

TEST REPORT

Applicant Name: Address:

Report Number:

FCC ID:

IC:

Shenzhen Youmi Intelligent Technology Co., Ltd. 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China 2401Y99438E-RFC 2ATZ4-GA20N2 26074-GA20N2

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247 ISSUE 3, AUGUST 2023

Sample Description

Product Type:	Smart phone
Model No.:	PG4RBG100
Multiple Model(s) No.:	FCC: PG4RB100A
Trade Mark:	UMIDIGI
Date Received:	2024-10-17
Issue Date:	2024-12-05

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Jim Cheng

Jim Cheng RF Engineer

Approved By:

Wang

Nancy Wang RF Supervisor

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF012

Page 1 of 108

Version 4.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
Product Description for Equipment under Test (EUT) Objective	
Test Methodology Measurement Uncertainty Test Facility	5
SYSTEM TEST CONFIGURATION	
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
REQUIREMENTS AND TEST PROCEDURES	12
AC LINE CONDUCTED EMISSIONS	12
Spurious Emissions	15
99% Occupied Bandwidth & 6 dB Emission Bandwidth	
MAXIMUM CONDUCTED OUTPUT POWER	
POWER SPECTRAL DENSITY	
DUTY CYCLE	
ANTENNA REQUIREMENT	25
TEST DATA AND RESULTS	27
AC LINE CONDUCTED EMISSIONS	27
Spurious Emissions	
6DB EMISSION BANDWIDTH	
99% Occupied Bandwidth Maximum Conducted Output Power	
POWER SPECTRAL DENSITY	
100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
DUTY CYCLE	
EUT PHOTOGRAPHS	107
TEST SETUP PHOTOGRAPHS	108

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401Y99438E-RFC	Original Report	2024-12-05

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	G20-615-U4		
FVIN	UMIDIGI_G100_V1.0		
Product	Smart phone		
Tested Model	PG4RBG100		
Multiple Model(s) No.	FCC: PG4RB100A		
Frequency Range	2412~2462MHz		
Maximum Conducted Output Peak Power	15.98dBm		
Modulation Technique	DSSS, OFDM		
Antenna Specification [#]	1.38dBi (provided by the applicant)		
Voltage Range	DC 5V/9V/12V charging from Adapter or DC 3.89V from battery		
Sample serial number	2SY1-4 for Conducted and Radiated Emissions Test 2SY1-1 for RF Conducted Test (Assigned by BACL, Shenzhen)		
Sample/EUT Status	Good condition		
Adapter Information	Model: QZ-02002AC00 Input: AC100-240V, 50/60Hz, 0.5A Output: DC 5.0V, 3.0A(15.0W) or DC 9.0V, 2.22A or DC 12.0V, 1.67A(20.0W Max.)		
Note: The Multiple models are electrically identical with the test model except for model name and sales channels. Please refer to the declaration letter [#] for more detail, which was provided by manufacturer.			

Objective

This report is in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209, 15.247 rules and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247 Issue 3, August 2023 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliant Testing of Unlicensed Wireless Devices and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247 Issue 3, August 2023.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Report No.: 2401Y99438E-RFC

Measurement Uncertainty

Parameter		•	Uncertainty
Occupied Channel Bandwidth		andwidth	109.2kHz(k=2, 95% level of confidence)
RF output	RF output power, conducted		0.86dB(k=2, 95% level of confidence)
AC Power Lines Cond	ucted	9kHz~150 kHz	3.63dB(k=2, 95% level of confidence)
Emissions		150 kHz ~30MHz	3.66dB(k=2, 95% level of confidence)
	0	009MHz~30MHz	3.60dB(k=2, 95% level of confidence)
	30MHz~200MHz (Horizontal)		5.32dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)		5.43dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Horizontal)		5.77dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Vertical)		5.73dB(k=2, 95% level of confidence)
	1GHz - 6GHz		5.34dB(k=2, 95% level of confidence)
		6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)
	18GHz - 40GHz		5.64dB(k=2, 95% level of confidence)
Temperature		e	±1°C
Humidity			$\pm 1\%$
Supply voltages		ges	$\pm 0.4\%$

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 2.4GHz Wi-Fi mode, total 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

802.11b, 802.11g and 802.11n-HT20 mode was tested with Channel 1, 6 and 11. 802.11n-HT40 mode was tested with Channel 3, 6 and 9.

EUT Exercise Software

Exercise	Software [#]	N/A		
Mode	Data rate	Power Level [#]		
widde	Data Tale	Low Channel	Middle Channel	High Channel
802.11b	1Mbps	5	5	5
802.11g	6Mbps	5	5	5
802.11n20	MCS0	5	5	5
802.11n40	MCS0	5	5	5
Note: The worst-case data rates are determined to be as follows for each mode based upon				
inverstigation by measuring the power and PSD across all data rates bandwidths, and modulations.				

Special Accessories

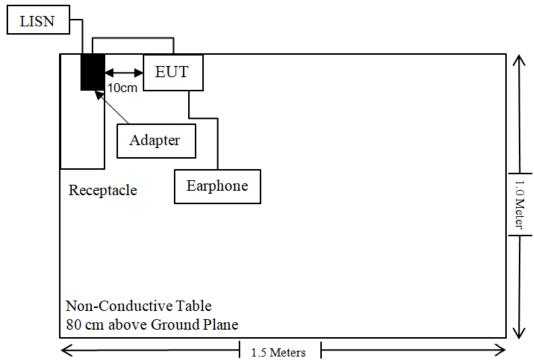
No special accessory.

Equipment Modifications

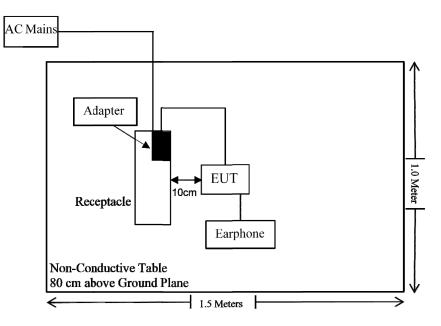
No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
unknown	Earphone	unknown	unknown
unknown	Receptacle	unknown	unknown

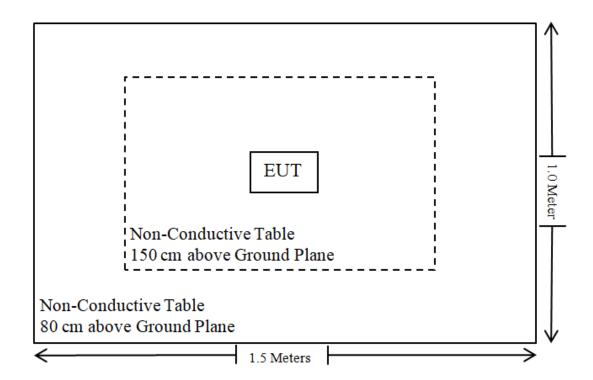

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	0.8	EUT	Adapter
Shielded Un-detachable AC Cable	1.5	Receptacle	LISN/AC Mains
Un-shielding Detachable Audio Cable	1.0	Earphone	EUT


TR-EM-RF012

Block Diagram of Test Setup

For Conducted Emissions:


For Radiated Emissions below 1GHz:

TR-EM-RF012

Report No.: 2401Y99438E-RFC

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	RSS Rules	Description of Test	Result
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207 (a)	RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	RSS-GEN § 8.10 & RSS-247 § 5.5	Spurious Emissions	Compliant
§15.247 (a)(2)	RSS- Gen§6.7 RSS-247 § 5.2 (a)	99% Occupied Bandwidth & 6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	RSS-247 § 5.4(d)	Maximum Conducted Output Power	Compliant
§15.247(d)	RSS-247 § 5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	RSS-247 § 5.2 (b)	Power Spectral Density	Compliant
C63.10 §11.6	C63.10 §11.6	Duty Cycle	/

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Conducted l	Emission Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20
Audix	EMI Test software	E3	191218(V9)	NCR	NCR

Ray Area	Compliance	Laboratories	Corn	(Shenzhen)
Day Alea	Compliance	Laboratories	COIP.	(Shenzhen)

Report No.: 2401Y99438E-RFC

ManufacturerDescriptionModelSerial NumberCalibration Due DateRohde & SchwarzEMI Test ReceiverFSR31024552024/01/162025/01/15Sonoma instrumentPre-amplifier310N1862382024/05/212025/06/17Sunol SciencesBroadbandJB1A040904-12023/07/202026/07/19UnknownCableChamber CableF-03-EM2362024/06/182025/06/17UnknownCableXH500CJ-10M-A2024/05/212025/06/17BACLActive Loop Antenna1313.1A40319112024/05/212025/05/20UnknownCable2Y19407352024/05/212025/05/20UnknownCablePNG21413542024/05/212025/05/20MudixEMI Test softwareFSV401016052024/05/212025/05/20C0M-POWERPre-amplifierPA-121819192024/05/212025/06/17SchwarzbeckHorn AntennaBBHA9120D(12)11432023/07/262025/06/17UnknownRF CableKMSE07352024/06/182025/06/17UnknownRF CableSMT50A-MJ-10M2024/06/182025/06/17UnknownRF CableKMSE07352024/06/182025/06/17UnknownRF CableSMT50A-MJ-10M2024/06/182025/06/17UnknownRF CableSMT50A-MJ-10M2024/06/182025/06/17UnknownRF CableSMT50A-MJ-10M2024/06/18									
Rohde & Schwarz EMI Test Receiver ESR3 102455 2024/01/16 2025/01/15 Sonoma instrument instrument Pre-amplifier 310N 186238 2024/05/21 2025/05/20 Sunol Sciences Broadband Antenna JB1 A040904-1 2023/07/20 2026/07/19 Unknown Cable Chamber Cable 1 F-03-EM236 2024/06/18 2025/06/17 BACL Antenna J131-1A 4031911 2024/05/14 2025/05/20 Unknown Cable 2Y194 0735 2024/05/21 2025/05/20 Unknown Cable PNG214 1354 2024/05/21 2025/05/20 Unknown Cable PNG214 1354 2024/05/21 2025/05/20 Mudix Software software Software 19821b(V9) NCR NCR Rohde&Schwarz Spectrum Analyzer FSV40 101605 2024/03/27 2025/03/26 COM-POWER Pre-amplifier PA-122 181919 2024/06/18 2025/06/17 Schwarzbeck Horn Antenna	Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Schwarz Receiver ESR3 102455 2024/01/16 2025/01/15 Sonoma instrument Pre-amplifier 310N 186238 2024/05/21 2025/05/20 Sunol Sciences Broadband Antenna JB1 A040904-1 2023/07/20 2026/07/19 Unknown Cable Chamber Cable 1 F-03-EM236 2024/06/18 2025/06/17 Unknown Cable XH500C J-10M-A 2024/05/14 2025/05/20 BACL Antenna 1313-1A 4031911 2024/05/14 2025/05/20 Unknown Cable 2Y194 0735 2024/05/21 2025/05/20 Unknown Cable PNG214 1354 2024/05/21 2025/05/20 Mudix EMI Test software E3 19821b(V9) NCR NCR Rohde&Schwarz Analyzer FSV40 101605 2024/03/27 2025/03/26 COM-POWER Pre-amplifier PA-122 181919 2024/06/18 2025/06/17 Schwarzbeck Horn Antenna BBHA9120D(12 01)									
instrument Pre-amplifier 310N 186238 2024/05/21 2025/05/20 Sunol Sciences Broadband Antenna JB1 A040904-11 2023/07/20 2026/07/19 Unknown Cable Chamber Cable 1 F-03-EM236 2024/06/18 2025/06/17 Unknown Cable XH500C J-10M-A 2024/05/14 2025/06/17 BACL Active Loop Antenna 1313-1A 4031911 2024/05/21 2025/05/20 Unknown Cable PNG214 1354 2024/05/21 2025/05/20 Unknown Cable PNG214 1354 2024/05/21 2025/05/20 Madix Septertum Antenna FSV40 101605 2024/05/21 2025/05/20 Audix Spectrum Software FSV40 101605 2024/05/21 2025/06/17 COM-POWER Pre-amplifier PA-122 181919 2024/06/18 2025/06/17 Unknown RF Cable KMSE 0735 2024/06/18 2025/06/17 Unknown RF Cable XH50A-N	Schwarz		ESR3	102455	2024/01/16	2025/01/15			
Sunol SciencesAntennaJB1A040904-1 $2023/01/20$ $2026/01/19$ UnknownCableChamber Cable 1F-03-EM236 $2024/06/18$ $2025/06/17$ UnknownCableXH500CJ-10M-A $2024/05/14$ $2025/06/17$ BACLActive Loop Antenna1313-1A4031911 $2024/05/14$ $2025/05/20$ UnknownCable2Y1940735 $2024/05/14$ $2025/05/20$ UnknownCablePNG2141354 $2024/05/21$ $2025/05/20$ AudixEMI Test softwareE319821b(V9)NCRNCRRohde&SchwarzSpectrum AnalyzerFSV40101605 $2024/06/18$ $2025/05/20$ COM-POWERPre-amplifierPA-122181919 $2024/06/18$ $2025/06/17$ SchwarzbeckHorn AntennaBBHA9120D(12 01)1143 $2023/07/26$ $2026/07/25$ UnknownRF CableKMSE0735 $2024/06/18$ $2025/06/17$ UnknownRF CableUFA147 219661 $2024/06/18$ $2025/06/17$ JDMutiplex Switch Test Control SetDT7220FSUDQ77926 $2024/06/18$ $2025/06/17$ JDRF CableNO.13 $232308-001$ $2024/06/18$ $2025/06/17$ AH:SystemPre-amplifierPAM-1840VH190 $2024/06/18$ $2025/06/17$ AL:SystemPre-amplifierFAM $232308-001$ $2024/06/18$ $2025/06/17$ MatixSeftwareE3191218(V9)NCRNCRAL:System		_	310N	186238	2024/05/21	2025/05/20			
Unknown Cable 1 F-03-EM236 2024/06/18 2025/06/17 Unknown Cable XH500C J-10M-A 2024/06/18 2025/06/17 BACL Active Loop Antenna 1313-1A 4031911 2024/05/14 2027/05/13 Unknown Cable 2Y194 0735 2024/05/12 2025/05/20 Unknown Cable PNG214 1354 2024/05/12 2025/05/20 Madix Software ES 19821b(V9) NCR NCR Audix Software FSV40 101605 2024/03/27 2025/03/26 COM-POWER Pre-amplifier PA-122 181919 2024/06/18 2025/06/17 Schwarzbeck Horn Antenna BBHA9120D(12 01) 1143 2023/07/26 2026/07/25 Unknown RF Cable KMSE 0735 2024/06/18 2025/06/17 Unknown RF Cable MSE 0735 2024/06/18 2025/06/17 JDn Multiplex Switch Test Control Set DT7220FSU DQ7926 <t< td=""><td>Sunol Sciences</td><td></td><td></td><td>A040904-1</td><td>2023/07/20</td><td>2026/07/19</td></t<>	Sunol Sciences			A040904-1	2023/07/20	2026/07/19			
BACLActive Loop Antenna1313-1A40319112024/05/142027/05/13UnknownCable2Y19407352024/05/212025/05/20UnknownCablePNG21413542024/05/212025/05/20AudixEMI Test softwareE319821b(V9)NCRNCRRohde&SchwarzSpectrum AnalyzerFSV401016052024/03/272025/03/26COM-POWERPre-amplifierPA-1221819192024/06/182025/06/17SchwarzbeckHorn AntennaBBHA9120D(12) 01)11432023/07/262026/07/25UnknownRF CableKMSE07352024/06/182025/06/17UnknownRF CableJT7220FSUDQ779262024/06/182025/06/17JDMultiplex Switch Test Control SetDT7220FSUDQ779262024/06/182025/06/17Electro- Mechanics CoHorn Antenna31169510-22702023/09/182026/09/17MatixRF CableNO.13232308-0012024/06/182025/06/17Multiplex Switch Test Control SetB31191218(V9)NCRNCRMechanics Co MorkmerHorn Antenna31169510-22702023/09/182026/09/17MatixEMI Test softwareE3191218(V9)NCRNCRMatixSpectrum power sensorMA24418A126222024/06/182025/06/17AndixSpectrum power sensorMA24418A1262592024/01/162025/05/20	Unknown	Cable		F-03-EM236	2024/06/18	2025/06/17			
BACL Antenna 1313-1A 4031911 2024/03/14 2027/03/13 Unknown Cable 2Y194 0735 2024/05/21 2025/05/20 Unknown Cable PNG214 1354 2024/05/21 2025/05/20 Audix EMI Test software E3 19821b(V9) NCR NCR Rohde&Schwarz Spectrum Analyzer FSV40 101605 2024/03/27 2025/03/26 COM-POWER Pre-amplifier PA-122 181919 2024/06/18 2025/06/17 Schwarzbeck Horn Antenna BHA9120D(12 01) 1143 2023/07/26 2025/06/17 Unknown RF Cable KMSE 0735 2024/06/18 2025/06/17 Unknown RF Cable UFA147 219661 2024/06/18 2025/06/17 JD Multiplex Switch Test Control Set DT7220FSU DQ77926 2024/06/18 2025/06/17 AHENTSU Pre-amplifier PAM-1840VH 190 2024/06/18 2025/06/17 Liettro- Mechanics Co Horn Antenna <t< td=""><td>Unknown</td><td>Cable</td><td>XH500C</td><td>J-10M-A</td><td>2024/06/18</td><td>2025/06/17</td></t<>	Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17			
UnknownCablePNG21413542024/05/212025/05/20AudixEMI Test softwareE319821b(V9)NCRNCRRohde&SchwarzSpectrum AnalyzerFSV401016052024/03/272025/03/26COM-POWERPre-amplifierPA-1221819192024/06/182025/06/17SchwarzbeckHorn AntennaBBHA9120D(12 01)11432023/07/262026/07/25UnknownRF CableKMSE07352024/06/182025/06/17UnknownRF CableUFA1472196612024/06/182025/06/17UnknownRF CableXH750A-NJ-10M2024/06/182025/06/17JDMultiplex Switch Test Control SetDT7220FSUDQ779262024/06/182025/06/17Electro- Mechanics CoHorn Antenna31169510-22702023/09/182025/06/17UTIFLEXRF CableNO. 13232308-0012024/06/182025/06/17AudixEMI Test softwareE3191218(V9)NCRNCRANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N11022592024/01/162025/05/20	BACL		1313-1A	4031911	2024/05/14	2027/05/13			
Audix EMI Test software E3 19821b(V9) NCR NCR Rohde&Schwarz Spectrum Analyzer FSV40 101605 2024/03/27 2025/03/26 COM-POWER Pre-amplifier PA-122 181919 2024/06/18 2025/06/17 Schwarzbeck Horn Antenna BBHA9120D(12 01) 1143 2023/07/26 2026/07/25 Unknown RF Cable KMSE 0735 2024/06/18 2025/06/17 Unknown RF Cable UFA147 219661 2024/06/18 2025/06/17 Unknown RF Cable XH750A-N J-10M 2024/06/18 2025/06/17 JD Multiplex Switch Test Control Set DT7220FSU DQ77926 2024/06/18 2025/06/17 A.H.System Pre-amplifier PAM-1840VH 190 2024/06/18 2025/06/17 Electro- Mechanics Co Horn Antenna 3116 9510-2270 2023/09/18 2026/09/17 JUTIFLEX RF Cable NO.13 232308-001 2024/06/18 2025/06/17 Audix Se	Unknown	Cable	2Y194	0735	2024/05/21	2025/05/20			
Audix software E3 198216(V9) NCR NCR Rohde&Schwarz Spectrum Analyzer FSV40 101605 2024/03/27 2025/03/26 COM-POWER Pre-amplifier PA-122 181919 2024/06/18 2025/06/17 Schwarzbeck Horn Antenna BBHA9120D(12 01) 1143 2023/07/26 2026/07/25 Unknown RF Cable KMSE 0735 2024/06/18 2025/06/17 Unknown RF Cable UFA147 219661 2024/06/18 2025/06/17 Unknown RF Cable UFA147 219661 2024/06/18 2025/06/17 JD Multiplex Switch Test Control Set DT7220FSU DQ77926 2024/06/18 2025/06/17 A.H.System Pre-amplifier PAM-1840VH 190 2024/06/18 2025/06/17 Electro- Mechanics Co Horn Antenna 3116 9510-2270 2023/09/18 2026/09/17 UTIFLEX RF Cable NO. 13 232308-001 2024/06/18 2025/06/17 Audix EMI Test soft	Unknown	Cable	PNG214	1354	2024/05/21	2025/05/20			
Ronde&Schwarz Analyzer FSV40 101605 2024/03/27 2025/03/26 COM-POWER Pre-amplifier PA-122 181919 2024/06/18 2025/06/17 Schwarzbeck Horn Antenna BBHA9120D(12 01) 1143 2023/07/26 2026/07/25 Unknown RF Cable KMSE 0735 2024/06/18 2025/06/17 Unknown RF Cable UFA147 219661 2024/06/18 2025/06/17 Unknown RF Cable XH750A-N J-10M 2024/06/18 2025/06/17 JD Multiplex Switch Test Control Set DT7220FSU DQ77926 2024/06/18 2025/06/17 A.H.System Pre-amplifier PAM-1840VH 190 2024/06/18 2025/06/17 Electro- Mechanics Co Horn Antenna 3116 9510-2270 2023/09/18 2026/09/17 UTIFLEX RF Cable NO. 13 232308-001 2024/06/18 2025/06/17 Audix EMI Test software E3 191218(V9) NCR NCR ANRITSU Microwave	Audix		E3	19821b(V9)	NCR	NCR			
Image: Schwarzbeck Horn Antenna BBHA9120D(12 01) 1143 2023/07/26 2026/07/25 Unknown RF Cable KMSE 0735 2024/06/18 2025/06/17 Unknown RF Cable UFA147 219661 2024/06/18 2025/06/17 Unknown RF Cable XH750A-N J-10M 2024/06/18 2025/06/17 JD Multiplex Switch Test Control Set DT7220FSU DQ77926 2024/06/18 2025/06/17 A.H.System Pre-amplifier PAM-1840VH 190 2024/06/18 2025/06/17 Electro- Mechanics Co Horn Antenna 3116 9510-2270 2023/09/18 2025/06/17 JUTIFLEX RF Cable NO.13 232308-001 2024/06/18 2025/06/17 Audix EMI Test software E3 191218(V9) NCR NCR ANRITSU Microwave peak power sensor MA24418A 12622 2024/05/21 2025/05/20 Rohde&Schwarz Spectrum Analyzer FSV40-N 102259 2024/01/16 2025/01/15	Rohde&Schwarz	1	FSV40	101605	2024/03/27	2025/03/26			
Schwarzbeck Horn Antenna 01 1143 2023/07/26 2026/07/23 Unknown RF Cable KMSE 0735 2024/06/18 2025/06/17 Unknown RF Cable UFA147 219661 2024/06/18 2025/06/17 Unknown RF Cable XH750A-N J-10M 2024/06/18 2025/06/17 JD Multiplex Switch Test Control Set DT7220FSU DQ77926 2024/06/18 2025/06/17 A.H.System Pre-amplifier PAM-1840VH 190 2024/06/18 2025/06/17 Electro- Mechanics Co Horn Antenna 3116 9510-2270 2023/09/18 2026/09/17 JUTIFLEX RF Cable NO. 13 232308-001 2024/06/18 2025/06/17 Audix EMI Test software E3 191218(V9) NCR NCR ANRITSU Microwave peak power sensor MA24418A 12622 2024/05/21 2025/05/20 Rohde&Schwarz Spectrum Analyzer FSV40-N 102259 2024/01/16 2025/01/15	COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17			
UnknownRF CableUFA1472196612024/06/182025/06/17UnknownRF CableXH750A-NJ-10M2024/06/182025/06/17JDMultiplex Switch Test Control SetDT7220FSUDQ779262024/06/182025/06/17A.H.SystemPre-amplifierPAM-1840VH1902024/06/182025/06/17Electro- Mechanics CoHorn Antenna31169510-22702023/09/182026/09/17UTIFLEXRF CableNO. 13232308-0012024/06/182025/06/17AudixEMI Test softwareE3191218(V9)NCRNCRANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15	Schwarzbeck	Horn Antenna		1143	2023/07/26	2026/07/25			
UnknownRF CableXH750A-NJ-10M2024/06/182025/06/17JDMultiplex Switch Test Control SetDT7220FSUDQ779262024/06/182025/06/17A.H.SystemPre-amplifierPAM-1840VH1902024/06/182025/06/17Electro- Mechanics CoHorn Antenna31169510-22702023/09/182026/09/17UTIFLEXRF CableNO. 13232308-0012024/06/182025/06/17AudixEMI Test softwareE3191218(V9)NCRNCRANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15	Unknown	RF Cable	KMSE	0735	2024/06/18	2025/06/17			
JDMultiplex Switch Test Control SetDT7220FSUDQ779262024/06/182025/06/17A.H.SystemPre-amplifierPAM-1840VH1902024/06/182025/06/17Electro- Mechanics CoHorn Antenna31169510-22702023/09/182026/09/17UTIFLEXRF CableNO. 13232308-0012024/06/182025/06/17AudixEMI Test softwareE3191218(V9)NCRNCRANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15	Unknown	RF Cable	UFA147	219661	2024/06/18	2025/06/17			
JDTest Control SetD1/220FSUDQ//9262024/06/182025/06/17A.H.SystemPre-amplifierPAM-1840VH1902024/06/182025/06/17Electro- Mechanics CoHorn Antenna31169510-22702023/09/182026/09/17UTIFLEXRF CableNO. 13232308-0012024/06/182025/06/17AudixEMI Test softwareE3191218(V9)NCRNCRRF Conducted TestANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15	Unknown	RF Cable	XH750A-N	J-10M	2024/06/18	2025/06/17			
Electro- Mechanics CoHorn Antenna31169510-22702023/09/182026/09/17UTIFLEXRF CableNO. 13232308-0012024/06/182025/06/17AudixEMI Test softwareE3191218(V9)NCRNCRRF Conducted TestANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15	JD	-	DT7220FSU	DQ77926	2024/06/18	2025/06/17			
Mechanics CoHorn Antenna31169510-22702023/09/182026/09/17UTIFLEXRF CableNO. 13232308-0012024/06/182025/06/17AudixEMI Test softwareE3191218(V9)NCRNCR RF Conducted Test ANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15	A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17			
AudixEMI Test softwareE3191218(V9)NCRNCRRF Conducted TestANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15		Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17			
AudixsoftwareE3191218(V9)NCRNCRRF Conducted TestANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15	UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17			
ANRITSUMicrowave peak power sensorMA24418A126222024/05/212025/05/20Rohde&SchwarzSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15	Audix		E3	191218(V9)	NCR	NCR			
ANRIISUMA24418A126222024/05/212025/05/20Power sensorSpectrum AnalyzerFSV40-N1022592024/01/162025/01/15			RF Cond	ucted Test					
Rohde&SchwarzFSV40-N1022592024/01/162025/01/15	ANRITSU	power sensor	MA24418A	12622	2024/05/21	2025/05/20			
Unknown 10dB Attenuator Unknown F-03-EM190 2024/06/27 2025/06/26	Rohde&Schwarz	-	FSV40-N	102259	2024/01/16	2025/01/15			
	Unknown	10dB Attenuator	Unknown	F-03-EM190	2024/06/27	2025/06/26			

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

TR-EM-RF012

REQUIREMENTS AND TEST PROCEDURES

AC Line Conducted Emissions

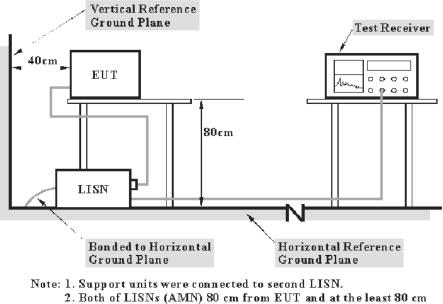
Applicable Standard

FCC § 15.207 (a) & RSS-GEN §8.8

Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for Compliant with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Table 4 - AC Power Lines Conducted Emission Limits							
Frequency range	conducted limit (dBµV)						
(MHz)	Quasi-Peak	Average					
0.15 - 0.5	66 to 56 ¹	56 to 46 ¹					
0.5 - 5	56	46					
5-30	60	50					


Note 1: The level decreases linearly with the logarithm of the frequency.

For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations:

(a) Perform the AC power-line conducted emissions test with the antenna connected to determine Compliant with the limits of table 4 outside the transmitter's fundamental emission band.

(b) Retest with a dummy load instead of the antenna to determine Compliant with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 & RSS-247/RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

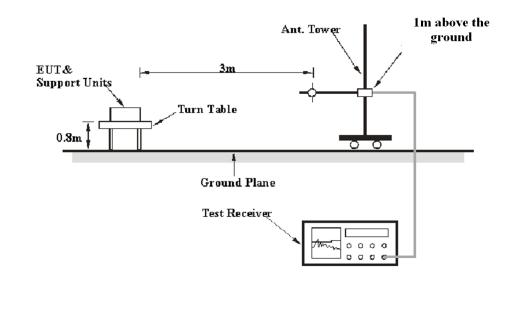
Over Limit = level – Limit Level= reading level+ Factor

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

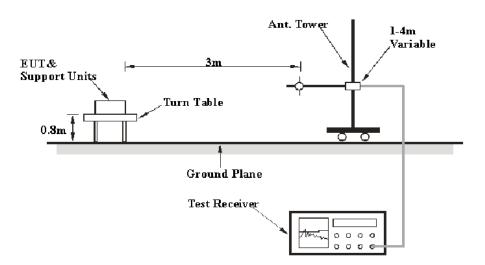
Spurious Emissions

Applicable Standard

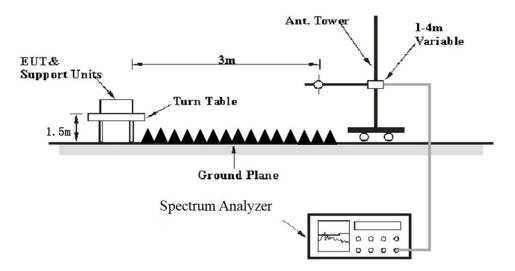
FCC §15.247 (d); §15.209; §15.205;


According to RSS-GEN § 8.10 & RSS-247 § 5.5

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:(a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).(b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.(c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in table 5 and table 6.


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates Compliant with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013 & RSS-Gen. The specification used was the FCC 15.209, and FCC 15.247 & RSS-Gen limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
9 kHz – 150 kHz	/	/	200 Hz	QP
9 KHZ - 130 KHZ	300 Hz	1 kHz	/	РК
150 kHz – 30 MHz	/	/	9 kHz	QP
130 kmz - 30 mmz	10 kHz	30 kHz	/	РК
30 MHz – 1000 MHz	/	/	120 kHz	QP
50 MITZ – 1000 MITZ	100 kHz	300 kHz	/	РК

1-25GHz:

Pre-scan

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
	>98%	1MHz	5 kHz
AV	<98%	1MHz	≥1/Ton, not less than 5 kHz

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
AV	>98%	1MHz	10 Hz
Av	<98%	1MHz	≥1/Ton

Note: Ton is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

99% Occupied Bandwidth & 6 dB Emission Bandwidth

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "6 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 6 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

Test Method: ANSI C63.10-2013 section 11.8&6.9.3

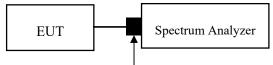
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

The following conditions shall be observed for measuring the occupied bandwidth and 6 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 6 dB bandwidth if the device is not transmitting continuously.


• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 6 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in Compliant with the above requirement.

TR-EM-RF012

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed

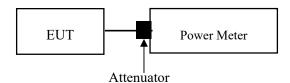
in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Attenuator

Maximum Conducted Output Power

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, Compliant with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.


For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, Compliant can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

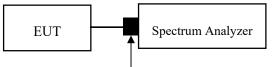
Test Procedure

Test Method: ANSI C63.10-2013 section 11.9.1.3 & 11.9.2.3.2

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- c) Add a correction factor to the display.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

100 kHz Bandwidth of Frequency Band Edge


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates Compliant with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 section 11.11

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

Attenuator

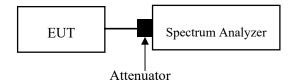
Power Spectral Density

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Test Procedure


Test Method: ANSI C63.10-2013 section 11.10.2

a) Set analyzer center frequency to DTS channel center frequency.

- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

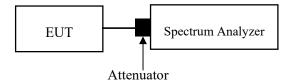
i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

Duty Cycle

Test Procedure


According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. 3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T \leq 16.7 µs.)

ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine Compliant with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the Compliant of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

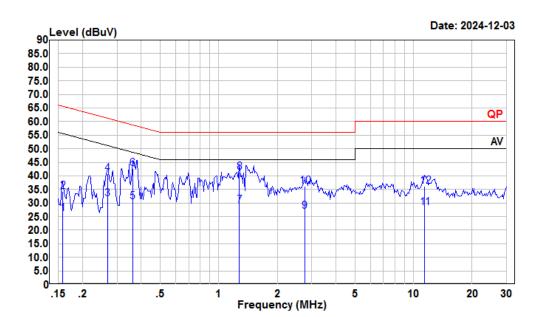
For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has an internal antenna arrangement which was permanently attached for Wi-Fi and the antenna gain[#] is 1.38dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Antenna Gain [#]	Impedance	Frequency Range
FPC	1.38dBi	50Ω	2.4-2.5GHz


Result: Compliant

TEST DATA AND RESULTS

AC Line Conducted Emissions

Environmental Conditions


Temperature (°C)	24	Relative Humidity (%)	55				
ATM Pressure (kPa)	101	101 Test engineer Macy shi					
Test date	2024/12/03						
EUT operation mode	Transmitting(Maximum output power mode, 802.11n-HT20 Mode Middle Channel)						

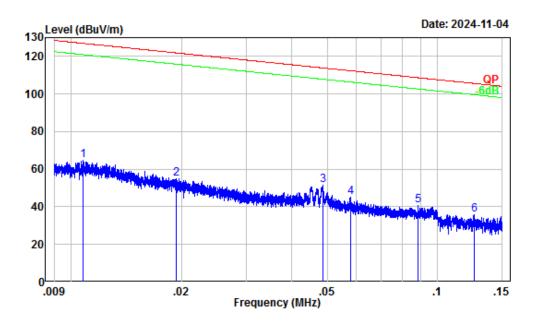
AC 120V 60 Hz, Line

Condition	ı :	Line			
Project	:	2401Y99438E-RF			
tester	:	Macy.shi			
Note	:	Transmitting			
Detector	:	RBW:9KHz	VBW:Auto	SWT:Auto	

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.158	5.18	26.18	10.88	10.12	55.56	-29.38	Average
2	0.158	13.34	34.34	10.88	10.12	65.56	-31.22	QP
3	0.269	10.82	31.61	10.70	10.09	51.16	-19.55	Average
4	0.269	20.00	40.79	10.70	10.09	61.16	-20.37	QP
5	0.361	9.76	30.49	10.61	10.12	48.69	-18.20	Average
6	0.361	21.94	42.67	10.61	10.12	58.69	-16.02	QP
7	1.276	8.41	29.03	10.47	10.15	46.00	-16.97	Average
8	1.276	20.83	41.45	10.47	10.15	56.00	-14.55	QP
9	2.765	6.27	26.91	10.46	10.18	46.00	-19.09	Average
10	2.765	15.41	36.05	10.46	10.18	56.00	-19.95	QP
11	11.438	7.38	28.19	10.60	10.21	50.00	-21.81	Average
12	11.438	15.44	36.25	10.60	10.21	60.00	-23.75	QP

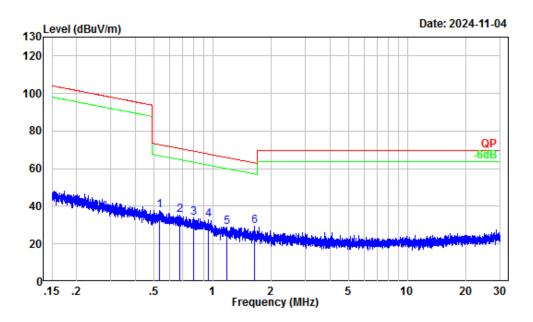
Condition	1 :	Neutral			
Project	:	2401Y9943	8E-RF		
tester	:	Macy.shi			
Note	:	Transmitt	ing		
Detector	:	RBW:9KHz	VBW:Auto	SWT:Auto	

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.191	8.19	28.71	10.43	10.09	53.98	-25.27	Average
2	0.191	15.00	35.52	10.43	10.09	63.98	-28.46	QP
3	0.283	13.44	34.05	10.51	10.10	50.72	-16.67	Average
4	0.283	18.77	39.38	10.51	10.10	60.72	-21.34	QP
5	0.354	15.37	36.08	10.59	10.12	48.87	-12.79	Average
6	0.354	23.02	43.73	10.59	10.12	58.87	-15.14	QP
7	0.373	16.49	37.20	10.60	10.11	48.43	-11.23	Average
8	0.373	23.48	44.19	10.60	10.11	58.43	-14.24	QP
9	1.388	9.95	30.76	10.66	10.15	46.00	-15.24	Average
10	1.388	19.66	40.47	10.66	10.15	56.00	-15.53	QP
11	2.794	6.28	26.86	10.40	10.18	46.00	-19.14	Average
12	2.794	16.66	37.24	10.40	10.18	56.00	-18.76	QP

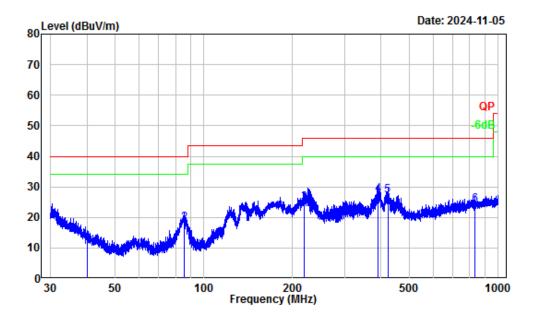

Spurious Emissions

Environmental Conditions

Temperature (°C)	24-25	Relative Humidity (%)	50-55	
ATM Pressure (kPa):	101	Test engineer:	Anson Su&Karl Xu	
Test date:	2024/11/4- 2024/11/19			
EUT operation mode:	Below 1GHz: Transmitting(Maximum output power mode, 802.11n-HT20 Mode Middle Channel) Above 1GHz: Transmitting			
Note:	After pre-scan in the X, Y and Z axes of orientation, the worst case z-axis of orientation were recorded. The spurious emission from 9 kHz-30MHz of IC RSS-Gen standard, the unit of final			

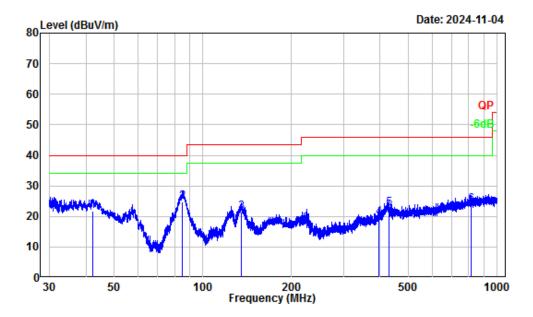

Below 1GHz:

Site :	Chamber A
Condition :	Зm
Project Number:	2401Y99438E-RF
Test Mode :	2.4G WIFI Transmitting
Tester :	Anson Su


	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	37.28	27.40	64.68	126.94	-62.26	Peak
2	0.02	32.92	22.25	55.17	121.87	-66.70	Peak
3	0.05	23.38	28.32	51.70	113.87	-62.17	Peak
4	0.06	21.99	23.22	45.21	112.34	-67.13	Peak
5	0.09	18.20	22.50	40.70	108.67	-67.97	Peak
6	0.13	15.85	20.12	35.97	105.61	-69.64	Peak

150kHz-30MHz

Site :	Chamber A
Condition :	Зm
Project Number:	2401Y99438E-RF
Test Mode :	2.4G Transmitting
Tester :	Anson Su


	Freq	Factor		Level		Over Limit	Remark
	MHz			dBuV/m	dBuV/m	dB	
1	0.53	3.11	34.68	37.79	73.09	-35.30	Peak
2	0.68	1.33	33.78	35.11	70.89	-35.78	Peak
3	0.80	-0.10	34.00	33.90	69.46	-35.56	Peak
4	0.95	-1.25	34.35	33.10	67.89	-34.79	Peak
5	1.19	-2.23	31.30	29.07	65.97	-36.90	Peak
6	1.64	-3.80	33.04	29.24	63.10	-33.86	Peak

30MHz-1GHz_Horizontal

Chamber A
3m Horizontal
2401Y99438E-RF
2.4G WIFI Transmitting
Anson Su

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.06	-12.42	24.23	11.81	40.00	-28.19	QP
2	85.79	-18.09	36.13	18.04	40.00	-21.96	QP
3	219.17	-14.20	39.10	24.90	46.00	-21.10	QP
4	391.24	-8.82	36.27	27.45	46.00	-18.55	QP
5	421.13	-7.93	35.07	27.14	46.00	-18.86	QP
6	832.95	-1.87	25.94	24.07	46.00	-21.93	QP

30MHz-1GHz_Vertical

Site :	Chamber A
Condition :	3m Vertical
Project Number:	2401Y99438E-RF
Test Mode :	2.4G WIFI Transmitting
Tester :	Anson Su

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	42.28	-14.07	35.86	21.79	40.00	-18.21	QP
2	85.04	-18.08	42.75	24.67	40.00	-15.33	QP
3	134.62	-11.46	32.86	21.40	43.50	-22.10	QP
4	397.29	-8.54	28.31	19.77	46.00	-26.23	QP
5	427.83	-7.84	30.47	22.63	46.00	-23.37	QP
6	817.04	-2.04	25.83	23.79	46.00	-22.21	QP

Report No.: 2401Y99438E-RFC

Above	1GHz:
-------	-------

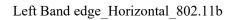
Frequency (MHz)	Receiver				Corrected		
	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			802	2.11b			
			Low (Channel			
4824	46.76	РК	Н	2.45	49.21	74	-24.79
4824	32.44	AV	Н	2.45	34.89	54	-19.11
4824	46.5	РК	V	2.45	48.95	74	-25.05
4824	32.81	AV	V	2.45	35.26	54	-18.74
			Middle	Channel			
4874	46.78	РК	Н	2.56	49.34	74	-24.66
4874	32.41	AV	Н	2.56	34.97	54	-19.03
4874	46.52	РК	V	2.56	49.08	74	-24.92
4874	32.43	AV	V	2.56	34.99	54	-19.01
			High (Channel			
4924	46.8	РК	Н	2.63	49.43	74	-24.57
4924	32.38	AV	Н	2.63	35.01	54	-18.99
4924	46.56	РК	V	2.63	49.19	74	-24.81
4924	32.35	AV	V	2.63	34.98	54	-19.02
			802	2.11g			
			Low (Channel			
4824	46.28	РК	Н	2.45	48.73	74	-25.27
4824	33.13	AV	Н	2.45	35.58	54	-18.42
4824	46.06	PK	V	2.45	48.51	74	-25.49
4824	33.65	AV	V	2.45	36.1	54	-17.9
			Middle	Channel	·		
4874	46.55	PK	Н	2.56	49.11	74	-24.89
4874	33.28	AV	Н	2.56	35.84	54	-18.16
4874	46.17	РК	V	2.56	48.73	74	-25.27
4874	33.71	AV	V	2.56	36.27	54	-17.73
			High (Channel			
4924	47.47	РК	Н	2.63	50.1	74	-23.9
4924	33.52	AV	Н	2.63	36.15	54	-17.85
4924	46.54	PK	V	2.63	49.17	74	-24.83
4924	33.95	AV	V	2.63	36.58	54	-17.42

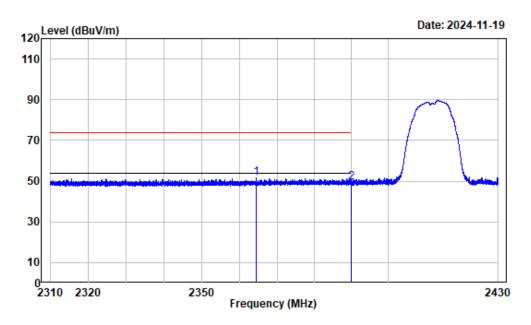
Area Comp	liance Laborato	ories Corp. (Sh	Report No.: 2401Y99438E-RF				
			802.1	1n20			
			Low C	hannel			
4824	46.98	РК	Н	2.45	49.43	74	-24.57
4824	33.31	AV	Н	2.45	35.76	54	-18.24
4824	46.92	РК	V	2.45	49.37	74	-24.63
4824	33.26	AV	V	2.45	35.71	54	-18.29
			Middle	Channel			
4874	46.95	РК	Н	2.56	49.51	74	-24.49
4874	33.46	AV	Н	2.56	36.02	54	-17.98
4874	46.81	РК	V	2.56	49.37	74	-24.63
4874	33.34	AV	V	2.56	35.9	54	-18.1
			High C	Channel			
4924	46.91	РК	Н	2.63	49.54	74	-24.46
4924	33.91	AV	Н	2.63	36.54	54	-17.46
4924	46.78	РК	V	2.63	49.41	74	-24.59
4924	33.48	AV	V	2.63	36.11	54	-17.89
			802.1	1n40	· · · ·		
			Low C	hannel			
4844	46.31	РК	Н	2.47	48.78	74	-25.22
4844	33.72	AV	Н	2.47	36.19	54	-17.81
4844	46.72	РК	V	2.47	49.19	74	-24.81
4844	33.74	AV	V	2.47	36.21	54	-17.79
			Middle	Channel			
4874	46.58	РК	Н	2.56	49.14	74	-24.86
4874	33.81	AV	Н	2.56	36.37	54	-17.63
4874	46.81	РК	V	2.56	49.37	74	-24.63
4874	33.92	AV	V	2.56	36.48	54	-17.52
			High C	Channel	•		
4904	47.78	РК	Н	2.64	50.42	74	-23.58
4904	33.99	AV	Н	2.64	36.63	54	-17.37
4904	46.89	РК	V	2.64	49.53	74	-24.47
4904	34.09	AV	V	2.64	36.73	54	-17.27

Compliance Laboratories Corp. (Shenzhen) В

Report No · 2401Y99438E-REC

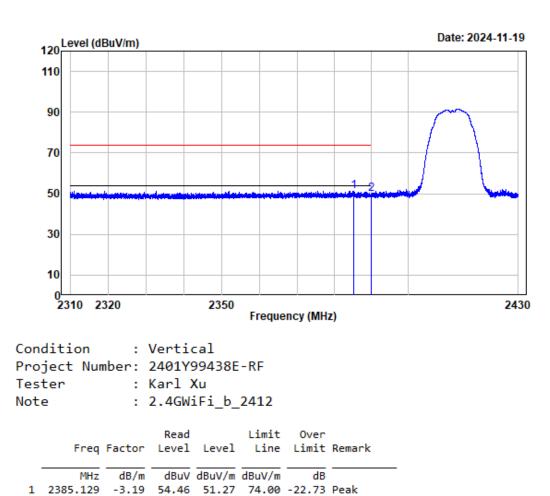
Note:

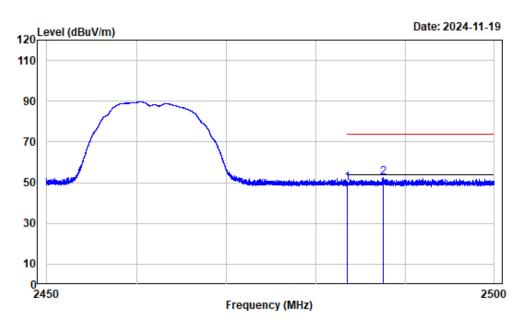

 $Corrected \ Factor = Antenna \ factor \ (RX) + Cable \ Loss - Amplifier \ Factor$


Corrected Amplitude = Corrected Factor + Reading

Margin = Corrected. Amplitude - Limit

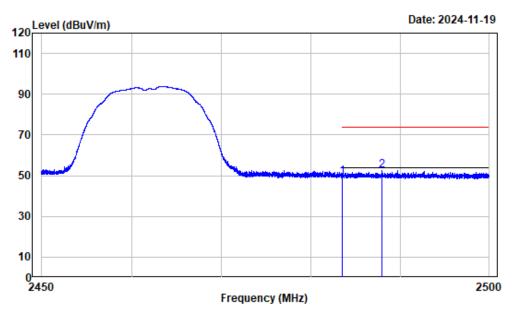
The other spurious emission which is in the noise floor level was not recorded.


Test plots


Condition :	Horizontal
Project Number:	2401Y99438E-RF
Tester :	Karl Xu
Note :	2.4GWiFi_b_2412

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2364.517	-3.17	54.69	51.52	74.00	-22.48	Peak
2	2390.000	-3.20	52.53	49.33	74.00	-24.67	Peak

2 2390.000 -3.20 52.92 49.72 74.00 -24.28 Peak

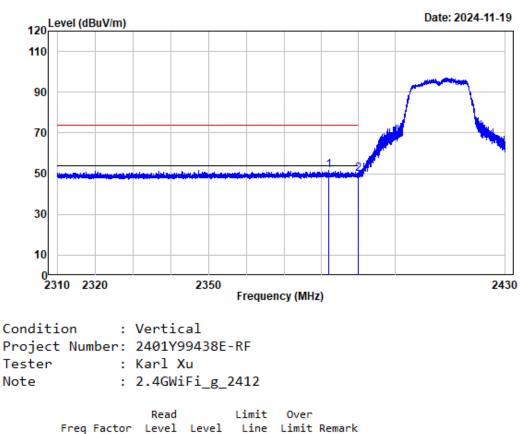

Left Band edge_Vertical_802.11b

Right Band edge_Horizontal_802.11b

Condition : Horizontal Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_b_2462

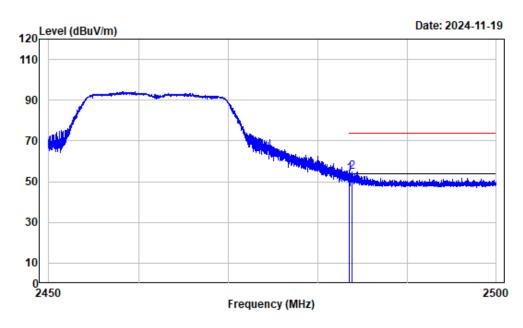
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	52.91	49.74	74.00	-24.26	Peak
2	2487.536	-3.18	55.61	52.43	74.00	-21.57	Peak

Right Band edge_Vertical_802.11b


```
Condition : Vertical
Project Number: 2401Y99438E-RF
Tester : Karl Xu
Note : 2.4GWiFi_b_2462
```

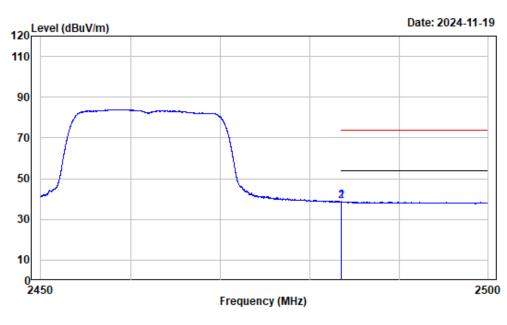
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	52.64	49.47	74.00	-24.53	Peak
2	2487.980	-3.18	55.90	52.72	74.00	-21.28	Peak

TR-EM-RF012



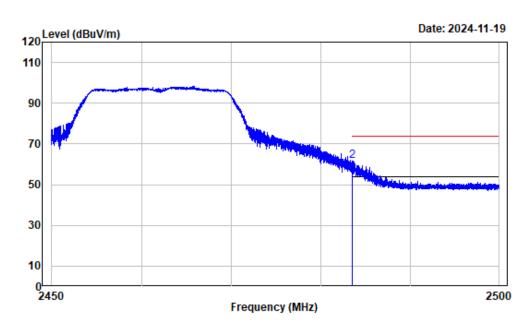
Left Band edge_Horizontal_802.11g

Left Band edge_Vertical_802.11g


	Freq	Factor			Limit		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2381.994	-3.19	54.78	51.59	74.00	-22.41	Peak
2	2390.000	-3.20	52.97	49.77	74.00	-24.23	Peak

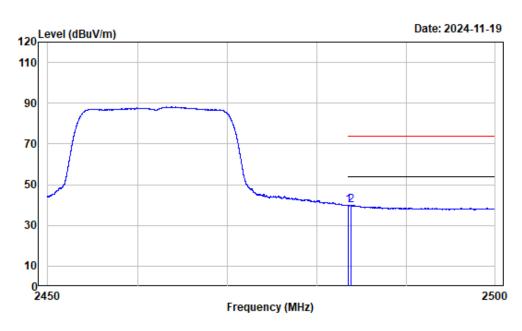
Right Band edge_Horizontal_Peak_802.11g

Condition : Horizontal Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_g_2462


	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	57.03	53.86	74.00	-20.14	Peak
2	2483.842	-3.17	58.08	54.91	74.00	-19.09	peak

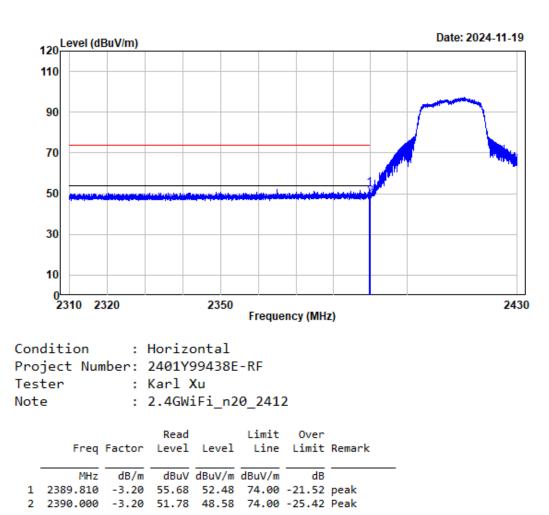
Right Band edge_Horizontal_Average_802.11g

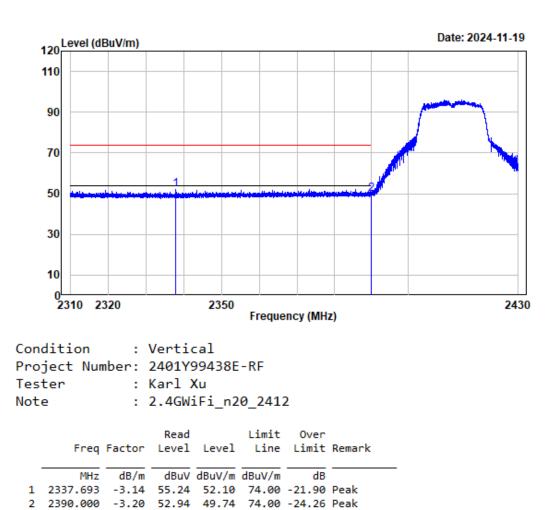
Condition : Horizontal Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_g_2462


	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	41.90	38.73	54.00	-15.27	Average
2	2483.504	-3.17	41.91	38.74	54.00	-15.26	Average

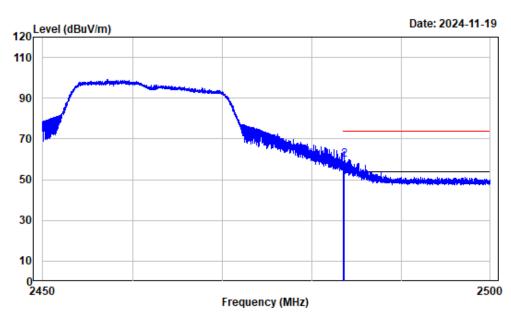
Right Band edge_Vertical_Peak_802.11g

Condition : Vertical Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_g_2462

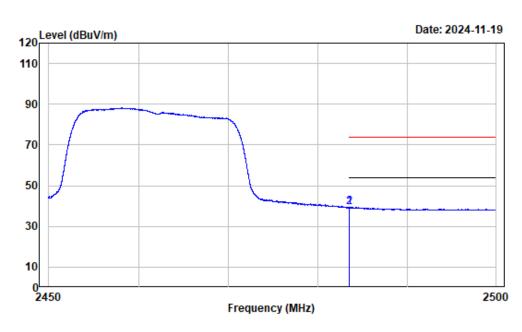

	Freq	Factor		Level		Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	59.54	56.37	74.00	-17.63	Peak
2	2483.529	-3.17	64.89	61.72	74.00	-12.28	Peak


Right Band edge_Vertical_Average_802.11g

Condition : Vertical Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_g_2462

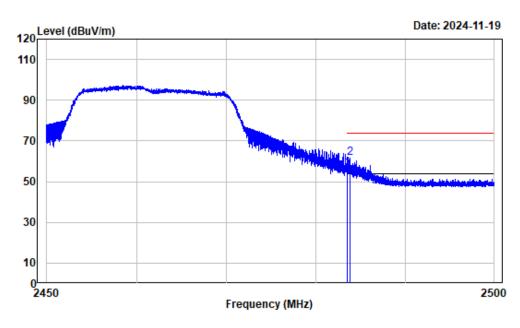

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	42.98	39.81	54.00	-14.19	Average
2	2483.754	-3.17	43.05	39.88	54.00	-14.12	Average

Left Band edge_Horizontal_802.11n-HT20


Left Band edge_Vertical_802.11n-HT20

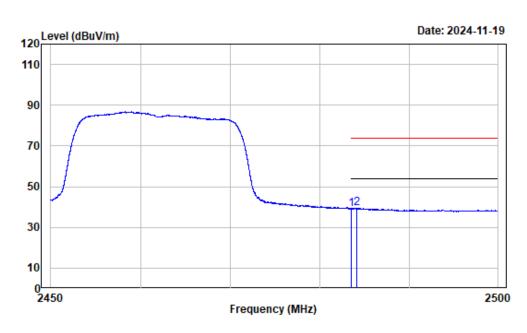
Right Band edge_Horizontal_Peak_802.11n-HT20

Condition : Horizontal Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_n20_2462


	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	61.74	58.57	74.00	-15.43	Peak
2	2483.585	-3.17	63.02	59.85	74.00	-14.15	peak

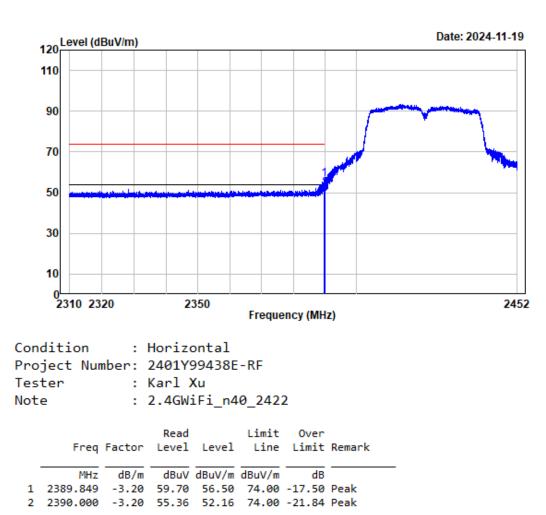
Right Band edge_Horizontal_Average_802.11n-HT20

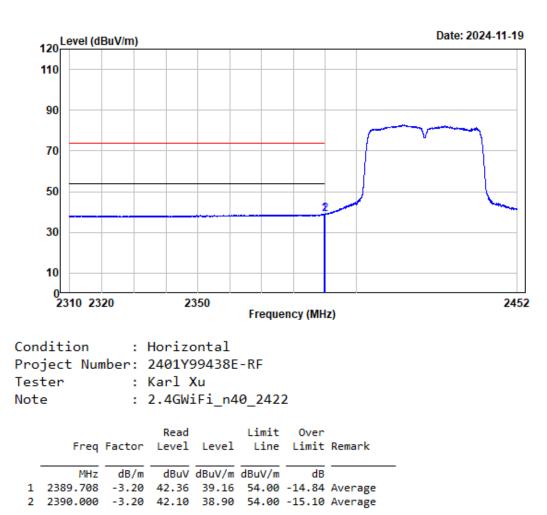
Condition : Horizontal Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_n20_2462


	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	42.52	39.35	54.00	-14.65	Average
2	2483.517	-3.17	42.61	39.44	54.00	-14.56	Average

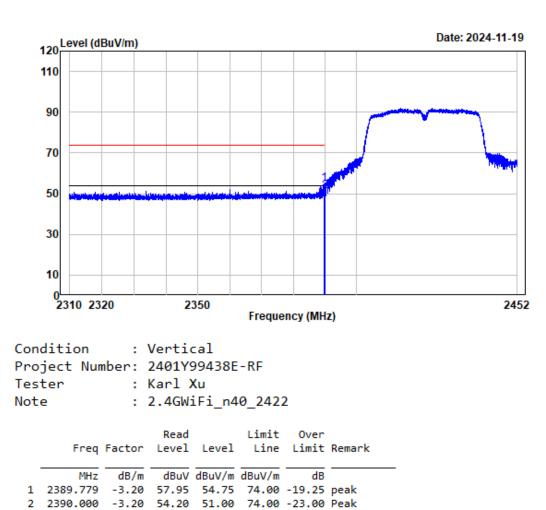
Right Band edge_Vertical_Peak_802.11n-HT20

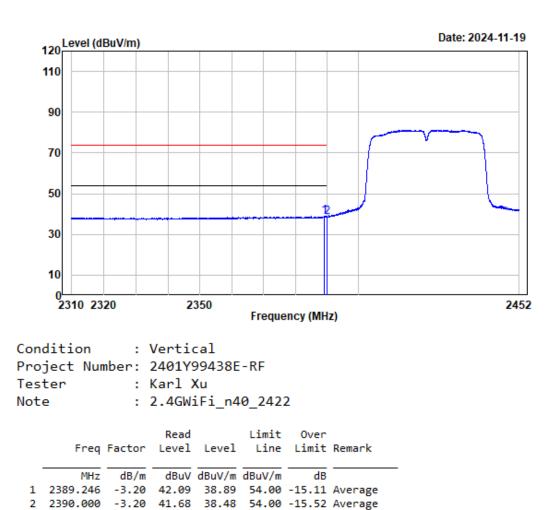
Condition : Vertical Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_n20_2462

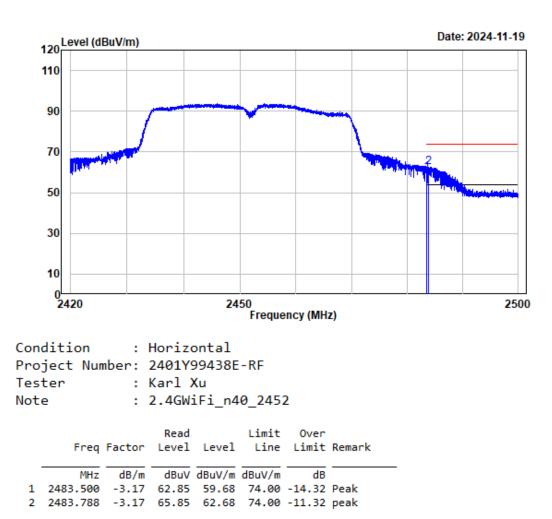

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	59.97	56.80	74.00	-17.20	Peak
2	2483.842	-3.17	64.97	61.80	74.00	-12.20	peak

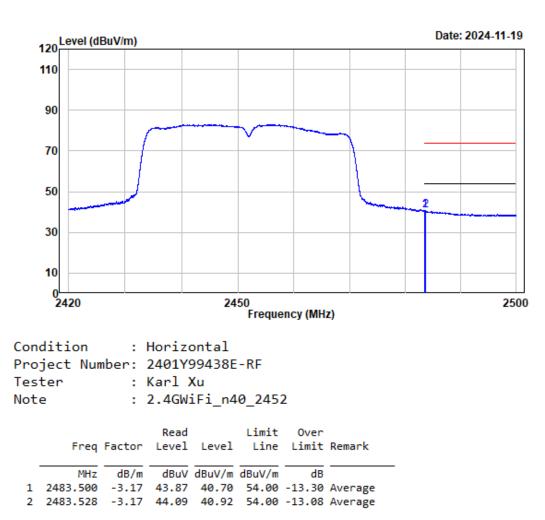

Right Band edge_Vertical_Average_802.11n-HT20

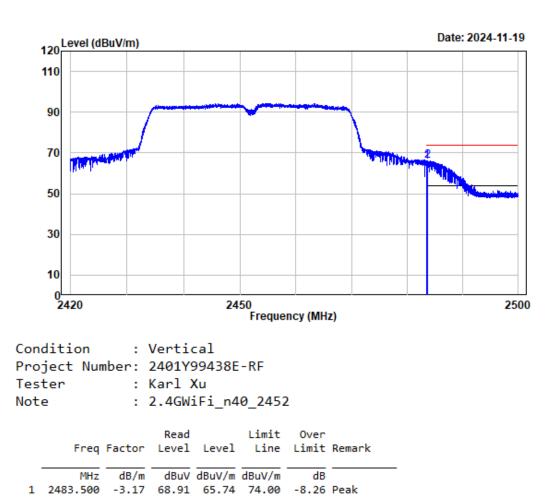
Condition : Vertical Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_n20_2462


	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	42.32	39.15	54.00	-14.85	Average
2	2484.111	-3.17	42.57	39.40	54.00	-14.60	Average

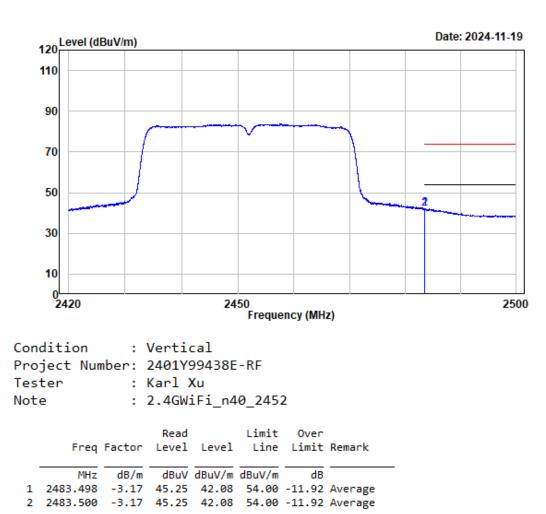

Left Band edge_Horizontal_Peak_802.11n-HT40


Left Band edge_Horizontal_Average_802.11n-HT40

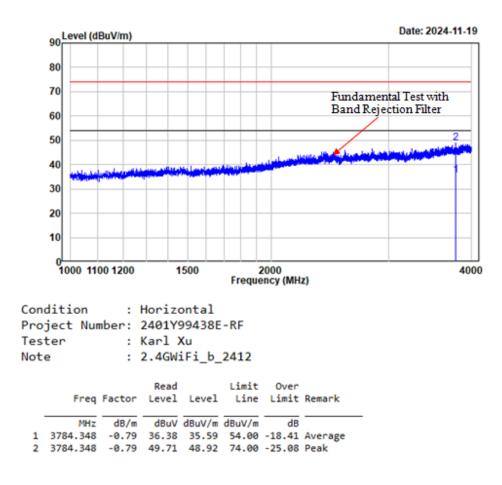

Left Band edge_Vertical_Peak_802.11n-HT40


Left Band edge_Vertical_Average_802.11n-HT40

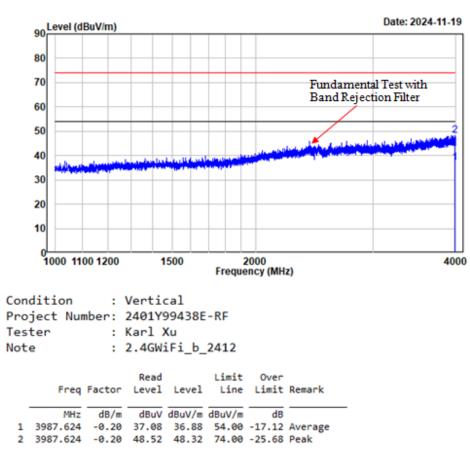
Right Band edge_Horizontal_Peak_802.11n-HT40



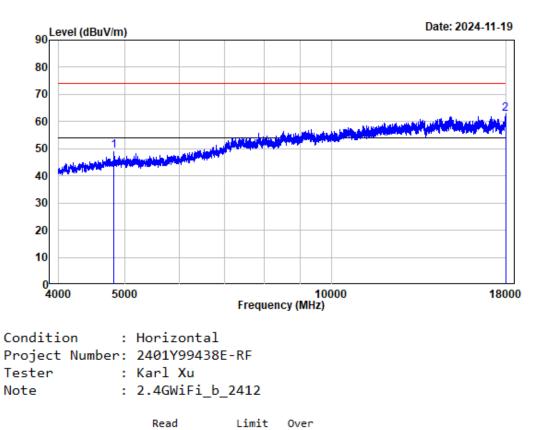
Right Band edge_Horizontal_Average_802.11n-HT40

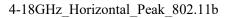

2 2483.678 -3.17 69.21 66.04 74.00 -7.96 peak

Right Band edge_Vertical_Peak_802.11n-HT40

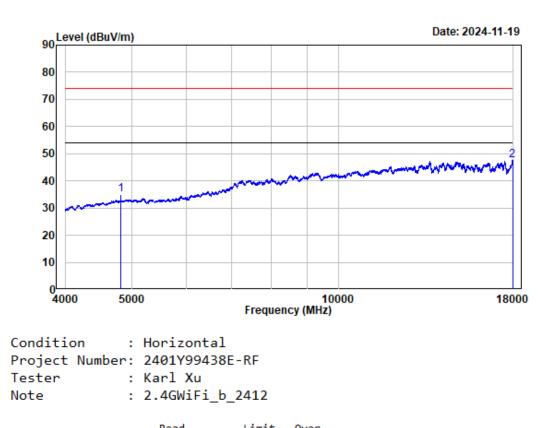


Right Band edge_Vertical_Average_802.11n-HT40

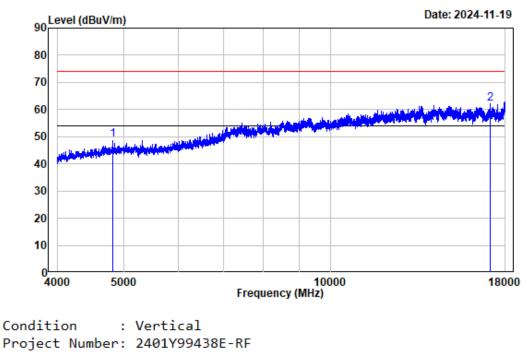

Listed with the worst harmonic margin test plot:



1-4GHz_Horizontal_802.11b

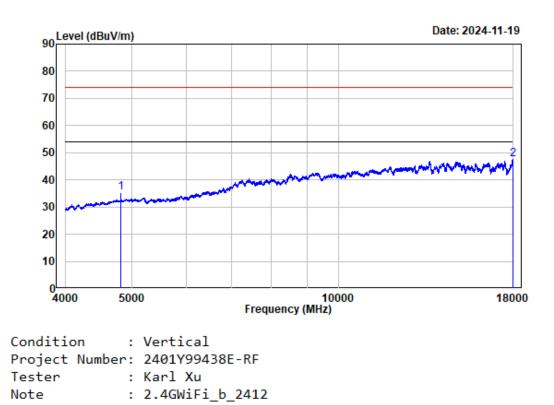


1-4GHz_Vertical_802.11b


	Freq	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4824.000	2.45	46.76	49.21	74.00	-24.79	Peak	
2	17956.240	24.31	38.50	62.81	74.00	-11.19	Peak	

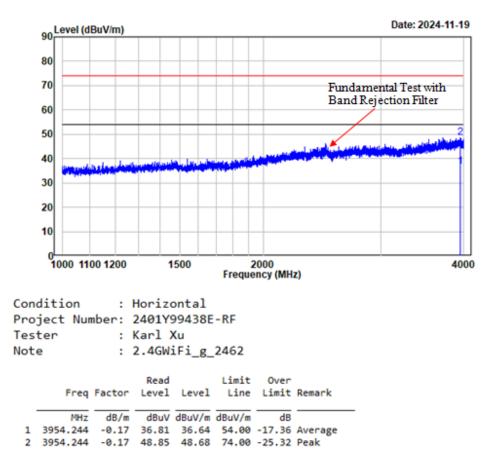
4-18GHz_Horizontal_Average_802.11b

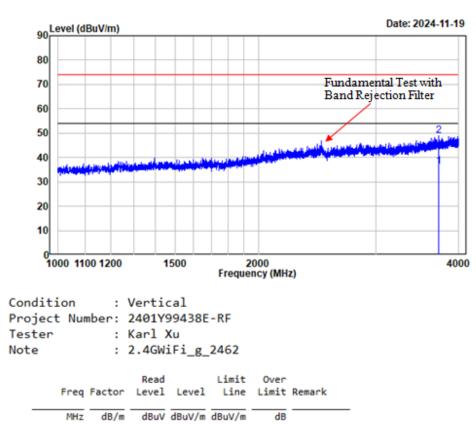
	Freq	Factor	Read Level		Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4824.000	2.45	32.44	34.89	54.00	-19.11	Average	
2	17956.240	24.31	23.35	47.66	54.00	-6.34	Average	


Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz

4-18GHz_Vertical_Peak_802.11b

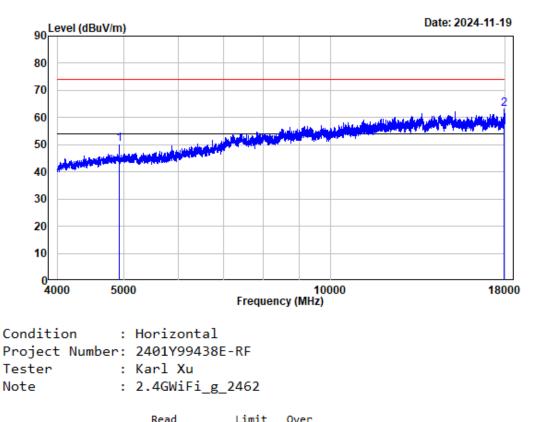
Condition : Vertical Project Number: 2401Y99438E-RF Tester : Karl Xu Note : 2.4GWiFi_b_2412


	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4824.000	2.45	46.50	48.95	74.00	-25.05	Peak
2	17116.140	18.12	44.17	62.29	74.00	-11.71	Peak

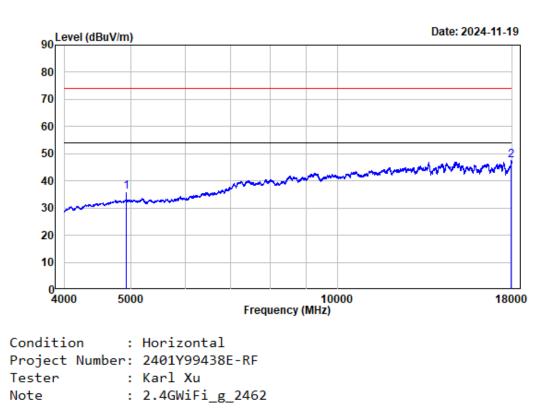

4-18GHz	Vertical	Average	802.11b
---------	----------	---------	---------

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4824.000	2.45	32.81	35.26	54.00	-18.74	Average
2	17959.740	24.34	23.17	47.51	54.00	-6.49	Average

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz

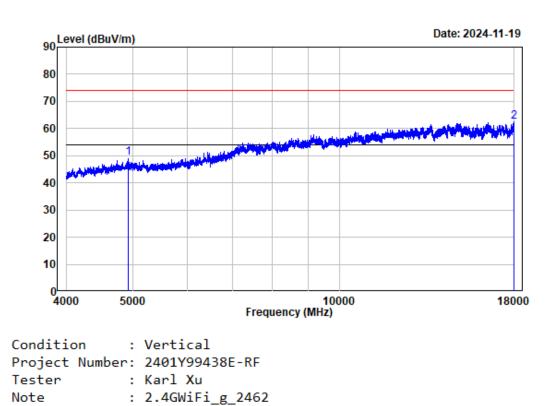


1-4GHz_Horizontal_802.11g


1-4GHz_Vertical_802.11g

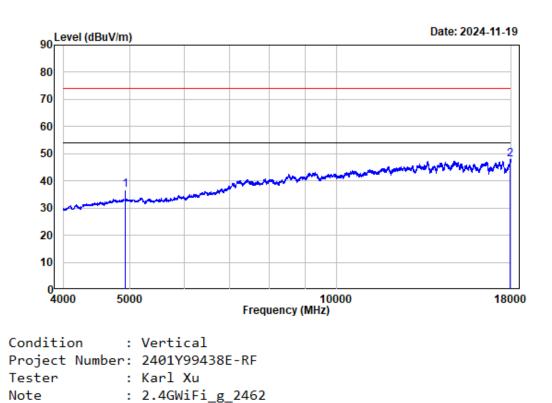
1	3736.342	-0.97	37.34	36.37	54.00	-17.63	Average	
2	3736.342	-0.97	49.77	48.80	74.00	-25.20	Peak	

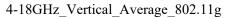
4-18GHz_Horizontal_Peak_802.11g


	Freq	Factor			Limit		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4924.000	2.63	47.47	50.10	74.00	-23.90	Peak	
- 2	17947.490	24.24	38.83	63.07	74.00	-10.93	Peak	

4-18GHz_Horizontal_Average_802.11g

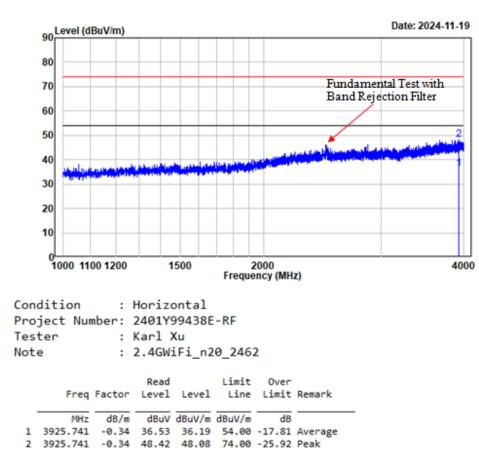
	Freq	Factor		Level		Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	33.52	36.15	54.00	-17.85	Average
2	17954.490	24.30	23.19	47.49	54.00	-6.51	Average

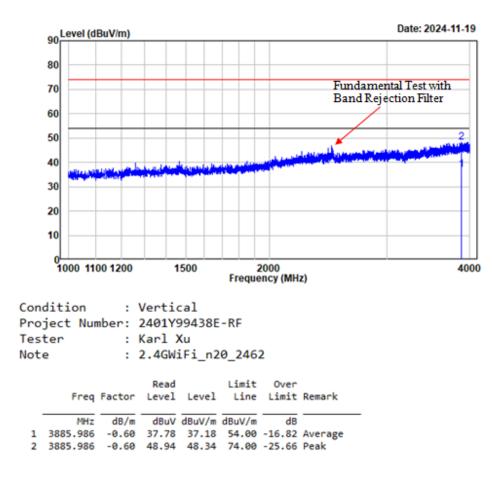

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz



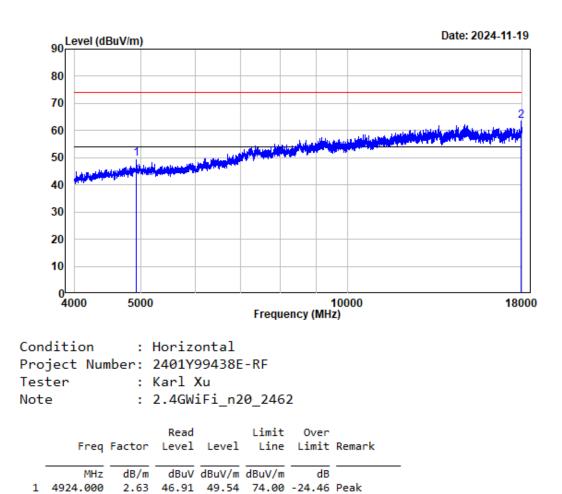
4-18GHz_Vertical_Peak_802.11g

	Freq	Factor		Level		Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	46.54	49.17	74.00	-24.83	Peak
2	17966.750	24.39	37.98	62.37	74.00	-11.63	Peak

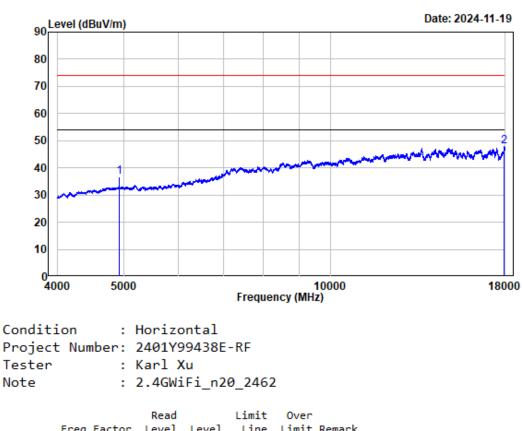

TR-EM-RF012



	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	33.95	36.58	54.00	-17.42	Average
2	17940.490	24.19	23.59	47.78	54.00	-6.22	Average

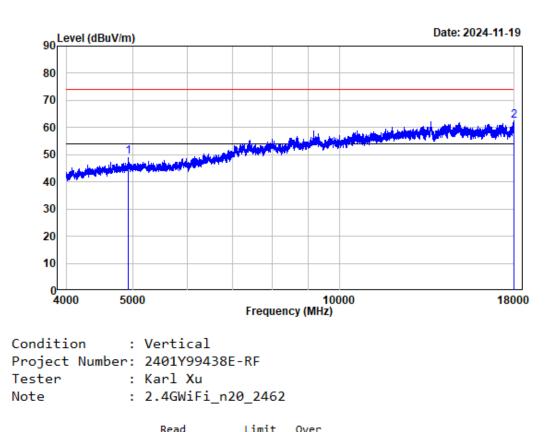

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz

1-4GHz_Horizontal_802.11n-HT20

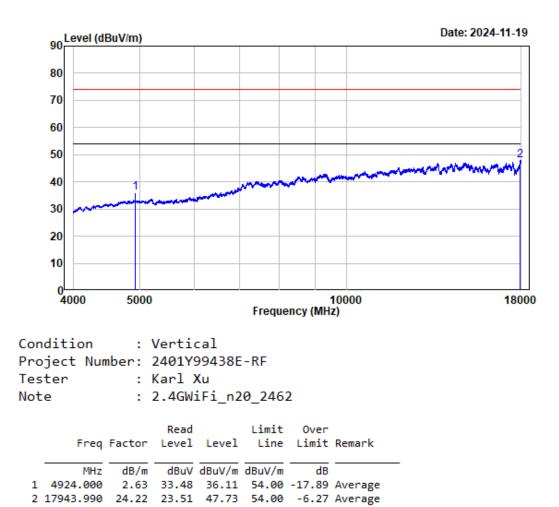


1-4GHz_Vertical_802.11n-HT20

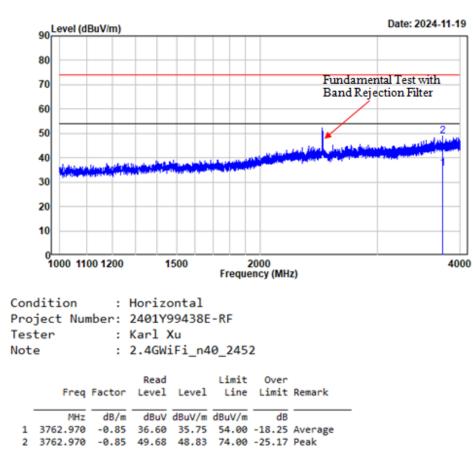
2 17933.490 24.14 39.20 63.34 74.00 -10.66 Peak


4-18GHz_Horizontal_Peak_802.11n-HT20

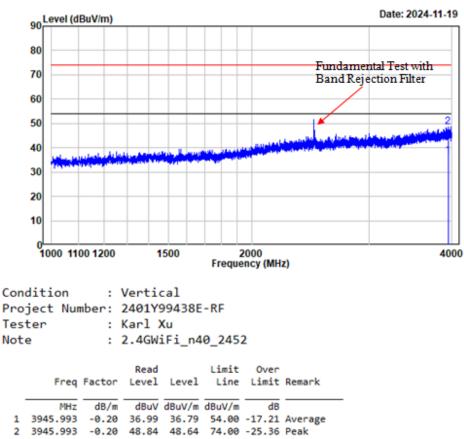
4-18GHz_Horizontal_Average_802.11n-HT20


	Freq	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	4924.000	2.63	33.91	36.54	54.00	-17.46	Average	
2	17954.490	24.30	23.49	47.79	54.00	-6.21	Average	

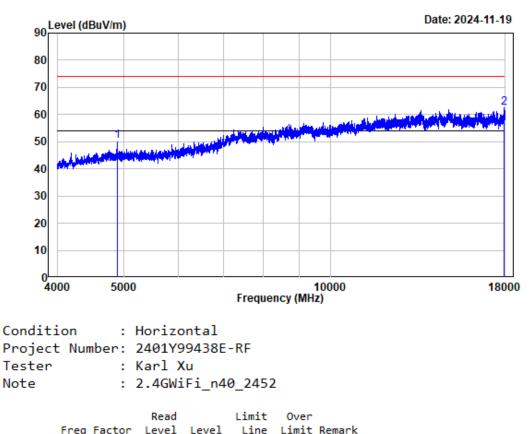
Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz


4-18GHz_Vertical_Peak_802.11n-HT20

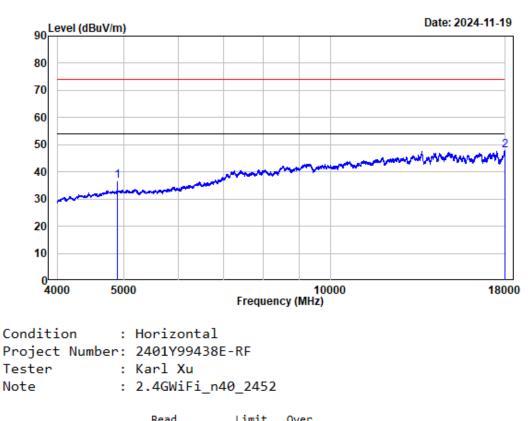
	Freq	Factor			Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4924.000	2.63	46.78	49.41	74.00	-24.59	Peak	
2	17993.000	24.57	37.77	62.34	74.00	-11.66	Peak	



4-18GHz_Vertical_Average_802.11n-HT20

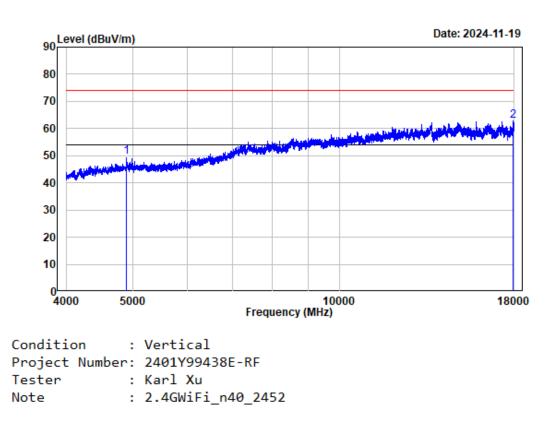

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz

1-4GHz_Horizontal_802.11n-HT40

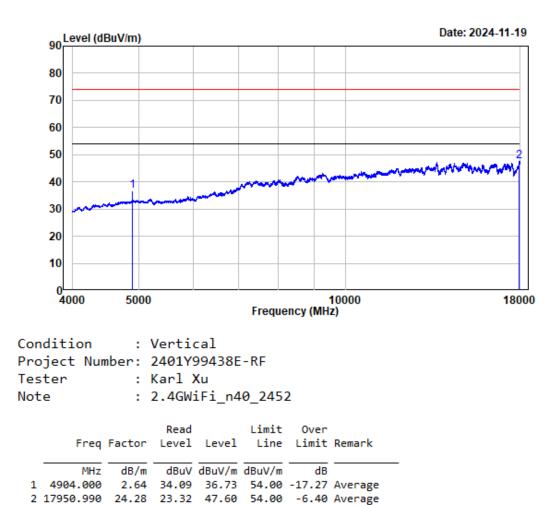


1-4GHz_Vertical_802.11n-HT40

4-18GHz_Horizontal_Peak_802.11n-HT40

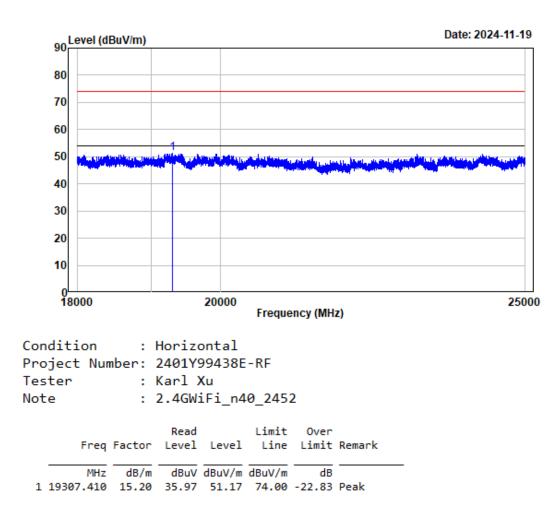

	11 Eq	ractor	LEVEL	LEVEL	LTHE	LIMIC	NCIIIdi N	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	4904.000	2.64	47.78	50.42	74.00	-23.58	Peak	
2	17936.990	24.17	38.15	62.32	74.00	-11.68	Peak	

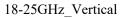
4-18GHz	Horizontal	Average	802.11n-HT40

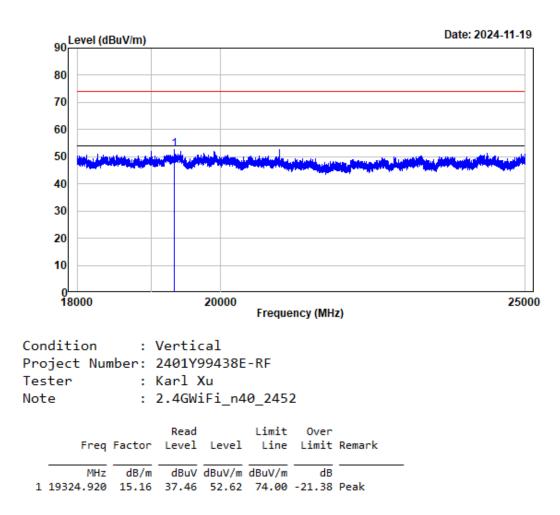

	Freq	Factor			Limit		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4904.000	2.64	33.99	36.63	54.00	-17.37	Average	
2	17959.740	24.34	23.40	47.74	54.00	-6.26	Average	

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz


4-18GHz_Vertical_Peak_802.11n-HT40


Freq	Factor			Limit Line		Remark
MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1 4904.000	2.64	46.89	49.53	74.00	-24.47	Peak
2 17928.240	24.11	38.66	62.77	74.00	-11.23	Peak



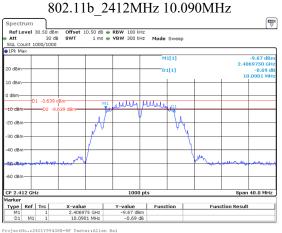

4-18GHz_Vertical_Average_802.11n-HT40

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz

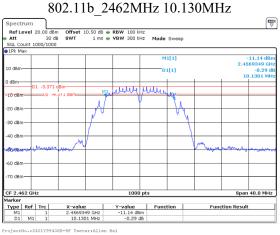
6dB Emission Bandwidth

Test Information:

Sample No.:	2SY1-1	Test Date:	2024/10/31
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	Pass

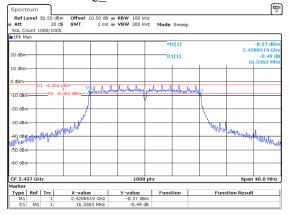

Temperature: 25	Relative Humidity: (%)	46 ATM Pressure: (kPa)	101
-----------------	------------------------------	------------------------	-----

Test Data:

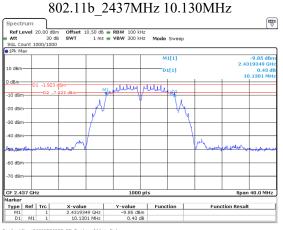

Mode	Test Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
	2412	10.090	≥0.5	Pass
802.11b	2437	10.130	≥0.5	Pass
	2462	10.130	≥0.5	Pass
	2412	16.136	≥0.5	Pass
802.11g	2437	16.336	≥0.5	Pass
	2462	16.376	≥0.5	Pass
	2412	16.376	≥0.5	Pass
802.11n20	2437	16.817	≥0.5	Pass
	2462	17.057	≥0.5	Pass
	2422	35.315	≥0.5	Pass
802.11n40	2437	35.716	≥0.5	Pass
	2452	35.315	≥0.5	Pass

TR-EM-RF012

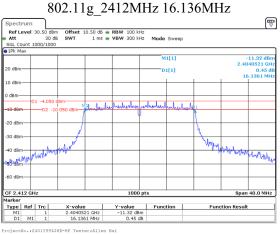
2412~2462



ate: 31.0CT.2024 02:08:56

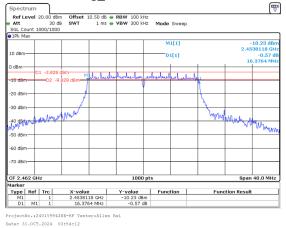

Date: 31.0CT.2024 02:11:51

802.11g 2437MHz 16.336MHz

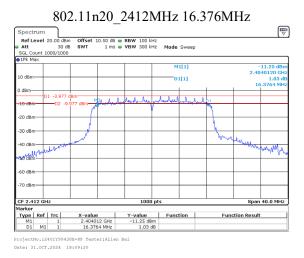


ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 31.0CT.2024 03:29:52

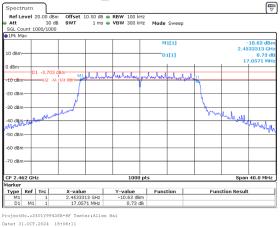
Report No.: 2401Y99438E-RFC

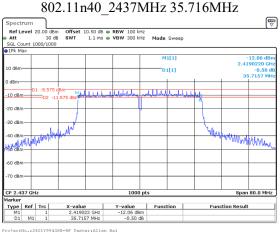


ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 31.0CT.2024 02:06:41

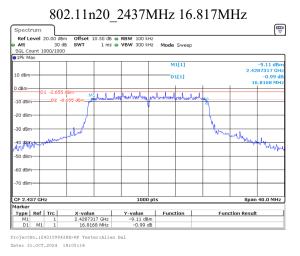


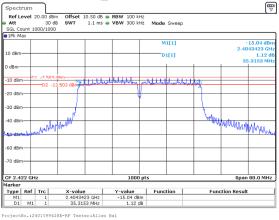
Date: 31.0CT.2024 03:28:23



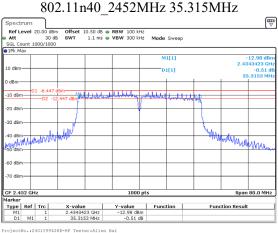


TR-EM-RF012


802.11n20 2462MHz 17.057MHz



Date: 31.0CT.2024 18:08:10


Report No.: 2401Y99438E-RFC

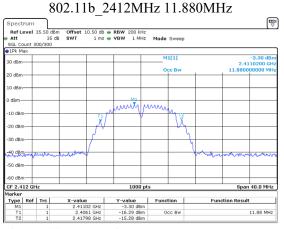
802.11n40 2422MHz 35.315MHz

Date: 31.0CT.2024 18:06:

18:07:

99% Occupied Bandwidth

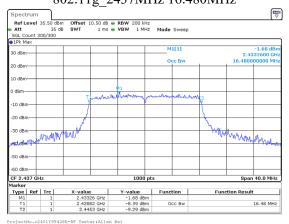
Test Information:


Sample No.:	2SY1-1	Test Date:	2024/11/20
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	N/A

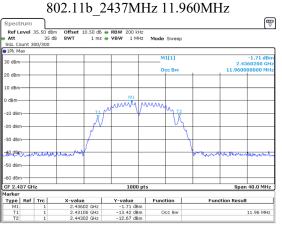
Temperature: 25	Relative Humidity: (%)	46 ATM Pressure: (kPa)	101
-----------------	------------------------------	------------------------	-----

Test Data:

Mode	Test Frequency (MHz)	99% OBW (MHz)
	2412	11.880
802.11b	2437	11.960
	2462	12.040
	2412	16.360
802.11g	2437	16.480
	2462	16.480
	2412	17.440
802.11n20	2437	17.560
	2462	17.560
	2422	36.240
802.11n40	2437	36.240
	2452	36.160


2412~2462

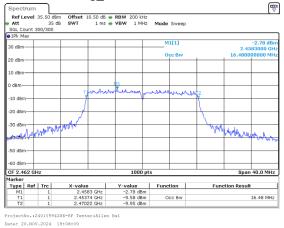
rojectNo.:2401Y99438E-RF Tester:Allen Bai Nate: 20.NOV.2024 18:09:57



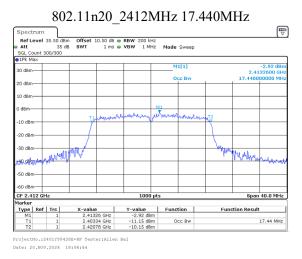
802.11g 2437MHz 16.480MHz

Date: 20.NOV.2024 18:05:44

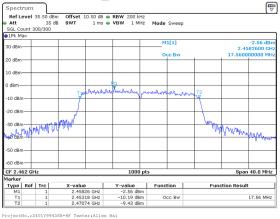
Report No.: 2401Y99438E-RFC

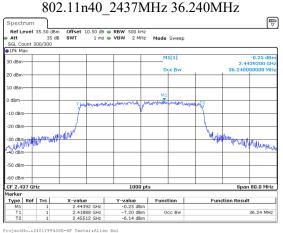

ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 20.NOV.2024 18:09:12

Ref Level 35.50 dBm Att 35 dB SGL Count 300/300 Offset 10.50 dB RBW 200 kHz SWT 1 ms VBW 1 MHz Mode Sweep SGL Cou 9 1Pk Ma M1[1] 30 dBm 2.41 16.3 Occ Bw 20 dBm-10 dBm·) dBm--10 dE 20 dBm 30 dBm Mahran Arten 40.dBmr 50 dBa 60 dB CF 2.412 GHz Iarker 1000 pts 40.0 MHz Spa Type Ref Trc Y-value Function z -2.85 dBm z -9.38 dBm z -9.98 dBm X-value 2.4133 GHz 2.40386 GHz 2.42022 GHz Function Function Result M1 T1 T2 16.36 MHz ProjectNo.:2401Y99438E-RF Tester:Allen Bai

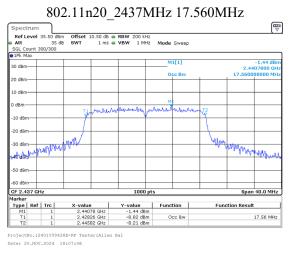

802.11g 2412MHz 16.360MHz

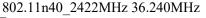
Date: 20.NOV.2024 18:05:21

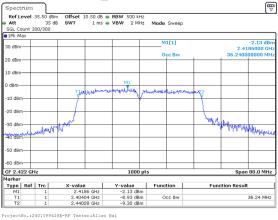

802.11g 2462MHz 16.480MHz


TR-EM-RF012

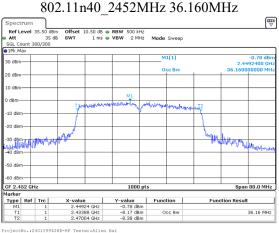
802.11n20 2462MHz 17.560MHz




Date: 20.NOV.2024 18:07:36



Date: 20.NOV.2024 18:08:15


Report No.: 2401Y99438E-RFC

Date: 20.NOV.2024 18:07

Maximum Conducted Output Power

Test Information:

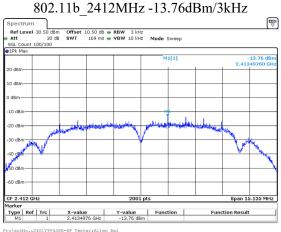
Sample No.:	2SY1-1	Test Date:	2024/11/10
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	Pass

Temperature: 25	Relative Humidity: (%)	46 ATM Pressure: (kPa)	101
-----------------	------------------------------	------------------------	-----

Mode	Test Frequency (MHz)	Peak Output Power(dBm)	Average Output Power(dBm)	Limit (dBm)	EIRP (dBm)	EIRP limit (dBm)	Verdict
	2412	8.58	5.67	30	9.96	36	Pass
802.11b	2437	10.01	7.12	30	11.39	36	Pass
	2462	9.27	6.30	30	10.65	36	Pass
	2412	14.18	6.60	30	15.56	36	Pass
802.11g	2437	15.85	8.13	30	17.23	36	Pass
	2462	15.17	7.57	30	16.55	36	Pass
	2412	14.29	6.37	30	15.67	36	Pass
802.11n20	2437	15.98	8.20	30	17.36	36	Pass
	2462	15.29	7.34	30	16.67	36	Pass
	2422	13.68	5.46	30	15.06	36	Pass
802.11n40	2437	15.83	7.43	30	17.21	36	Pass
	2452	14.43	6.16	30	15.81	36	Pass

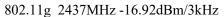
Power Spectral Density

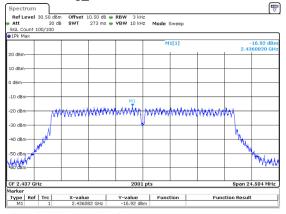
Test Information:

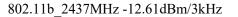

Sample No.:	2SY1-1	Test Date:	2024/11/10
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	Pass

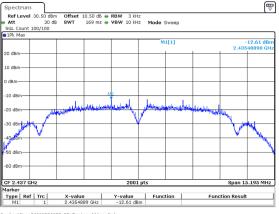
Temperature: 25	Relative Humidity: (%)	46 ATM Pressure: (kPa)	101
-----------------	------------------------------	------------------------	-----

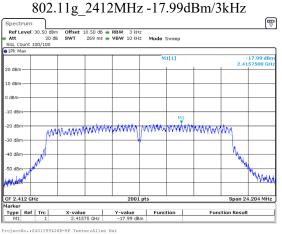
Mode	Test Frequency (MHz)	Result (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	2412	-13.76	8	Pass
802.11b	2437	-12.61	8	Pass
	2462	-13.13	8	Pass
	2412	-17.99	8	Pass
802.11g	2437	-16.92	8	Pass
	2462	-17.16	8	Pass
	2412	-17.24	8	Pass
802.11n20	2437	-16.90	8	Pass
	2462	-16.89	8	Pass
	2422	-21.13	8	Pass
802.11n40	2437	-20.31	8	Pass
	2452	-21.11	8	Pass


Test Data:

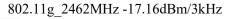

2412~2462

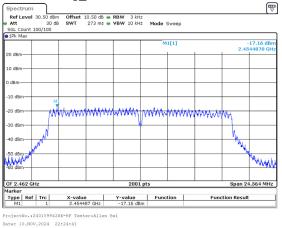

ProjectNo.:2401Y99438E=RF Te Date: 10.NOV.2024 22:20:31

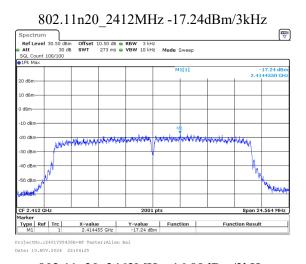


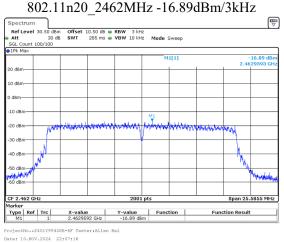


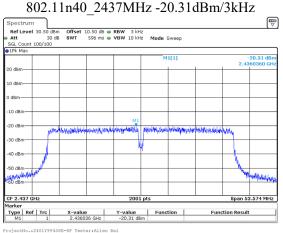
ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 10.NOV.2024 22:01:53

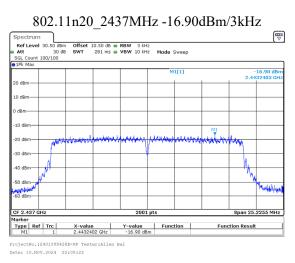


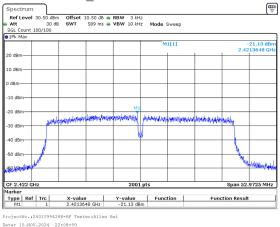


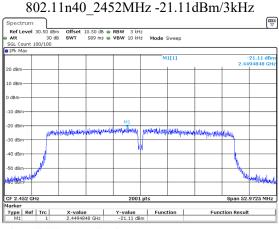

ProjectNo.:2401Y99438B-RF Tester:Allen Bai Date: 10.NOV.2024 22:21:25









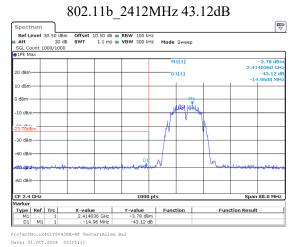

Date: 10.NOV.2024 22:11:03

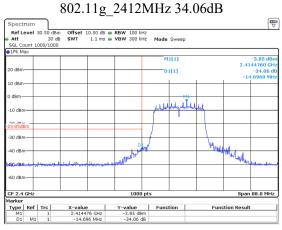
Report No.: 2401Y99438E-RFC

802.11n40 2422MHz -21.13dBm/3kHz

ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 10.NOV.2024 22:13:20

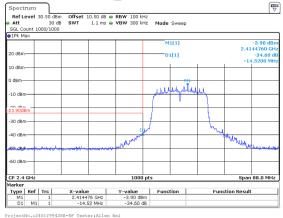
100 kHz Bandwidth of Frequency Band Edge

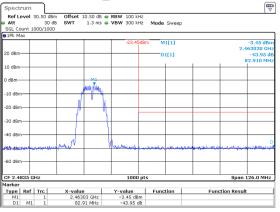

Test Information:


Sample No.:	2SY1-1	Test Date:	2024/10/31
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	Pass

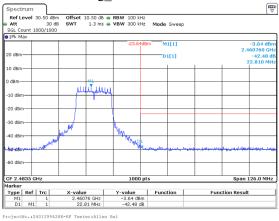
Temperature: (°C):	25	Relative Humidity: (%)	46	ATM Pressure: (kPa)	101
-----------------------	----	------------------------------	----	------------------------	-----

Test Data:

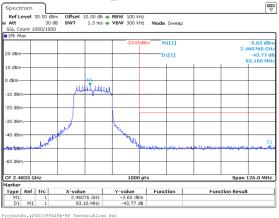

2412~2462


ProjectNo.:2401Y99438E-RF Tester:Allen Date: 31.0CT.2024 03:16:25

802.11n20 2412MHz 34.60dB


Date: 31.0CT.2024 03:18:56

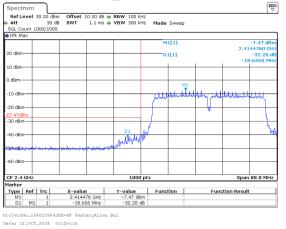
802.11b_2462MHz 43.95dB


ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 31.0CT.2024 03:15:50

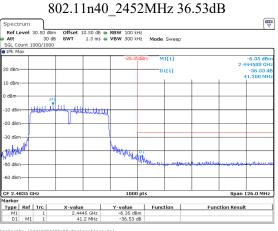
802.11g_2462MHz 42.48dB

Date: 31.0CT.2024 03:18:22

802.11n20 2462MHz 43.77dB



ProjectNo.:2401799438E-RF Tester:Allen 1 Date: 31.0CT.2024 03:19:36


TR-EM-RF012

Bay Area Compliance Laboratories Corp. (Shenzhen)

802.11n40_2422MHz 32.20dB

Report No.: 2401Y99438E-RFC

ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 31.0CT.2024 03:20:53

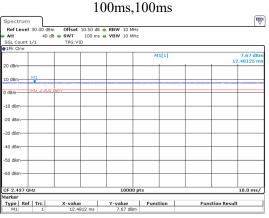
Duty Cycle

Test Information:

Sample No.:	2SY1-1	Test Date:	2024/11/10
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	N/A

Temperature: 25	Relative Humidity: (%)	46 ATM Pressure: (kPa)	101
-----------------	------------------------------	------------------------	-----

Test Data:


Mode	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11b	2437	100	100	100	0	NA	0.010
802.11g	2437	100	100	100	0	NA	0.010
802.11n20	2437	100	100	100	0	NA	0.010
802.11n40	2437	100	100	100	0	NA	0.010

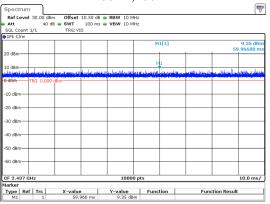
Duty Cycle = Ton/(Ton+Toff)*100%

TR-EM-RF012

 $802.11b_2437MHz$

2412~2462

ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 10.NOV.2024 19:58:16


802.11n20 2437MHz 100ms,100ms

	evel :	30.00 dBn			RBW 10 N					
Att			B 👄 SWT		VBW 10 N	1Hz				
SGL Co		/1	TRG: VI	D						
∍1Pk Cl	rw _									
						M	1[1]	9.06 dBn 29.68297 m		
20 dBm									2	4.68297 m
10 dBm			M	1						
Judge -		والمنادعة والغر	he saturated	والمعاصر الرجا	فقيدوستا فليعاميهما	ليفقل أحسب أست	م ا مرا المعالية	فيوالعا ورواعا أول	las ani anatawa	han staday.
0 dBm-		and the second	-	-	-	and the second second	percent of the second	in the second	T	
	TF	RG -4.000	dBm							
-10 dBn										
-10 001	'									
-20 dBn										
-20 UBI	-									
-30 dBn										
-30 GRU)									
-40 dBn) -									
-50 dBn	·+-									
-60 dBn	`+							-		
CF 2.4	37 GH	z			1000	Opts				10.0 ms/
larker										
Type	Ref	Trc	X-value		Y-value	Func	tion	Fun	ction Resul	
M1		1		683 ms	9.06 dE					

ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 10.NOV.2024 19:57:29

Report No.: 2401Y99438E-RFC

802.11g_2437MHz 100ms,100ms

ProjectNo.:2401Y99438E-RF Te Date: 10.NOV.2024 20:44:25 Allen Bai

802.11n40 2437MHz 100ms,100ms

	40 dB 👄 1		5 👄 VBW 10 MH	z				
SGL Count 1, 1Pk Clrw	/1	TRG: VID						
				M1[1]		7.65 dBn 7.07071 m		
30 dBm								
20 dBm					_			
10 dBm		11-11-11-11-1	and a here and the	Land a labor	و بروند و الم	a da da cara		
	RG -0.500 dBm			al section will prove the col				
-10 dBm								
-20 dBm								
					-			
-30 dBm					_			
-30 dBm					_			

ProjectNo.:2401Y99438E-RF Tester:Allen Bai Date: 10.NOV.2024 20:43:42

EUT PHOTOGRAPHS

Please refer to the attachment 2401Y99438E-RF External photo and 2401Y99438E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401Y99438E-RFC Test Setup photo.

***** END OF REPORT *****