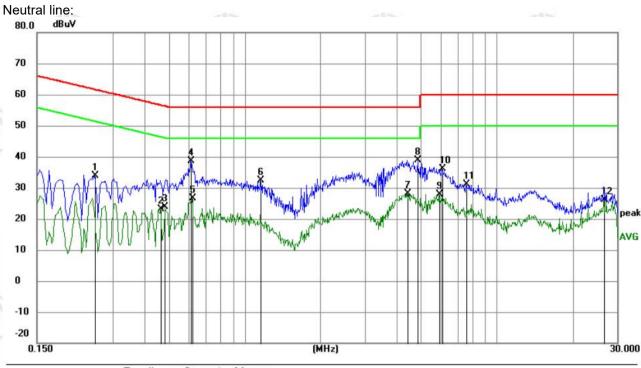
	equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data

MHz 0.4380	dBuV	dB			Margin		
0.4380		UD	dBuV	dBuV	dB	Detector	Comment
0.4000	23.13	10.09	33.22	57.10	-23.88	QP	
0.4920	12.23	10.08	22.31	46.13	-23.82	AVG	
0.6045	16.42	10.10	26.52	46.00	-19.48	AVG	
0.6090	27.89	10.10	37.99	56.00	-18.01	QP	
0.9330	20.78	10.17	30.95	56.00	-25.05	QP	
2.6880	13.67	10.14	23.81	46.00	-22.19	AVG	
4.3080	28.68	10.09	38.77	56.00	-17.23	QP	
4.4925	17.92	10.08	28.00	46.00	-18.00	AVG	
5.5860	27.57	10.05	37.62	60.00	-22.38	QP	
6.0360	18.01	10.04	28.05	50.00	-21.95	AVG	
6.6840	24.30	10.03	34.33	60.00	-25.67	QP	
26.6100	16.50	9.81	26.31	50.00	-23.69	AVG	
	0.6090 0.9330 2.6880 4.3080 4.4925 5.5860 6.0360 6.6840	0.6090 27.89 0.9330 20.78 2.6880 13.67 4.3080 28.68 4.4925 17.92 5.5860 27.57 6.0360 18.01 6.6840 24.30	0.6090 27.89 10.10 0.9330 20.78 10.17 2.6880 13.67 10.14 4.3080 28.68 10.09 4.4925 17.92 10.08 5.5860 27.57 10.05 6.0360 18.01 10.04 6.6840 24.30 10.03	0.6090 27.89 10.10 37.99 0.9330 20.78 10.17 30.95 2.6880 13.67 10.14 23.81 4.3080 28.68 10.09 38.77 4.4925 17.92 10.08 28.00 5.5860 27.57 10.05 37.62 6.0360 18.01 10.04 28.05 6.6840 24.30 10.03 34.33	0.6090 27.89 10.10 37.99 56.00 0.9330 20.78 10.17 30.95 56.00 2.6880 13.67 10.14 23.81 46.00 4.3080 28.68 10.09 38.77 56.00 4.4925 17.92 10.08 28.00 46.00 5.5860 27.57 10.05 37.62 60.00 6.0360 18.01 10.04 28.05 50.00 6.6840 24.30 10.03 34.33 60.00	0.6090 27.89 10.10 37.99 56.00 -18.01 0.9330 20.78 10.17 30.95 56.00 -25.05 2.6880 13.67 10.14 23.81 46.00 -22.19 4.3080 28.68 10.09 38.77 56.00 -17.23 4.4925 17.92 10.08 28.00 46.00 -18.00 5.5860 27.57 10.05 37.62 60.00 -22.38 6.0360 18.01 10.04 28.05 50.00 -21.95 6.6840 24.30 10.03 34.33 60.00 -25.67	0.6090 27.89 10.10 37.99 56.00 -18.01 QP 0.9330 20.78 10.17 30.95 56.00 -25.05 QP 2.6880 13.67 10.14 23.81 46.00 -22.19 AVG 4.3080 28.68 10.09 38.77 56.00 -17.23 QP 4.4925 17.92 10.08 28.00 46.00 -18.00 AVG 5.5860 27.57 10.05 37.62 60.00 -22.38 QP 6.0360 18.01 10.04 28.05 50.00 -21.95 AVG 6.6840 24.30 10.03 34.33 60.00 -25.67 QP

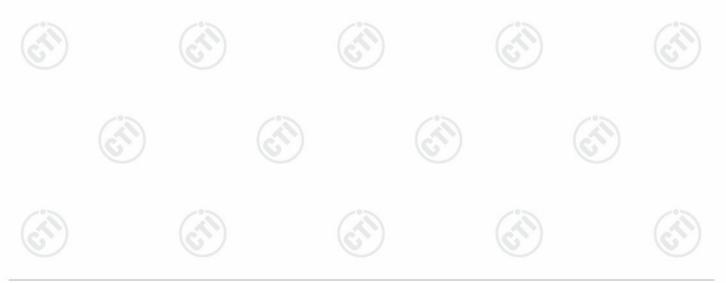

Remark:

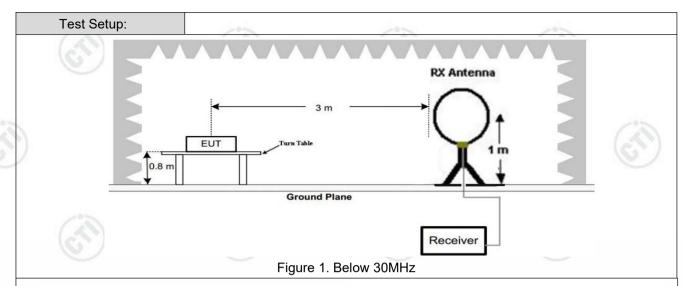
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

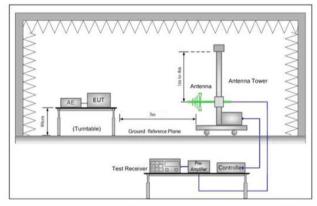


	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
-	1	0.2535	23.64	10.17	33.81	61.64	-27.83	QP	
-	2	0.4650	13.12	10.08	23.20	46.60	-23.40	AVG	
-	3	0.4830	13.71	10.08	23.79	46.29	-22.50	AVG	
-	4	0.6134	28.49	10.10	38.59	56.00	-17.41	QP	
-	5	0.6180	16.42	10.11	26.53	46.00	-19.47	AVG	
-	6	1.1535	22.31	10.18	32.49	56.00	-23.51	QP	
il.	7	4.4250	18.16	10.08	28.24	46.00	-17.76	AVG	
-	8 *	4.8659	28.89	10.06	38.95	56.00	-17.05	QP	
355 <u>-</u>	9	5.9055	17.93	10.05	27.98	50.00	-22.02	AVG	
-	10	6.0765	26.02	10.04	36.06	60.00	-23.94	QP	
	11	7.5390	21.08	10.02	31.10	60.00	-28.90	QP	
-	12	26.6100	16.25	9.81	26.06	50.00	-23.94	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.




5.3 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
	Test Method:	ANSI C63.10: 2013						
	Test Site:	Measurement Distance:	: 3m	ı (Semi-Anech	noic Cham	ber)		
	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
		0.009MHz-0.090MHz	z	Peak	10kHz	30kHz	Peak	
		0.009MHz-0.090MHz	z	Average	10kHz	30kHz	Average	
		0.090MHz-0.110MHz	z	Quasi-peak	10kHz	30kHz	Quasi-peak	
		0.110MHz-0.490MHz	z	Peak	10kHz	30kHz	Peak	
		0.110MHz-0.490MHz	z	Average	10kHz	30kHz	Average	
		0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak	
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak	
		Al 4011-		Peak	1MHz	3MHz	Peak	
		Above 1GHz	10	Peak	1MHz	10kHz	Average	
	Limit:	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measurement distance (m)	
		0.009MHz-0.490MHz	24	400/F(kHz)	-	-	300	
		0.490MHz-1.705MHz	24000/F(kHz)		-	-/3	30	
		1.705MHz-30MHz	30		-	(6)	30	
		30MHz-88MHz	30MHz-88MHz 100		40.0	Quasi-peak	3	
		88MHz-216MHz		150	43.5	Quasi-peak	3	
		216MHz-960MHz	216MHz-960MHz		46.0	Quasi-peak	3	
		960MHz-1GHz	960MHz-1GHz		54.0	Quasi-peak	3	
		Above 1GHz		500	54.0	Average	3	
		Note: 15.35(b), Unless of emissions is 20dB applicable to the expeak emission lev	3 abo equip	ove the maxin	num permi est. This p	tted average	emission limit	

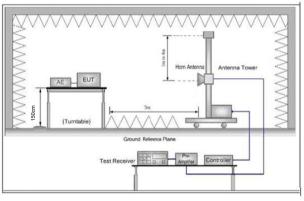


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

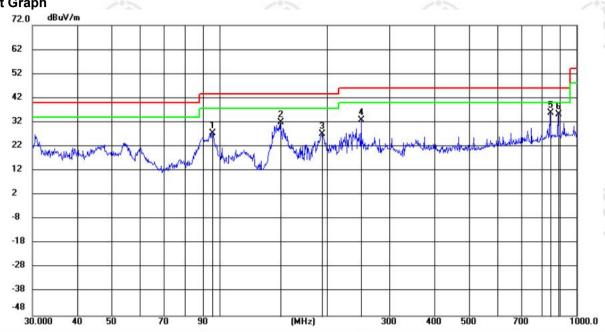
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

Test Results:	scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Pass
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Transmitting mode, For below 1GHz part, through pre
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.



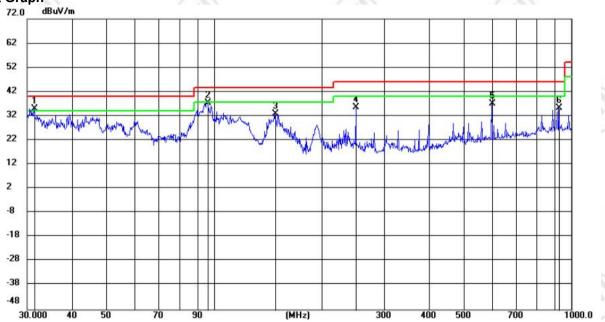
Page 21 of 42

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		95.7118	15.03	12.53	27.56	43.50	-15.94	QP	200	179	
2	-	148.1290	22.79	9.17	31.96	43.50	-11.54	QP	200	39	
3	-)	193.8407	15.02	12.11	27.13	43.50	-16.37	QP	100	352	
4		249.9941	18.61	14.26	32.87	46.00	-13.13	QP	200	7	
5	*	843.9032	10.84	25.12	35.96	46.00	-10.04	QP	100	96	
6		890.7277	9.49	25.79	35.28	46.00	-10.72	QP	100	245	



Page 22 of 42

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	911
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	31.4653	22.66	12.44	35.10	40.00	-4.90	QP	100	169	
2		95.7958	24.91	12.54	37.45	43.50	-6.05	QP	100	147	
3		148.1290	23.68	9.17	32.85	43.50	-10.65	QP	100	115	
4		249.9942	21.21	14.26	35.47	46.00	-10.53	QP	100	83	
5		600.0573	14.70	22.26	36.96	46.00	-9.04	QP	100	190	
6		925.5940	9.07	26.07	35.14	46.00	-10.86	QP	100	40	

Radiated Spurious Emission above 1GHz:

Mode):		GFSK Transmi	tting		Channel:		2402 MHz	Z
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1148.0099	10.35	38.95	49.30	74.00	24.70	Pass	Н	PK
2	1640.576	11.95	37.77	49.72	74.00	24.28	Pass	Н	PK
3	3203.0135	-14.45	62.03	47.58	74.00	26.42	Pass	Н	PK
4	4290.086	-9.91	50.41	40.50	74.00	33.50	Pass	Н	PK
5	5876.1917	-7.61	48.20	40.59	74.00	33.41	Pass	Н	PK
6	7534.3023	-4.60	46.62	42.02	74.00	31.98	Pass	Н	PK
7	1147.2098	10.32	39.06	49.38	74.00	24.62	Pass	V	PK
8	1620.8414	11.81	37.04	48.85	74.00	25.15	Pass	V	PK
9	3203.0135	-14.45	62.83	48.38	74.00	25.62	Pass	V	PK
10	4506.1004	-8.64	49.54	40.90	74.00	33.10	Pass	V	PK
11	6113.2075	-5.96	47.08	41.12	74.00	32.88	Pass	V	PK
12	7956.3304	-2.15	44.36	42.21	74.00	31.79	Pass	V	PK

Mode	Mode:		GFSK Transmit	tting		Channel:		2441 MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1135.209	9.93	38.91	48.84	74.00	25.16	Pass	Н	PK
2	1613.3742	11.75	37.64	49.39	74.00	24.61	Pass	Н	PK
3	3255.017	-14.01	63.01	49.00	74.00	25.00	Pass	Н	PK
4	4244.0829	-10.88	50.04	39.16	74.00	34.84	Pass	Н	PK
5	5798.1865	-7.51	47.67	40.16	74.00	33.84	Pass	Н	PK
6	7609.3073	-3.69	45.94	42.25	74.00	31.75	Pass	Н	PK
7	1171.7448	9.69	38.72	48.41	74.00	25.59	Pass	V	PK
8	1651.7768	12.05	38.46	50.51	74.00	23.49	Pass	V	PK
9	3255.017	-14.01	62.86	48.85	74.00	25.15	Pass	V	PK
10	4495.0997	-8.88	48.54	39.66	74.00	34.34	Pass	V	PK
11	6395.2263	-5.47	46.96	41.49	74.00	32.51	Pass	V	PK
12	9047.4032	0.36	44.93	45.29	74.00	28.71	Pass	V	PK

Page 24 of 42

Mode	: :		GFSK Transmit	ting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1172.0115	9.68	38.48	48.16	74.00	25.84	Pass	Н	PK
2	1605.507	11.69	38.31	50.00	74.00	24.00	Pass	Н	PK
3	3307.0205	-13.24	62.16	48.92	74.00	25.08	Pass	Н	PK
4	4484.0989	-9.94	50.08	40.14	74.00	33.86	Pass	Н	PK
5	6537.2358	-6.12	46.22	40.10	74.00	33.90	Pass	Н	PK
6	9111.4074	0.11	44.80	44.91	74.00	29.09	Pass	Н	PK
7	1149.7433	10.40	38.22	48.62	74.00	25.38	Pass	V	PK
8	1592.9729	11.55	36.88	48.43	74.00	25.57	Pass	V	PK
9	3307.0205	-13.24	61.88	48.64	74.00	25.36	Pass	V	PK
10	4396.0931	-10.24	49.43	39.19	74.00	34.81	Pass	V	PK
11	6300.22	-6.75	47.18	40.43	74.00	33.57	Pass	V	PK
12	8751.3834	-0.85	44.31	43.46	74.00	30.54	Pass	V	PK

Mode	Mode:		π/4DQPSK Tra	nsmitting	Channel:		2402 MHz		
NO	Freq. [MHz]	Facto	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1154.0103	10.27	38.99	49.26	74.00	24.74	Pass	Н	PK
2	1663.3776	12.26	37.38	49.64	74.00	24.36	Pass	Н	PK
3	3203.0135	-14.45	62.61	48.16	74.00	25.84	Pass	Н	PK
4	4691.1127	-9.23	49.16	39.93	74.00	34.07	Pass	Н	PK
5	6692.2462	-5.57	45.96	40.39	74.00	33.61	Pass	Н	PK
6	9289.4193	1.35	44.46	45.81	74.00	28.19	Pass	Н	PK
7	1174.6783	9.59	38.28	47.87	74.00	26.13	Pass	V	PK
8	1613.5076	11.75	37.47	49.22	74.00	24.78	Pass	V	PK
9	3203.0135	-14.45	61.89	47.44	74.00	26.56	Pass	V	PK
10	4322.0881	-10.88	50.33	39.45	74.00	34.55	Pass	V	PK
11	6160.2107	-6.57	47.64	41.07	74.00	32.93	Pass	V	PK
12	8432.3622	-2.50	45.38	42.88	74.00	31.12	Pass	V	PK

Page 25 of 42

Mode):		π/4DQPSK Tra	nsmitting		Channel:		2441 MHz	<u>'</u>
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1129.742	9.74	38.19	47.93	74.00	26.07	Pass	Н	PK
2	1701.5134	12.92	37.30	50.22	74.00	23.78	Pass	Н	PK
3	3255.017	-14.01	63.46	49.45	74.00	24.55	Pass	Н	PK
4	4830.122	-10.40	50.08	39.68	74.00	34.32	Pass	Н	PK
5	6901.2601	-4.11	45.63	41.52	74.00	32.48	Pass	Н	PK
6	10043.4696	3.57	41.95	45.52	74.00	28.48	Pass	Н	PK
7	1148.1432	10.35	37.96	48.31	74.00	25.69	Pass	V	PK
8	1621.6414	11.81	37.66	49.47	74.00	24.53	Pass	V	PK
9	3255.017	-14.01	63.39	49.38	74.00	24.62	Pass	V	PK
10	4685.1123	-9.42	49.34	39.92	74.00	34.08	Pass	V	PK
11	6791.2528	-5.10	46.33	41.23	74.00	32.77	Pass	V	PK
12	10040.4694	3.45	42.42	45.87	74.00	28.13	Pass	V	PK

Mod	Mode:		π/4DQPSK Tra	Channel:		2480 MHz			
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1152.6768	10.32	38.12	48.44	74.00	25.56	Pass	Н	PK
2	1640.7094	11.95	38.42	50.37	74.00	23.63	Pass	Н	PK
3	3307.0205	-13.24	61.69	48.45	74.00	25.55	Pass	Н	PK
4	4893.1262	-9.59	48.37	38.78	74.00	35.22	Pass	Н	PK
5	6681.2454	-5.94	46.94	41.00	74.00	33.00	Pass	Н	PK
6	10135.4757	1.75	43.56	45.31	74.00	28.69	Pass	Н	PK
7	1171.7448	9.69	38.74	48.43	74.00	25.57	Pass	V	PK
8	1652.5768	12.07	37.53	49.60	74.00	24.40	Pass	V	PK
9	3307.0205	-13.24	62.82	49.58	74.00	24.42	Pass	V	PK
10	4503.1002	-8.52	48.88	40.36	74.00	33.64	Pass	V	PK
11	6312.2208	-6.89	48.43	41.54	74.00	32.46	Pass	V	PK
12	9582.4388	1.93	43.35	45.28	74.00	28.72	Pass	V	PK

Page 26 of 42

Mode	: :		8DPSK Transm	itting		Channel:		2402 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1172.0115	9.68	38.22	47.90	74.00	26.10	Pass	Н	PK
2	1715.1143	12.96	37.09	50.05	74.00	23.95	Pass	Н	PK
3	3203.0135	-14.45	62.66	48.21	74.00	25.79	Pass	Н	PK
4	4855.1237	-10.27	49.68	39.41	74.00	34.59	Pass	Н	PK
5	6905.2604	-4.26	46.75	42.49	74.00	31.51	Pass	Н	PK
6	9601.4401	2.65	43.53	46.18	74.00	27.82	Pass	Н	PK
7	1156.2771	10.21	37.53	47.74	74.00	26.26	Pass	V	PK
8	1681.3788	12.59	38.07	50.66	74.00	23.34	Pass	V	PK
9	3203.0135	-14.45	62.37	47.92	74.00	26.08	Pass	V	PK
10	4302.0868	-9.82	50.14	40.32	74.00	33.68	Pass	V	PK
11	5951.1967	-6.53	46.86	40.33	74.00	33.67	Pass	V	PK
12	9638.4426	2.19	43.79	45.98	74.00	28.02	Pass	V	PK

Mode	Mode:		8DPSK Transm	nitting	Channel:		2441 MHz		
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1172.1448	9.68	38.28	47.96	74.00	26.04	Pass	Н	PK
2	1687.2458	12.69	36.98	49.67	74.00	24.33	Pass	Н	PK
3	3255.017	-14.01	63.06	49.05	74.00	24.95	Pass	Н	PK
4	4882.1255	-9.79	48.83	39.04	74.00	34.96	Pass	Н	PK
5	7083.2722	-5.17	46.67	41.50	74.00	32.50	Pass	Н	PK
6	9808.4539	3.28	43.69	46.97	74.00	27.03	Pass	Н	PK
7	1172.0115	9.68	38.73	48.41	74.00	25.59	Pass	V	PK
8	1640.4427	11.95	37.55	49.50	74.00	24.50	Pass	V	PK
9	3255.017	-14.01	62.75	48.74	74.00	25.26	Pass	V	PK
10	4699.1133	-8.98	49.11	40.13	74.00	33.87	Pass	V	PK
11	6687.2458	-5.74	46.49	40.75	74.00	33.25	Pass	V	PK
12	9611.4408	2.52	43.74	46.26	74.00	27.74	Pass	V	PK

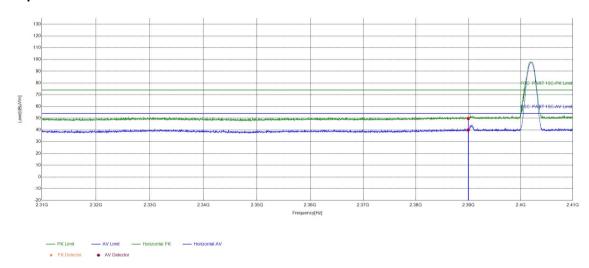


Page 27 of 42

Mode	:		8DPSK Transm	nitting		Channel:		2480 MHz	7
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1172.0115	9.68	38.31	47.99	74.00	26.01	Pass	Н	PK
2	1619.908	11.80	37.29	49.09	74.00	24.91	Pass	Н	PK
3	3307.0205	-13.24	62.38	49.14	74.00	24.86	Pass	Н	PK
4	4662.1108	-10.14	49.61	39.47	74.00	34.53	Pass	Н	PK
5	6205.2137	-6.91	46.98	40.07	74.00	33.93	Pass	Н	PK
6	9152.4102	0.32	45.00	45.32	74.00	28.68	Pass	Н	PK
7	1171.8781	9.69	39.47	49.16	74.00	24.84	Pass	V	PK
8	1607.6405	11.71	37.95	49.66	74.00	24.34	Pass	V	PK
9	3307.0205	-13.24	62.24	49.00	74.00	25.00	Pass	V	PK
10	4296.0864	-9.79	51.14	41.35	74.00	32.65	Pass	V	PK
11	5875.1917	-7.59	47.94	40.35	74.00	33.65	Pass	V	PK
12	8725.3817	-1.26	44.89	43.63	74.00	30.37	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

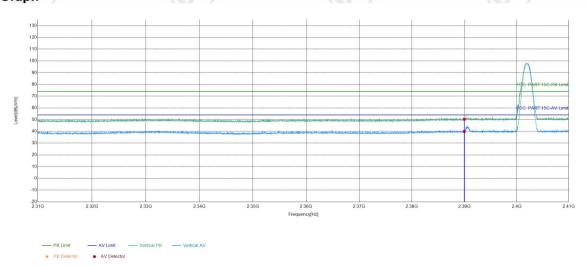


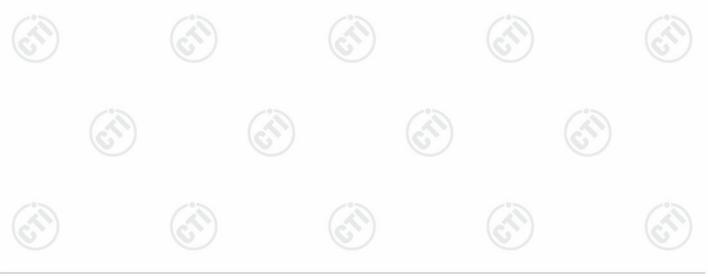
Restricted bands:

Test plot as follows:

EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\		

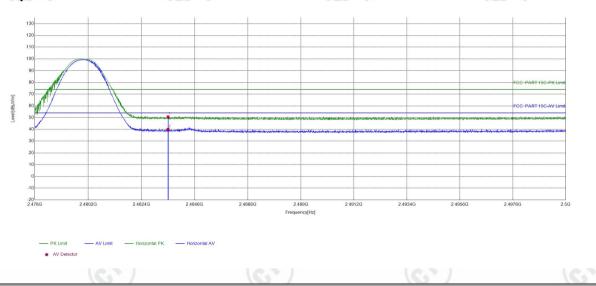
93	Suspecte	d List								
0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	15.31	34.43	49.74	74.00	24.26	PASS	Horizontal	PK
	2	2390	15.31	24.75	40.06	54.00	13.94	PASS	Horizontal	AV



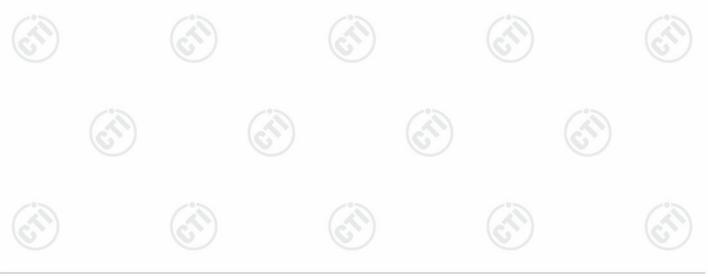


Page	29	of	42

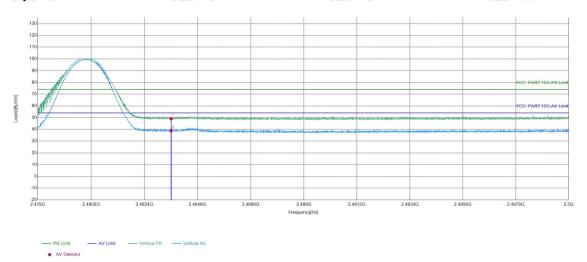
/ 23/			182
EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\	-05	



Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	15.31	35.05	50.36	54.00	3.64	PASS	Vertical	PK	
2	2390	15.31	24.61	39.92	54.00	14.08	PASS	Vertical	AV	

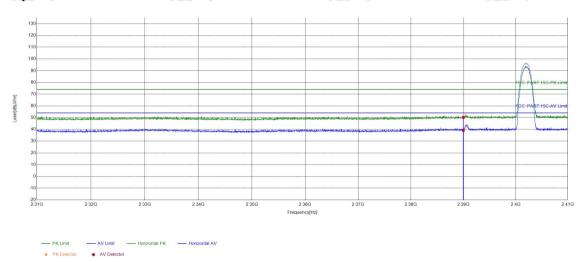


/ 231			
EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\	-05	

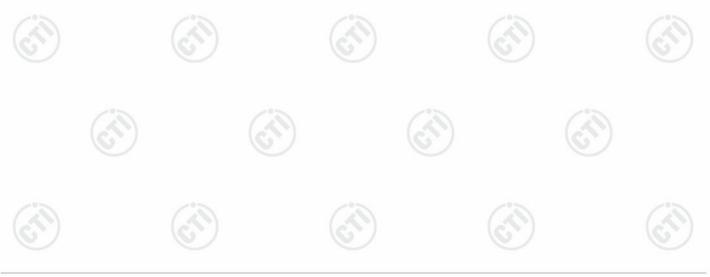

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	35.51	50.67	74.00	23.33	PASS	Horizontal	PK
2	2483.5	15.16	24.84	40.00	54.00	14.00	PASS	Horizontal	AV

raue o i ul 42	age 31	of 42	
----------------	--------	-------	--

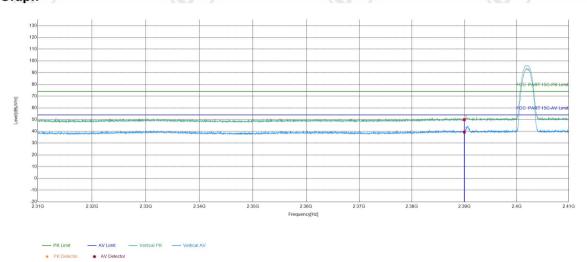
EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\	-05	

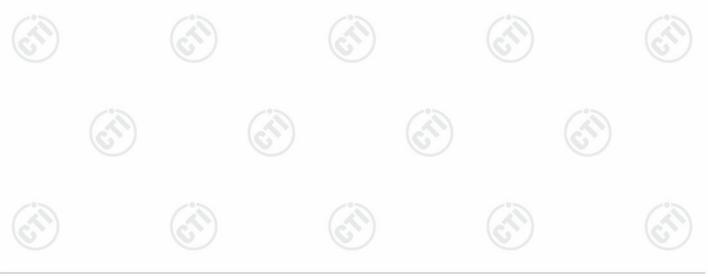


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	33.99	49.15	74.00	24.85	PASS	Vertical	PK
2	2483.5	15.16	23.69	38.85	54.00	15.15	PASS	Vertical	AV



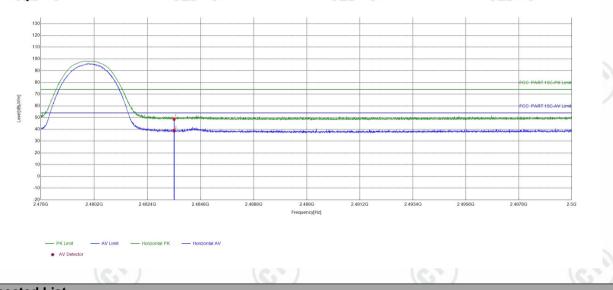
EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\	-05	-0-


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390	15.31	34.96	50.27	74.00	23.73	PASS	Horizontal	PK		
2	2390	15.31	23.85	39.16	54.00	14.84	PASS	Horizontal	AV		



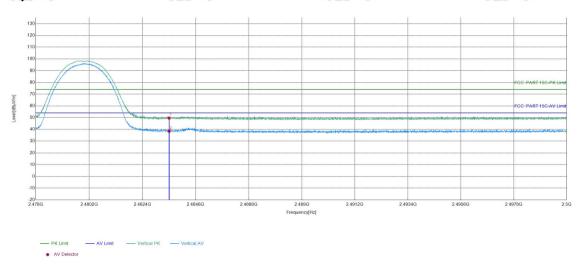
Page	33	of	42

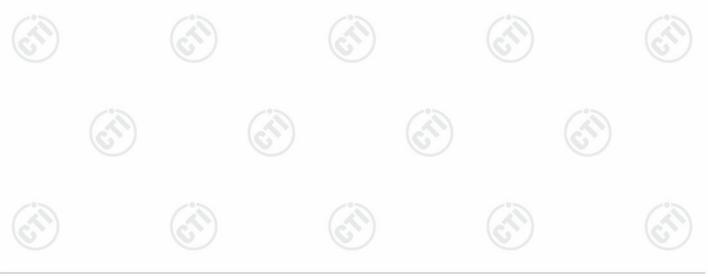
(23)			
EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\	-05	


	# Trebeledor	· // Detector							
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.31	34.67	49.98	74.00	24.02	PASS	Vertical	PK
2	2390	15.31	24.15	39.46	54.00	14.54	PASS	Vertical	AV

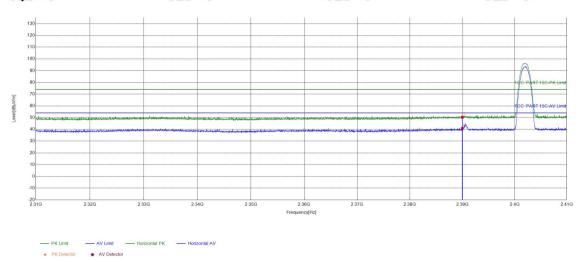
Page	34	of	42

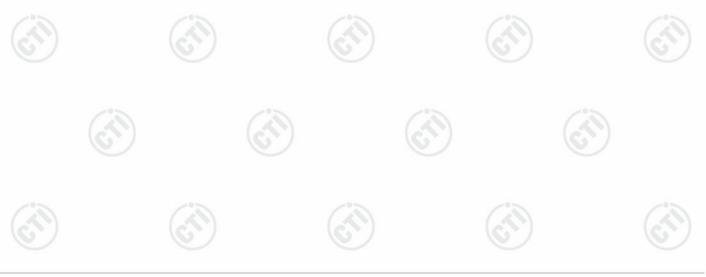

/ 231	(2 1)		1/2/
EUT_Name		Test_Model	
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\		


Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	15.16	33.51	48.67	74.00	25.33	PASS	Horizontal	PK	
2	2483.5	15.16	23.60	38.76	54.00	15.24	PASS	Horizontal	AV	



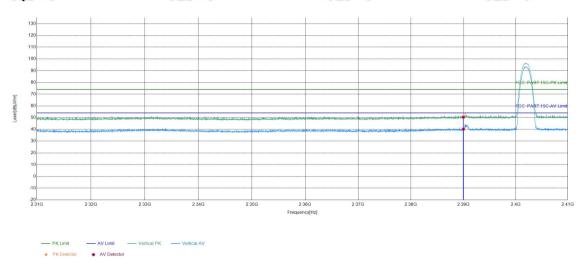
(2)			
EUT_Name	(3,0)	Test_Model	(6,4)
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\		

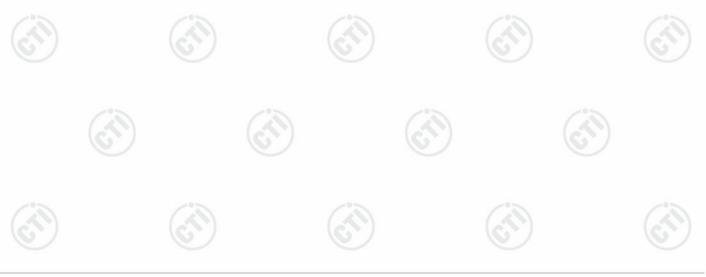

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	15.16	34.55	49.71	74.00	24.29	PASS	Vertical	PK	
2	2483.5	15.16	23.33	38.49	54.00	15.51	PASS	Vertical	AV	



Page	36	of	42

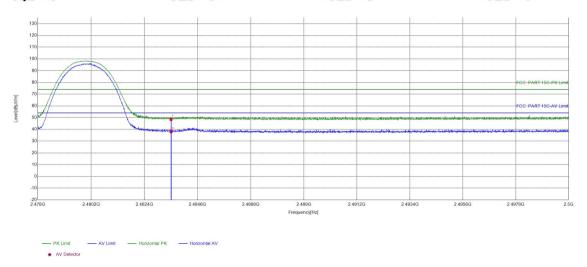
EUT_Name		Test_Model	
Test_Mode 8DPSK Transmittin		Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\	-25	-0

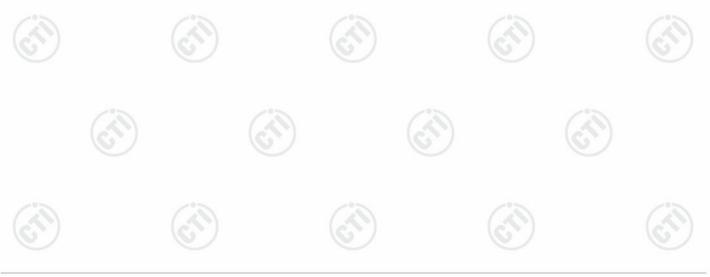

	a inconcior	- // Detector							
Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.31	35.08	50.39	74.00	23.61	PASS	Horizontal	PK
2	2390	15.31	25.49	40.80	54.00	13.20	PASS	Horizontal	AV



Page	37	of 42	2
1 agc	\circ	01 12	-

(43)			182
EUT_Name		Test_Model	
Test_Mode	8DPSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\	-05	

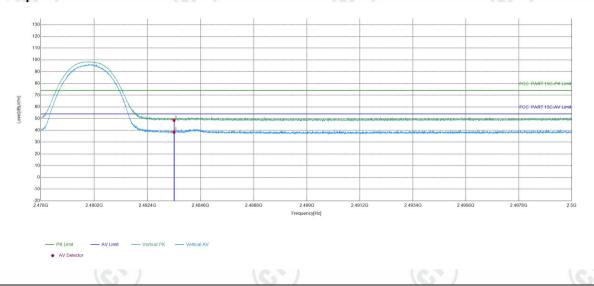

	# Trebeledor	· // Detector							
Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.31	35.13	50.44	74.00	23.56	PASS	Vertical	PK
2	2390	15.31	24.91	40.22	54.00	13.78	PASS	Vertical	AV



Page	38	of 4	2

(43)		(4)	
EUT_Name		Test_Model	
Test_Mode	8DPSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\	-05	-05

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	33.27	48.43	74.00	25.57	PASS	Horizontal	PK
2	2483.5	15.16	22.84	38.00	54.00	16.00	PASS	Horizontal	AV



Page	39	of 42
1 490	\sim	01 12

EUT_Name		Test_Model	
Test_Mode	8DPSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/11
Remark	23.5°C56.9%\		

Test Graph

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	33.45	48.61	74.00	25.39	PASS	Vertical	PK
2	2483.5	15.16	23.37	38.53	54.00	15.47	PASS	Vertical	AV

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32Q81957301 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

