

RADIO TEST REPORT FCC ID: 2AKCT-SPCP1PRO

Product: Geek PC

Trade Mark: Stationpc

Model No.: Station P1 Pro Family Model: N/A Report No.: S22030103605001 Issue Date: Jun 29. 2022

Prepared for

T-CHIP INTELLIGENT TECHNOLOGY CO., LTD.

Room 2101,Hongyu Building,#57 Zhongshan 4Rd,EastDistrict,Zhongshan,Guangdong,China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 TE	1 TEST RESULT CERTIFICATION			
2 SU	MMARY OF TEST RESULTS	4		
3 FA	CILITIES AND ACCREDITATIONS	5		
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5		
4 GE	NERAL DESCRIPTION OF EUT	6		
5 DE	SCRIPTION OF TEST MODES	8		
6 SE	TUP OF EQUIPMENT UNDER TEST	9		
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10 11		
7 TE	ST REQUIREMENTS	13		
	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	16 25 26 27 29 30 31 32 33 34		
8 TE	ST RESULTS			
8.1 8.2 8.3 8.4 8.5 8.6 8.7	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER Occupied Channel Bandwidth Carrier Frequencies Separation Number of Hopping Channel Band Edge Conducted RF Spurious Emission	40 45 55 60 61		

1 TEST RESULT CERTIFICATION

Applicant's name:	T-CHIP INTELLIGENT TECHNOLOGY CO.,LTD.
Address:	Room 2101,Hongyu Building,#57 Zhongshan 4Rd,EastDistrict,Zhongshan,Guangdong,China
Manufacturer's Name:	T-CHIP INTELLIGENT TECHNOLOGY CO.,LTD.
Address:	Room 2101,Hongyu Building,#57 Zhongshan 4Rd,EastDistrict,Zhongshan,Guangdong,China
Product description	
Product name:	Geek PC
Model and/or type reference:	Station P1 Pro
Family Model:	N/A
Test Sample Number	S220301036005

Certificate #4298.01

Measurement Procedure Used:

APPLICABLE STANDARDS		
TEST RESULT		
Complied		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Apr 20. 2022 ~Jun 29. 2022
Testing Engineer	:	Muhzi Lee
		(Mukzi Lee)
		Aless
Authorized Signatory	:	
		(Alex Li)

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

AC Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty	
1	Conducted Emission Test	±2.80dB	
2	RF power, conducted	±0.16dB	
3	Spurious emissions, conducted	±0.21dB	
4	All emissions, radiated(30MHz~1GHz)	±2.64dB	
5	All emissions, radiated(1GHz~6GHz)	±2.40dB	
6	All emissions, radiated(>6GHz)	±2.52dB	
7	Temperature	±0.5°C	
8	Humidity	±2%	
9	All emissions, radiated(9KHz~30MHz)	±6dB	

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	Geek PC		
Trade Mark	Stationpc		
FCC ID	2AKCT-SPCP1PRO		
Model No.	Station P1 Pro		
Family Model	N/A		
Model Difference	Note: This model contains 2 different combinations for DDR and EMMC, which are 4GB+32GB, 2GB+32GB, and have the same running rate. We choose 4GB+32GB as the test sample.		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK, 8-DPSK		
Number of Channels	79 Channels		
Antenna Type	External Antenna		
Antenna Gain	3 dBi		
Power Rating	DC 12V from adapter		
Adapter	Model: SK03T1-1200200Z Input: AC 100-240V~50/60Hz 0.6A Output: DC 12V2A 24W		
HW Version	ROC-RK3399PC PRO-V1.1		
SW Version	ROC-RK3399-PC-Pro_Android10_HDMI_220117		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

		evision History		
Report No.		Description		
S22030103605001	Rev.01	Initial issue of report	Jun 29. 2022	

5 DESCRIPTION OF TEST MODES

NTEK 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission			
Final Test Mode	Description		
Mode 1 normal link mode			
Note: AO assure lies. Ose destad Esciences testad under reacting as testa server			

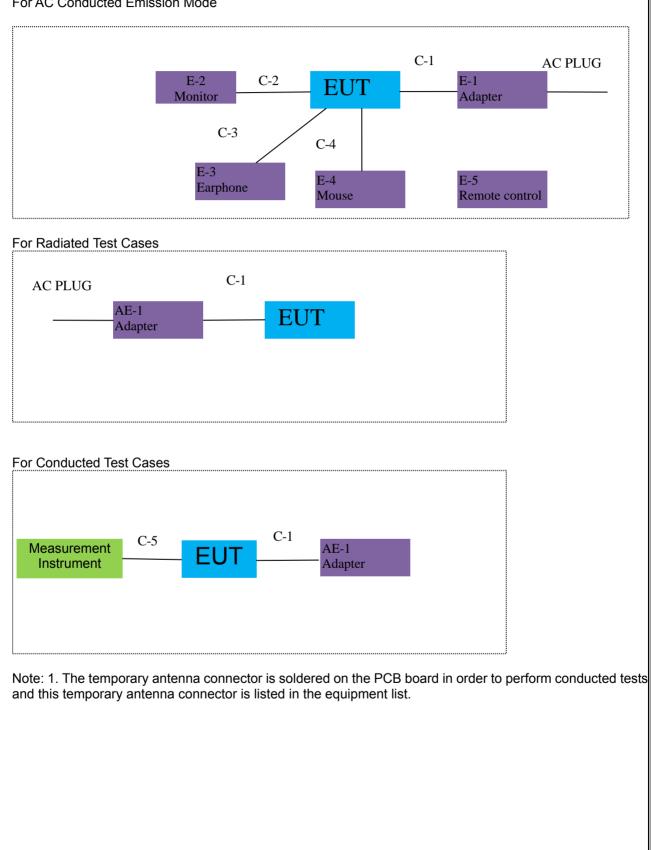
Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1,3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode Description		
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4 CH78(2480MHz)		
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.



SETUP OF EQUIPMENT UNDER TEST 6

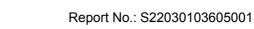
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For AC Conducted Emission Mode

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Certificate #4298.01


Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	SK03T1-1200200Z	N/A	Peripherals
AE-2	Monitor	N/A	N/A	Peripherals
AE-3	Earphone	N/A	N/A	Peripherals
AE-4	Mouse	N/A	N/A	Peripherals
AE-5	Remote control	N/A	N/A	Peripherals

lac

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.0m
C-2	HDMI Cable	YES	YES	1.5m
C-3	Earphone Cable	NO	NO	1.2m
C-4	Mouse Cable	NO	NO	1.2m
C-5	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

ilac-

ACCREDITED Certificate #4298.01

Radiation& Conducted Test equipment

		estequipment					
Item	Equipment		Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.01	2023.03.31	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.01	2023.03.31	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.01	2023.03.31	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.03.31	2023.03.30	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.08.06	2022.08.05	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

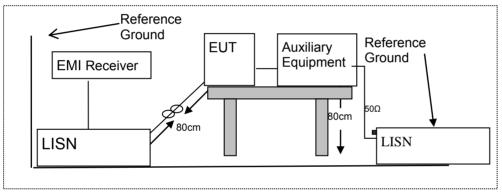
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

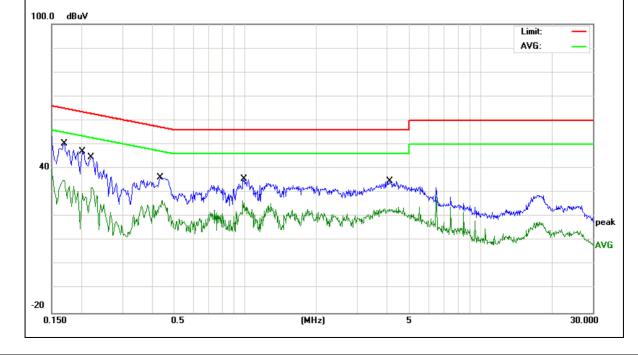
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

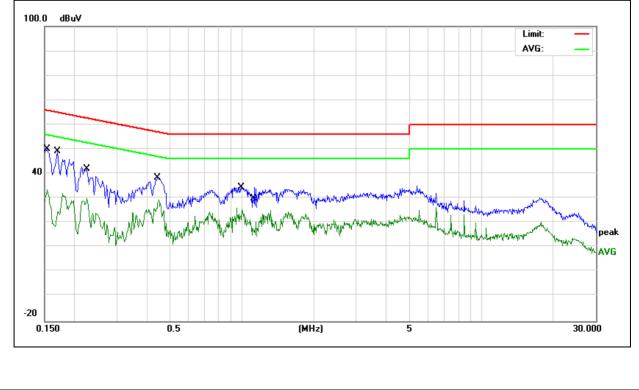

EUT:	Geek PC	Model Name :	Station P1 Pro
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1685	40.69	9.69	50.38	65.03	-14.65	QP
0.1685	25.51	9.69	35.20	55.03	-19.83	AVG
0.2020	37.39	9.63	47.02	63.52	-16.50	QP
0.2020	20.12	9.63	29.75	53.52	-23.77	AVG
0.2220	35.10	9.63	44.73	62.74	-18.01	QP
0.2220	22.48	9.63	32.11	52.74	-20.63	AVG
0.4339	26.47	9.64	36.11	57.18	-21.07	QP
0.4339	17.02	9.64	26.66	47.18	-20.52	AVG
0.9778	25.77	9.75	35.52	56.00	-20.48	QP
0.9778	16.77	9.75	26.52	46.00	-19.48	AVG
4.1337	24.79	9.67	34.46	56.00	-21.54	QP
4.1337	13.48	9.67	23.15	46.00	-22.85	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Geek PC	Model Name :	Station P1 Pro
Temperature:	25 °C	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

		1				
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	40.31	9.63	49.94	65.78	-15.84	QP
0.1539	23.91	9.63	33.54	55.78	-22.24	AVG
0.1700	39.46	9.63	49.09	64.96	-15.87	QP
0.1700	15.07	9.63	24.70	54.96	-30.26	AVG
0.2260	32.25	9.64	41.89	62.59	-20.70	QP
0.2260	20.28	9.64	29.92	52.59	-22.67	AVG
0.4460	28.68	9.72	38.40	56.95	-18.55	QP
0.4460	19.69	9.72	29.41	46.95	-17.54	AVG
0.9939	24.84	9.75	34.59	56.00	-21.41	QP
0.9939	15.66	9.75	25.41	46.00	-20.59	AVG
1.1140	24.85	9.74	34.59	56.00	-21.41	QP
1.1140	7.92	9.74	17.66	46.00	-28.34	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Certificate #4298.01

According to 1 00 1 dit10.20	According to FOOT alt 15.200, Restricted bands							
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	(2)					
13.36-13.41								

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	/m) (at 3M)
Fiequency(Miriz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

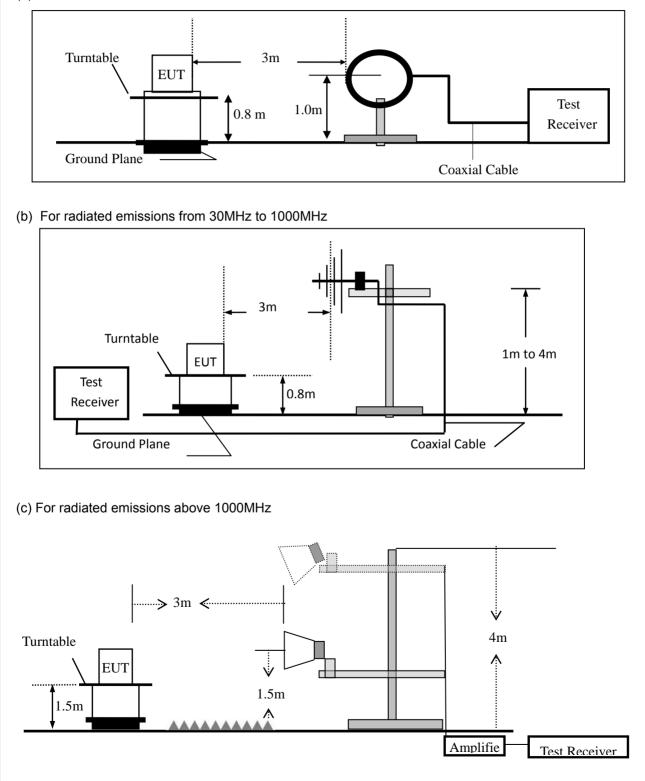
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Certificate #4298.01

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
Above 1000	Peak	1 MHz	1 MHz						
Above 1000	Average	1 MHz	1 MHz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Geek PC	Model No.:	Station P1 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Geek PC Model Name : Station P1 Pro **25**℃ 55% Temperature: Relative Humidity: Pressure: 1010hPa Test Mode: Mode 1 Test Voltage : DC 12V Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) V 30.7454 6.75 26.12 32.87 40.00 -7.13 QP 21.22 V 39.4371 9.08 30.30 40.00 -9.70 QP V 102.7192 17.84 43.50 -11.86 QP 13.80 31.64 V 297.2241 12.88 19.69 32.57 46.00 -13.43 QP -9.20 QP V 593.0497 11.25 25.55 36.80 46.00 V 896.9963 11.76 29.24 41.00 46.00 -5.00 QP **Remark:** Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBu¥/m Limit: Margin: 6 × whitehanthe × 3 minitery 32 👬 weather high and Warman March ward -8 30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000

H H H H Remark:		(dBuV) 7.51 15.76 15.69 10.55 9.94 9.43 Reading+ Fac	(dB) 25.77 16.04 17.83 22.75 25.46 29.25 etor, Margin=	(dBuV/m) 33.28 31.80 33.52 33.30 35.40 38.68 = Emission Lev	(dBuV/m) 40.00 43.50 46.00 46.00 46.00 46.00 vel - Limit	(dB) -6.72 -11.70 -12.48 -12.70 -10.60 -7.32	Remark QP QP QP QP QP QP
H H H H Remark: Emission Le	198.5877 236.6447 399.0300 595.1326 869.1299 evel= Meter F	15.76 15.69 10.55 9.94 9.43	16.04 17.83 22.75 25.46 29.25	31.80 33.52 33.30 35.40 38.68	43.50 46.00 46.00 46.00 46.00	-11.70 -12.48 -12.70 -10.60	QP QP QP QP
H H H Remark: Emission Le	236.6447 399.0300 595.1326 869.1299 evel= Meter F	15.69 10.55 9.94 9.43	17.83 22.75 25.46 29.25	33.52 33.30 35.40 38.68	46.00 46.00 46.00 46.00	-12.48 -12.70 -10.60	QP QP QP
H H H Remark: Emission Le	399.0300 595.1326 869.1299 evel= Meter F	10.55 9.94 9.43	22.75 25.46 29.25	33.30 35.40 38.68	46.00 46.00 46.00	-12.70 -10.60	QP QP
H H Remark: Emission Le	595.1326 869.1299 evel= Meter F	9.94 9.43	25.46 29.25	35.40 38.68	46.00 46.00	-10.60	QP
H Remark: Emission Le	869.1299 evel= Meter F	9.43	29.25	38.68	46.00		
Remark: Emission Le	evel= Meter F		1			-7.32	QP
Emission Le		Reading+ Fac	tor, Margin=	= Emission Lev	<u>rel - Limit</u>		
						Limit: Margin:	
32 million and a second	The second second	where the war way	14-14-14 MAY	2 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Mart Margarit	6
-8	40 50 60		(MH		300 400 5	00 600 700	1000.000

Spurious	Spurious Emission Above 1GHz (1GHz to 25GHz)									
EUT:	Ge	Geek PC			l No.:		Statior	n P1 Pro		
Temperature	e: 20	°C		Relat	Relative Humidity: 48		48%			
Test Mode:	Mc	de2/Mod	e3/Mode4	Test I	By:		Mukzi Lee			
All the modulation modes have been tested, and the worst result was report as below:										
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lir	mits	Margin		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB)	µV/m)	(dB)	Remark	Comment
	(upha)			()	/Hz)(GFSK)		,	(ub)		
4804	68.48	5.21	35.59	44.30	64.98	r –	4.00	-9.02	Pk	Vertical
4804	48.03	5.21	35.59	44.30	44.53		1.00	-9.47	AV	Vertical
7206	68.15	6.48	36.27	44.60	66.30		1.00	-7.70	Pk	Vertical
7206	46.7	6.48	36.27	44.60	44.85		1.00	-9.15	AV	Vertical
4804	68.1	5.21	35.55	44.30	64.56		4.00	-9.44	Pk	Horizontal
4804	48.88	5.21	35.55	44.30	45.34		4.00	-8.66	AV	Horizontal
7206	68.98	6.48	36.27	44.52	67.21		4.00	-6.79	Pk	Horizontal
7206	47.27	6.48	36.27	44.52	45.50		1.00	-8.50	AV	Horizontal
			Mid Chan	nel (2441 N	(Hz)(GFSK)	Abov	ve 1G		I	
4882	70.29	5.21	35.66	44.20	66.96	1	1.00	-7.04	Pk	Vertical
4882	48.56	5.21	35.66	44.20	45.23	54	1.00	-8.77	AV	Vertical
7323	69.7	7.10	36.50	44.43	68.87	74	4.00	-5.13	Pk	Vertical
7323	45.36	7.10	36.50	44.43	44.53	54	4.00	-9.47	AV	Vertical
4882	68.66	5.21	35.66	44.20	65.33	74	4.00	-8.67	Pk	Horizontal
4882	49.74	5.21	35.66	44.20	46.41	54	1.00	-7.59	AV	Horizontal
7323	70.72	7.10	36.50	44.43	69.89	74	4.00	-4.11	Pk	Horizontal
7323	45.25	7.10	36.50	44.43	44.42	54	4.00	-9.58	AV	Horizontal
			High Chan	nel (2480 N	/IHz)(GFSK)	Abc	ove 1G			
4960	69.38	5.21	35.52	44.21	65.90	74	4.00	-8.10	Pk	Vertical
4960	46.07	5.21	35.52	44.21	42.59	54	4.00	-11.41	AV	Vertical
7440	69.82	7.10	36.53	44.60	68.85	74	4.00	-5.15	Pk	Vertical
7440	48.31	7.10	36.53	44.60	47.34	54	4.00	-6.66	AV	Vertical
4960	68.26	5.21	35.52	44.21	64.78	74	4.00	-9.22	Pk	Horizontal
4960	49.85	5.21	35.52	44.21	46.37	54	4.00	-7.63	AV	Horizontal
7440	70.96	7.10	36.53	44.60	69.99	74	4.00	-4.01	Pk	Horizontal
7440	50	7.10	36.53	44.60	49.03	54	4.00	-4.97	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious I	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz									
EUT:	Geek PC Model No.:							on P1 Pr	0	
Temperature:	20 ℃			R	elative Humidi	ty:	48%			
Test Mode:	Mode2/ N	lode4		Τ¢	est By:		Muk	zi Lee		
All the modul	ation mod	e <u>s have</u>	been test		d the worst res	sult wa	as rep	o <u>rt as be</u>	low:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Pream Facto		Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)) (dBµV/m)	(dBµ\	V/m)	(dB)	Туре	
			31	Vbps(8-	DPSK)-Non-ho	pping				
2310.00	70.28	2.97	27.80	43.80	0 57.25	74	4	-16.75	Pk	Horizontal
2310.00	47.17	2.97	27.80	43.80	0 34.14	54	4	-19.86	AV	Horizontal
2310.00	70.61	2.97	27.80	43.80	0 57.58	74	4	-16.42	Pk	Vertical
2310.00	47.26	2.97	27.80	43.80	0 34.23	54	4	-19.77	AV	Vertical
2390.00	68.99	3.14	27.21	43.80	0 55.54	74	4	-18.46	Pk	Vertical
2390.00	48.65	3.14	27.21	43.80	0 35.20	54	4	-18.80	AV	Vertical
2390.00	70.93	3.14	27.21	43.80	0 57.48	74	4	-16.52	Pk	Horizontal
2390.00	49.92	3.14	27.21	43.80	43.80 36.47		4	-17.53	AV	Horizontal
2483.50	70.27	3.58	27.70	44.00	0 57.55	74	4	-16.45	Pk	Vertical
2483.50	50.09	3.58	27.70	44.00	0 37.37	54	4	-16.63	AV	Vertical
2483.50	69.61	3.58	27.70	44.00	0 56.89	74	4	-17.11	Pk	Horizontal
2483.50	49.4	3.58	27.70	44.00	0 36.68	54	4	-17.32	AV	Horizontal
				3Mbps	(8-DPSK)-hoppi	ing				
2310.00	69.55	2.97	27.80	43.80		74	4	-17.48	Pk	Horizontal
2310.00	50.72	2.97	27.80	43.80	0 37.69	54	4	-16.31	AV	Horizontal
2310.00	69.87	2.97	27.80	43.80	0 56.84	74	4	-17.16	Pk	Vertical
2310.00	49.82	2.97	27.80	43.80	0 36.79	54	4	-17.21	AV	Vertical
2390.00	69.5	3.14	27.21	43.80	0 56.05	74	4	-17.95	Pk	Vertical
2390.00	49.95	3.14	27.21	43.80	0 36.50	54	4	-17.50	AV	Vertical
2390.00	70.52	3.14	27.21	43.80	0 57.07	74	4	-16.93	Pk	Horizontal
2390.00	50.79	3.14	27.21	43.80	0 37.34	54	4	-16.66	AV	Horizontal
2483.50	70.81	3.58	27.70	44.00	0 58.09	74	4	-15.91	Pk	Vertical
2483.50	49.96	3.58	27.70	44.00	0 37.24	54	4	-16.76	AV	Vertical
2483.50	70.02	3.58	27.70	44.00	0 57.30	74	4	-16.70	Pk	Horizontal
2483.50	47.91	3.58	27.70	44.00	0 35.19	54	4	-18.81	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

– (Spurious Emission in Restricted Band 3260MHz-18000MHz											
EUT	:	Gee	k PC			Model No.: S			Statio	Station P1 Pro		
Tem	perature:	20 °C	2			Relat	Relative Humidity: 48%					
Test	Mode:	Mod	e2/ Mode	э4		Test I	By:		Mukz	i Lee		
All t	he modula	ition mod	es have	been teste	ed, a	and th	e worst res	ult wa	is rep	ort as be	low:	
F	requency	Reading Level	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lir	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
	3260	69.92	4.04	29.57	44	4.70	58.83	7	'4	-15.17	Pk	Vertical
	3260	47.35	4.04	29.57	44	4.70	36.26	5	64	-17.74	AV	Vertical
	3260	68.95	4.04	29.57	44	4.70	57.86	7	'4	-16.14	Pk	Horizontal
	3260	48.99	4.04	29.57	44	4.70	37.90	5	54	-16.10	AV	Horizontal
	3332	68.48	4.26	29.87	44	4.40	58.21	7	'4	-15.79	Pk	Vertical
	3332	49.48	4.26	29.87	44	4.40	39.21	5	64	-14.79	AV	Vertical
	3332	68.31	4.26	29.87	44	4.40	58.04	7	'4	-15.96	Pk	Horizontal
	3332	48.42	4.26	29.87	44	4.40	38.15	5	54	-15.85	AV	Horizontal
	17797	56.02	10.99	43.95	43	3.50	67.46	7	'4	-6.54	Pk	Vertical
	17797	33.61	10.99	43.95	43	3.50	45.05	5	64	-8.95	AV	Vertical
	17788	48.49	11.81	43.69	44	4.60	59.39	7	'4	-14.61	Pk	Horizontal
	17788	32.06	11.81	43.69	44	4.60	42.96	5	54	-11.04	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

Certificate #4298.01

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Geek PC	Model No.:	Station P1 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mukzi Lee

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

Certificate #4298.01

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Geek PC	Model No.:	Station P1 Pro
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

Certificate #4298.01

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

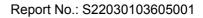
7.5.6 **Test Results**

EUT:	Geek PC	Model No.:	Station P1 Pro
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	48% Mukzi Lee

Certificate #4298.01

Test data reference attachment.

Note:


A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

Certificate #4298.01

7.6.6 Test Results

EUT:	Geek PC	Model No.:	Station P1 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Geek PC	Model No.:	Station P1 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

- RBW = 100KHz
- VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Geek PC	Model No.:	Station P1 Pro
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mukzi Lee

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

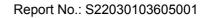
The EUT antenna is Permanently attached Externa Antenna (Gain: 3dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

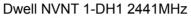
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

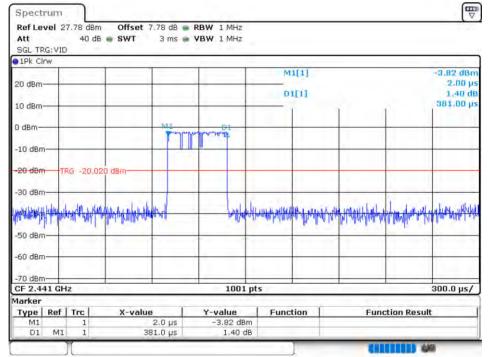

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


8 TEST RESULTS


8.1 **DWELL TIME**

۰.								
	Condition	Mode	Frequency	Pulse	Total Dwell	Period	Limit	Verdict
	Condition	Mode	(MHz)	Time (ms)	Time (ms)	Time (ms)	(ms)	veruici
	NVNT	1-DH1	2441	0.381	121.92	31600	400	Pass
	NVNT	1-DH3	2441	1.635	261.6	31600	400	Pass
	NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
	NVNT	2-DH1	2441	0.387	123.84	31600	400	Pass
	NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass
	NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
	NVNT	3-DH1	2441	0.375	120	31600	400	Pass
	NVNT	3-DH3	2441	1.625	260	31600	400	Pass
	NVNT	3-DH5	2441	2.888	308.053	31600	400	Pass

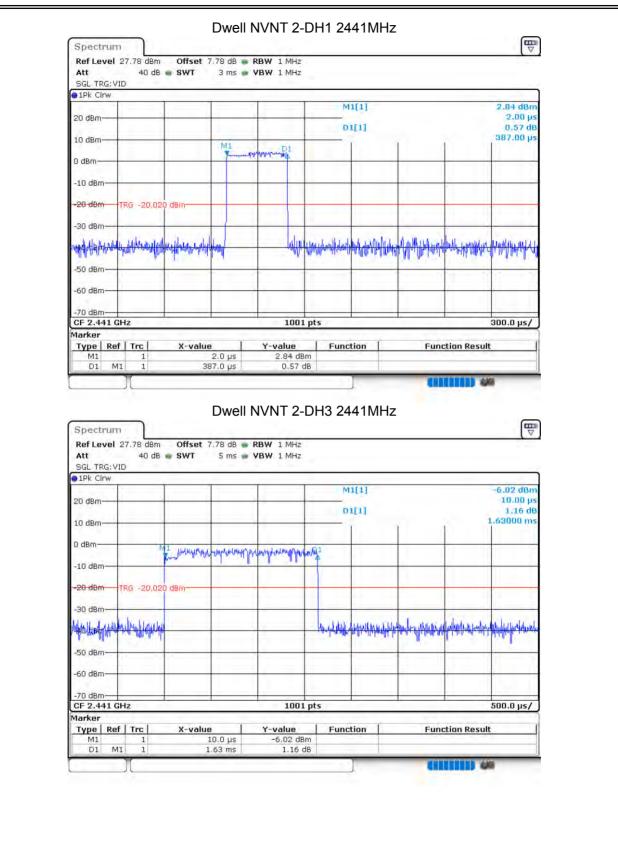
ACCREDITED

Certificate #4298.01

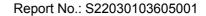
ilac-MR/

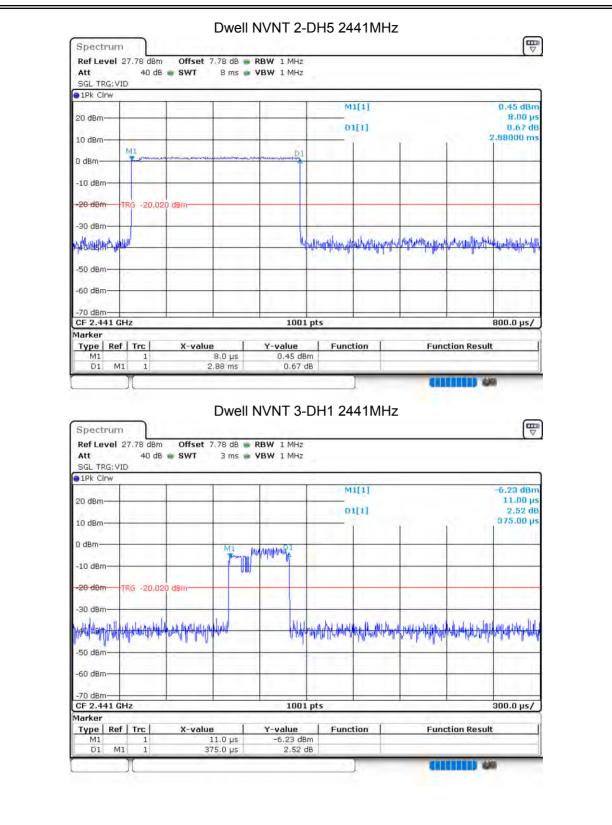
ACCRED

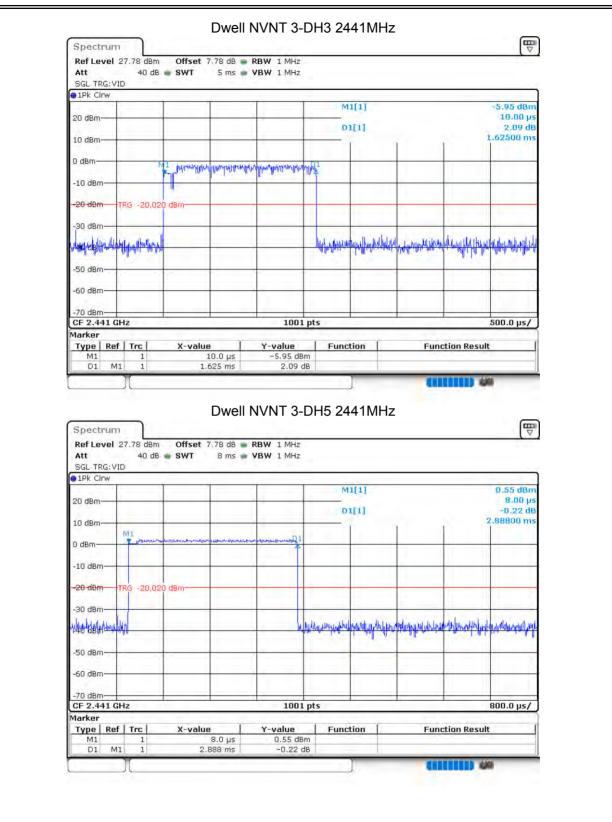
Certificate #4298.01


ED

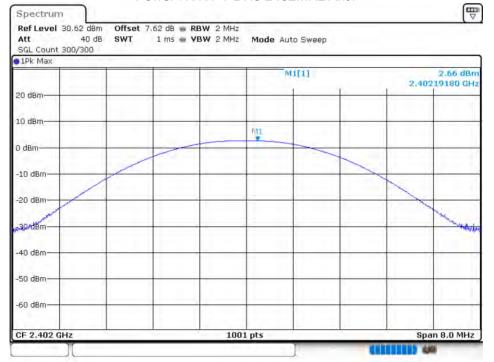
Ref Level 27.78 dBm Att 40 dB	Offset 7.	78 dB 🐞 RB 5 ms 📦 VB						1.1
SGL TRG: VID 1Pk Clrw	× v v	2222	2.525					
	1 1	-1		MI	[1]			-3.65 dBm
20 dBm				01[1]			5.00 µs 1.27 dB
10 dBm				1	1		n i	1.63500 ms
D dBm	And Colleman and the	connerserved and him	malen marger	01				
-10 dBm								
-20 dBm TRG -20,02	0 dBm							
-30 dBm								1 - 1
Phalesterner and the standing				un dende	Harrice	www.ilivil. Maria	Levelan bertetel	alene Produkter HA
				have the ord	alle all i hou	n a later a	LI Wall and	de en olikon h let
-50 dBm				1	1	1	1	111
-60 dBm								
-70 dBm CF 2.441 GHz			1001 p	ts			-	500.0 µs/
Marker	0.00							
Type Ref Trc	X-value		Y-value -3.65 dBm	Functi	on	Fun	tion Result	t
M1 1 D1 M1 1		5.0 µs 35 ms	1.27 dB				_	
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm	1.6	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D W 1 MHz]	IMHz	-	•	
M1 1 D1 M1 1 Spectrum Image: Construct of the second sec	1.6	35 ms Dwell NV	1.27 dB /NT 1-D W 1 MHz]	IMHz		(((()))	
M1 1 D1 M1 1 Spectrum	1.6	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D W 1 MHz]			uun e	1.62 dBm
M1 1 D1 M1 1 Spectrum Image: Construct of the second sec	1.6	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D W 1 MHz) 0H5 244	[1]	-		1.62 dBm 8.00 µs -0.09 dB
M1 1 D1 M1 1 Spectrum	1.6	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 мнг w 1 мнг	0H5 244	[1]		1	1.62 dBm 8.00 µs
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.6	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D W 1 MHz	0H5 244	[1]			1.62 dBm 8.00 µs -0.09 dB
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.6	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 мнг w 1 мнг	0H5 244	[1]			1.62 dBm 8.00 µs -0.09 dB
M1 1 D1 M1 1 Spectrum	0ffset 7. SWT	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 мнг w 1 мнг	0H5 244	[1]			1.62 dBm 8.00 µs -0.09 dB
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dB SGL TRG: VID 10 dBm 40 dB SGL TRG: VID 10 dBm 10 dBm 10 dBm M1 0 -10 dBm M1 -20 dBm	0ffset 7. SWT	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 мнг w 1 мнг	0H5 244	[1]			1.62 dBm 8.00 µs -0.09 dB
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dB SGL TRG: VID 40 dB SGL TRG: VID IPk Cirw 20 dBm 10 dBm 10 dBm M1 0 -10 dBm M1 0 -20 dBm TRG -20.02 -30 dBm	0ffset 7. SWT	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 MHz w 1 MHz	0H5 244	[1]	an ball short hit has		1.62 d8m 8.00 µs -0.09 d8 2.88000 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dB SGL TRG: VID 40 dB SGL TRG: VID IN dBm 10 dBm 10 dBm 10 dBm M1 0 -10 dBm M1 0 -20 dBm TRG -20.02 -30 dBm	0ffset 7. SWT	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 MHz w 1 MHz	0H5 244	[1]	ufter(råself)littfis		1.62 dBm 8.00 µs -0.09 dB
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dB SGL TRG: VID 40 dB SGL TRG: VID IPk Cirw 20 dBm 10 dBm 10 dBm MI 0 -10 dBm MI -20.02 -30 dBm -30 dBm -30 dBm	0ffset 7. SWT	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 MHz w 1 MHz	0H5 244	[1]	milederskeitigterster		1.62 d8m 8.00 µs -0.09 d8 2.88000 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dB SGL TRG: VID 40 dB SGL TRG: VID INPK Cirw 20 dBm 10 dBm 10 dBm MI 0 -10 dBm MI 0 -20 dBm TRG -20,02 -30 dBm	0ffset 7. SWT	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 MHz w 1 MHz	0H5 244	[1]	Hartherthorthortho		1.62 d8m 8.00 µs -0.09 d8 2.88000 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dB SGL TRG: VID 10 dBm 40 dB SGL TRG: VID 11 RC Irw 20 dBm 10 dBm M1 0 -10 dBm M1 0 -20 dBm TRG -20,02 -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	0ffset 7. SWT	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 MHz w 1 MHz	DH5 244	[1]	nifeqtisktijjtoffe		1.62 dBm 8.00 ps -0.09 dB 2.88000 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 10 dBm 10 dBm M1 0 dBm M1 0 dBm M1 -10 dBm M1 -20 dBm TRG -20,02 -30 dBm -50 dBm -60 dBm -60 dBm	0ffset 7. SWT	35 ms Dwell N\ 78 dB = RB	1.27 dB /NT 1-D w 1 MHz w 1 MHz	DH5 244	[1]			1.62 d8m 8.00 µs -0.09 d8 2.88000 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 9 1Pk Clrw 20 dBm M1 10 dBm M1 -10 dBm M1 -20 dBm TRG -20 dBm -20,02 -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Type Ref	0 dBm	35 ms	1.27 dB /NT 1-D W 1 MHz W 1 MHz	0H5 244	[1] 1] pp.cetl[pdtdsdq.g			1.62 dBm 8.00 ps -0.09 dB 2.88000 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm M1 0 10 dBm M1 0 -10 dBm M1 0 -20 dBm TRG -20.02 -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 2.441 GHz Marker	0 dBm	35 ms	1.27 dB /NT 1-D W 1 MHz W 1 MHz	0H5 244	[1] 1] pp.cetl[pdtdsdq.g		ին, թեյիում, ներան ին, թեյիում, որ հեյ ին, որ հեյ ու հեյ ին, որ հեյ ու հեյ հեյ ու հեյ հեյ ու հեյ հեյ ու հեյ ու հեյ ու հեյ հեյ ու հեյ հեյ ո	1.62 dBm 8.00 ps -0.09 dB 2.88000 ms


ACCREDITED


Certificate #4298.01


ACCREDITED

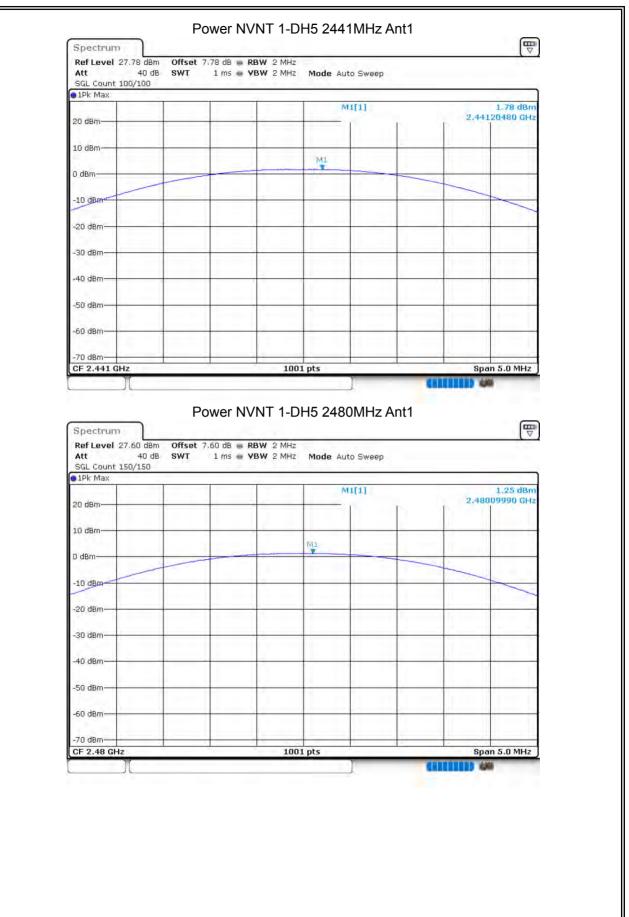
ACCREDITED


8.2 MAXIMUM CONDUCTED OUTPUT POWER

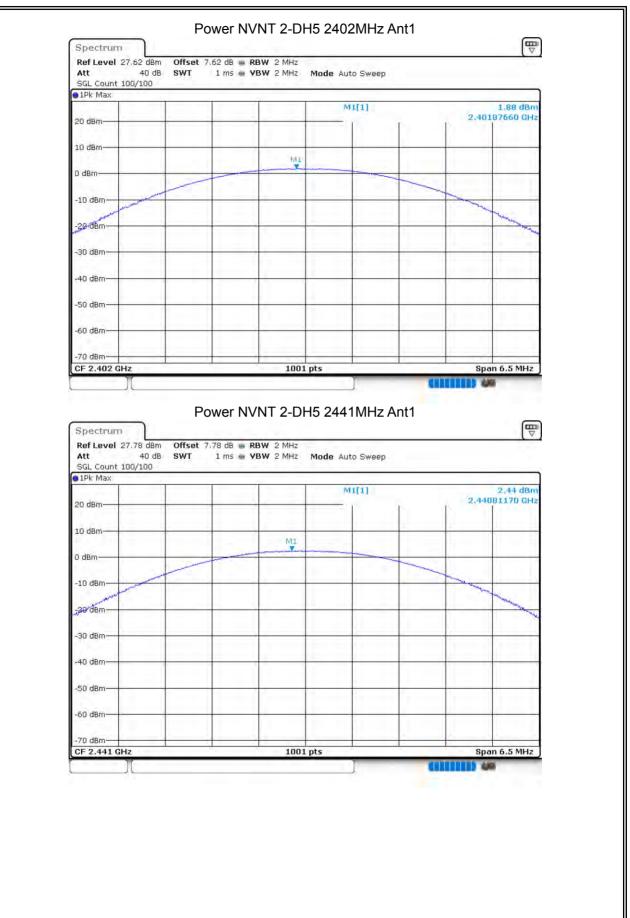
 		• · · • · · • · · - · ·				
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	2.663	30	Pass
NVNT	1-DH5	2441	Ant 1	1.78	30	Pass
NVNT	1-DH5	2480	Ant 1	1.254	30	Pass
NVNT	2-DH5	2402	Ant 1	1.884	21	Pass
NVNT	2-DH5	2441	Ant 1	2.442	21	Pass
NVNT	2-DH5	2480	Ant 1	2.145	21	Pass
NVNT	3-DH5	2402	Ant 1	2.023	21	Pass
NVNT	3-DH5	2441	Ant 1	2.898	21	Pass
NVNT	3-DH5	2480	Ant 1	2.618	21	Pass

ACCREDITED

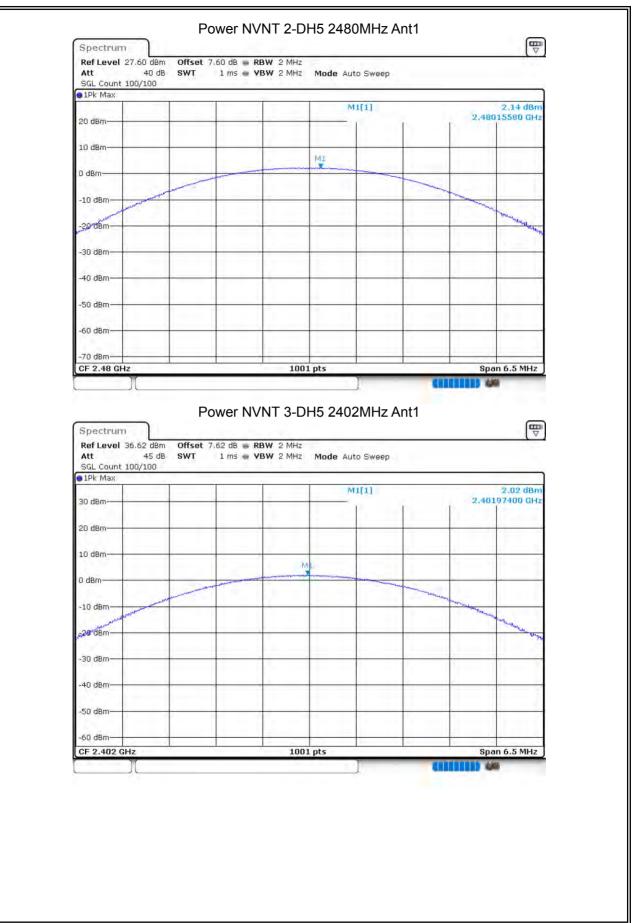
Certificate #4298.01

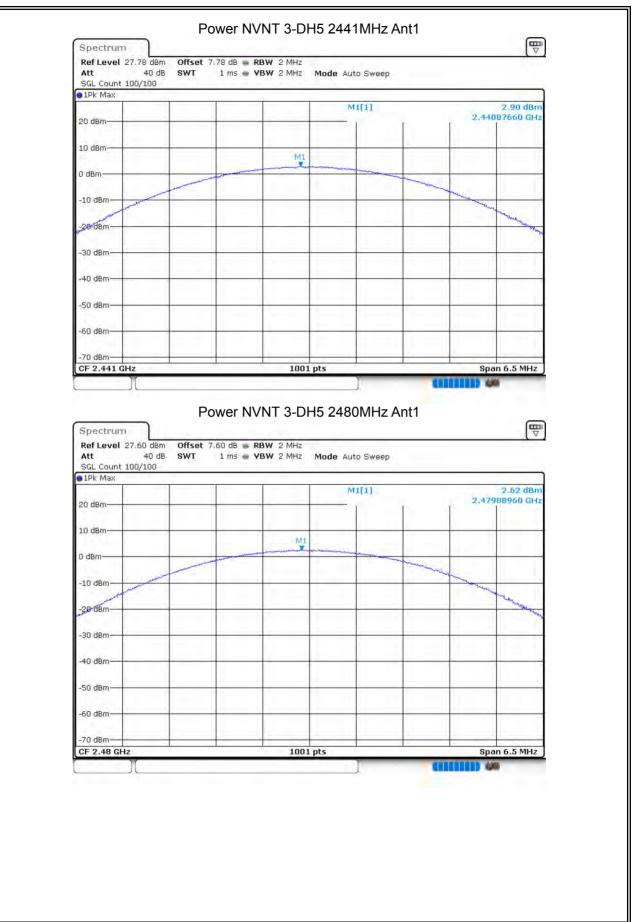

Power NVNT 1-DH5 2402MHz Ant1

ACCREDITED


Certificate #4298.01

ACCREDITED

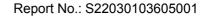

Certificate #4298.01


ACCREDITED

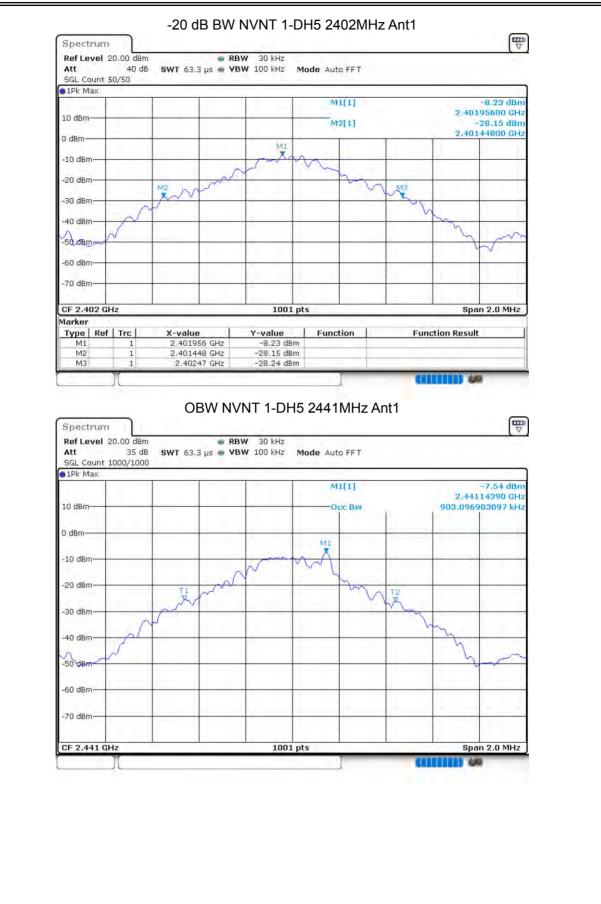
Certificate #4298.01

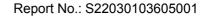
Report No.: S22030103605001

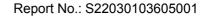
ACCREDITED

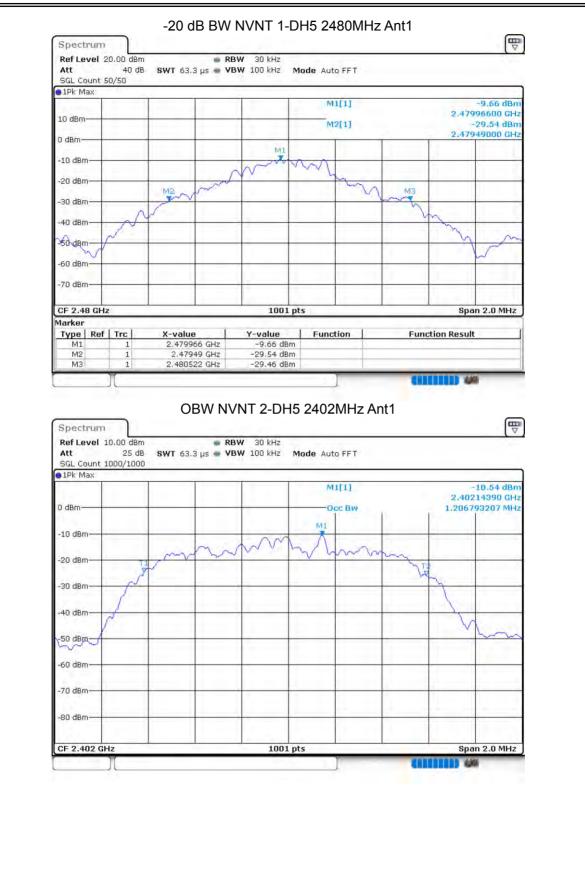

NTEK 北测[®]

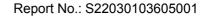
8.3 OCCUPIED CHANNEL BANDWIDTH

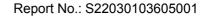

0.0			BANDINDIN				
	Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-20 dB Bandwidth (MHz)	Verdict
	NVNT	1-DH5	2402	Ant 1	0.9111	1.022	Pass
	NVNT	1-DH5	2441	Ant 1	0.9031	0.954	Pass
	NVNT	1-DH5	2480	Ant 1	0.8791	1.032	Pass
	NVNT	2-DH5	2402	Ant 1	1.2068	1.358	Pass
	NVNT	2-DH5	2441	Ant 1	1.2068	1.356	Pass
	NVNT	2-DH5	2480	Ant 1	1.2048	1.354	Pass
	NVNT	3-DH5	2402	Ant 1	1.2008	1.304	Pass
	NVNT	3-DH5	2441	Ant 1	1.2028	1.304	Pass
	NVNT	3-DH5	2480	Ant 1	1.1988	1.306	Pass

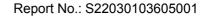


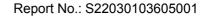


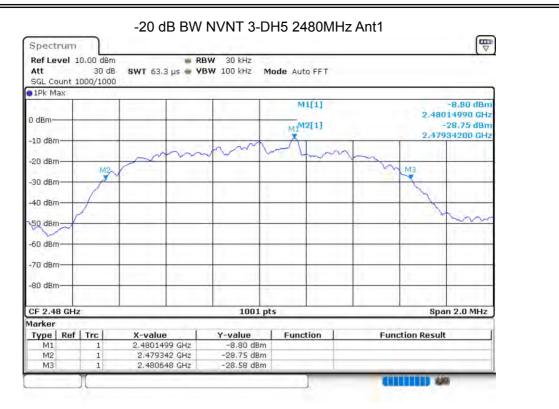




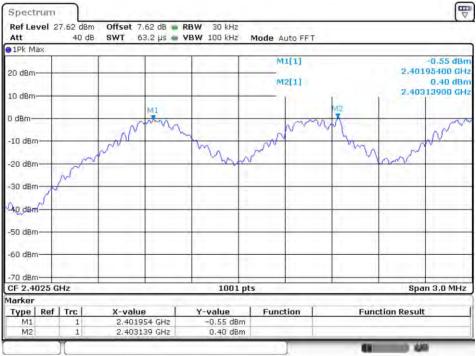






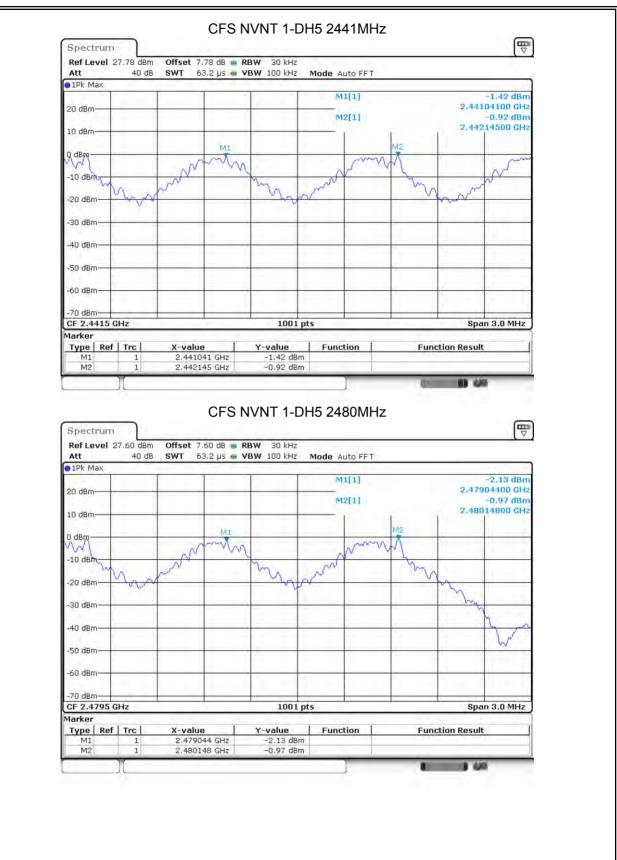


8.4 CARRIER FREQUENCIES SEPARATION


0.4 CARRIER	IKEQUEN	CIES SEPARATION				
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.954	2403.139	1.185	1.022	Pass
NVNT	1-DH5	2441.041	2442.145	1.104	0.954	Pass
NVNT	1-DH5	2479.044	2480.148	1.104	1.032	Pass
NVNT	2-DH5	2402.143	2403.145	1.002	0.905	Pass
NVNT	2-DH5	2440.954	2442.148	1.194	0.904	Pass
NVNT	2-DH5	2478.996	2479.998	1.002	0.903	Pass
NVNT	3-DH5	2402.14	2403.142	1.002	0.869	Pass
NVNT	3-DH5	2440.993	2442.148	1.155	0.869	Pass
NVNT	3-DH5	2479.149	2480.148	0.999	0.871	Pass

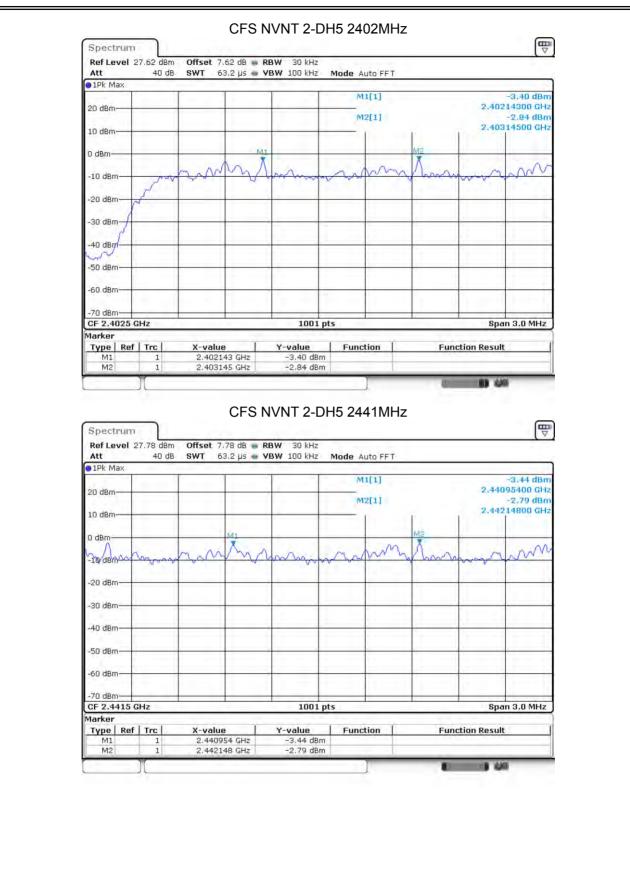
ACCREDITED

Certificate #4298.01


ilac-MR

CFS NVNT 1-DH5 2402MHz

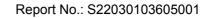
Report No.: S22030103605001

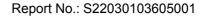

ACCREDITED

ß

NTEK 北测

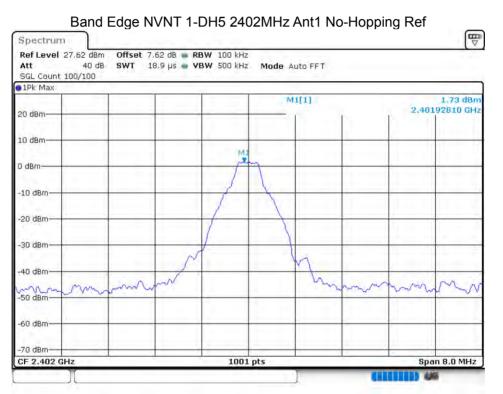
ilac-MR/



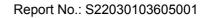


ndition	Mode	PING CHANNEL Hopping Number	Limit				
VNT	1-DH5	79	15	Pass			
		Honn		NVNT 1-DI	HE 2402N	117	
	Spectr		ing No.		15 240210	11 12	(
	Ref Lev	el 27.62 dBm Offset 7.62	dB 🖷 RBW	100 kHz	10.00 m		
	Att SGL Cou	40 dB SWT 1 (ant 20000/20000	ms 🖷 VBW	300 kHz Mode	Auto Sweep		
	●1Pk Ma	×	T.		M1[1]		1.87 di
	20 dBm-						2.4018370 G 5.88 dt
	10 dBm-				M2[1]	1	2.4802435/6
	M1 0 健良确有自	100000000000000000000000000000000000000	ANANAN	ARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	<u>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>	АЛАЛАЛАЛА	AAAAAAAAAAAAAA
	-10 4600	ANNA WAAYAYAYAYAY	VVVVVVV	UNINNINNI	WWWWWWW	WWWWW	<u>IVIVVVVVV</u>
	-20 dBm-						
	-30 dBm-						
	40 dBm-						
	-50 dBm-						
	-60 dBm-					-	
	-70 dBm-						
	Start 2.4	4 GHz		1001 pts			Stop 2.4835 GH
	Marker						
		Ref Trc X-value		-value Fu	nction	Functio	n Result
		Trc X-value 1 2.401837 1 2.4802435	GHz		inction	Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm	inction	Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm	Inction	Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	
	Type M1	1 2.401837	GHz	-value Fu 1.87 dBm		Functio	

NTEK 北测[®]

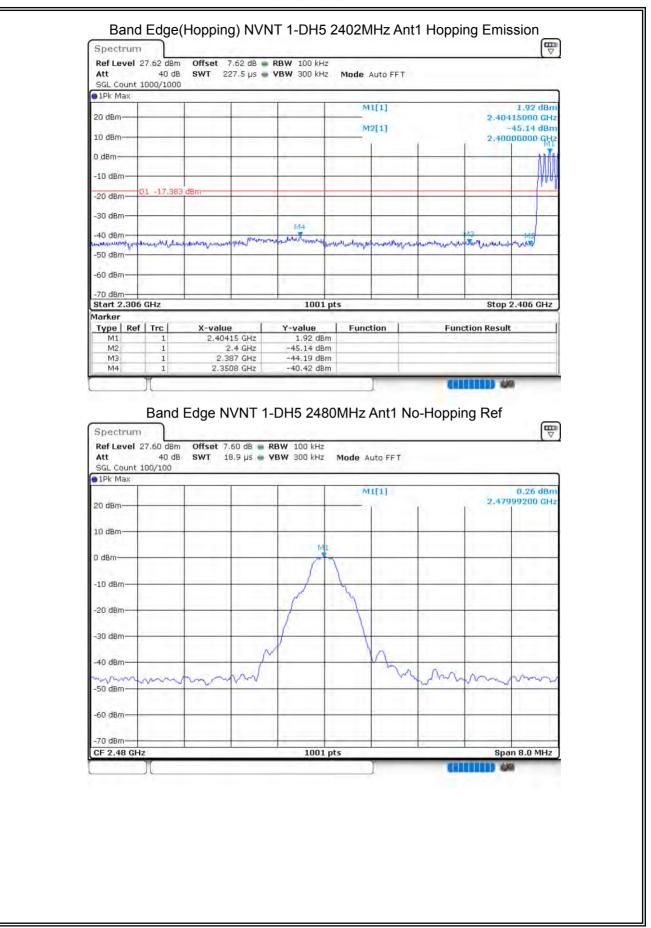

8.6 BAND EDGE

GE						
Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
1-DH5	2402	Ant 1	No-Hopping	-43.13	-20	Pass
1-DH5	2402	Ant 1	Hopping	-43.04	-20	Pass
1-DH5	2480	Ant 1	No-Hopping	-42.78	-20	Pass
1-DH5	2480	Ant 1	Hopping	-43.06	-20	Pass
2-DH5	2402	Ant 1	No-Hopping	-39.97	-20	Pass
2-DH5	2402	Ant 1	Hopping	-40.44	-20	Pass
2-DH5	2480	Ant 1	No-Hopping	-42.21	-20	Pass
2-DH5	2480	Ant 1	Hopping	-42.57	-20	Pass
3-DH5	2402	Ant 1	No-Hopping	-40.03	-20	Pass
3-DH5	2402	Ant 1	Hopping	-40.35	-20	Pass
3-DH5	2480	Ant 1	No-Hopping	-43.2	-20	Pass
3-DH5	2480	Ant 1	Hopping	-42.55	-20	Pass
	Mode 1-DH5 1-DH5 1-DH5 2-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5 3-DH5	Mode Frequency (MHz) 1-DH5 2402 1-DH5 2402 1-DH5 2480 1-DH5 2480 2-DH5 2402 2-DH5 2402 2-DH5 2402 2-DH5 2402 2-DH5 2480 2-DH5 2480 3-DH5 2402 3-DH5 2402 3-DH5 2480	Mode Frequency (MHz) Antenna 1-DH5 2402 Ant 1 1-DH5 2402 Ant 1 1-DH5 2402 Ant 1 1-DH5 2480 Ant 1 1-DH5 2480 Ant 1 1-DH5 2480 Ant 1 2-DH5 2402 Ant 1 2-DH5 2402 Ant 1 2-DH5 2480 Ant 1 2-DH5 2480 Ant 1 3-DH5 2402 Ant 1	ModeFrequency (MHz)AntennaHopping Mode1-DH52402Ant 1No-Hopping1-DH52402Ant 1Hopping1-DH52402Ant 1Hopping1-DH52480Ant 1No-Hopping1-DH52480Ant 1Hopping2-DH52402Ant 1Hopping2-DH52402Ant 1Hopping2-DH52402Ant 1Hopping2-DH52480Ant 1Hopping2-DH52480Ant 1No-Hopping3-DH52402Ant 1Hopping3-DH52402Ant 1Hopping3-DH52480Ant 1No-Hopping3-DH52480Ant 1No-Hopping	Mode Frequency (MHz) Antenna Hopping Mode Max Value (dBc) 1-DH5 2402 Ant 1 No-Hopping -43.13 1-DH5 2402 Ant 1 Hopping -43.04 1-DH5 2402 Ant 1 Hopping -43.04 1-DH5 2480 Ant 1 No-Hopping -43.04 1-DH5 2480 Ant 1 Hopping -43.04 1-DH5 2480 Ant 1 Hopping -43.06 2-DH5 2402 Ant 1 Hopping -39.97 2-DH5 2402 Ant 1 No-Hopping -39.97 2-DH5 2402 Ant 1 Hopping -40.44 2-DH5 2480 Ant 1 No-Hopping -42.21 2-DH5 2480 Ant 1 Hopping -42.57 3-DH5 2402 Ant 1 Hopping -40.03 3-DH5 2402 Ant 1 Hopping -40.35 3-DH5 2480 Ant 1 No-Hopping <td>Mode Frequency (MHz) Antenna Hopping Mode Max Value (dBc) Limit (dBc) 1-DH5 2402 Ant 1 No-Hopping -43.13 -20 1-DH5 2402 Ant 1 Hopping -43.04 -20 1-DH5 2402 Ant 1 Hopping -43.04 -20 1-DH5 2480 Ant 1 No-Hopping -42.78 -20 1-DH5 2480 Ant 1 Hopping -43.06 -20 2-DH5 2402 Ant 1 Hopping -43.06 -20 2-DH5 2402 Ant 1 Hopping -43.06 -20 2-DH5 2402 Ant 1 No-Hopping -39.97 -20 2-DH5 2402 Ant 1 Hopping -40.44 -20 2-DH5 2480 Ant 1 No-Hopping -42.57 -20 2-DH5 2480 Ant 1 Hopping -40.03 -20 3-DH5 2402 Ant 1 Hopping <td-< td=""></td-<></td>	Mode Frequency (MHz) Antenna Hopping Mode Max Value (dBc) Limit (dBc) 1-DH5 2402 Ant 1 No-Hopping -43.13 -20 1-DH5 2402 Ant 1 Hopping -43.04 -20 1-DH5 2402 Ant 1 Hopping -43.04 -20 1-DH5 2480 Ant 1 No-Hopping -42.78 -20 1-DH5 2480 Ant 1 Hopping -43.06 -20 2-DH5 2402 Ant 1 Hopping -43.06 -20 2-DH5 2402 Ant 1 Hopping -43.06 -20 2-DH5 2402 Ant 1 No-Hopping -39.97 -20 2-DH5 2402 Ant 1 Hopping -40.44 -20 2-DH5 2480 Ant 1 No-Hopping -42.57 -20 2-DH5 2480 Ant 1 Hopping -40.03 -20 3-DH5 2402 Ant 1 Hopping <td-< td=""></td-<>

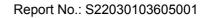

ACCREDITED

Certificate #4298.01

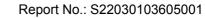
ilac-MR/

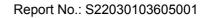


SGL Count 1Pk Max								_	
20 dBm					M	1[1]		2.4	2.43 dBn 0215000 GHz
10 dBm			1	1	M	2[1]		2,4	-45.07 dBm 00000000,GHz
0 dBm								1	T T
-10 dBm					1	1 1	1	1	
-20 dBm-	D1 -18.271	dBm:	<u> </u>						
-30 dBm							1		
-40 dBm			M4		1.11	1			- All
	whenhamanna	at he wan public train	adapt in some	notwornically	which program	Approximation the	Viewbridgepende	Man Man Man	in termination
				·		1	· · · ·		1
-60 dBm		·	-	· · · · · ·			· · · · · ·	1	
-70 dBm- Start 2.30	6 GHz			1001	pts			Sto	p 2.406 GHz
Marker Type Re	flTrel	X-value	1	Y-value	Funct	ion	Fun	ction Resi	olt
M1	1	2.4021	5 GHz	2.43 dBr	n	.10/1	Full	CUUII KESI	uit
M2 M3	1		4 GHz 9 GHz	-45.07 dBr -45.93 dBr					
M4	1	2.344	5 GHz	-41.41 dBr	n				770
Spectrur Ref Level Att SGL Count	and Edg 27.62 dBm 40 dB 8000/8000	Offset 7.6	52 dB 🐞 RI	3W 100 kHz 3W 300 kHz	13.21				
Spectrur Ref Level Att	n 27.62 dBm 40 dB	Offset 7.6	52 dB 🐞 RI	3W 100 kHz	Mode A				
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm-	n 27.62 dBm 40 dB	Offset 7.6	52 dB 🐞 RI	3W 100 kHz	Mode A	uto FFT	MI		2,62 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	n 27.62 dBm 40 dB	Offset 7.6	52 dB 🐞 RI	3W 100 kHz	Mode A	uto FFT	Ml		2,62 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	n 27.62 dBm 40 dB	Offset 7.6	52 dB 🐞 RI	3W 100 kHz	Mode A	uto FFT	Ml		2,62 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	n 27.62 dBm 40 dB	Offset 7.6	52 dB 🐞 RI	3W 100 kHz	Mode A	uto FFT	Ml		2,62 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 27.62 dBm 40 dB	Offset 7.6	52 dB 🐞 RI	3W 100 kHz	Mode A	uto FFT	Ml		2,62 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	n 27.62 dBm 40 dB	Offset 7.6	52 dB 🐞 RI	3W 100 kHz	Mode A	uto FFT	Ml		2,62 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -60 dBm-	n 27.62 dBm 40 dB	Offset 7.6	52 dB 🐞 RI	3W 100 kHz	Mode A	uto FFT	Ml		2,62 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	n 27.62 dBm 40 dB 8000/8000	Offset 7.6	52 dB 🐞 RI	3W 100 kHz		uto FFT	Ml	2.4	2,62 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-	n 27.62 dBm 40 dB 8000/8000	Offset 7.6	52 dB 🐞 RI	3W 100 kHz		uto FFT	Ml	2.4	2.62 dBn 0414190 GH:

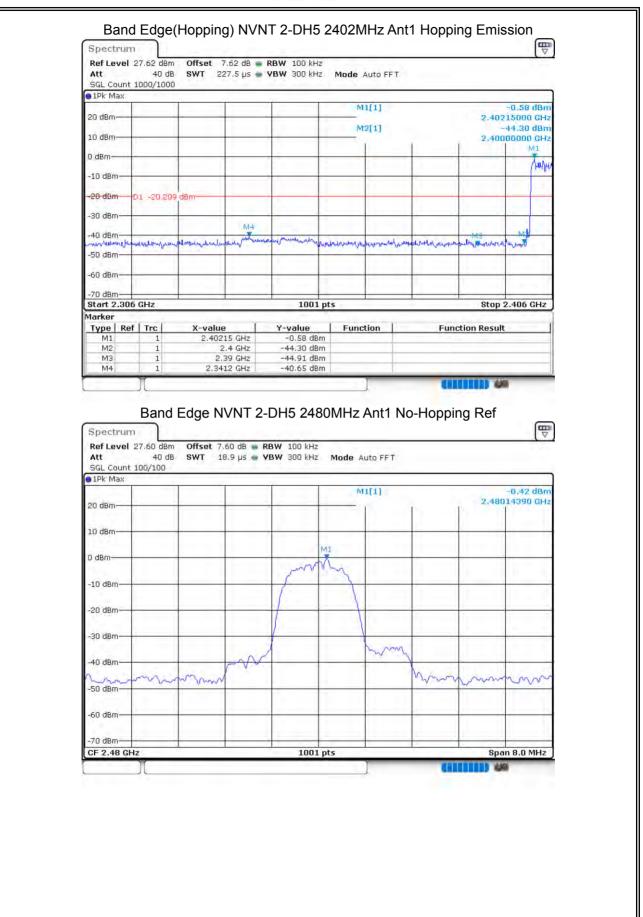


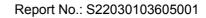
ACCREDITED

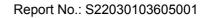



• 1Pk Max 20 dBm						1[1] 2[1]		2.4	1.00 dBm 3015000 GHz -45.86 dBm
10 dBm			-	1		2[1]	6	2.4	8350000 GHz
0 dBm			-	-				-	
-10 dBm			-						
-20 cBm-D.	1 -19,740	dBm		1			1		
-30 aBm			_			-	<u></u>		11
-40 dBm M4		MB				1			4. 14
Why when we	1. Marthanen	equerily women	not work for N	remail washing	mandered	appropriation	muumuhalallada	der with the	manumulu
-50 dBm	•					1.1			1
-60 dBm				1				1	
-70 dBm Start 2.476 (GHz			1001	ots			Sto	p 2.576 GHz
Marker	C					1-0			
Type Ref M1	Trc 1	X-valu 2.480	e 115 GHz	Y-value 1.00 dBr	Func n	tion	Fun	ction Resu	alt
M2 M3	1	2.48	35 GHz 2.5 GHz	-45.86 dBr -44.05 dBr	n				
M4	1		61 GHz	-42.53 dBr					
Spectrum		Offcot 7	60 dB 💼						E
Ref Level 2 Att SGL Count 8	40 dB			RBW 100 kHz VBW 300 kHz	Mode A	uto FFT	_		
Att	40 dB					uto FFT			0,89 dBm
Att SGL Count 8	40 dB						1	2.4	0,89 dBm 7915280 GHz
Att SGL Count 81 1Pk Max	40 dB							2,4	
Att SGL Count 80 1Pk Max 20 dBm	40 dB		8.9 µś 🖷					2.4	
Att SGL Count BI 1Pk Max 20 dBm-	40 dB		8.9 µś 🖷	VBW 300 kHz				2.4	
Att SGL Count 80 1Pk Max 20 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2.4	
Att SGL Count 81 1Pk Max 20 dBm 10 dBm -0 dBm -10 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2.4	
Att SGL Count 81 1Pk Max 20 dBm 10 dBm -0 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2.4	
Att SGL Count 81 1Pk Max 20 dBm 10 dBm -0 dBm -10 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2,4	
Att SGL Count BI 1Pk Max 20 dBm 10 dBm -0 dBm -10 dBm -20 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2.4	
Att SGL Count BI 1Pk Max 20 dBm 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2.4	
Att SGL Count BI 1Pk Max 20 dBm 10 dBm -D dBm -10 dBm -20 dBm -30 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2.4	
Att SGL Count BI 1Pk Max 20 dBm 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2,4	
Att SGL Count Bi 1Pk Max 20 dBm 10 dBm -D dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz				2.4	
Att SGL Count Br 1Pk Max 20 dBm 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz					7915280 GHz
Att SGL Count BI 1Pk Max 20 dBm 10 dBm -0ndBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	40 dB		8.9 µś 🖷	VBW 300 kHz					

1Pk Max	1000/1000	1			M	1[1]			-0.09 dBm
20 dBm					M	2[1]			i95000 GHz -43,91 dBm
10 dBm 11						1	1	2.483	150000 GHz
DidBm			-		- 11			1	1
ALO dBm-	D1 -19,111	dBm							
-20 dBm	-01 -15,111	Mani							
-40 dBm2	M4	NIS		1			1.000	1.77	1
-50 dBm-	and produced services	phine phine the	mental mentant	n'n minterenny	Apachanet United	university for	ucuand france	out the state of the state of the	a for an and
-60 dBm					-				
-70 dBm						1	1		1
Start 2.47 Marker	6 GHz	-		1001	pts	1	-	Stop	2.576 GHz
Type Re M1	f Trc 1	X-value 2.476	95 GHz	Y-value -0.09 dBr	Func n	tion	Fund	ction Result	
M2 M3	1	2	35 GHz 2.5 GHz	-43.91 dBr -45.29 dBr	n				
M4	1	2.49	07 GHz	-42.17 dBr	n			-	
	Л					1			
Spectrum Ref Level Att SGL Count 1Pk Max	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	DH5 240	13.2				(The second seco
Ref Level Att SGL Count	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A			ng Ref	-0,43 dBm 14390 GHz
Ref Level Att SGL Count 1Pk Max	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm
Ref Level Att SGL Count 0 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	62 dB • R 8.9 µs • V	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm
Ref Level Att SGL Count 0 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n 27.62 dBm 40 dB	Offset 7	62 dB • R 8.9 µs • V	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm 214390 GHz
Ref Level Att SGL Count 0 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 27.62 dBm 40 dB	Offset 7	62 dB • R 8.9 µs • V	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm 214390 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 27.62 dBm 40 dB	Offset 7	62 dB • R 8.9 µs • V	BW 100 kHz BW 300 kHz	Mode A	uto FFT		ng Ref	-0,43 dBm 214390 GHz
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 100/100	Offset 7	62 dB • R 8.9 µs • V	BW 100 kHz BW 300 kHz		uto FFT		2.402	-0.43 dBm 214390 GHz
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 100/100	Offset 7	62 dB • R 8.9 µs • V			uto FFT		2.402	-0.43 dBm 214390 GHz
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 100/100	Offset 7	62 dB • R 8.9 µs • V			uto FFT		2.402	-0.43 dBm 214390 GHz

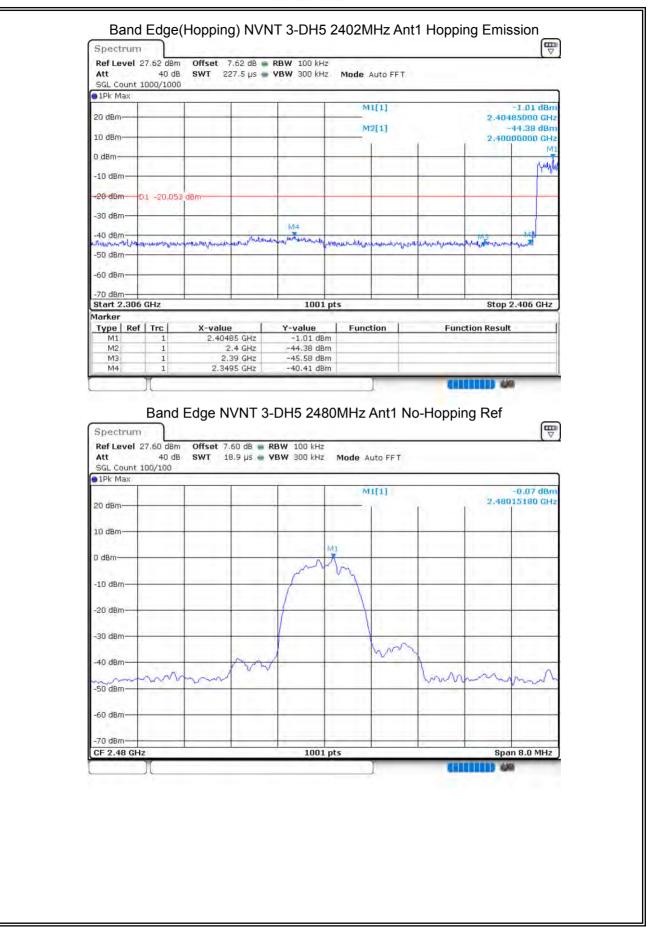


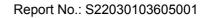

SGL Count : 9 1Pk Max	100/100								-
00 d0m					M	1[1]		0.40	-0.33 dBm
20 dBm					M	2[1]			215000 GH2 -45.61 dBn
10 dBm						1		2.40	000000 GHz M1
0 dBm				-					1 J
-10 dBm	-		-	-			-	-	1
-20 dBm	01 -20,434	dBm		-			(
-30 dBm									
-40 dBm	-			M4	4	1.1.2.1	1		J.M.
multermuth	almonthing	multilitysaming	should Markening	environteren	humphony h	-hamployhee	assimulate	Alt Way Low	upoperate he
-50 dBm	-			·					
-60 dBm				1				1	
-70 dBm Start 2.306	GH7		-	1001	nts	-	_	Ston	2.406 GHz
Marker								1.	
Type Ref M1	1 Trc	X-value 2.402	2 15 GHz	Y-value -0.33 dBr	Func n	tion	Fun	ction Resu	lt
M2	1	.2	2.4 GHz	-45.61 dBr	m				
M3 M4	1		39 GHz 04 GHz	-46.36 dBr -40.41 dBr					
	17					7	100		MR.
Ba Spectrum Ref Level : Att SGL Count f 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	VNT 2-D	Mode A	uto FFT	nt1 Ho	pping F	
Spectrum Ref Level 3 Att SGL Count 1	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A		nt1 Ho		
Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho		-0.21 dBn
Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho		-0.21 dBn
Spectrum Ref Level : Att SGL Count I Plk Max 20 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level : Att SGL Count I PPK Max 20 dBm- 10 dBm- 0 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level 3 Att SGL Count 1 PK Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level : Att SGL Count I 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	27.62 dBm 40 dB	Offset 7	62 dB R 8.9 µs • V	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7	62 dB R 8.9 µs • V	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level : Att SGL Count I 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	27.62 dBm 40 dB	Offset 7	62 dB R 8.9 µs • V	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level : Att SGL Count I PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB	Offset 7	62 dB R 8.9 µs • V	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2,40	-0.21 dBn
Spectrum Ref Level : Att SGL Count I 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7	62 dB R 8.9 µs • V		Mode A	uto FFT	.nt1 Ho	2.40 M1	-0.21 dBn 498100 GH2
Spectrum Ref Level : Att SGL Count I 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 3000/8000	Offset 7	62 dB R 8.9 µs • V	BW 100 kHz	Mode A	uto FFT	.nt1 Ho	2.40 M1	-0.21 dBn
Spectrum Ref Level : Att SGL Count I 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7	62 dB R 8.9 µs • V		Mode A	uto FFT	.nt1 Ho	2.40 M1	-0.21 dBm 498100 GHz
Spectrum Ref Level : Att SGL Count I 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7	62 dB R 8.9 µs • V		Mode A	uto FFT	.nt1 Ho	2.40 M1	-0.21 dBm 498100 GHz



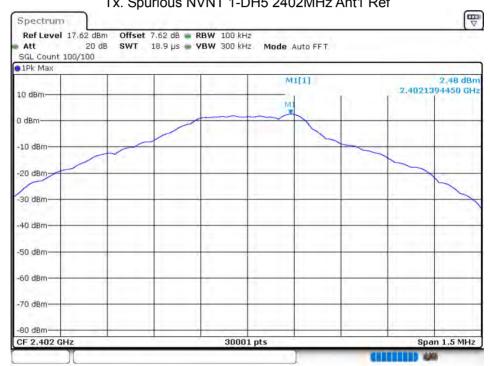
• 1Pk Max 20 dBm				1	M	1[1]		0.47	-0.10 dBm
10 dBm				1	M	2[1]			995000 GHz -44.98 dBm 350000 GHz
							1	2.70	
-10 cBm			1			1	1	l cett	
	1 -20,416	dBm					J	1	
-30 dBm						· · · · ·		11	
		14 MO-		-		1		1	
.50 dBm	uning the states of the states	Uninternal al	builty purposes	molyphythese	of the interview was a set of the	h-Jahlianua iana	alteration	andrew and both	and an all and man
-60 dBm									
-70 dBm						1			1.
Start 2.476 Marker	GHz			1001	pts	1		Stop	2.576 GHz
Type Ref M1	Trc 1	X-value 2.479	95 GHz	Y-value -0.10 dBr	Funct	tion	Fund	ction Resu	ilt
M2 M3	1	2.48	35 GHz 2.5 GHz	-44.98 dBi -44.71 dBi	n	_			
M4	1		69 GHz	-42.63 dBr		1	_		
Spectrum Ref Level 2 Att SGL Count 8	7.60 dBm 40 dB	Offset 7.	.60 dB 🐞 I	VNT 2-D RBW 100 kHz VBW 300 kHz	13.2		Ant'i Hoj	pping F	Ret (The second
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max	7.60 dBm 40 dB	Offset 7.	.60 dB 🐞 I	RBW 100 kHz	Mode A				
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7.	.60 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7.	.60 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm- 10 dBm- -10 dBm- -10 dBm-	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT			-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	7.60 dBm 40 dB 000/8000	Offset 7.	60 dB 🖕 i	RBW 100 kHz	Mode A	uto FFT		2,47	-0,18 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	7.60 dBm 40 dB 000/8000	Offset 7.	60 dB 🖕 i		Mode A	uto FFT		2,47	-0,18 dBm ////////////////////////////////////
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	7.60 dBm 40 dB 000/8000	Offset 7.	60 dB 🖕 i		Mode A	uto FFT		2,47	-0,18 dBm ////////////////////////////////////
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	7.60 dBm 40 dB 000/8000	Offset 7.	60 dB 🖕 i		Mode A	uto FFT		2,47	-0,18 dBm ////////////////////////////////////

Ref Level 27. Att SGL Count 100 1Pk Max	40 dB 0/1000	SWI 2	27,5 µs 🖷	VBW 300 KH	z z Mode /	Auto FFT.			
20 dBm				12	M	1[1]		2.470	-0.14 dBm 905000 GHz
10 dBm					M	2[1]			-43.78 dBm
								2.46	350800 GHz
-10 dBm							1	11 1	
	-20,180 0	in						1	
-20 dBm D1	-20,100 0	10m		1	1				
-40 dBm2		V14_12				1		1	1.00
	named bearing	Mathematic	weether	never an interview by	of a provide state of the state	a much may the	howmakinganisativ	spentice proved them	Manual armine
-60 dBm				· · · · · · · · · · · · · · · · · · ·				1 1	1
-70 dBm							1	1	1
Start 2.476 GH	lz		1	1001	pts	·		Stop	2.576 GHz
Marker Type Ref 1		X-valu		Y-value	Func	tion	Fun	ction Result	t I
M1 M2	1	2.48	905 GHz 335 GHz	-0.14 dB -43.78 dB	m				
M3 M4	1		2.5 GHz 978 GHz	-44.44 dB -42.75 dB					
	_								6
Spectrum Ref Level 27. Att SGL Count 300 PIPk Max	62 dBm 40 dB	Offset 7	.62 dB 👜 I	-DH5 24(RBW 100 kHz VBW 300 kHz	Mode A	uto FFT	o-Hoppin	ng Ref	(E)
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max 20 dBm-	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A		o-Hoppin		-0.27 dBm 213590 GHz
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A	uto FFT			-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max 20 dBm-	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A	uto FFT			-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max 20 dBm- 10 dBm-	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A	uto FFT			-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A	uto FFT			-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A	uto FFT			-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A	uto FFT			-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A				-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A				-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A				-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A				-0.27 dBm
Spectrum Ref Level 27. Att SGL Count 300 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A			2.402	-0.27 dBm 213590 GHz
Spectrum Ref Level 27. Att SGL Count 300 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A			2.402	-0.27 dBm 213590 GHz
Spectrum Ref Level 27. Att SGL Count 300 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A			2,402	-0.27 dBm 213590 GHz
Spectrum Ref Level 27. Att SGL Count 300 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	62 dBm 40 dB	Offset 7	.62 dB 👜 I	RBW 100 kHz	Mode A			2,402	-0.27 dBm 213590 GHz




SGL Count	100/100								
20 dBm-					M	1[1]		2.40	-2.29 dBm 195000 GHz
					M	2[1]			-44.39 dBm
10 dBm								2.40	000000 GH2 M1
0 dBm			1					1	Ň
-10 dBm							-	-	
-20 dBm	01 -20,267	dBm			_		-		
-30 dBm					_		-		
-40 dBm			M4	AMERICA	-			M3	mp
-50 dBm	malactually	unithumphu	with and all	iden MALLing	related to prove the	udur instruments	mourbullaphade	and the second states	rear when
-60 dBm				·					
-70 dBm				· · · · ·		1		1	
Start 2.306	GHz			1001	pts			Stop	2.406 GHz
Marker Type Ref	Tre	X-value	. 1	Y-value	Func	tion	Fue	tion Resu	It
M1	1	2.4019	95 GHz	-2.29 dBr	n		,		
M2 M3	1	2.3	39 GHz	-44.39 dBr -46.95 dBr	n				
M4	1	2,34;	22 GHz	-40.30 dBr	n		_		-
Spectrum Ref Level 3 Att	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	VNT 3-D	13.2		.nt1 Ho	pping F	Ref (₩
Spectrum Ref Level	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT	nt1 Ho	pping F	₹
Spectrum Ref Level 3 Att SGL Count	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A		nt1 Ho		
Spectrum Ref Level 2 Att SGL Count 2 1Pk Max 20 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT	.nt1 Ho		-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 4 • 1Pk Max	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT			-0.05 dBm
Spectrum Ref Level 2 Att SGL Count 2 1Pk Max 20 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT	.nt1 Ho		-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 4 1Pk Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm- 10 dBm- 0 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 4 1Pk Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 4 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 I	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 4 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 4 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	27.62 dBm 40 dB	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	27.62 dBm 40 dB	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2,40	-0.05 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2.40	-0.05 dBm +14190 GHz
Spectrum Ref Level 3 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2.40	-0.05 dBm +14190 GHz
Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2.40	-0.05 dBm +14190 GHz
Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2.40	-0.05 dBm +14190 GHz
Spectrum Ref Level 3 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB • 1	RBW 100 kHz	Mode A	uto FFT		2.40	-0.05 dBm +14190 GHz

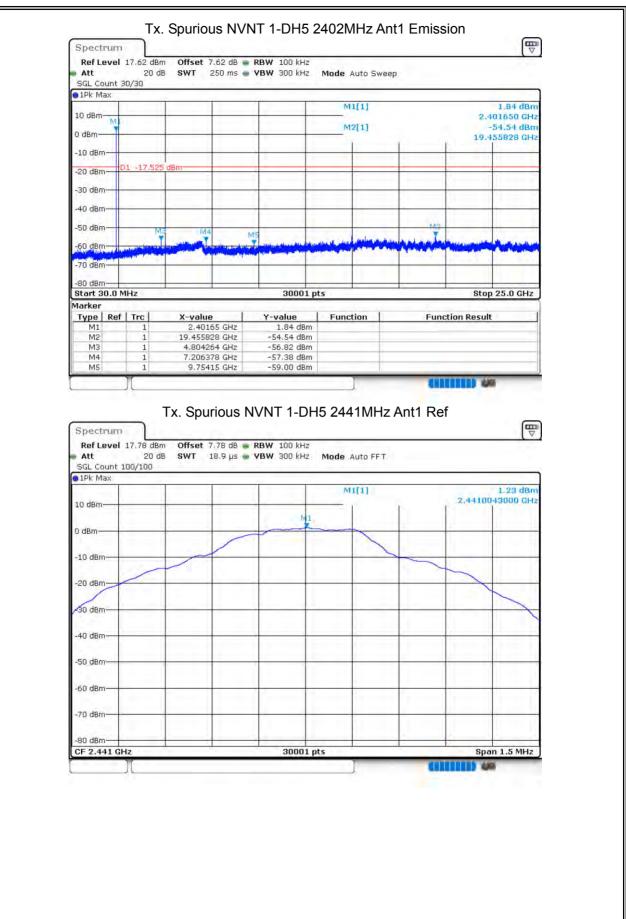
• 1Pk Max 20 dBm					_	1[1]			-1.53 dBm 995000 GHz
10 dBm	_			-	IVI	2[1]	2		-45.01 dBm 350000 GHz
0 dBm				-	_			-	1
-10 cBm			-					-	-
-20 a8m (01 -20,068	dBm					_		
-30 d8m						· · · · · ·			
-46 dBm	M4		1	1000		1	1	1	1.1.1.1.1.
-50 dBm	manufactured	monorartiter	university which the	an many many many	Webs - manual and an	manahalu	Manufathan	platerationsh	denyspermented
								1	1 = -
-60 dBm				1				1	·
-70 dBm Start 2.476	GHz	1		1001	pts			Stop	2.576 GHz
Marker Type Ref	Tre	X-value	1	Y-value	Fund	tion		nction Resu	lt I
M1	1	2.479	95 GHz	-1.53 dBr	n	aun	Fu	nacion kesu	
M2 M3	1	2	35 GHz	-45.01 dBr -45.89 dBr	n				
M4	1	2.493	23 GHz	-43.28 dBr	n				
Spectrum Ref Level 2 Att SGL Count 8	27.60 dBm 40 dB	Offset 7.	60 dB 🐞	IVNT 3-D RBW 100 kHz YBW 300 kHz	13.2		Ant1 Ho	opping F	Ref
Spectrum Ref Level 2 Att	27.60 dBm 40 dB	Offset 7.	60 dB 🐞	RBW 100 kHz	Mode A		Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8	27.60 dBm 40 dB	Offset 7.	60 dB 🐞	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max	27.60 dBm 40 dB	Offset 7.	60 dB 🐞	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm- 10 dBm-	27.60 dBm 40 dB	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm- 10 dBm-	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count & 1Pk Max 20 dBm 10 dBm gydBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 He		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	Ant1 He	2,48	0.20 dBm
Spectrum Ref Level 2 Att SGL Count 8 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz	Mode A	uto FFT	Ant1 He	2,48	0,20 dBm 014390 GHz
Spectrum Ref Level 2 Att SGL Count 8 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 3000/8000	Offset 7.	60 dB 🐞	RBW 100 kHz	Mode A	uto FFT	Ant1 He	2,48	0,20 dBm 014390 GHz

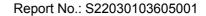


						E		
Ref Level 3	27.60 dBm	Offset 7.60 dB 🖷	RBW 100 kHz					
Att	40 dB	SWT 227.5 µs 🎃	VBW 300 kHz	Mode Auto FFT				
SGL Count	1000/1000		11					
1Pk Max								
			1	M1[1]		-1.78 dBm		
20 dBm			-		2.	47695000 GHz		
				M2[1]	-43.93 dBm			
10 dBm			7		2.	48350000 GHz		
dBm-								
Min		1						
10 cBm								
						11 1 1 1 1 1		
20 cBm	01 -19,802	2 dBm 	-		1			
-30 dBm	-							
- Jun I	14		1					
40 dBm2	LALALAN -A.P.	white muchalter bush	and shares Mander when	town between in most in the town it.	discretion in the back of the	with which we have		
-50 dBm	A State of the sta			dar farmer A.	and a second	V. a and		
So abin						11		
-60 dBm								
1.00								
-70 dBm								
Start 2.476	GHz		1001 pts	5	St	op 2.576 GHz		
1arker	100			the start	1.00			
Type Ref	Trc	X-value	Y-value	Function	Function Re	sult		
	1	2.47695 GHz	-1.78 dBm					
M1	N	2.4835 GHz	-43.93 dBm					
M2	1	and the second	the second se					
	1	2.5 GHz 2.4872 GHz	-44.67 dBm -42.35 dBm					

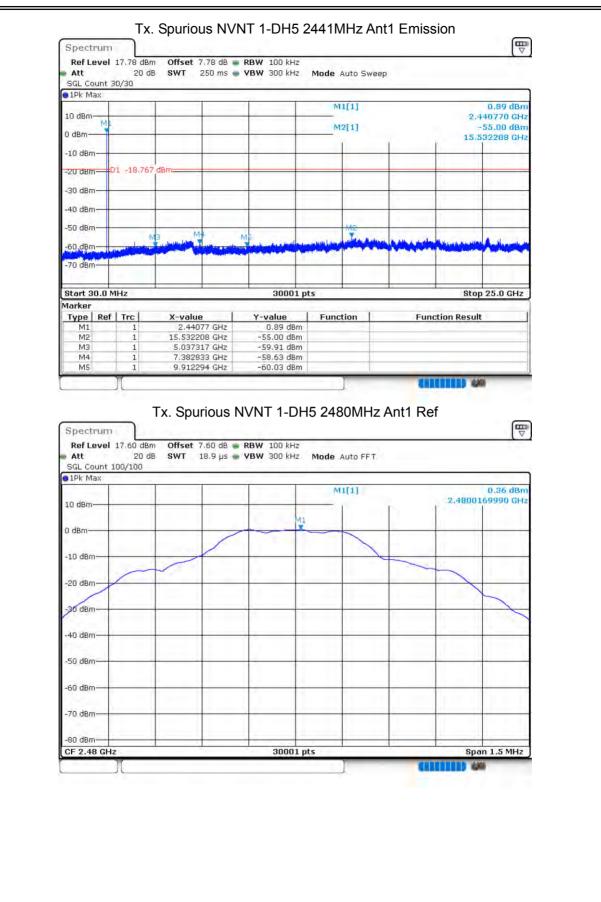
8.7 CONDUCTED RF SPURIOUS EMISSION

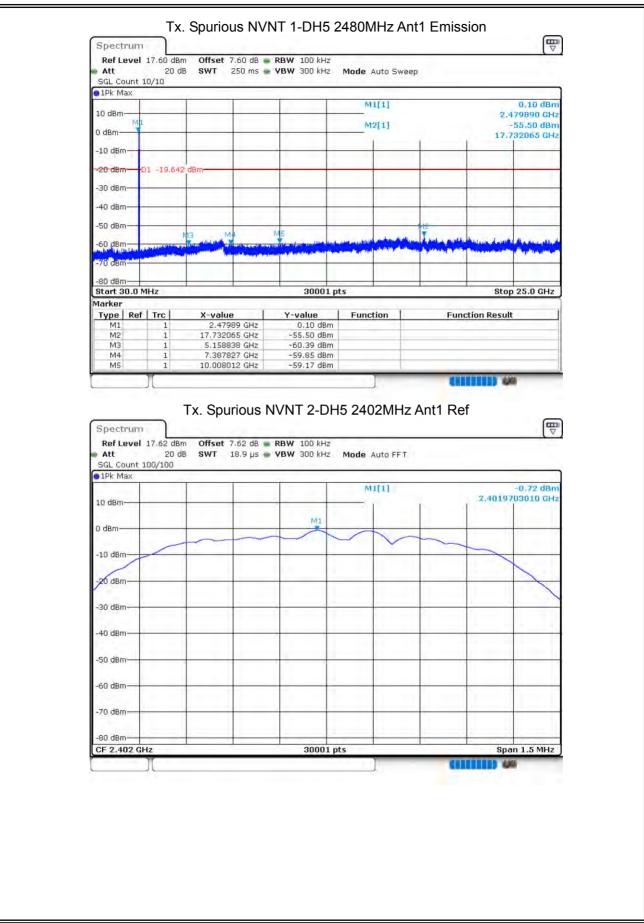
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-57.02	-20	Pass
NVNT	1-DH5	2441	Ant 1	-56.22	-20	Pass
NVNT	1-DH5	2480	Ant 1	-55.86	-20	Pass
NVNT	2-DH5	2402	Ant 1	-54.95	-20	Pass
NVNT	2-DH5	2441	Ant 1	-54.92	-20	Pass
NVNT	2-DH5	2480	Ant 1	-54.96	-20	Pass
NVNT	3-DH5	2402	Ant 1	-54.76	-20	Pass
NVNT	3-DH5	2441	Ant 1	-55.4	-20	Pass
NVNT	3-DH5	2480	Ant 1	-55.37	-20	Pass

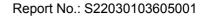


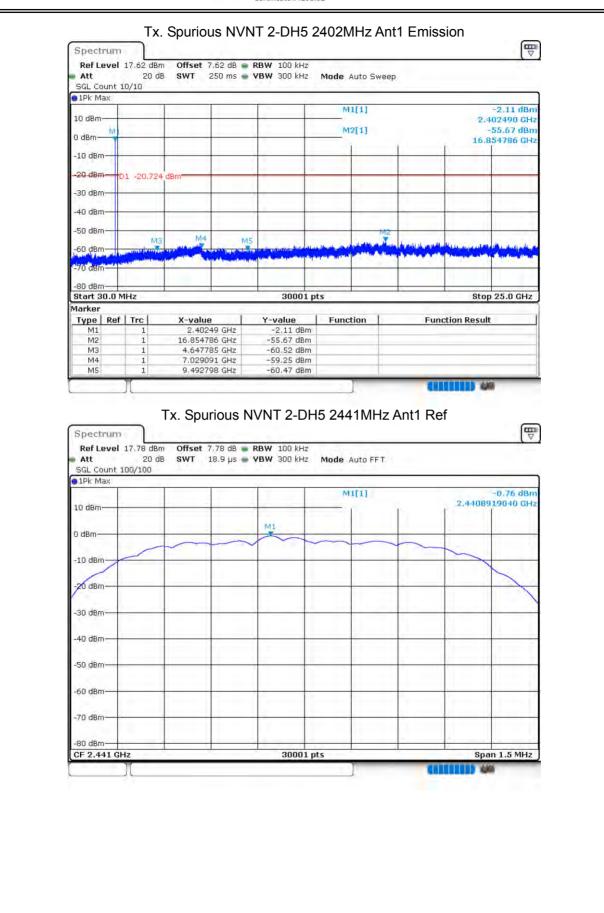

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

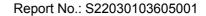
TED

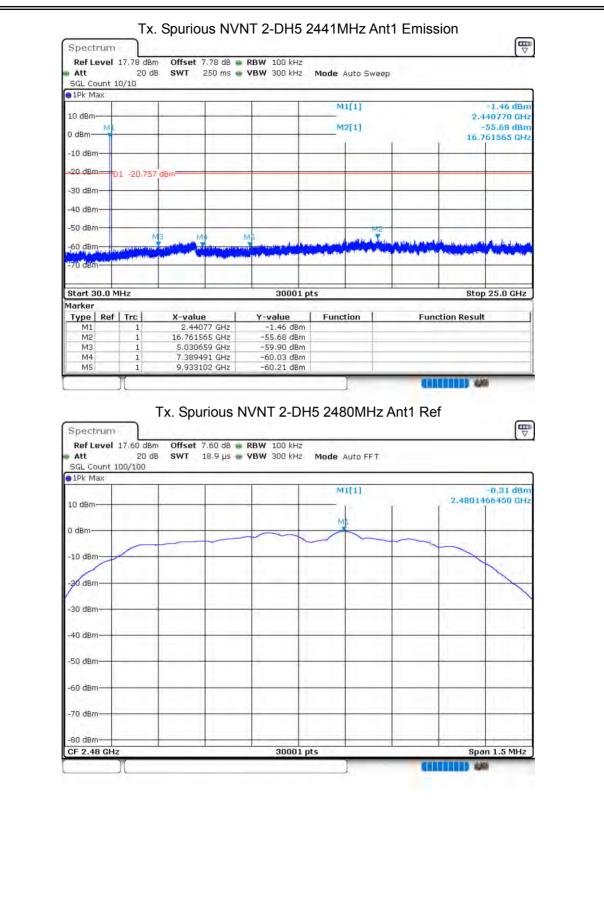


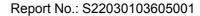


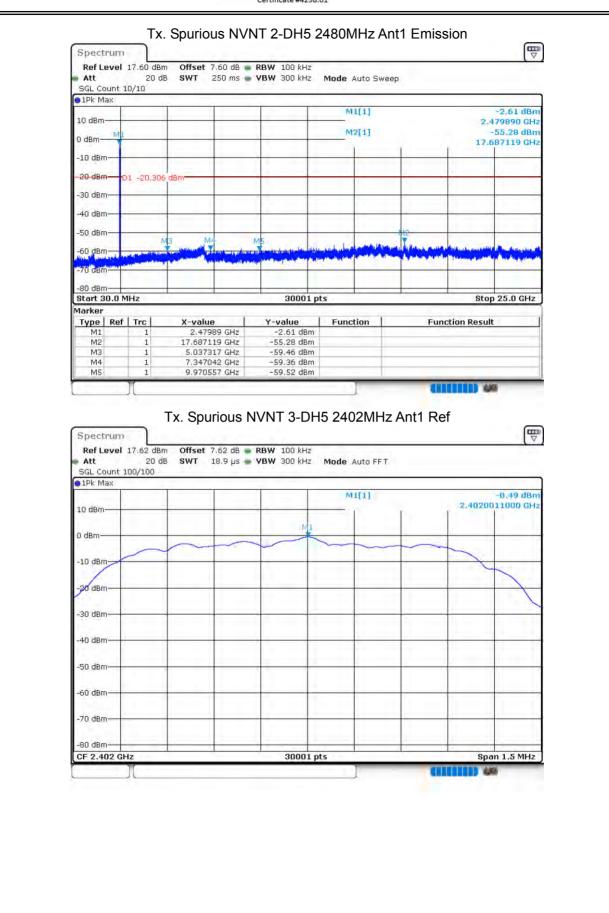


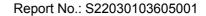


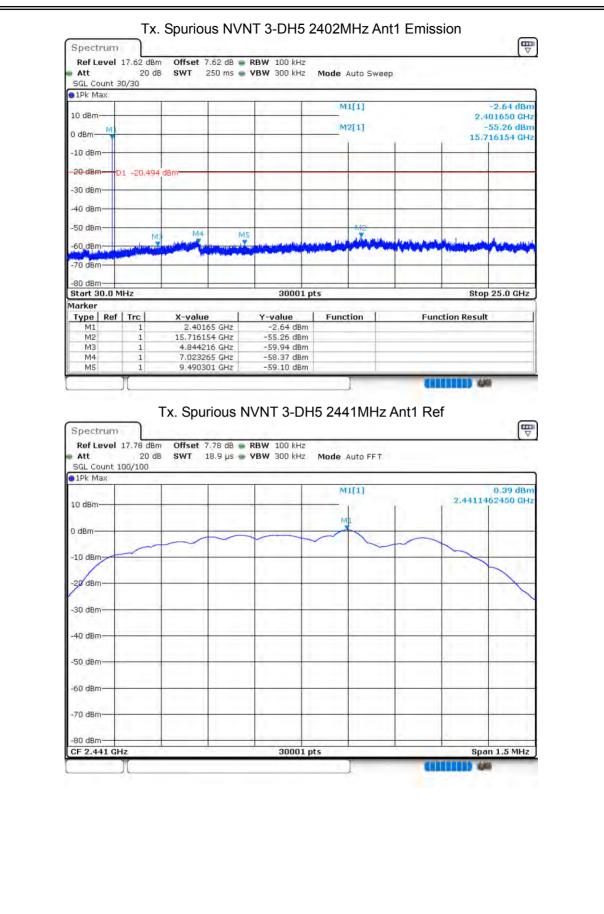

®

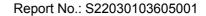


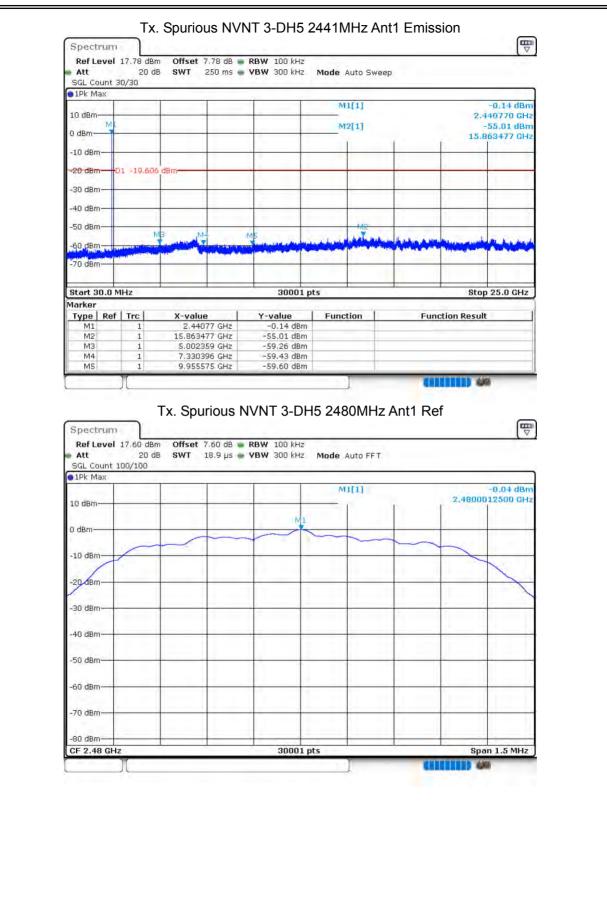


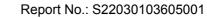












Att SGL Co	unt 3	17.60 d 20 0/30		RBW 100 kHz VBW 300 kHz	Mode A	uto Sweep	0		
1Pk M	эх		1	1					
10 dBm	1 dBm				M1[1]				-1,10 dBm
M				M2[1]			-55.41 dBn		
) dBm			-	(interior)			15.657058 GH		
-	_				1		1		1
10 dBn	'								
20 dBn	- D	1 -20.0	43 dBm				-		
							-		1
30 dBn	r—								
40 dBn									
to gan									
-50 dBn					-	142			1
			NI3 M4	MS	a car	and the sharehow	A did a state	LINE ALL ROOM	A
60 dBn	Contro del					Arthon Arthony	A second second	and the state of t	The second such
70 dBn					_				
									1.000
-SO dBr		25						1 50	
Start 3	0.0 M	Hz		30001 pt	ts			Stop	o 25.0 GHz
1arker									
Type	Ref		X-value	Y-value	Functi	on	Func	tion Result	t
M1 M2		1	2.47989 GHz 15.657058 GHz	-1.10 dBm -55.41 dBm		_			
M3	-	1	5.157173 GHz	-59.44 dBm					
M4	-	1	7.336222 GHz	-58.94 dBm					
		1	10.052126 GHz	-58.84 dBm		1			

END OF REPORT