FCC TEST REPORT

FCC ID: 2A7F8-TTC6050

Report No. : SSP25010061-1E

Applicant: Shenzhen TwoTrees Technology Co., Ltd.

Product Name : CNC ENGRAVER

Model Name: TTC6050

Test Standard: FCC Part 15.247

Date of Issue : 2025-01-22

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 42

Test Report Basic Information

Applicant..... Shenzhen TwoTrees Technology Co., Ltd. Room 402, Building 11, No. 9 Qilin Road, Nankeng Community Bantian Address of Applicant..... Street, Longgang District, Shenzhen, China Manufacturer..... Shenzhen TwoTrees Technology Co., Ltd. Room 402, Building 11, No. 9 Qilin Road, Nankeng Community Bantian Address of Manufacturer.....: Street, Longgang District, Shenzhen, China Product Name..... **CNC ENGRAVER** Brand Name....: **Twotrees** Main Model..... TTC6050 TTC6050 Pro, TTC6050 Ultra, TTC6050-800W, TTC6050-1000W, Series Models..... TT6050-550W, TTC6050S, TTC6050Plus, TTC6050MAX FCC Part 15 Subpart C KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.4-2014 **Test Standard**...... ANSI C63.10-2013 Test Result..... PASS **APPROVE** Authorized Signatory..... (Lahm Peng)

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

Page 2 of 42 **FCC Test Report**

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	11
3.1 Standard and Limit	
3.2 Test Result	11
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	12
4.3 Test Data and Results	13
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	18
6. Band-edge Emissions(Radiated)	22
6.1 Standard and Limit	22
6.2 Test Procedure	
6.3 Test Data and Results	22
7. Maximum Conducted Output Power	24
7.1 Standard and Limit	24
7.2 Test Procedure	24
7.3 Test Data and Results	24
8. Occupied Bandwidth	29
8.1 Standard and Limit	29
8.2 Test Procedure	29
8.3 Test Data and Results	29
9. Maximum Power Spectral Density	33
9.1 Standard and Limit	33
9.2 Test Procedure	33
9.3 Test Data and Results	33
10. Band-edge Emission(Conducted)	36
10.1 Standard and Limit	36
10.2 Test Procedure	36
10.3 Test Data and Results	36
11. Conducted RF Spurious Emissions	40
11.1 Standard and Limit	40
11.2 Test Procedure	40
11.3 Test Data and Results	40

Report No: SSP25010061-1E

Revision	Issue Date	Description	Revised By
V1.0	2025-01-22	Initial Release	Lahm Peng

FCC Test Report Page 4 of 42

1. General Information

1.1 Product Information

Product Name:	CNC ENGRAVER
Trade Name:	Twotrees
Main Model:	TTC6050
Series Models:	TTC6050 Pro, TTC6050 Ultra, TTC6050-800W, TTC6050-1000W, TT6050-550W, TTC6050S, TTC6050Plus, TTC6050MAX
Rated Voltage:	AC 120V/60Hz
Power Adapter:	-
Battery:	-
Test Sample No:	SSP25010061-1
Hardware Version:	V1.0
Software Version:	V1.0

Report No: SSP25010061-1E

Note 1: The test data is gathered from a production sample, provided by the manufacturer.

Note 2: The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification	
Wireless Standard:	802.11b/g
Operating Frequency:	2412MHz ~ 2462MHz for 802.11b/g
RF Output Power:	12.31dBm
Number of Channel:	11/7
Channel Separation:	5MHz
Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Antenna Gain:	0dBi
Type of Antenna:	ROD Antenna
Type of Device:	☐ Portable Device ☐ Modular Device

FCC Test Report Page 5 of 42

1.2 Test Setup Information

List of Test Modes						
Test Mode	De	escription		Remark		
TM1	8	302.11b		2412MHz/2437MH	z/2462MHz	
TM2	8	302.11g		2412MHz/2437MH	z/2462MHz	
List and Details of Auxiliary Cable						
Descrip	otion	Length (cm)		Shielded/Unshielded	With/Without Ferrite	
-		-		-	-	
-		-		-	-	
List and Details of Auxiliary Equipment						
Descrip	otion	Manufacturer		Model	Serial Number	
-		-		-	-	
-		-		-	-	

Report No: SSP25010061-1E

List of Chann	iels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2412	05	2432	09	2452	13	
02	2417	06	2437	10	2457	14	
03	2422	07	2442	11	2462	15	
04	2427	08	2447	12		16	

FCC Test Report Page 6 of 42

1.3 Compliance Standards

Compliance Standards	
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,
	Intentional Radiators
All measurements contained in this	report were conducted with all above standards
According to standards for test	methodology
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,
rcc rait 13 Subpart C	Intentional Radiators
KDB 558074 D01 15.247 Meas	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION
Guidance v05r02	SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM
Guidance v03102	DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
	American National Standard for Methods of Measurement of Radio-Noise Emissions
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40
	GHz.
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed
ANSI C03.10-2013	Wireless Devices
Maintenance of compliance is the re	esponsibility of the manufacturer or applicant. Any modification of the product, which

Report No: SSP25010061-1E

Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which result is lowering the emission, should be checked to ensure compliance has been maintained.

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.		
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,		
	Guangming District, Shenzhen, Guangdong, China		
CNAS Laboratory No.:	L18863		
A2LA Certificate No.:	6893.01		
FCC Registration No:	583813		
ISED Registration No.:	CN0164		
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing			

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 42

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Conducted Emissions					
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A
		Radiated Emission	s		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A
		Conducted RF Testi	ng		
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A
Laptop	Lenovo	ThinkPad E15 Gen 3	SPPOZ22485	N/A	N/A

Report No: SSP25010061-1E

FCC Test Report Page 8 of 42

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
De diete d Projections	30MHz ∼ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

Report No: SSP25010061-1E

FCC Test Report Page 9 of 42

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed

Report No: SSP25010061-1E

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 10 of 42

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP25010061-1E

3.2 Test Result

This product has an ROD antenna, fulfill the requirement of this section.

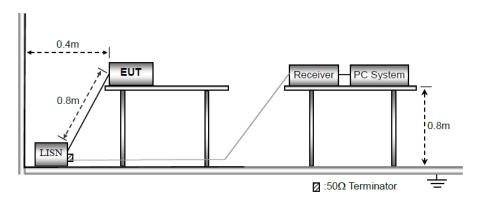
FCC Test Report Page 11 of 42

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	


Report No: SSP25010061-1E

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

- a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.
- b) The following is the setting of the receiver

Attenuation: 10dB

Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 12 of 42

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP25010061-1E

- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

All of the modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 13 of 42

Test P	Test Plots and Data of Conducted Emissions									
Tested	Mode:	ode: TM1								
Test Vo	oltage:	AC 1	C 120V/60Hz							
Test Po	ower Line:	Neut	eutral							
Remar	rk:									
90.0	dBuV									
80										
70										
60	1.3								FCC Part15 CE-Class B_	QP
50	The state of the s								FCC Part15 SE-Class F	1 AVe/\
*	лл I — I"	VAN AMOORE	νω	5		, Jun				W W peak
40	W. 1.		The said of the said	AND A STATE OF THE	h halada a da ana	WARM PARIS	May Mark	My WA	10 12 T	2 AVG
30	<u> </u>	1. JAN 1. JAN 1. JA	A .N.	Sabbana	Jenski Jenski	**************************************				AAG
20		At 14 1	The house		hay all hay be for	No. Hearthan	Lypholy April	Mychan	ALANA MI	
10										
-10										
0.1	50	0.5	00		(MHz)		5.0	00		30.000
	Frequency	Reading	Factor	Level	Limit	Margin				
No.	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Detector	P/F	Remark	
1 *	0.1500	53.11	9.25	62.36	66.00	-3.64	QP	Р		
2	0.1500	33.78	9.25	43.03	56.00	-12.97	AVG	Р		
3	0.1965	48.15	9.21	57.36	63.76	-6.40	QP	Р		
4	0.1965	28.75	9.21	37.96	53.76	-15.80	AVG	P		
5 6	1.0725 1.0725	32.35 14.46	9.43 9.43	41.78 23.89	56.00 46.00	-14.22 -22.11	QP AVG	Р		
7	3.5565	33.78	9.43	43.30	56.00	-12.70	QP	Р		
8	3.5565	16.63	9.52	26.15	46.00	-19.85	AVG	P		
9	11.8454	39.76	9.55	49.31	60.00	-10.69	QP	Р		
10	11.8454	23.16	9.55	32.71	50.00	-17.29	AVG	P		
11	18.2985	43.51	9.83	53.34	60.00	-6.66	QP	Р		
12	18.2985	21.96	9.83	31.79	50.00	-18.21	AVG	Р		
1										

FCC Test Report Page 14 of 42

Tested Mode: TM1 Test Voltage: AC 120V/60Hz Test Power Line: Live Remark:	
Test Power Line: Live	
Remark:	
90.0 dBuV	
80	
70	
60	FCC Part15 CE-Class B_QP
50	FCC Part15 CE-Class BXAVe
	peak
30	AVG
30	12
20 William of the state of the	
10	
-10	30.000
No. Frequency Reading Factor Level Limit Margin Detector P/F	Remark
1 * 0.1544 52.94 9.41 62.35 65.76 -3.41 QP P	
2 0.1544 33.91 9.41 43.32 55.76 -12.44 AVG P	
3 0.2040 47.21 9.40 56.61 63.45 -6.84 QP P	
4 0.2040 29.54 9.40 38.94 53.45 -14.51 AVG P 5 0.6134 33.36 9.57 42.93 56.00 -13.07 QP P	
6 0.6134 13.96 9.57 23.53 46.00 -22.47 AVG P	
7 1.9365 30.24 9.65 39.89 56.00 -16.11 QP P	
8 1.9365 13.07 9.65 22.72 46.00 -23.28 AVG P	
9 4.9560 30.79 9.76 40.55 56.00 -15.45 QP P	
10 4.9560 8.15 9.76 17.91 46.00 -28.09 AVG P	
11 18.2804 42.61 9.94 52.55 60.00 -7.45 QP P	
12 18.2804 18.22 9.94 28.16 50.00 -21.84 AVG P	

FCC Test Report Page 15 of 42

5. Radiated Emissions

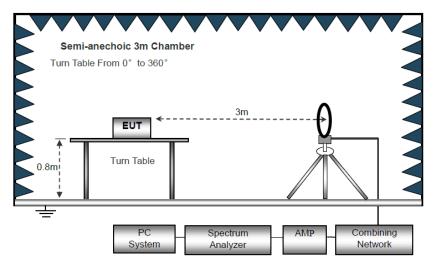
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

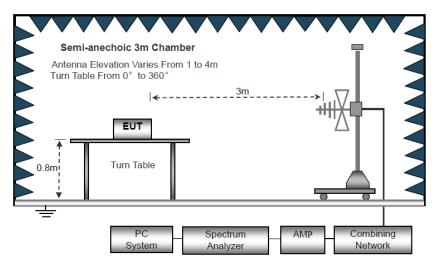
Report No: SSP25010061-1E

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

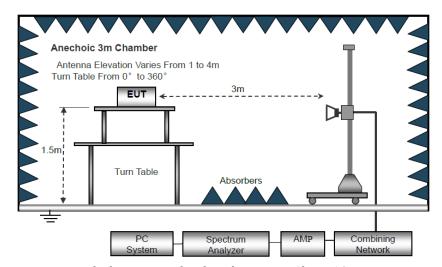
Frequency of Emission	Field Strength	Measurement Distance				
(MHz)	(micorvolts/meter)	(meters)				
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				
Note: The more stringent limit applies at transition frequencies.						


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 16 of 42

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 17 of 42

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP25010061-1E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

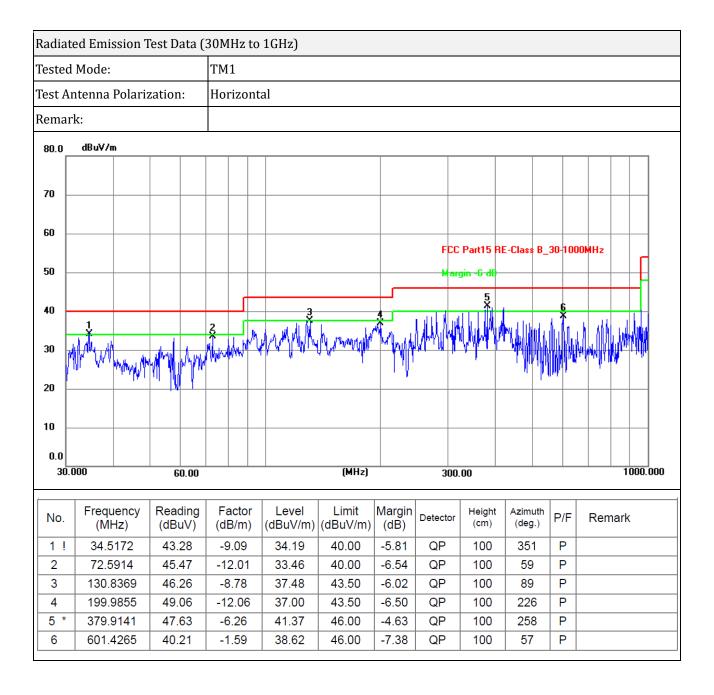
Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

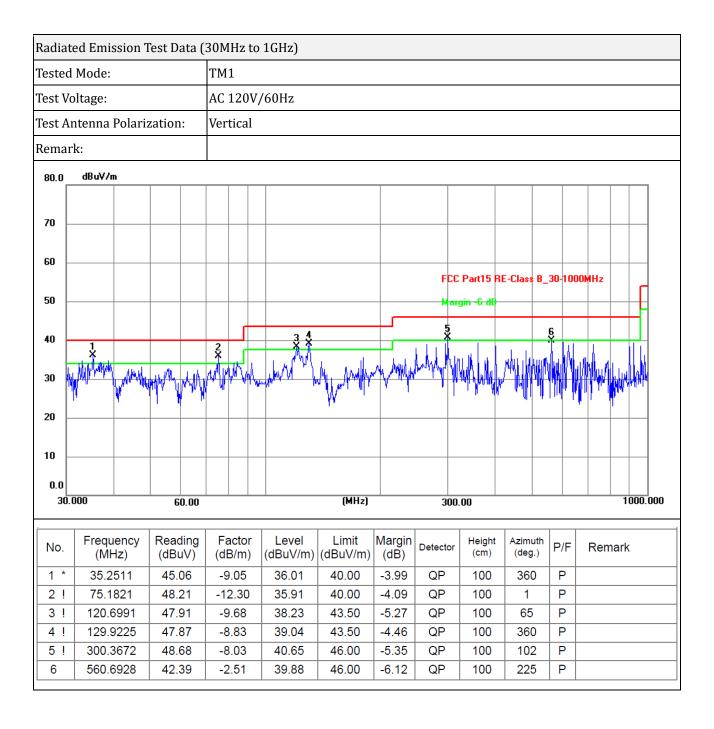
VBW ≥ RBW, Sweep = auto

Detector function = peak

Trace = max hold


- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results


All of the 802.11b, 802.11g and 802.11n modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case 802.11b_2412MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 18 of 42

FCC Test Report Page 19 of 42

FCC Test Report Page 20 of 42

	Reading	ta (Above 1GH Correct	Result	Limit	Margin	Polar	Detector		
Frequency					_				
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV		
Lowest Channel (802.11b_2412MHz)									
4824	78.93	-14.72	64.21	74	-9.79	Н	PK		
4824	59.17	-14.72	44.45	54	-9.55	Н	AV		
7236	62.42	-8.41	54.01	74	-19.99	Н	PK		
7236	49.48	-8.41	41.07	54	-12.93	Н	AV		
4824	78.85	-14.72	64.13	74	-9.87	V	PK		
4824	58.6	-14.72	43.88	54	-10.12	V	AV		
7236	64.51	-8.41	56.1	74	-17.9	V	PK		
7236	48.28	-8.41	39.87	54	-14.13	V	AV		
		Mid	dle Channel (8	02.11b_2437N	ИНz)				
4874	75.08	-14.64	60.44	74	-13.56	Н	PK		
4874	61.78	-14.64	47.14	54	-6.86	Н	AV		
7311	63.05	-8.28	54.77	74	-19.23	Н	PK		
7311	49.19	-8.28	40.91	54	-13.09	Н	AV		
4874	77.16	-14.64	62.52	74	-11.48	V	PK		
4874	60.66	-14.64	46.02	54	-7.98	V	AV		
7311	63.18	-8.28	54.9	74	-19.1	V	PK		
7311	48.68	-8.28	40.4	54	-13.6	V	AV		
<u>'</u>		High	est Channel (8	302.11b_24621	MHz)				
4924	79.5	-14.53	64.97	74	-9.03	Н	PK		
4924	59.77	-14.53	45.24	54	-8.76	Н	AV		
7386	65.1	-8.13	56.97	74	-17.03	Н	PK		
7386	50.27	-8.13	42.14	54	-11.86	Н	AV		
4924	73.77	-14.53	59.24	74	-14.76	V	PK		
4924	59.43	-14.53	44.9	54	-9.1	V	AV		
7386	64.61	-8.13	56.48	74	-17.52	V	РК		
7386	50.16	-8.13	42.03	54	-11.97	V	AV		

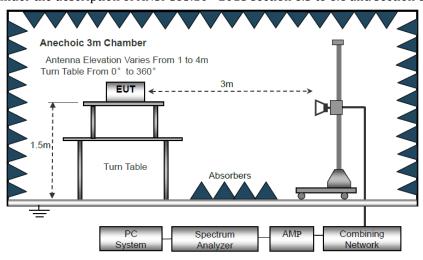
Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

FCC Test Report Page 21 of 42

6. Band-edge Emissions(Radiated)


6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP25010061-1E

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

FCC Test Report Page 22 of 42

Test Mode	Frequency	Limit	Result	
rest Mode	MHz	dBuV/dBc		
Lavvast	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
TT: 1 .	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Emi	ission Test Dat	ta (Band edge	emissions)							
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector			
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV			
	Lowest Channel (802.11b_2412MHz)									
2310	68.38	-21.34	47.04	74	-26.96	Н	PK			
2310	52.56	-21.34	31.22	54	-22.78	Н	AV			
2390	66.29	-20.96	45.33	74	-28.67	Н	PK			
2390	49.82	-20.96	28.86	54	-25.14	Н	AV			
2400	70.49	-20.91	49.58	74	-24.42	Н	PK			
2400	54.39	-20.91	33.48	54	-20.52	Н	AV			
2310	68.31	-21.34	46.97	74	-27.03	V	PK			
2310	52.79	-21.34	31.45	54	-22.55	V	AV			
2390	69.42	-20.96	48.46	74	-25.54	V	PK			
2390	50.18	-20.96	29.22	54	-24.78	V	AV			
2400	72.06	-20.91	51.15	74	-22.85	V	PK			
2400	53.56	-20.91	32.65	54	-21.35	V	AV			
		High	est Channel (8	302.11b_2462N	MHz)					
2483.50	72.19	-20.51	51.68	74	-22.32	Н	PK			
2483.50	55.13	-20.51	34.62	54	-19.38	Н	AV			
2500	65.7	-20.43	45.27	74	-28.73	Н	PK			
2500	51.9	-20.43	31.47	54	-22.53	Н	AV			
2483.50	71.09	-20.51	50.58	74	-23.42	V	PK			
2483.50	53.3	-20.51	32.79	54	-21.21	V	AV			
2500	66.02	-20.43	45.59	74	-28.41	V	PK			
2500	50.79	-20.43	30.36	54	-23.64	V	AV			

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 23 of 42

7. Maximum Conducted Output Power

7.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

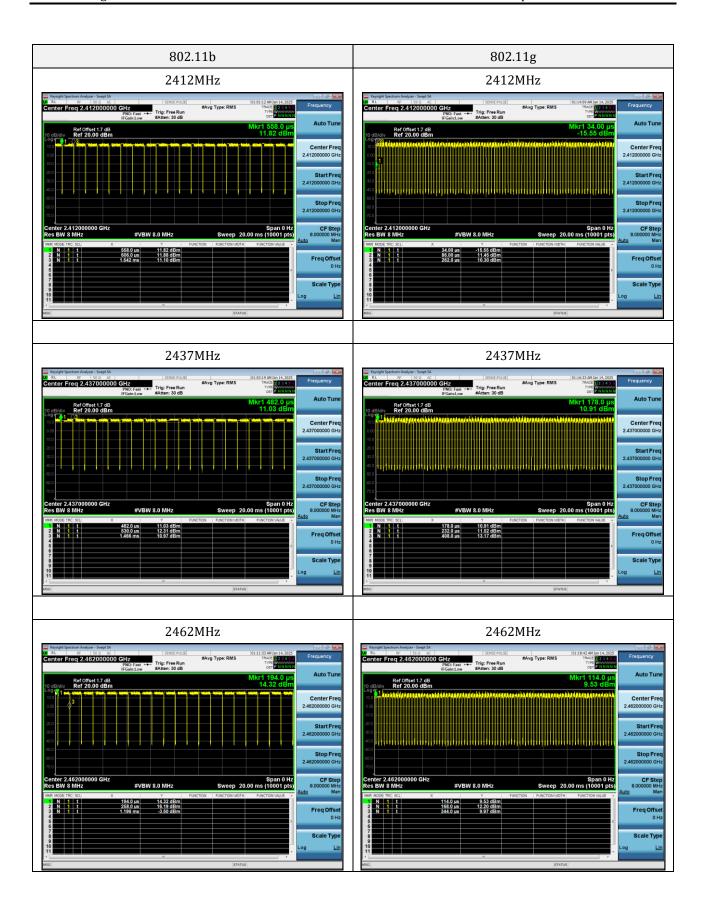
Report No: SSP25010061-1E

7.2 Test Procedure

A spectrum analyzer or similar device shall be used to observe a sample of the modulated transmitter's radio frequency power output.

- 1) A measurement instrument with an integrated channel bandwidth function may be used to automate the test process.
- 2) Set center of frequency = operating frequency.
- 3) Connect the EUT to the RF input of the spectrum analyzer via a low loss RF cable
- 4) Set the RBW = 1MHz, VBW = 3MHz, Detector = RMS, Sweep = Auto.
- 5) Set the SPAN to 40MHz/80MHz for 20MHz/40MHz emission bandwidth mode.
- 6) Measure the highest amplitude appearing on spectral display and mark the value.
- 7) Repeat the above procedures until all frequency measured was complete.

Test Setup Block Diagram


7.3 Test Data and Results

FCC Test Report Page 24 of 42

Test Mode	Test Channel MHz	Duty Cycle (%)	Correction Factor (dBm)	1/T (kHz)
	2412	95.12	0.22	1.07
802.11b	2437	95.12	0.22	1.07
	2462	93.61	0.29	1.07
	2412	77.19	1.12	5.68
802.11g	2437	76.52	1.16	5.68
	2462	76.52	1.16	5.68

Report No: SSP25010061-1E

FCC Test Report Page 25 of 42

FCC Test Report Page 26 of 42

Test Mode	Test Channel (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Test Result
	2412	8.56	0.22	8.78	30	Pass
802.11b	2437	8.89	0.22	9.11	30	Pass
	2462	12.02	0.29	12.31	30	Pass
	2412	8.25	1.12	9.37	30	Pass
802.11g	2437	8.25	1.16	9.41	30	Pass
	2462	8.57	1.16	9.73	30	Pass

Note: Total Power = Conducted Power + Duty Factor

FCC Test Report Page 27 of 42

FCC Test Report Page 28 of 42

8. Occupied Bandwidth

8.1 Standard and Limit

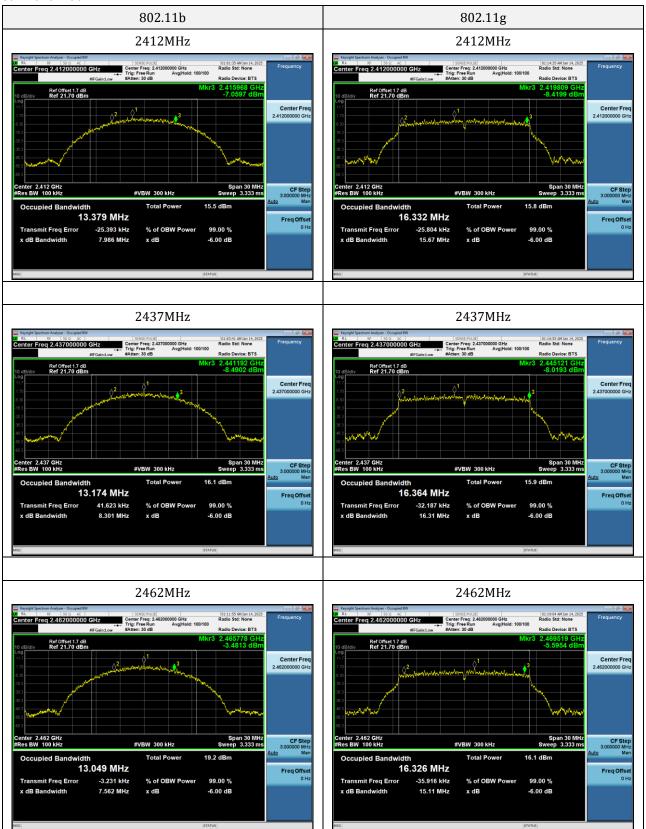
According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No: SSP25010061-1E

8.2 Test Procedure

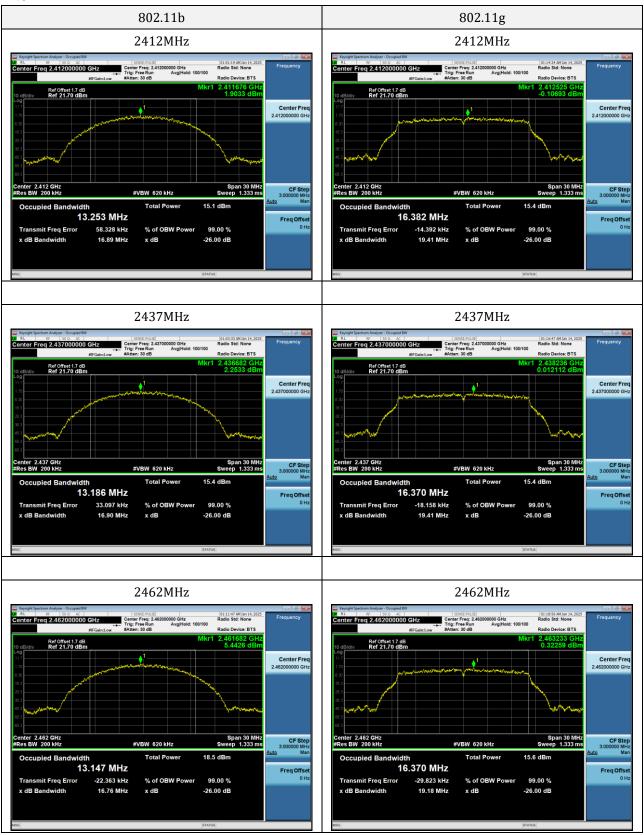
According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.


8.3 Test Data and Results

FCC Test Report Page 29 of 42

Test Mode	Test Channel (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	6dB BW Limit (MHz)	Test Result
	2412	7.986	13.253	0.5	Pass
802.11b	2437	8.301	13.186	0.5	Pass
	2462	7.562	13.147	0.5	Pass
	2412	15.67	16.382	0.5	Pass
802.11g	2437	16.31	16.37	0.5	Pass
	2462	15.11	16.37	0.5	Pass


FCC Test Report Page 30 of 42

6dB Bandwidth:

FCC Test Report Page 31 of 42

99% Bandwidth:

FCC Test Report Page 32 of 42

9. Maximum Power Spectral Density

9.1 Standard and Limit

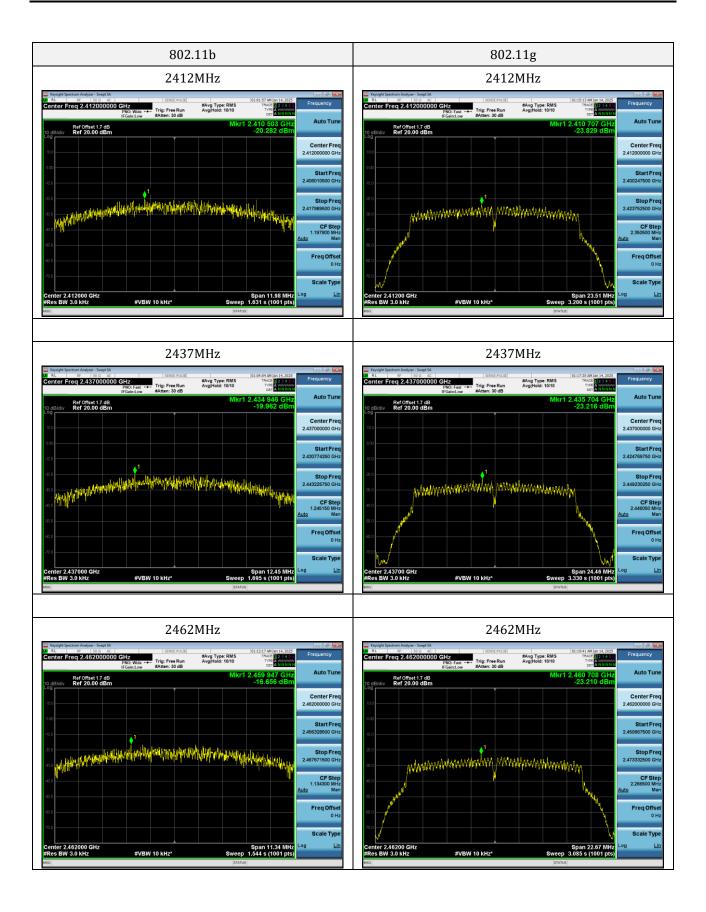
According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No: SSP25010061-1E

9.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = RMS.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram


9.3 Test Data and Results

FCC Test Report Page 33 of 42

Test Mode	Test Channel	Conducted PSD	Duty Factor	Total PSD	Limit	Test
rest Mode	(MHz)	(dBm/3kHz)	(dB)	(dBm/3kHz)	(dBm/3kHz)	Result
	2412	-20.28	0.22	-20.06	8	Pass
802.11b	2437	-19.96	0.22	-19.74	8	Pass
	2462	-16.66	0.29	-16.37	8	Pass
	2412	-23.83	1.12	-22.71	8	Pass
802.11g	2437	-23.22	1.16	-22.06	8	Pass
	2462	-23.21	1.16	-22.05	8	Pass

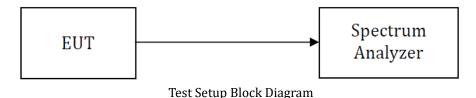
Note: Total PSD = Conducted PSD + Duty Factor

FCC Test Report Page 34 of 42

FCC Test Report Page 35 of 42

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

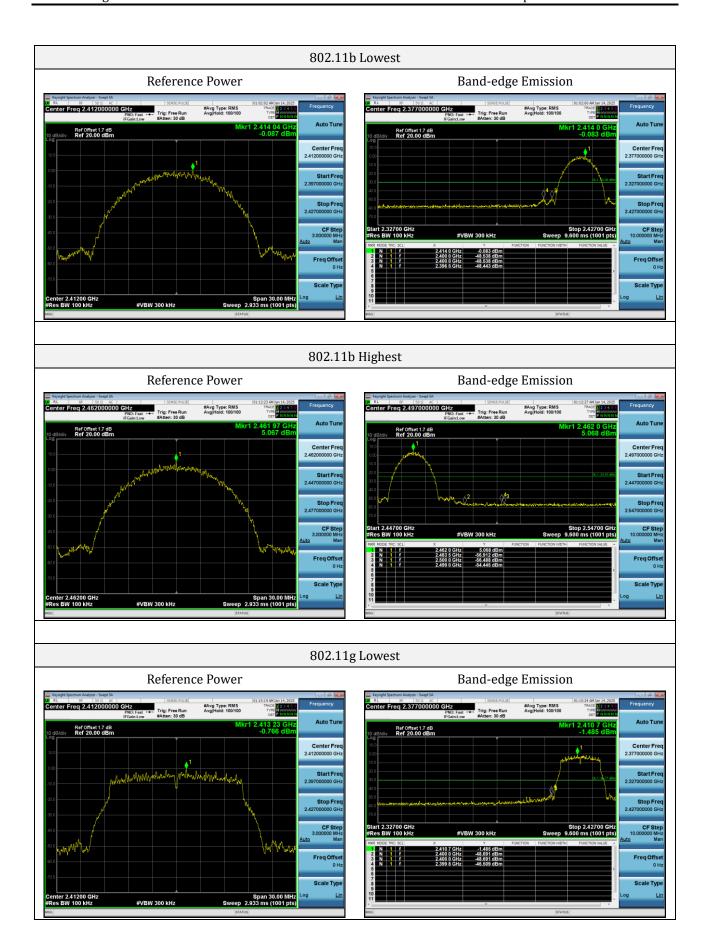

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP25010061-1E

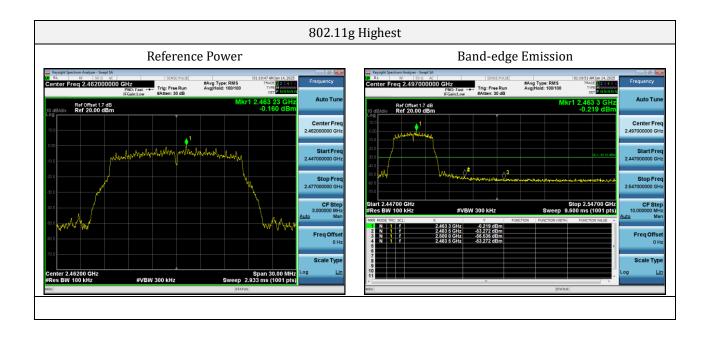
10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Set a convenient frequency span including 100 kHz bandwidth from band edge.
- 6) Measure the emission and marking the edge frequency.
- 7) Repeat above procedures until all frequencies measured were complete.



10.3 Test Data and Results


FCC Test Report Page 36 of 42

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
002.111	Lowest	2412	-48.35	-30	Pass
802.11b	Highest	2462	-59.51	-30	Pass
802.11g	Lowest	2412	-45.73	-30	Pass
	Highest	2462	-53.11	-30	Pass

FCC Test Report Page 37 of 42

FCC Test Report Page 38 of 42

FCC Test Report Page 39 of 42

11. Conducted RF Spurious Emissions

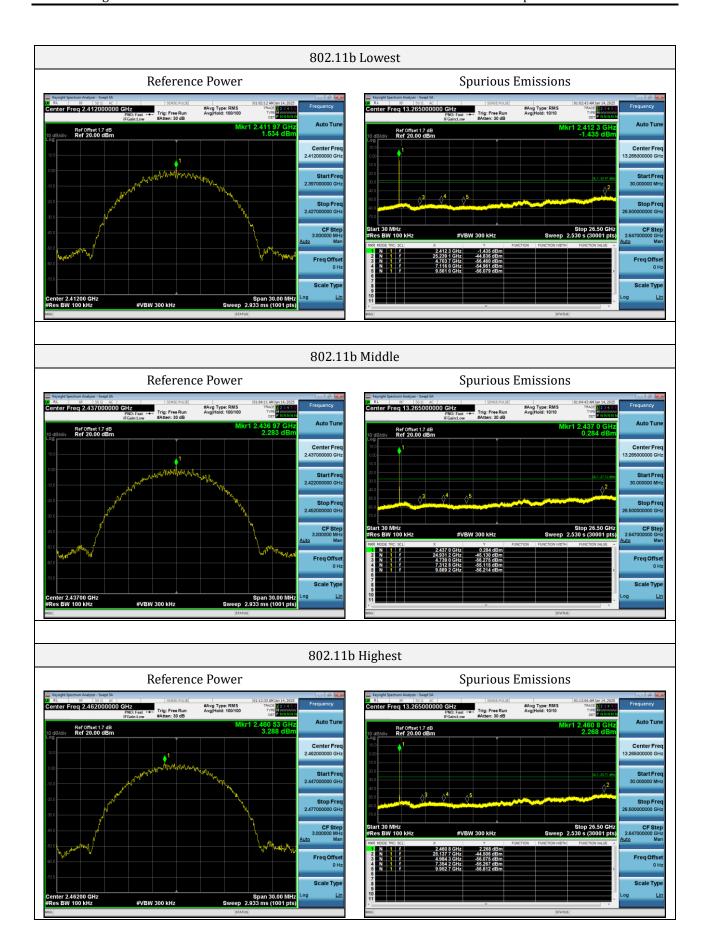
11.1 Standard and Limit

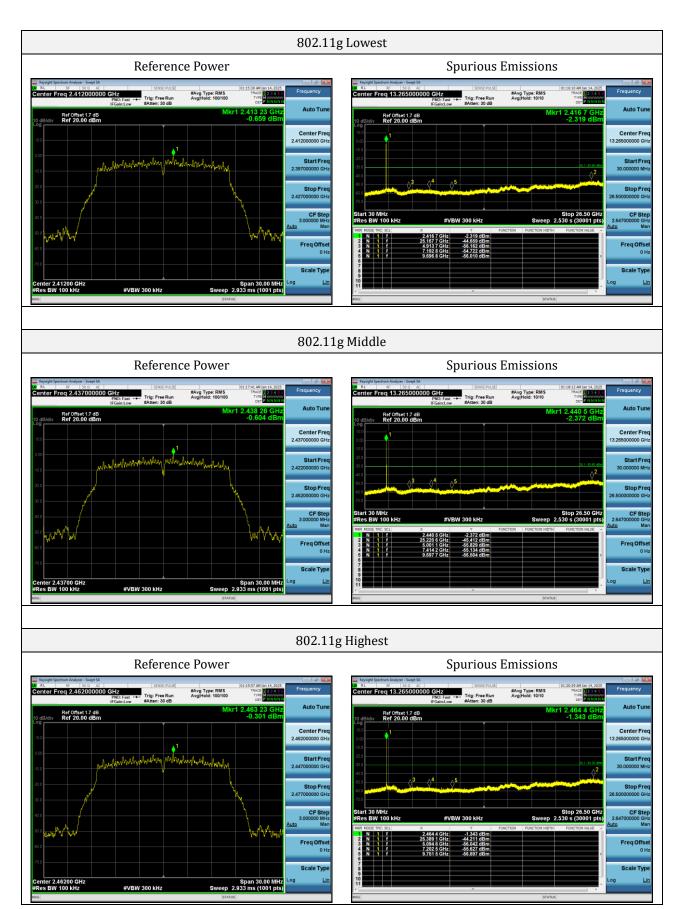
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP25010061-1E

11.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.


- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.
- 6) Repeat above procedures until all measured frequencies were complete.


11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

FCC Test Report Page 40 of 42

FCC Test Report Page 41 of 42

***** END OF REPORT *****

FCC Test Report Page 42 of 42