

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA24082601101

FCC ID.: : 2ASJR-LYNXFLEET52L

Compiled by

(position+printed name+signature)... File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)... Project Engineer Xudong Zhang

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue Sep. 23, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name......Globetracker, ApS

Address Strandgade 91, 4th floor DK-1401 Copenhagen K Denmark

Test specification:

Standard..... FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: ML3 Asset Tracker

Trade Mark......N/A

Manufacturer Globetracker, ApS

Model/Type referenceLYNXFLEET-52L

Listed ModelsN/A

Modulation GFSK

Frequency From 2402MHz to 2480MHz

Ratings DC 3.7V From battery

Input: AC 12-36V, 50/60Hz

DC 9-18V

CTATES

esult......PAS

CTA TESTIN

Page 2 of 41 Report No.: CTA24082601101

TEST REPORT

Equipment under Test ML3 Asset Tracker

Model /Type LYNXFLEET-52L

CTATESTING Listed Models N/A

Applicant Globetracker, ApS

Strandgade 91, 4th floor DK-1401 Copenhagen K Denmark Address

Globetracker, ApS Manufacturer

Address Strandgade 91, 4th floor DK-1401 Copenhagen K Denmark

Test Result:	PASS
A TEO	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

		Con Con	tents	
	1 0	TEST STANDARDS	NG	4
	CIN	TES		
	2	SUMMARY	-TING	5
	_	(-C77)	TES	
	2.4	Canaral Remarks	CTA L	E
	2.1 2.2	General Remarks		5
		Product Description		5
	2.3 2.4	Equipment Under Test	Toot (FLIT)	5
		Short description of the Equipment under	Test (EUT)	5
	2.5	EUT operation mode		
	2.6 2.7	Block Diagram of Test Setup Related Submittal(s) / Grant (s)		6 6
CAL	2. <i>1</i> 2.8	Modifications		6
	2.0	Wounications		О
	<u>3</u>	TEST ENVIRONMENT		7
	_	0.7	TATE	- 16
		A I los as a fill a facilitation of any		11/1/A
	3.1	Address of the test laboratory	CTATES	27/
	3.2	Test Facility	CTA.	<u> </u>
	3.3	Environmental conditions		/
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncertainty		9
	3.6	Equipments Used during the Test		10
	<u>4</u>	TEST CONDITIONS AND RESUL	TS	11
	C	The state of the s	Vac.	
	(20)	TE51		
	4.1	AC Power Conducted Emission		11
	4.2	Radiated Emissions and Band Edge	STITUTE	12
	4.3	Maximum Peak Output Power		18
	4.4	Power Spectral Density		19
	4.5	6dB Bandwidth	CTA TESTING	22
	4.6	Out-of-band Emissions		25
	4.7	Antenna Requirement		30
	5	TEST SETUP PHOTOS OF THE	EUT	31
		1201 02101 1110100 01 1112		
	<u>6</u>	PHOTOS OF THE EUT		32
			CTATESTING	
			TES	
			CTATES	

Report No.: CTA24082601101 Page 4 of 41

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247

Page 5 of 41 Report No.: CTA24082601101

SUMMARY 2

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample	:	Sep. 16, 2024	TING
Testing commenced on	(45)	Sep. 16, 2024	CTATES!"
Testing concluded on	:	Sep. 23, 2024	CALL OF THE PARTY

2.2 Product Description

		CIN
	Testing concluded on	: Sep. 23, 2024
	2.2 Product Description	
	Product Description:	ML3 Asset Tracker
(Y)	Model/Type reference:	LYNXFLEET-52L
	Power supply:	DC 3.7V From battery Input: AC 12-36V, 50/60Hz DC 9-18V
	PC information (Auxiliary test supplied by testing Lab):	Model: E470C Trade Mark: thinkpad
	Hardware version:	Rev2
	Software version:	20.00.01
	Testing sample ID:	CTA240826011-1# (Engineer sample), CTA240826011-2# (Normal sample)
	Bluetooth BLE	
	Supported type:	Bluetooth low Energy
	Modulation:	GFSK
	Operation frequency:	2402MHz to 2480MHz
	Channel number:	40
	Channel separation:	2 MHz
	Antenna type:	Ceramic antenna
	Antenna gain:	1.66 dBi

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under	Test					
Power supply system u	ıtilised					
Power supply voltage	: (230V / 50 Hz	○ 120V / 60Hz	-ESTING		
		12 V DC	O 24 V DC	1-		
		Other (specified in blank below)				

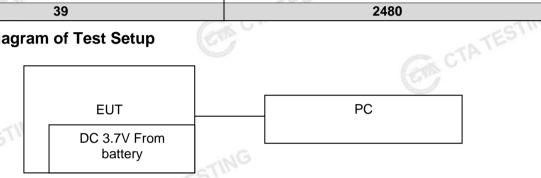
DC 3.7V From battery Input: AC 12-36V, 50/60Hz DC 9-18V

Short description of the Equipment under Test (EUT)

This is a ML3 Asset Tracker.

For more details, refer to the user's manual of the EUT.

Page 6 of 41 Report No.: CTA24082601101


2.5 **EUT** operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

	- por amount of a specific production of the spe	
	Channel	Frequency (MHz)
	00	2402
	01	2404
	02	2406
STIM	TING	
CTATE	19	2440
CA	ESTIN	i i
1/2	37	2476
	38	2478
	39	2480

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, CTATE Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING

Page 7 of 41 Report No.: CTA24082601101

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
	CTA
Humidity:	45 %
·	
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

	3	
Tem	perature:	25 ° C
1110		
Hun	nidity:	46 %
		TIM
Atm	ospheric pressure:	950-1050mbar

Conducted testing:

Atmospheric pressure:	950-1050mbar	.s.iG
Conducted testing:		TESTIN
Temperature:	25 ° C	(12,
Humidity:	44 %	<u>-</u> -
Atmospheric pressure:	950-1050mbar	

Page 8 of 41 Report No.: CTA24082601101

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded n Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs 2 Mpbs	Lowest Middle Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
	§15.247(b)(1)	Maximum output power	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
7	§15.205	Band edge compliance radiated	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs 2 Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs 2 Mpbs	_{[M} G -/-	BLE 1Mpbs	-/-	N/A
		urement uncertainty is all test mode and reco		n the test result. se in report	a cTP	TESTING	

Remark:

Page 9 of 41 Report No.: CTA24082601101

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued complete and in the sole responsibility of continued co

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

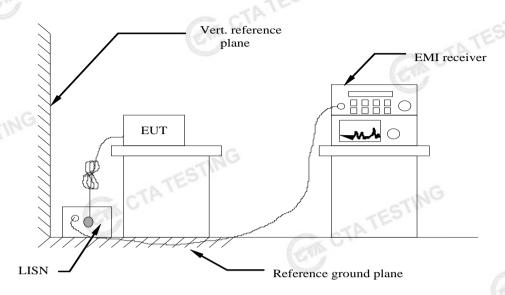
Test	Range	Measurement Uncertainty	Notes	
Radiated Emission	9KHz~30MHz	3.02 dB	(1)	
Radiated Emission	30~1000MHz	4.06 dB	(1)	
Radiated Emission	1~18GHz	5.14 dB	(1)	
Radiated Emission	18-40GHz	5.38 dB	(1)	
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	-INC
Output Peak power	30MHz~18GHz	0.55 dB	(1)	-ES'I"
Power spectral density		0.57 dB	(1)	1-
Spectrum bandwidth	/	1.1%	(1)	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	

atel CTATESTING (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2024/10/16
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
	G		Version	Calibration	Calibration

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A


ESTING

Page 11 of 41 Report No.: CTA24082601101

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

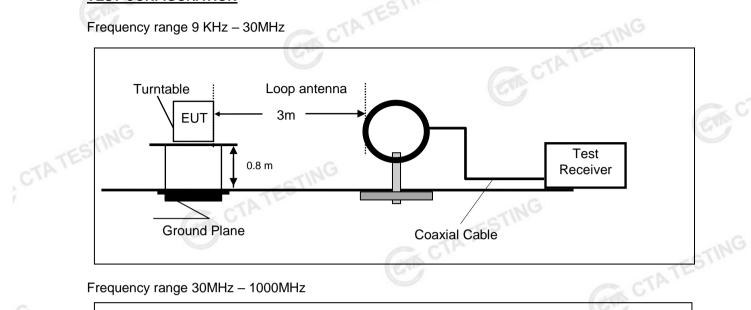
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

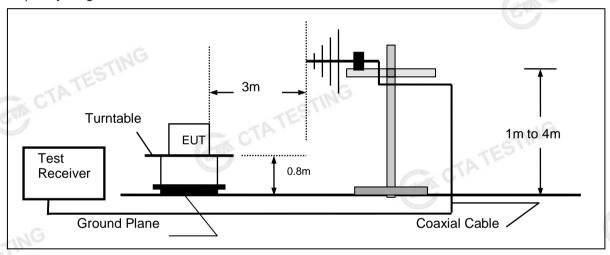
AC Power Conducted Emission Limit

Fraguency range (MUz)	Limit ((dBuV)		
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46		
0.5-5	56	46		
5-30	60	50		
creases with the logarithm of the freque	ncy.			
ST RESULTS				
applicable		TESTING		

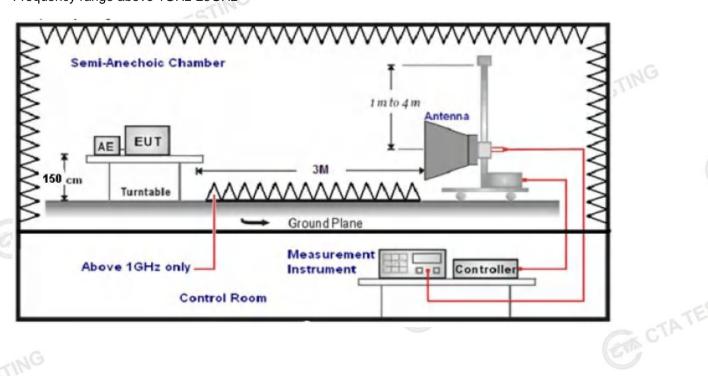
TEST RESULTS



Page 12 of 41 Report No.: CTA24082601101


Radiated Emissions and Band Edge

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24082601101 Page 13 of 41

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector			
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP			
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP			
30MHz-1GHz	30MHz-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto				
	Peak Value: RBW=1MHz/VBW=3MHz,				
1GHz-40GHz	Sweep time=Auto	Peak			
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	reak			
-ING	Sweep time=Auto				

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

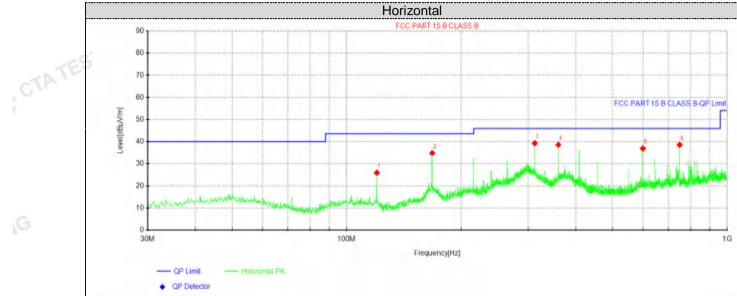
CTATESTING RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		

Report No.: CTA24082601101 Page 14 of 41


TEST RESULTS

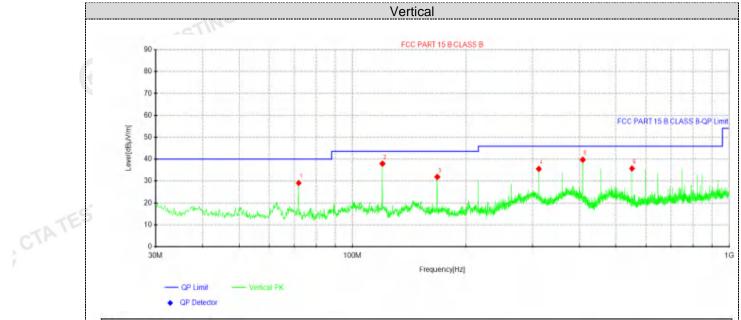
Remark:

CTATES

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	119.967	39.86	26.00	-13.86	43.50	17.50	100	315	Horizontal
2	167.982	50.03	34.86	-15.17	43.50	8.64	100	350	Horizontal
3	311.906	50.18	39.29	-10.89	46.00	6.71	100	236	Horizontal
4	360.042	49.13	38.58	-10.55	46.00	7.42	100	339	Horizontal
5	599.996	42.86	36.95	-5.91	46.00	9.05	100	258	Horizontal
6	750.103	43.57	38.59	-4.98	46.00	7.41	100	236	Horizontal


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA CT

CTA TESTING

Report No.: CTA24082601101 Page 15 of 41

Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	71.9525	44.34	29.11	-15.23	40.00	10.89	100	267	Vertical
2	119.967	51.86	38.00	-13.86	43.50	5.50	100	258	Vertical
3	167.982	47.01	31.84	-15.17	43.50	11.66	100	360	Vertical
4	312.027	46.55	35.65	-10.90	46.00	10.35	100	94	Vertical
5	408.057	49.85	39.74	-10.11	46.00	6.26	100	332	Vertical
6	551.981	44.58	35.83	-8.75	46.00	10.17	100	342	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATESTING

Report No.: CTA24082601101

For 1GHz to 25GHz

GFSK (above 1GHz)

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	_	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.95	PK	74	12.05	66.22	32.33	5.12	41.72	-4.27
4804.00	44.90	AV	54	9.10	49.17	32.33	5.12	41.72	-4.27
7206.00	54.34	PK	74	19.66	54.86	36.6	6.49	43.61	-0.52
7206.00	43.27	AV	54	10.73	43.79	36.6	6.49	43.61	-0.52

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.80	PK	74	14.20	64.07	32.33	5.12	41.72	-4.27
4804.00	43.39	AV	54	10.61	47.66	32.33	5.12	41.72	-4.27
7206.00	52.19	PK	74	21.81	52.71	36.6	6.49	43.61	-0.52
7206.00	41.90	AV	54	12.10	42.42	36.6	6.49	43.61	-0.52

II DAILS									
Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Value Factor		Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.01	PK	74	12.99	64.89	32.6	5.34	41.82	-3.88
4880.00	44.41	AV	54	9.59	48.29	32.6	5.34	41.82	-3.88
7320.00	53.34	PK	74	20.66	53.45	36.8	6.81	43.72	-0.11
7320.00	42.88	AV	54	11.12	42.99	36.8	6.81	43.72	-0.11

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.10	PK	74	14.90	62.98	32.6	5.34	41.82	-3.88
4880.00	42.60	AV	54	11.40	46.48	32.6	5.34	41.82	-3.88
7320.00	51.74	PK	74	22.26	51.85	36.8	6.81	43.72	-0.11
7320.00	41.43	AV	54	12.57	41.54	36.8	6.81	43.72	-0.11

Freque	ncy(MHz)	:	24	80	Pola	arity:	Н	IORIZONTA	\L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.48	PK	74	13.52	63.56	32.73	5.66	41.47	-3.08
4960.00	43.94	AV	54	10.06	47.02	32.73	5.66	41.47	-3.08
7440.00	52.89	PK	74	21.11	52.44	37.04	7.25	43.84	0.45
7440.00	42.37	PK	54	11.63	41.92	37.04	7.25	43.84	0.45

Free	quency(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequenc (MHz)	Le Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.21	PK	74	15.79	61.29	32.73	5.66	41.47	-3.08
4960.00	41.94	AV	54	12.06	45.02	32.73	5.66	41.47	-3.08
7440.00	50.88	PK	74	23.12	50.43	37.04	7.25	43.84	0.45
7440.00	40.34	PK	54	13.66	39.89	37.04	7.25	43.84	0.45

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

Report No.: CTA24082601101

- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

GFSK

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	IORIZONTA	\L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.64	PK	74	12.36	72.06	27.42	4.31	42.15	-10.42
2390.00	43.29	ΑV	54	10.71	53.71	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.24	PK	74	14.76	69.66	27.42	4.31	42.15	-10.42
2390.00	41.26	AV	54	12.74	51.68	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	P ola	arity:	Н	ORIZONTA	\L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.27	PK	74	13.73	70.38	27.7	4.47	42.28	-10.11
2483.50	42.29	AV	54	11.71	52.40	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.19	PK	74	15.81	68.30	27.7	4.47	42.28	-10.11
2483.50									

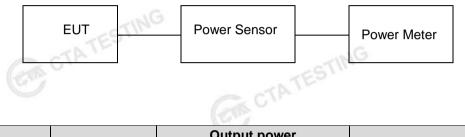
REMARKS:

CTA

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3.
- Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average limit.

Page 18 of 41 Report No.: CTA24082601101

Maximum Peak Output Power


Limit CTA

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

CTATESTING Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power	Limit (dBm)	Result
туре	Channel	(dBm)	Lilliit (dBill)	Resuit
	00	6.29		
GFSK 1Mbps	19	7.94	30.00	Pass
TATES	39	8.13		
CI	00	6.25		
GFSK 2Mbps	19	7.94	30.00	Pass
	39	8.13	TES.	

Report No.: CTA24082601101 Page 19 of 41

Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

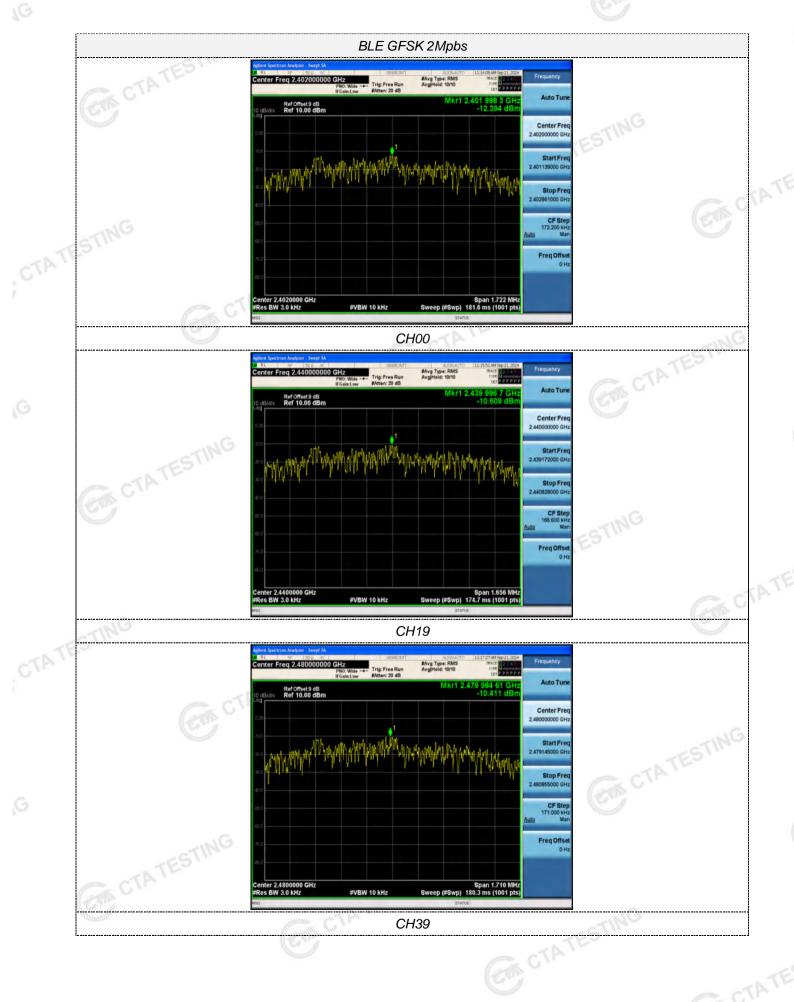
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

CO.	EUT	SPECTR ANALYZ		
Test Results			CTATES	
Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
-ING	00	-9.92		6.
GFSK 1Mbps	19	-7.75	8.00	Pass
	39	-7.33		
	00	-12.39		
GFSK 2Mbps	19	-10.61	8.00	Pass
	39	-10.41	TIME	
Test plot as follo	ws:			CTATESTING



Report No.: CTA24082601101 Page 20 of 41

TESTING

Report No.: CTA24082601101 Page 21 of 41

TESTING

Page 22 of 41 Report No.: CTA24082601101

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

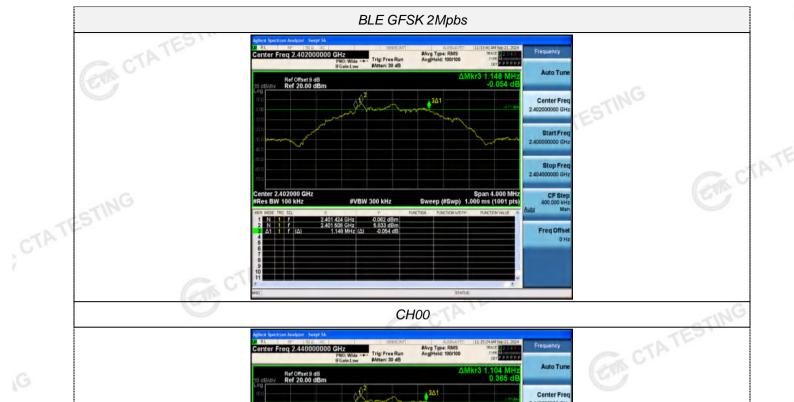
Test Results

00 0.648 GFSK 1Mbps 19 0.656 ≥500	
GFSK 1Mbps 19 0.656 ≥500	
	Pass
39 0.652	
00 1.148	
GFSK 2Mbps 19 1.104 ≥500	Pass
39 1.140	ING

CH19

CO C'ATE

CTA TESTING


CH39

CTATESTING

CTA TESTING

CTA TESTING

CH00

CH19

CO C'ATE

CTA TESTING

CH39

CTATESTING

CTA TESTING

CTA TESTING

Page 25 of 41 Report No.: CTA24082601101

Out-of-band Emissions

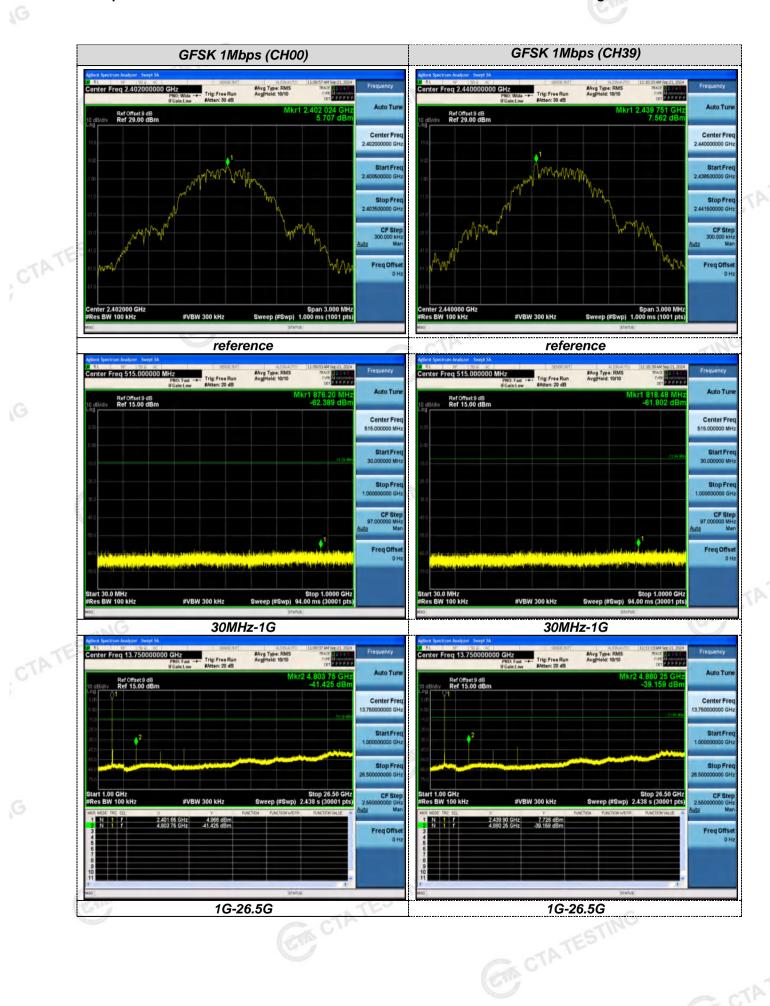
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

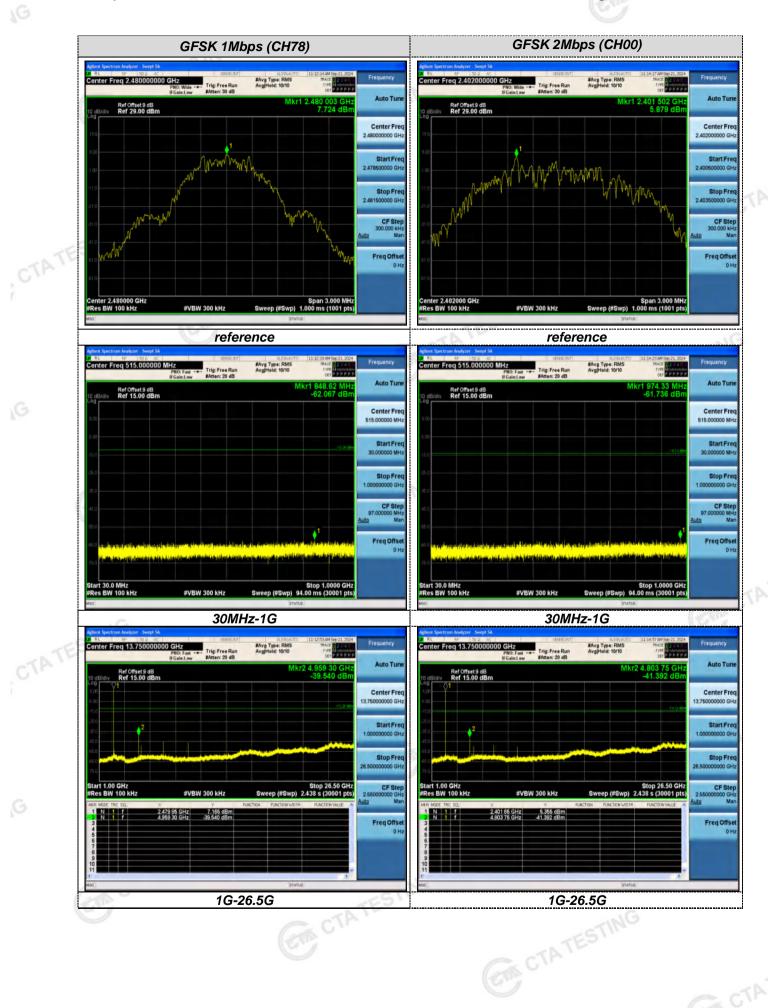
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

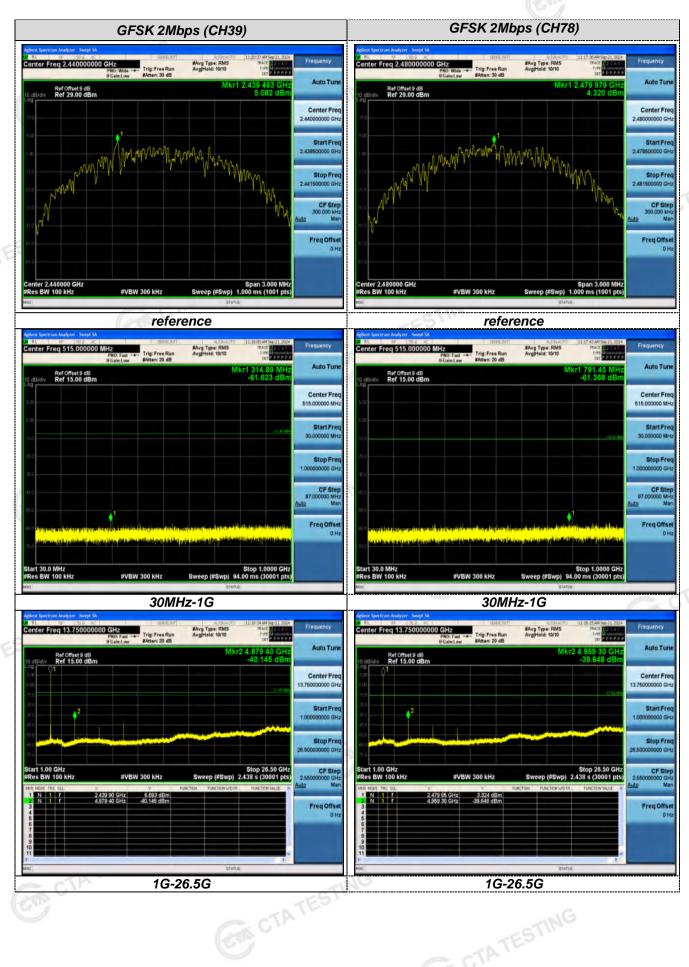
Test Configuration

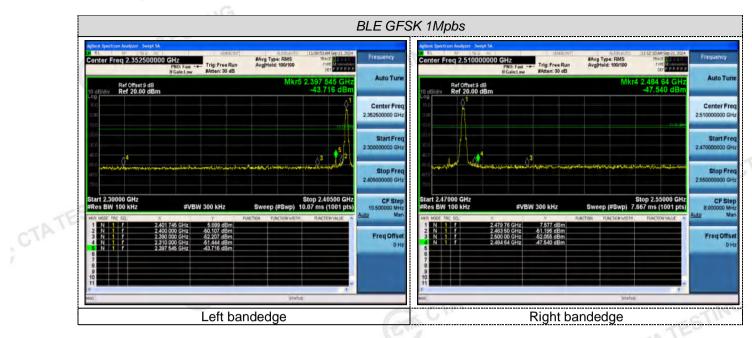


Test Results Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


Test plot as follows: CTATESTING

Report No.: CTA24082601101 Page 26 of 41




Report No.: CTA24082601101 Page 28 of 41

Report No.: CTA24082601101 Page 29 of 41

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24082601101 Page 30 of 41

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to RSS-Gen 6.8:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

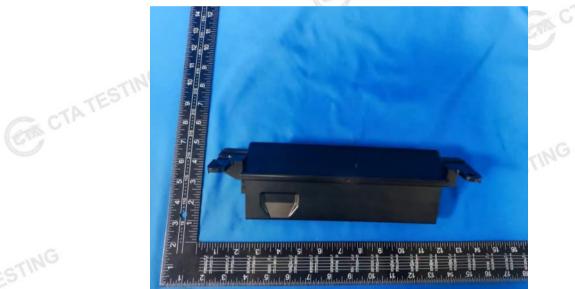
Test Result:

The maximum gain of antenna was 1.66 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

Report No.: CTA24082601101 Page 31 of 41

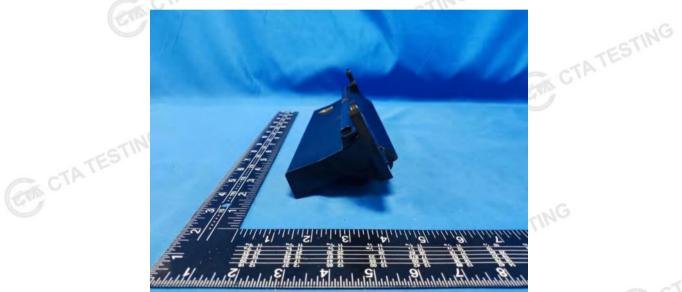
5 Test Setup Photos of the EUT



TESTING

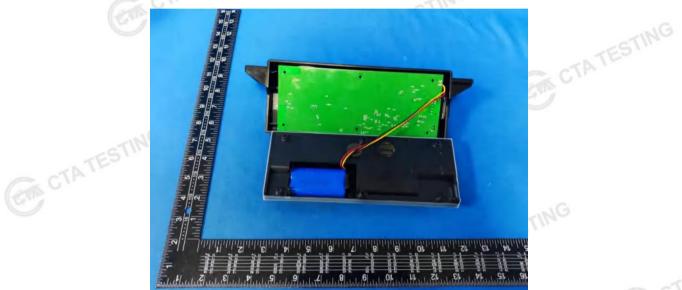
Report No.: CTA24082601101 Page 32 of 41

6 Photos of the EUT



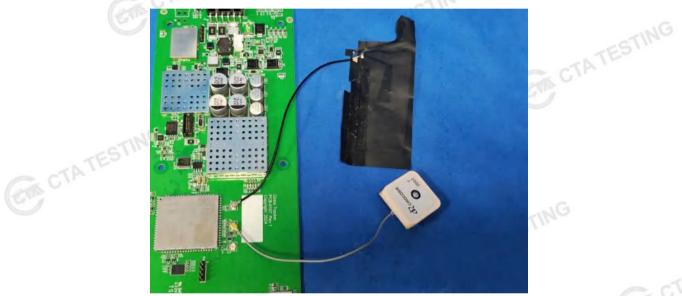
ESTING

Report No.: CTA24082601101 Page 33 of 41



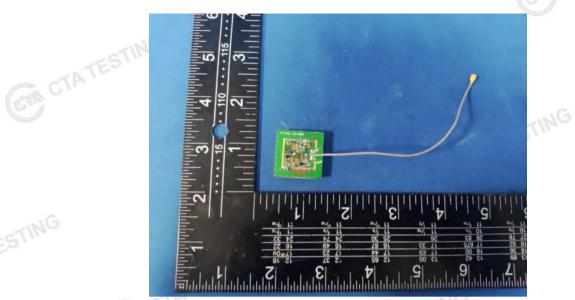
TESTING

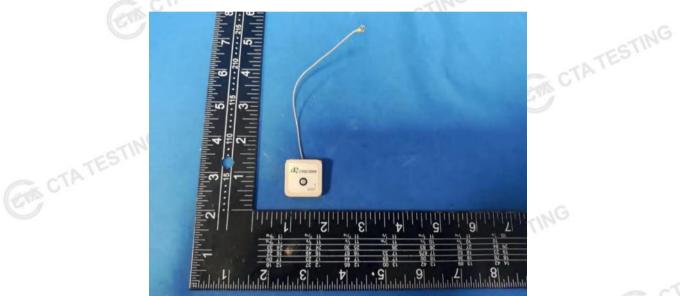
Report No.: CTA24082601101 Page 34 of 41



ESTING

Report No.: CTA24082601101 Page 35 of 41



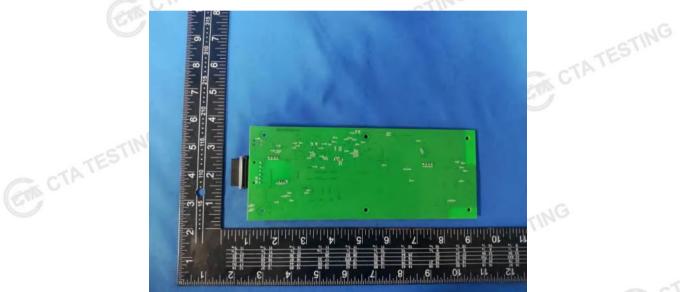


STING

Report No.: CTA24082601101 Page 36 of 41

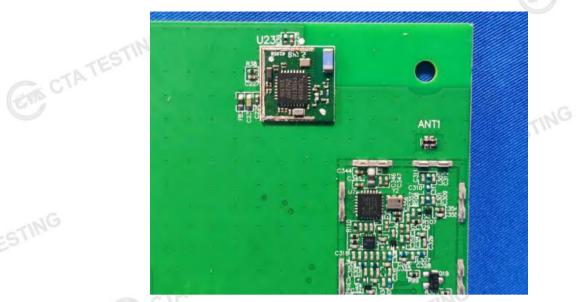
ESTING

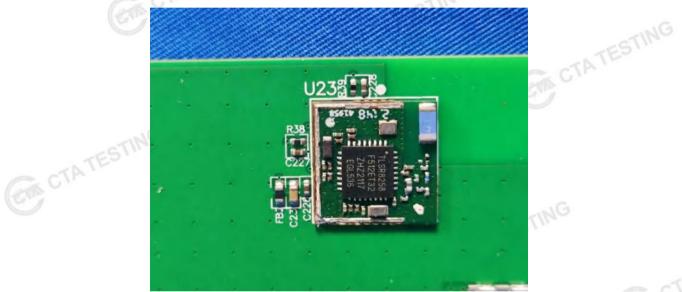
Report No.: CTA24082601101 Page 37 of 41



ESTING

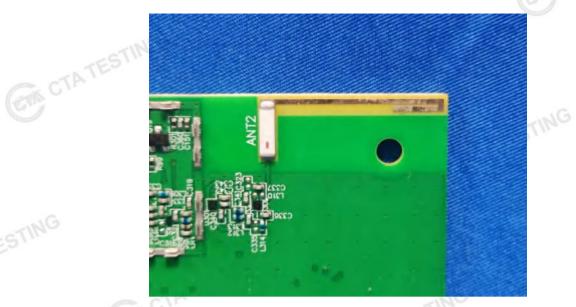
Report No.: CTA24082601101 Page 38 of 41



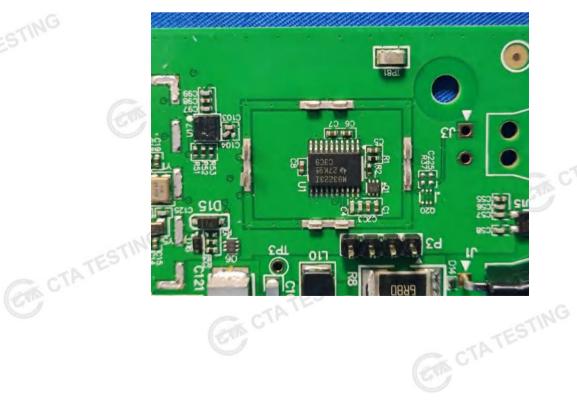


TESTING

Report No.: CTA24082601101 Page 39 of 41







ESTING

Report No.: CTA24082601101 Page 40 of 41

STING

Report No.: CTA24082601101 Page 41 of 41

TATESTING

CTA TESTING

CTI CTI