EMC Test				
Client:	Vivint, Inc.	Job Number:	PR079234	
Model:	CENA	T-Log Number:	TL079234-RA	
woder.	CE04	Project Manager:	Deepa Shetty	
Contact:	Greg Hansen	Project Coordinator:	David Bare	

Maximum Permissible Exposure

Class: N/A

Test Specific Details

Standard: FCC 15.255

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Test Engineer: David Bare

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

I N∩	Device complies with Power Density requirements at 20cm separation:
27.3	If not, required separation distance (in cm):

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Vivint, Inc.	Job Number:	PR079234
Model:	CENA	T-Log Number:	TL079234-RA
	CE04	Project Manager:	Deepa Shetty
Contact:	Greg Hansen	Project Coordinator:	David Bare
Standard:	FCC 15.255	Class:	N/A

MPE Calculation for 60 GHz Wi-Fi radio (Worst case of FCC and ISEDC limits)

Use: General Listed EUT powers are average

Antenna: Integral 23 dBi

Freq.		JT wer	Cable Loss Loss	Ant Gain	Power at Ant	EIRP	Power Density (S) at 30 cm	MPE Limit at 30 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm ²	mW/cm ²
58,320	7.4	5.5	0	23	7.4	1096.48	0.097	1.000
60,480	16.4	43.7	0	23	16.4	8709.64	0.770	1.000
62,640	16.7	46.8	0	23	16.7	9332.54	0.825	1.000

For the cases where S > the MPE Limit

Freq.	S @ 30 cm	MPE Limit	Distance where	Ratio of PD to limit
MHz	mW/cm ²	mW/cm ²	S <= MPE Limit	
58320	0.097	1.000	9.3cm	9.7%
60480	0.770	1.000	26.3cm	77.0%
62640	0.825	1.000	27.3cm	82.5%

MPE Calculation for 2.4 GHz Wi-Fi radio (Worst case of FCC and ISEDC limits)

Use: General Antenna: Integral

	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Pov	wer	Loss	Gain	at Ant	EIRP	at 30 cm	at 30 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
2,412	18.0	63.1	0	3.2	18.0	131.83	0.012	0.537
2,437	19.0	79.4	0	3.2	19.0	165.96	0.015	0.540
2,462	18.0	63.1	0	3.2	18.0	131.83	0.012	0.544

For the cases where S > the MPE Limit

-					
		Power Density (S)	MPE Limit	Distance where	Ratio of PD to limit
	Freq.	at 30 cm	at 30 cm	S <= MPE Limit	
	MHz	mW/cm ²	mW/cm ²		
	2412	0.012	0.537	4.4cm	2.2%
	2437	0.015	0.540	4.9cm	2.7%
	2462	0.012	0.544	4.4cm	2.1%

Worst case RF exposure is the sum of the ratios for the two radios, 82.5% + 2.7% = 85.2% of the limit.

EMC Test Data

L			
Client:	Vivint, Inc.	Job Number:	PR079234
Model:	CENA	T-Log Number:	TL079234-RA
	CE04	Project Manager:	Deepa Shetty
Contact:	Greg Hansen	Project Coordinator:	David Bare
Standard:	FCC 15.255	Class:	N/A

MPE Calculation for 60 GHz Wi-Fi radio (Worst case of FCC and ISEDC limits)

Use: Controlled Listed EUT powers are average

Antenna: Integral 23 dBi

	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 15 cm	at 15 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
58,320	7.4	5.5	0	23	7.4	1096.48	0.388	5.000
60,480	16.4	43.7	0	23	16.4	8709.64	3.080	5.000
62,640	16.7	46.8	0	23	16.7	9332.54	3.301	5.000

For the cases where S > the MPE Limit

Freq.	S @ 15 cm	MPE Limit	Distance where	Ratio of PD to limit
MHz	mW/cm ²	mW/cm^2	S <= MPE Limit	
58320	0.388	5.000	4.2cm	7.8%
60480	3.080	5.000	11.8cm	61.6%
62640	3.301	5.000	12.2cm	66.0%

MPE Calculation for 2.4 GHz Wi-Fi radio (Worst case of FCC and ISEDC limits)

Use: Controlled Antenna: Integral

	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 15 cm	at 15 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
2,412	18.0	63.1	0	3.2	18.0	131.83	0.047	3.170
2,437	19.0	79.4	0	3.2	19.0	165.96	0.059	3.187
2,462	18.0	63.1	0	3.2	18.0	131.83	0.047	3.203

For the cases where S > the MPE Limit

	Power Density (S)	MPE Limit	Distance where	Ratio of PD to limit
Freq.	at 15 cm	at 15 cm	S <= MPE Limit	
MHz	mW/cm ²	mW/cm^2		
2412	0.047	3.170	1.8cm	1.5%
2437	0.059	3.187	2.0cm	1.8%
2462	0.047	3.203	1.8cm	1.5%

Worst case RF exposure is the sum of the ratios for the two radios, 66% + 1.8% = 67.8% of the limit.