Radio Test Report

Report No.:STS2409189W02

Issued for

Jiangsu Niu Electric Technology Co., Ltd

No.387 Changting Road West Taihu Science and Technology Industrial Park Changzhou City, Jiangsu, 213100 China

Product Name:	Havion Wired Doorbell
Brand Name:	Havion
Model Name:	D2
Series Model(s):	HD2 Havion-D2
FCC ID:	2AZ6G-HAVION-D2
Test Standards:	FCC Part 15.231

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name	Jiangsu Niu Electric Technology Co., Ltd
Address	No.387 Changting Road West Taihu Science and Technology Industrial Park Changzhou City, Jiangsu, 213100 China
Manufacturer's Name	Jiangsu Niu Electric Technology Co., Ltd
Address	No.387 Changting Road West Taihu Science and Technology Industrial Park Changzhou City, Jiangsu, 213100 China

Product Description

Product Name	.: Havion Wired Doorbell
Brand Name	. : Havion
Model Name:	D2
Series Model(s):	HD2 Havion-D2
Test Standards	. : FCC Part 15.231

Test Procedure: ANSI C63.10-2020

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Test Result	Pass
Date of Issue	04 Jan. 2025
Date of performance of tests:	30 Sept. 2024 ~ 04 Jan. 2025
Date of Receipt of Test Item:	30 Sept. 2024
Date of Test	

Testing Engineer

Jann Bu

(Aaron Bu)

Technical Manager :

(Tony Liu)

v

Authorized Signatory :

(Bovey Yang)

Page 3 of 31

TABLE OF CONTENTS Page **1. SUMMARY OF TEST RESULTS** 1.1 TEST FACTORY 6 **1.2 MEASUREMENT UNCERTAINTY** 6 7 2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF THE EUT 7 2.2 DESCRIPTION OF THE TEST MODES 8 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 8 2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS 9 2.5 EQUIPMENTS LIST 10 3. EMC EMISSION TEST 11 3.1 CONDUCTED EMISSION MEASUREMENT 11 **3.2 TEST PROCEDURE** 12 3.3 TEST SETUP 12 3.4 TEST RESULTS 13 4. RADIATED EMISSION MEASUREMENT 15 **4.1 RADIATED EMISSION LIMITS** 15 **4.2 TEST PROCEDURE** 17 **4.3 DEVIATION FROM TEST STANDARD** 17 4.4 TEST SETUP 18 **4.5 EUT OPERATING CONDITIONS** 19 4.6 TEST RESULTS 19 **4.7 FIELD STRENGTH CALCULATION** 20 **5. BANDWIDTH TEST** 24 5.1 LIMIT 24 **5.2 TEST REQUIREMENTS** 24 5.3 TEST PROCEDURE 24 5.4 TEST SETUP 24 5.5 EUT OPERATION CONDITIONS 24 5.6 TEST RESULTS 25 6. DUTY CYCLE 26 6.1 TEST PROCEDURE 26 6.2 TEST SETUP 26 6.3 EUT OPERATION CONDITIONS 26 6.4 TEST RESULTS 27 7. AUTOMATICALLY DEACTIVATE 28

TABLE OF CONTENTS	Page
7.1 STANDARD REQUIREMENT	28
7.2 TEST PROCEDURE 8. ANTENNA REQUIREMENT	28 30
8.1 STANDARD REQUIREMENT	30
8.2 EUT ANTENNA	30
APPENDIX 1-PHOTOS OF TEST SETUP	31

Revision History

F	Rev.	Issue Date	Report No.	Effect Page	Contents
	00	04 Jan. 2025	STS2409189W01	ALL	Initial Issue
		1			1

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part 15.231,Subpart C			
Standard Section	Last Itam		Remark
15.207	Conducted Emission	PASS	·
15.205(a)/15.209/ 15.231.(b)	Radiated Spurious Emission	PASS	
15.231(a)(1)/ 15.231(b)(2)	Transmission requirement	PASS	
15.231(C)	20 dB Bandwidth	PASS	
15.203	Antenna Requirement	PASS	

NOTE: (1) "N/A" denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2020.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add. :101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuh ai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.755dB
2	Unwanted Emissions, conducted	±2.874dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.18dB
5	All emissions, radiated 1G-6GHz	±4.90dB
6	All emissions, radiated>6G	±5.24dB
7	Conducted Emission (9KHz-150KHz)	±2.19dB
8	Conducted Emission (150KHz-30MHz)	±2.53dB
9	Occupied Channel Bandwidth	±3.5%
10	Power Spectral Density, conducted	±1.245dB
11	Duty Cycle	±3.2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Havion Wired Doorbell	
Trade Name	Havion	
Model Name	D2	
Series Model	HD2 Havion-D2	
Model Difference	Only the model name an	d exterior color are different.
	The EUT is a Havion Wi	red Doorbell
	Operation Frequency:	433.92MHz
	Modulation Type:	FSK
Product Description	Antenna Designation:	Spring Antenna
	Antenna Gain(Peak)	-10.68dBi
	More details of EUT tech User Manual.	nical specification, please refer to the
Channel List	Please refer to the Note	3.
Rating	Input:5V DC or Input 2: 8-24V AC 0.2A (from doorbell wires) V1.4	
Hardware version number		
Software version numbe	V2.1	
Connecting I/O Port(s)	Please refer to the Note 1.	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. Table for filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Havion	HD2 Havion-D2	Spring	N/A	-10.68	Antenna

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

3.

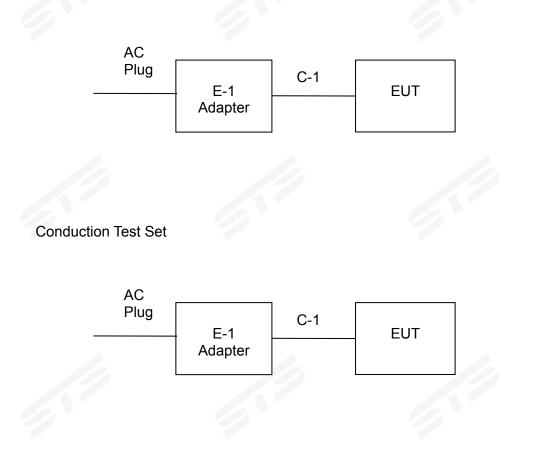
Channel List			
Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	433.92		

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Dests at Marda	Description
Pretest Mode	Description
Mode 1	TX Mode(433.92MHz, FSK)

	For Radiated Emission		
Final Test Mode	Description		
Mode 1	TX Mode(433.92MHz, FSK)		


Note:

(2)The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Radiation Test Set

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	Adapter	ZTC	NB-A515A	N/A
C-1	USB Cable	ZTC	NB-A515A	N/A

Itom		Formite Core	Longth	Niete
Item	Shielded Type	Ferrite Core	Length	Note
C-1	Shielded	NO	150cm	N/A
		1		

Note:

(1)For detachable type I/O cable should be specified the length in cm in ^CLength₂ column.

2.5 EQUIPMENTS LIST

de.	RF Rad	iation Test Equipmer	nt		10
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2024.02.23	2025.02.22
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2024.09.23	2025.09.22
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2024.09.23	2025.09.22
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A
Bilog Antenna	TESEQ	CBL6111D	34678	2024.09.30	2025.09.29
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2025.02.27
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	2025.09.23
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A
Turn Table	EM	SC100_1	60531	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2024.09.23	2025.09.22
Test SW	Test SW EZ-EMC Ver.STSLAB-03A1 RE				
	Condu	ction Test equipment	t	100	
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2024.09.24	2025.09.23
Limtter	CYBERTEK	EM5010	N/A	2024.09.24	2025.09.23
LISN	R&S	ENV216	101242	2024.09.24	2025.09.23
LISN	EMCO	3810/2NM	23625	2024.09.24	2025.09.23
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
			Ver.STSLAB-03	A1 CE	
	RF	Connected Test			
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Signal Analyzer	Agilent	N9020A	MY51510623	2024.02.23	2025.02.22
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Class B	Standard	
FREQUENCT (MILZ)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

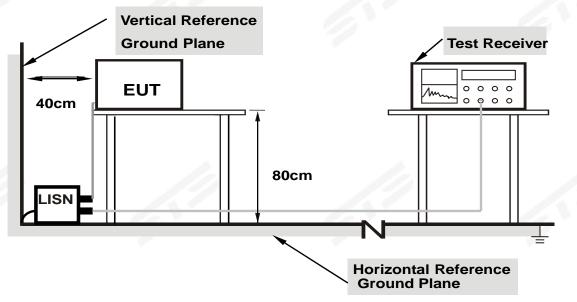
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

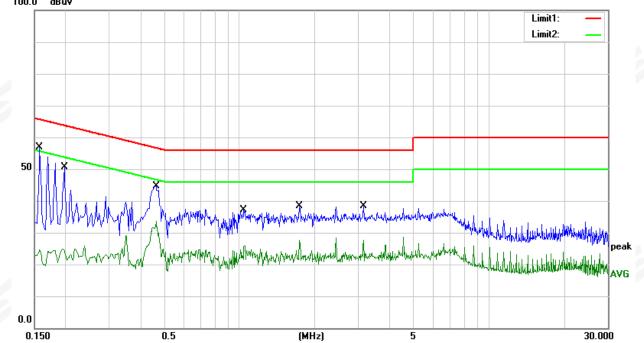

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

- Note: 1. Support units were connected to second LISN.
 - 2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.


3.4 TEST RESULTS

Temperature:	25.1℃	Relative Humidity:	59%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 1	2	1

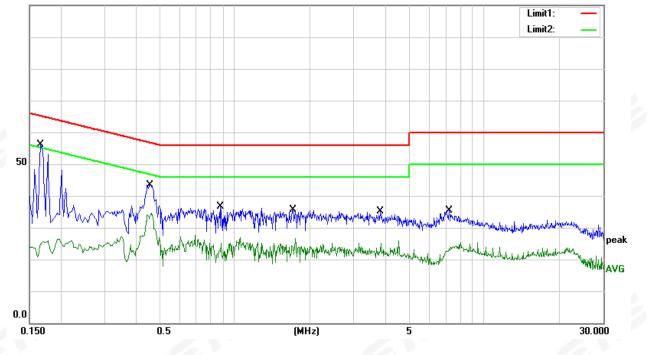
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1580	37.15	19.78	56.93	65.57	-8.64	QP
2	0.1580	4.91	19.78	24.69	55.57	-30.88	AVG
3	0.1980	30.92	19.77	50.69	63.69	-13.00	QP
4	0.1980	5.20	19.77	24.97	53.69	-28.72	AVG
5	0.4620	24.70	20.01	44.71	56.66	-11.95	QP
6	0.4620	13.56	20.01	33.57	46.66	-13.09	AVG
7	1.0420	17.32	19.77	37.09	56.00	-18.91	QP
8	1.0420	6.22	19.77	25.99	46.00	-20.01	AVG
9	1.7420	18.68	19.79	38.47	56.00	-17.53	QP
10	1.7420	7.95	19.79	27.74	46.00	-18.26	AVG
11	3.1420	18.55	19.83	38.38	56.00	-17.62	QP
12	3.1420	8.82	19.83	28.65	46.00	-17.35	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- Margin = Result (Result = Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
- 100.0 dBuV

Page 14 of 31

Report No.:STS2409189W02


Temperature:	25.1 ℃	Relative Humidity:	59%
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 1		
		1.5	

		and the second			1 March 1997		and the second
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1660	36.36	19.78	56.14	65.16	-9.02	QP
2	0.1660	6.67	19.78	26.45	55.16	-28.71	AVG
3	0.4580	23.46	19.99	43.45	56.73	-13.28	QP
4	0.4580	14.56	19.99	34.55	46.73	-12.18	AVG
5	0.8740	16.83	19.80	36.63	56.00	-19.37	QP
6	0.8740	7.79	19.80	27.59	46.00	-18.41	AVG
7	1.7140	15.87	19.85	35.72	56.00	-20.28	QP
8	1.7140	6.82	19.85	26.67	46.00	-19.33	AVG
9	3.8220	15.12	19.94	35.06	56.00	-20.94	QP
10	3.8220	5.83	19.94	25.77	46.00	-20.23	AVG
11	7.2180	15.47	19.85	35.32	60.00	-24.68	QP
12	7.2180	5.52	19.85	25.37	50.00	-24.63	AVG

Remark:

- All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on Part 15.205(a), then the Part 15.209(a) and Part 15.231(b) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT	(0.009MHz - 1000MHz)
---	----------------------

Frequencies	Field Strength Measurement Distan	
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100**	3
88~216	150**	3
216~960	200**	3
Above 960	500	3

Fundamental Frequency (MHz)	Field Strength of fundamental (microvolts/meter)	Field Strength of Unwanted Emissions (microvolts/meter)
40.66~40.70	2,250	225
70~130	1,250	125
130~174	1,250 to 3,750**	125 to 375**
174~260	3750	375
260~470	3,750 to 12,500**	375 to 1,250**
Above 470	12,500	1,250

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class B (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

NOTE:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 3MHz

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

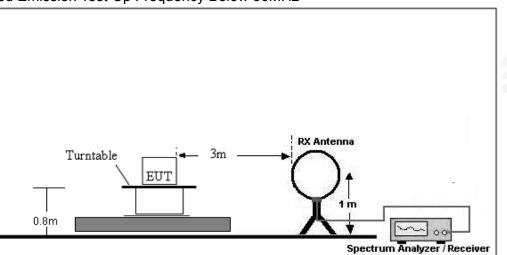
4.2 TEST PROCEDURE

a. The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted onavariable-height antenna master tower.

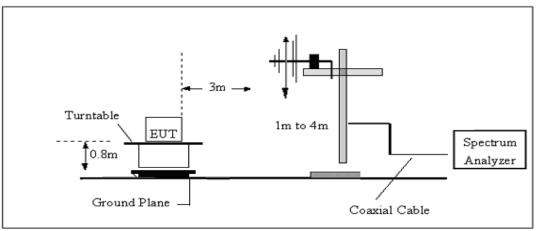
During test, The table was rotated 360 degrees to determine the position of the highest radiation.

- b. In the frequency range of 9KHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- c. In the frequency range 30MHz-1GHz, Bi-Log Test Antenna used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.
- d. In the frequency above1GHz,Place the measurement antenna 3m away from the EUT for each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- f. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

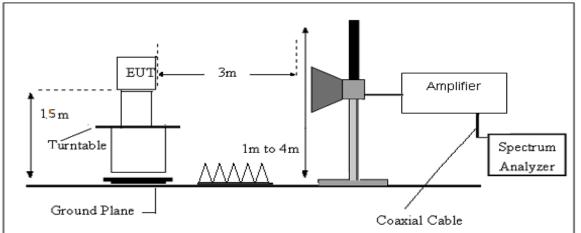
h. For the actual test configuration, please refer to the related Item –EUT Test Photos. Both horizontal and vertical antenna polarities and performed pretest to three orthogonal axis were tested. The worst case emissions were reported


4.3 DEVIATION FROM TEST STANDARD

No deviation



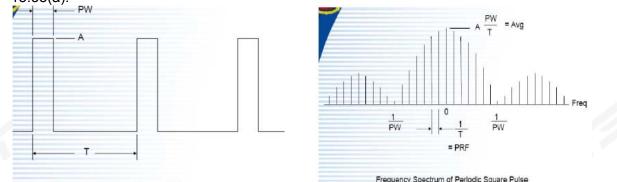
4.4 TEST SETUP



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.5 EUT OPERATING CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

INTRODUCTION TO PDCF

Reference: (§15.35 Measurement detector functions and bandwidths.)

a. Part 15 of the FCC Rules provides for the operation of low power communication devices without an individual license (e.g., intrusion detectors, pulsed water tank level gauges, etc.), subject to certain requirements. Some of these devices use extremely narrow pulses to generate wideband emissions, which are measured to determine compliance with the rules. These measurements are typically performed with a receiver or spectrum analyzer. Depending on a number of factors (e.g., resolution bandwidth, pulsewidth, etc.), the spectrum analyzer may not always display the true peak value of the measured emission. This effect, called "pulse desensitization," relates to the capabilities of the measuring instrument. For the measurement and reporting of the true peak of pulsed emissions, it may be necessary to apply a "pulse desensitization correction factor" (PDCF) to the measured value, pursuant to 47 CFR 15.35(a).

Periodic Square Pulse

Frequency Spectrum of Periodic Square Pulse

If using spectrum analyzer to measure pulse signal, it have to make sure the RBW use is at least 2/PW.

•When RBW is less than 2/PW, you are able to measure the true peak level of the pulse signal. If this is the case. PDCF is required to compensate to determine true peak value. Pulse desensitization:

PW =53550usec, Period=100000usec, Level=A RBW>2/PW=0.037K, 1/T=0.01K

NOTE: 2 / PW < RBW, first don't need

b. For the actual test, please refer to the ANSI C63.10, Annex C refer to section 6. for more detail

4.7 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor For example

FS Frequency RA AF CL AG Factor (dBµV/m) $(dB\mu V/m)$ (dB) (MHz) (dB) (dB) (dB) 300 40 58.1 12.2 1.6 31.9 -18.1

Factor=AF+CL-AG

4.8 TEST RESULTS

(Radiated Emission<30MHz (9KHz-30MHz, H-field))

Temperature:	23.4 ℃	Relative Humidity:	60%
Test Mode:	Mode 1	Polarization:	

and the second second				
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

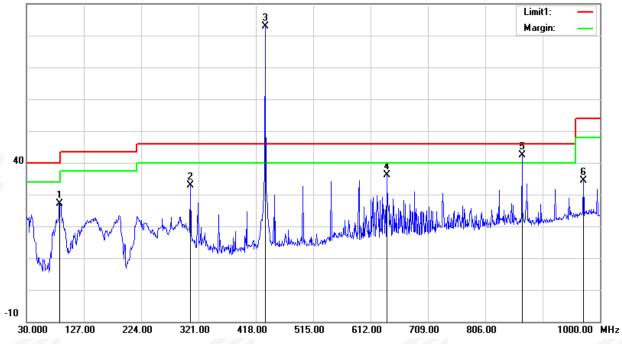
Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

Between 30MHz - 5000 MHz

Temperature:	23.4 ℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Phase:	Horizontal
Test Mode:	Mode 1	9	9


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	86.2600	49.20	-21.96	27.24	40.00	-12.76	peak
2	307.4200	47.32	-14.55	32.77	46.00	-13.23	peak
4	639.1600	40.88	-4.86	36.02	46.00	-9.98	peak
5	868.0800	42.88	-0.51	42.37	46.00	-3.63	peak
6	971.8700	32.35	2.13	34.48	54.00	-19.52	peak

Fundamental Frequency

No.	Frequency	Reading	Correct	Duty cycle	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
3	433.9200	92.91	-10.13	-	82.78	100.83	-18.05	Peak
3	433.9200	92.91	-10.13	-7.24	75.54	80.83	-5.29	AV

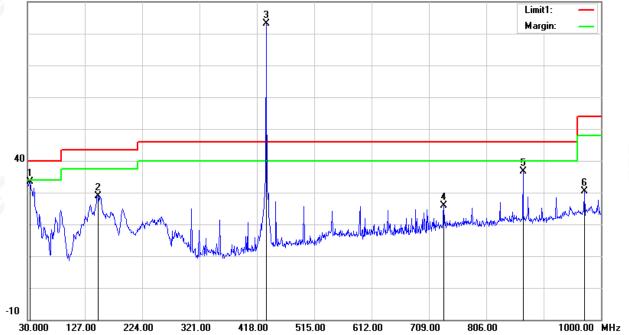
Remark:

- All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB) 90.0 dBuV/m

Report No.:STS2409189W02

Temperature:	23.4 ℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Phase:	Vertical
Test Mode:	Mode 1	19	
- N -			

		and the second			127		and the second se
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	48.74	-15.34	33.40	40.00	-6.60	peak
2	149.3100	47.26	-18.49	28.77	43.50	-14.73	peak
4	734.2200	28.11	-2.31	25.80	46.00	-20.20	peak
5	868.0800	37.12	-0.51	36.61	46.00	-9.39	peak
6	971.8700	28.27	2.13	30.40	54.00	-23.60	peak


Fundamental Frequency

No.	Frequency	Reading	Correct	Duty cycle	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
3	433.9200	93.24	-10.13	-	83.11	100.83	-17.72	Peak
3	433.9200	93.24	-10.13	-7.24	75.87	80.83	-4.96	AV

Remark:

- All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)

90.0 dBu∀/m

PEAK TEST RESULTS:

Frequency R	Reading		Amplifier	Loss				FCC F 15.231/15.		RX Antenna
			•		Factor	Factor	Amplitude	Limit	Margin	Polar
(MHz) (df	lBµV/m)	(PK/QP/AV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(H/V)
1301.62 6	63.79	PK	45.1	4.0	25.1	-16.00	47.79	74	-26.21	Н
1301.62 6	64.31	PK	45.1	4.0	25.1	-16.00	48.31	74	-25.69	V
1735.53 6	61.83	PK	44.1	5.3	25	-13.80	48.03	80.83	-32.80	Н
1735.53 6	63.18	PK	44.1	5.3	25	-13.80	49.38	80.83	-31.45	V
2169.78 6	60.23	PK	43.8	5.4	25.9	-12.47	47.76	80.83	-33.07	Н
2169.78 6	60.81	PK	43.8	5.4	25.9	-12.47	48.35	80.83	-32.48	V
2603.59 5	55.54	PK	44.4	6.0	27.6	-10.77	44.78	80.83	-36.05	Н
2603.59 5	56.01	PK	44.4	6.0	27.6	-10.77	45.24	80.83	-35.59	V

Note:

Above 2.6 GHz The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
 The peak value is less than the AV limit, so AV data does not need to be tested.

5. BANDWIDTH TEST

5.1 LIMIT

Ē				
		FCC Pa	rt15.231,Subpart C	
Ī	Section	Test Item	Limit	Result
	15.231(C)	20 Bandwidth&	The20dB bandwidth of the emissions shall not exceed 0.25% of the center frequency	PASS

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth		
RB	1% to 5% of the OBW		
VB	≥3RB		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

5.2 TEST REQUIREMENTS

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.3 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: 1% to 5% of the OBW, VBW≥3RBW, Sweep time = Auto.
- 5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

TX mode.

5.6 TEST RESULTS

Centre	Measurement				
Frequency	20dB Bandwidth (KHz)	Limit(kHz)	Frequency Range (MHz)		
433.92MHz	94.22	1084.8	PASS		

433.92MHz

R RF 50 Ω AC		SENSE:INT	ALIGNAUTO	02:56:47 PMDec 25, 202
enter Freq 433.920000	/H z	Center Freq: 433.9200		Radio Std: None
		Trig: Free Run #Atten: 10 dB	Avg Hold:>10/10	B. I. D. J. BTO
	#IFGain:Low	#Atten: 10 dB		Radio Device: BTS
Ref Offset 0.5 dB				
0 dB/div Ref 16.00 dBm	1			
og				
5.00				
		The second secon		
		$ \Lambda \Lambda $		
4.0				
4.0		- man		
4.0	myulu		M.M.A. Jum	00.000
mand with	was and		a mar Mar	man man man
4.0				
4.0				
4.0				
4.0				
4.0				
enter 433.9 MHz Res BW 5.1 kHz		#VBW 15 kH	2	Span 500 kH Sweep 23.8 m
Res DW 5.1 RH2		#VDVV 15 KH	2	Sweep 23.8 m
Occupied Bandwidt	h	Total Power	0.76 d B m	
20	06.28 kHz			
Transmit Freq Error	-7.378 kHz	OBW Power	99.00 %	
x dB Bandwidth	94.22 kHz	x dB	-20.00 dB	
ŝG			STATUS	

6. DUTY CYCLE

6.1 TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

The Duty Cycle Was Determined By The Following Equation: To Calculate The Actual Field Intensity, The Duty Cycle Correction Factor In Decibel Is Needed For Later Use And Can Be Obtained From Following Conversion

Duty Cycle(%)=Total On Interval In A Complete Pulse Train/ Length Of A Complete Pulse Train * %

Duty Cycle Correction Factor(Db)=20 * Log10(Duty Cycle(%)

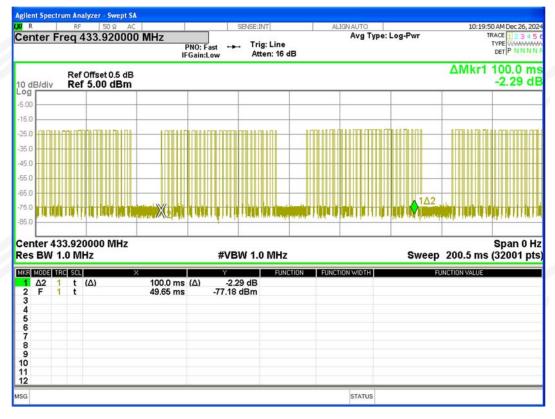
6.2 TEST SETUP

6.3 EUT OPERATION CONDITIONS

TX mode.

6.4 TEST RESULTS

FCC Part	FCC Part15.231(a)						
Total On interval in a complete pulse train(ms)	43.472						
Length of a complete pulse train(ms)	100						
Duty Cycle (%)	43.47%						
Duty Cycle Correction Factor(dB)	-7.24						


Refer to the duty cycle plot (as below), This device meets the FCC requirement. Length of a complete pulse train

Remark:FCC part15.35(c) required that a complete pulse train is more than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

Note: Number of pulse train 1 = 31, Time of single pulse train 1 = 0.392ms;

Number of pulse train 2 = 27, Time of single pulse train 1 = 1.16ms;

Total on interval in a complete pulse train= Number of pulse train 1x Time of single pulse train+ Number of pulse train 2x Time of single pulse train 2=31x0.392+27x1.16=43.472ms

TX Mode

7. AUTOMATICALLY DEACTIVATE

7.1 STANDARD REQUIREMENT

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

7.2 TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

Spectrum Setting : RBW= 1000KHz, VBW=1000KHz, Sweep time = Auto.

Note: Only press launch about 0.15 s

Note:

(1)Refer to the plot (As Below),We find a manually operated transmitter shall employ a switch that will automatically deactivate the transmitteri immediately, within not more than 5 seconds of being released.

(2)The EUT is comply with FCC PART 15 clause 15.231(a)(1) manually working mode are pre-tested and only the worst result is reported.

7.3 TEST SETUP

7.4 TEST RESULTS

Activation time	Limit(Sec)	Result	
304.3s	5 s	Pass	

L	RF	50 Q AC	SENSE: IN	т	ALIGNAUTO		10:14:31 AM Dec 26, 202
nter l	Freq 433	3.920000 MHz	Tria	: Line	Avg Type	Log-Pwr	TRACE 1 2 3 4 5 TYPE WHAT
			D: Fast Trig in:Low Atte	n: 10 dB			DET PNNN
							Mkr3 818.2 ms
B/div	Ref 0.	00 dBm					-73.46 dBn
	\wedge^2						
	A 3						
-			and the patrice in the party of	inter all in cashing		- But - Harde all d	No. of Concession, Name
ter 4	33.9200	00 MHz					Span 0 H
	1.0 MHz		#VBW 1.0	MHz		Swee	p 10.00 s (32001 pts
MODE	TRC SCL	×	Ŷ	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE
NN		531.9 ms 817.9 ms	-73.65 dBm -13.77 dBm				
N	t	818.2 ms	-73.46 dBm				

Mark 1: Hold down the Key(Start transmitting) Mark 2: Loose the Key Mark 3: Stop transmitting

Activation time= Mark3- Mark 1=818.2-531.9=304.3s

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

8.2 EUT ANTENNA

The EUT antenna is Spring Antenna. It conforms to the standard requirements.

APPENDIX 1-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *