

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

12/18/2024

HID Global Corporation (US) 611 Center Ridge Drive Austin Texas, 78753 USA

Dear Nic Holmes,

Enclosed is the EMC Wireless test report for compliance testing of the HID Global Corporation (US) HID Signo PIV Contact Reader as tested to the requirements of FCC Part 15.247 and RSS-247 Issue 3 for Intentional Radiators. This test report pertains specifically to the Bluetooth Low Energy (BLE) transmitter onboard which operates in the 2400-2483.5MHz band.

Thank you for using the services of Eurofins MET Labs. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, EUROFINS MET LABS

Mancy Labrecque

Nancy LaBrecque Documentation Department

Reference: WIRA133283_FCC_IC_BLE_R2

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins MET Labs.

The Nation's First Licensed Nationally Recognized Testing Laboratory

Bluetooth Low Energy Test Report

for the

HID Global Corporation (US) HID Signo PIV Contact Reader (Model: 40TC)

> **Tested under** FCC Part 15.247 and RSS-247 Issue 3 For Intentional Radiators

Bryan Taylor, Wireless Team Lead Electromagnetic Compatibility Lab

Mancy Labucque

Nancy LaBrecque Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 under normal use and maintenance.

Matthew Hinojosa EMC Manager, Austin Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision			
Ø	9/13/2024	Initial Issue.			
1	10/21/2024	Customer Requested Changes.			
2	12/18/2024	Reviewer Requested Changes.			

Table of Contents

I.	Executive Summary	8
	A. Purpose of Test	
	B. Executive Summary	9
II.	Equipment Configuration	10
	A. Overview	11
	B. References	12
	C. Test Site	13
	D. Measurement Uncertainty	13
	E. Description of Test Sample	14
	F. Equipment Configuration	14
	G. Mode of Operation	15
	H. Method of Monitoring EUT Operation	15
	I. Modifications	15
	a) Modifications to EUT	15
	b) Modifications to Test Standard	15
	J. Disposition of EUT	15
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	16
	§ 15.203 Antenna Requirement	17
	§ 15.207(a) Conducted Emissions Limits	18
	§ 15.247(a)(a) 6 dB and 99% Bandwidth	21
	RSS-GEN (6.7) 99% Bandwidth	22
	§ 15.247(b) Peak Power Output	25
	§ 15.247(e) Peak Power Spectral Density	29
	§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge	
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	37
IV.	Test Equipment	47

List of Tables

Table 1. Executive Summary	9
Table 2. EUT Summary Table Table 3. References	11
Table 4. Uncertainty Calculations Summary	13
Table 5. Support Equipment	14
Table 6. Ports and Cabling Information	14
Table 7. Test Channels Utilized	15
Table 8. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	18
Table 9. Conducted Emissions, 15.207(a), Phase, Test Results	19
Table 10. Conducted Emissions, 15.207(a), Neutral, Test Results	20
Table 11. 99% and 6 dB Occupied Bandwidth, Test Results	22
Table 12. Output Power Requirements from §15.247(b)	25
Table 13. Peak Power and EIRP, Test Results	27
Table 14. Peak Power Spectral Density, Test Results	30
Table 15. Restricted Bands of Operation	37
Table 16. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
Table 17. Test Equipment List	48

List of Figures

Figure 1. Block Diagram of Test Configuration	14
Figure 2. Block Diagram, Occupied Bandwidth Test Setup	
Figure 3. Analyzer Settings During Measurement	
Figure 4. Peak Power Output Test Setup	
Figure 5. Analyzer Settings During Measurement	29
Figure 6. Block Diagram, Peak Power Spectral Density Test Setup	
Figure 7. Analyzer Settings During Measurement	
Figure 8. Block Diagram, Conducted Spurious Emissions Test Setup	
Figure 920dB Down Spurious Emissions (Low Channel, 1Mbps)	
Figure 1020dB Down Spurious Emissions (Mid Channel, 1Mbps)	
Figure 1120dB Down Spurious Emissions (High Channel, 1Mbps)	
Figure 1220dB Down Spurious Emissions (Low Channel, 2Mbps)	
Figure 1320dB Down Spurious Emissions (Mid Channel, 2Mbps)	
Figure 1420dB Down Spurious Emissions (High Channel, 2Mbps)	
Figure 15. Restricted Band Edge Spurious Emissions (Low Channel, 1Mbps)	42
Figure 16. Restricted Band Edge Spurious Emissions (Low Channel, 2Mbps)	42
Figure 17. Restricted Band Edge Spurious Emissions (Mid Channel, 1Mbps)	43
Figure 18. Restricted Band Edge Spurious Emissions (Mid Channel, 2Mbps)	43
Figure 19. Restricted Band Edge Spurious Emissions (High Channel, 1Mbps)	43
Figure 20. Restricted Band Edge Spurious Emissions (High Channel, 2Mbps)	43
Figure 21. Worst Case Cabinet Radiation, 9kHz - 30MHz	46
Figure 22. Worst Case Cabinet Radiation, 30MHz - 1GHz	46
Figure 23. Worst Case Cabinet Radiation, Above 1GHz	46

Corporation (US)

HID Global Corporation (US) HID Signo PIV Contact Reader

AC Alternating Current ACF Antenna Correction Factor Cal Calibration d Measurement Distance dB Decibels dBµA Decibels above one microamp dBµV Decibels above one microvolt dBµA/m Decibels above one microvolt per meter dBµVm Decibels above one microvolt per meter	
Cal Calibration d Measurement Distance dB Decibels dBμA Decibels above one microamp dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter dBμV/m Decibels above one microvolt per meter	
d Measurement Distance dB Decibels dBμA Decibels above one microamp dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter dBμV/m Decibels above one microvolt per meter	
dB Decibels dBμA Decibels above one microamp dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter dBμV/m Decibels above one microvolt per meter	
dBμA Decibels above one microamp dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter dBμV/m Decibels above one microvolt per meter	
dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter dBμV/m Decibels above one microvolt per meter	
dBμA/m Decibels above one microamp per meter dBμV/m Decibels above one microvolt per meter	
dBµV/m Decibels above one microvolt per meter	
DC Direct Commut	
DC Direct Current	
E Electric Field	
DSL Digital Subscriber Line	
ESD Electrostatic Discharge	
EUT Equipment Under Test	
f Frequency	
FCC Federal Communications Commission	
GRP Ground Reference Plane	
H Magnetic Field	
HCP Horizontal Coupling Plane	
Hz Hertz	
IEC International Electrotechnical Commission	
kHz kilohertz	
kPa kilopascal	
kV kilovolt	
LISN Line Impedance Stabilization Network	
MHz Megahertz	
μ H microhenry	
μ microfarad	
μs microseconds	
NEBS Network Equipment-Building System	
PRF Pulse Repetition Frequency	
RF Radio Frequency	
RMS Root-Mean-Square	
TWT Traveling Wave Tube	
V/m Volts per meter	
VCP Vertical Coupling Plane	

List of Terms and Abbreviations

Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

I. Executive Summary

HID Global Corporation (US) HID Signo PIV Contact Reader

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the HID Signo PIV Contact Reader, with the requirements of FCC Part 15.247 and RSS-247 Issue 3. HID Global Corporation (US) should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the HID Signo PIV Contact Reader, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15.247 and RSS-247 Issue 3, in accordance with HID Global Corporation (US) purchase order number HID022810. All tests were conducted using measurement procedures ANSI C63.4-2014 and ANSI C63.10-2013.

FCC Reference 47 CFR Part 15.247:2005	IC Reference RSS-247 Issue 3: RSS-GEN Issue 5	Description	Compliance
Title 47 of the CFR, Part 15 §15.203		Antenna Requirement	Compliant
Title 47 of the CFR, Part 15 §15.207(a)	RSS-GEN(8.8)	Conducted Emission Limits	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(2)	RSS-247 (5.2)	6dB Occupied Bandwidth	Compliant
	RSS-GEN(6.7)	99% Occupied Bandwidth	Compliant
Title 47 of the CFR, Part 15 §15.247(b)	RSS-247(5.4)	Peak Power Output	Compliant
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	RSS-GEN (6.13), (8.9), & (8.10)	Radiated Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15 §15.247(d)	RSS-247(5.5)	RF Conducted Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15; §15.247(e)	RSS-247(5.2)	Peak Power Spectral Density Co	

 Table 1. Executive Summary

Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

II. Equipment Configuration

A. Overview

Eurofins MET Labs was contracted by HID Global Corporation (US) to perform testing on the HID Signo PIV Contact Reader, under HID Global Corporation (US)'s purchase order number HID022810.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the HID Signo PIV Contact Reader.

The results obtained relate only to the item(s) tested.

Product Name:	HID Signo PIV Contact Reader				
Model(s) Tested:	40TC				
FCCID:	JQ6-SIGNO40TC				
ICID:	2236B-SIGNO40TC	2236B-SIGNO40TC			
Sample Number:	24775-17				
	Primary Power:	12VDC			
	Type of Modulations:	GFSK			
Equipment	Equipment Code:	DTS			
Specifications:	Peak RF Output Power: 4.97dBm (0.003W)				
	EUT Frequency Ranges:	2402MHz - 2480MHz			
	Antenna Gain ¹ :	-1.9dBi			
Analysis:	The results obtained relate only to the item(s) tested.				
	Temperature: 15-35° C				
Environmental Test Conditions:	Relative Humidity: 30-60%				
	Barometric Pressure: 860-1060 mbar				
Evaluated by:	Bryan Taylor, Sergio Gutierrez				
Report Date(s):	8/26/2024 through 8/31/20	024			

 Table 2. EUT Summary Table

¹ The antenna gain information was provided by HID Global Corporation (US) and may affect compliance.

HID Global Corporation (US) HID Signo PIV Contact Reader

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies			
RSS-247, Issue 3, August Digital Transmission Systems (DTSs), Frequency Hopping Systems (F and Licence-Exempt Local Area Network (LE-LAN) Devices				
RSS-GEN, Issue 5, March 2019	General Requirements and Information for the Certification of Radio Apparatus			
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz			
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories			
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices			

Table 3. References

C. Test Site

All testing was performed at Eurofins MET Labs, 13501 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

ISED Lab Info:

CAB Identifier: US0004 Company Number: 2043D

FCC Lab Info:

Designation Number: US1127

D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	K	Confidence Level
Occupied Bandwidth Measurements	±4.52 Hz	2	95%
Conducted Power Measurements	±2.74 dB	2	95%
Power Spectral Density Measurements	±2.74 dB	2	95%
Conducted Spurious Emissions	±2.80 dB	2	95%
Conducted Emissions (Mains)	±2.97 dB	2	95%
Radiated Spurious Emissions (9kHz – 1GHz)	±2.95 dB	2	95%
Radiated Spurious Emissions (1GHz - 40GHz)	±3.54 dB	2	95%

 Table 4. Uncertainty Calculations Summary

E. Description of Test Sample

HID Signo PIV Contact Reader is a Access Control credential reader that is equipped with LF, HF, BLE and Contact card read ability.

The intended use of the product is for gaining secure access into building, sites or places via the use of a secure credential in the form of a LF credential card, HF credential card, NFC enabled smart phone, BLE Mobile credential or Contact chip credential.

Figure 1. Block Diagram of Test Configuration

F. Equipment Configuration

The EUT was set up as outlined in Figure 1 above. The laptop computer was used to send test commands to force the transmitters to operate in the appropriate test mode.

G. Support Equipment

Ref. ID	Name/Description	Manufacturer	Model Number	Customer Supplied Calibration Data
None	Laptop Computer	Lenovo	ThinkPad	None

Table 5.Support Equipment

H. Ports and Cabling Information

Ref.	Port Name on	Cable Description or	Qty	Length as	Max	Shielded?	Termination Box ID &
Id	EUT	reason for no cable		tested (m)	Length (m)	(Y/N)	Port Name
	Serial Port to USB	Serial Port to USB Debug	1	1m		No	Laptop Computer
	Debug Cable	Cable					
	DC Input	DC Input	1	1m		No	12V DC Power Source

 Table 6. Ports and Cabling Information

I. Mode of Operation

The Nordic nRF Connect software (Direct Test Mode v2.4.1) was used to interface with the test sample and force it to transmit on low, mid, and high channels at maximum output power.

Transmit Band	Modulation	Channel Frequencies Tested	Test Tool Power Setting
2400 – 2483.5MHz	BLE (GFSK)	2402MHz / 2440MHz / 2480MHz	8

Table 7. Test Channels Utilized

J. Method of Monitoring EUT Operation

A spectrum analyzer was used to confirm proper transmitter operation.

K. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

L. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to HID Global Corporation (US) upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement: § 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is compliant the criteria of §15.203. The TX antenna is permanently attached to the unit and is not accessible by the end user.

Test Engineer(s): Bryan Taylor

Test Date(s): 8/26/2024

Electromagnetic Compatibility Criteria for Intentional Radiators

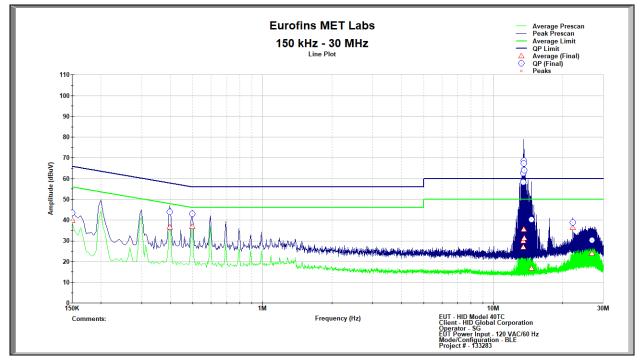
§ 15.207(a) Conducted Emissions Limits

Test Requirement(s): § 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56	56 - 46			
0.5-5	56	46			
5-30	60	50			

Table 8. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure: The EUT was placed on a 0.8 m-high wooden table. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2014 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed using a 50 Ω /50 μ H LISN as the input transducer to an EMI receiver. For the purpose of this testing, the transmitter was turned on.

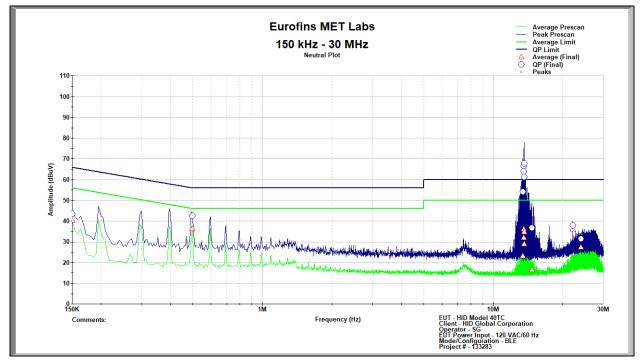

- Test Results: The EUT was compliant with this requirement..
- Test Engineer(s):Sergio Gutierrez

Test Date(s): 8/28/2024

Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

Conducted Emissions, 15.207(a), Phase²

Frequency (MHz)	Quasi-Peak (dBµV/m)	Quasi-Peak Limit (dBµV/m)	Quasi-Peak Margin (dB)	Average (dBμV/m)	Average Limit (dBµV/m)	Average Margin (dB)
0.150	43.463	66.000	22.537	39.905	56.000	16.095
0.398	44.065	58.929	14.864	36.564	48.929	12.364
0.496	43.133	56.100	12.967	36.749	46.100	9.351
13.485	58.421	60.000	1.579	26.904	50.000	23.096
14.619	40.335	60.000	19.665	16.744	50.000	33.256
22.125	38.812	60.000	21.188	36.288	50.000	13.712


Table 9. Conducted Emissions, 15.207(a), Phase, Test Results

²The large signal at 13.56MHz is from the RFID reader onboard that operates at that frequency.

Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

Conducted Emissions, 15.207(a), Neutral³

Frequency (MHz)	Quasi-Peak (dBµV/m)	Quasi-Peak Limit (dBµV/m)	Quasi-Peak Margin (dB)	Average (dBμV/m)	Average Limit (dBµV/m)	Average Margin (dB)
0.150	43.602	66.000	22.398	40.191	56.000	15.809
0.496	42.620	56.100	13.480	36.408	46.100	9.692
13.422	54.065	60.000	5.935	23.255	50.000	26.745
14.700	36.749	60.000	23.251	16.420	50.000	33.580
22.125	37.895	60.000	22.105	36.046	50.000	13.954
23.956	31.504	60.000	28.496	27.406	50.000	22.594

Table 10. Conducted Emissions, 15.207(a), Neutral, Test Results

³The large signal at 13.56MHz is from the RFID reader onboard that operates at that frequency.

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(2)	6 dB Bandwidth
Test Requirements:	§ 15.247(a)(2): Operation under the provisions of this section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
	For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.
Test Procedure:	The transmitter was on and transmitting at the highest output power. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately 1% of the total emission bandwidth, and the VBW $>$ RBW. The 6 dB Bandwidth was measured and recorded. The measurements were performed on the low, mid and high channels.
Test Results	The EUT was compliant with § 15.247 (a)(2).
	The 6 dB Bandwidth was determined from the plots on the following pages.
Test Engineer(s):	Bryan Taylor
Test Date(s):	8/27/2024

Electromagnetic Compatibility Criteria for Intentional Radiators

RSS-GEN (6.7) 99% Bandwidth

Test Requirements:	The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency rang
	between two points, one above and the other blow the carrier frequency, within which 99%
	of the total transmitted power of the fundamental transmitted emission is contained. The
	occupied bandwidth shall be reported for all equipment in addition to the specified
	bandwidth required in the applicable RSSs.

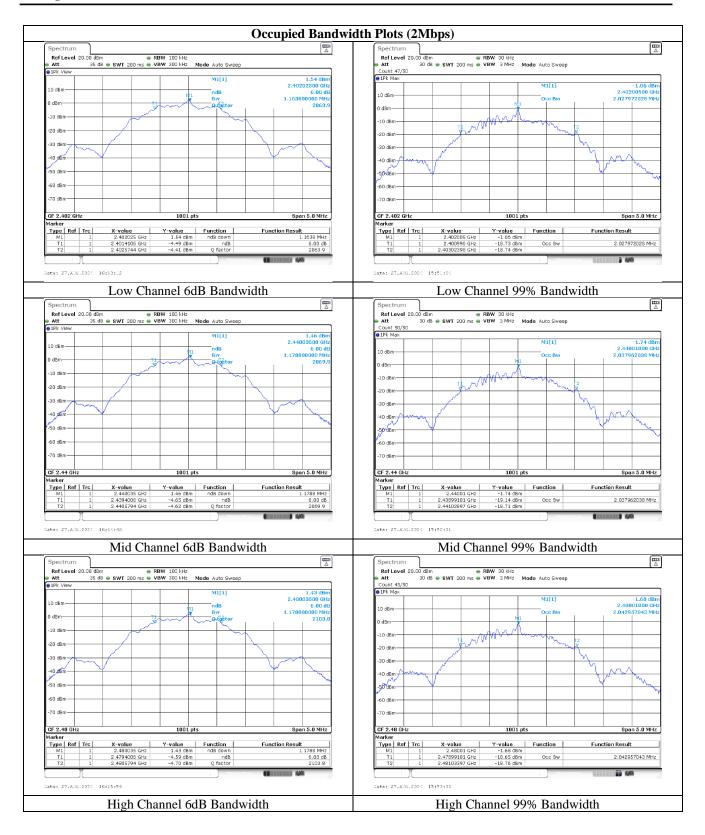
- Test Procedure:The transmitter was connected to the spectrum analyzer through an attenuator. The bandwidth of
the fundamental frequency was measured with the spectrum analyzer using a RBW approximately
between 1% and 5% of the total emission bandwidth, and the VBW > RBW. The 99% Bandwidth
was measured and recorded.
- **Test Results** The 99% Bandwidth determined from the plots on the following pages.
- **Test Engineer(s):** Bryan Taylor
- **Test Date(s):** 8/27/2024

EUT	Spectrum Analyzer	

Figure 2. Block Diagram, Occupied Bandwidth Test Setup

Data Rate	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Limit (MHz)	99% Bandwidth (MHz)	Result
	Low	2402	0.5	0.701	1.039	Pass
1Mbps	Middle	2440	0.5	0.701	1.045	Pass
	High	2480	0.5	0.710	1.048	Pass
	Low	2402	0.5	1.163	2.027	Pass
2Mbps	Middle	2440	0.5	1.178	2.037	Pass
	High	2480	0.5	1.178	2.042	Pass

Table 11. 99% and 6 dB Occupied Bandwidth, Test Results



Occupied Bandwidth Test Results

HID Global Corporation (US) HID Signo PIV Contact Reader

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output

Test Requirements:

§15.247(b): The maximum peak output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (Watts)
902-928	1.000
2400-2483.5	1.000
5725-5850	1.000

Table 12. Output Power Requirements from §15.247(b)

§15.247(c): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in the Table 12, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 – 2483.5 MHz band and using a point to point application may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Fixed, point-to-point operation excludes the use of point-to-multipoint systems, Omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

RSS-247 EIRP Limit: For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

HID Global Corporation (US) HID Signo PIV Contact Reader

Test Procedure: The transmitter was connected to a calibrated spectrum analyzer. The analyzer reference level was offset by cable loss connecting to the test sample. The peak power was measured at the low, mid and high channels of each band at the maximum power level. The antenna gain provided by the manufacturer was added to the measured conducted power to arrive at the EIRP.

The analyzer settings are shown in the following table:

RBW:	3MHz	Detector:	Peak	Reference Level:	30dBm
VBW:	10MHz	Sweep Time:	Auto	Internal Attenuation:	30dB

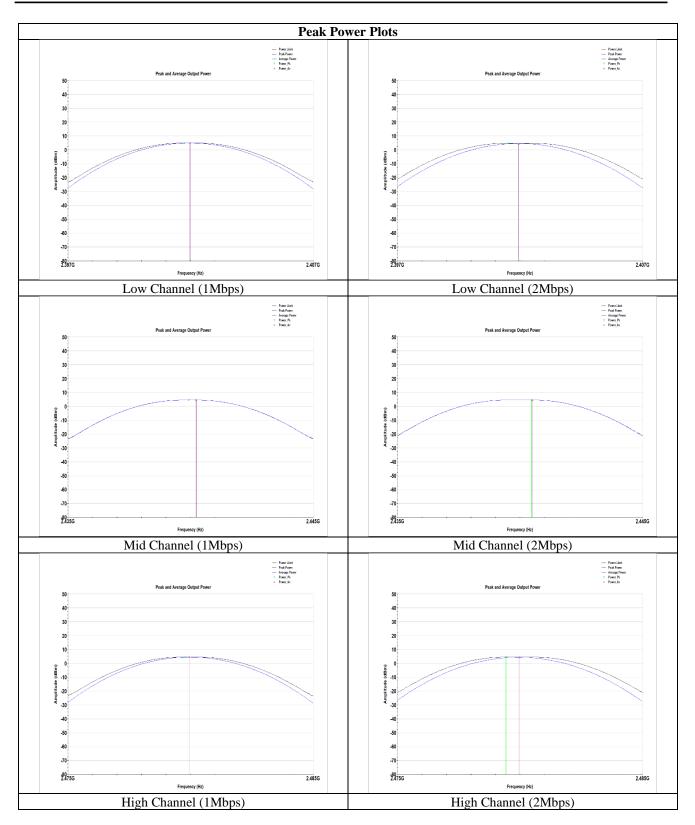
Figure 3. Analyzer Settings During Measurement

Test Software: TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) was utilized to perform these measurements.

HID Global Corporation (US) HID Signo PIV Contact Reader

Test Results:	The EUT was complia from RSS-247.	nt with the Peak Power Output	limits of §15.247(b) an	nd the EIRP limits
Test Engineer(s):	Bryan Taylor			
Test Date(s):	8/27/2024		9	l
	EUT		Spectrum Analyzer	

Figure 4. Peak Power Output Test Setup


Peak Power Output Test Results

Data		Frequency	Peak Power	Peak Power Limit	Antenna	EIRP	EIRP Limit	
Rate	Channel	(MHz)	(dBm)	(dBm)	Gain (dBi)	(dBm)	(dBm)	Result
	Low	2402MHz	4.97	30	-1.9	3.07	36	Pass
1Mbps	Middle	2440MHz	4.57	30	-1.9	2.67	36	Pass
	High	2480MHz	4.61	30	-1.9	2.71	36	Pass
	Low	2402MHz	4.81	30	-1.9	2.91	36	Pass
2Mbps	Middle	2440MHz	4.63	30	-1.9	2.73	36	Pass
	High	2480MHz	4.62	30	-1.9	2.72	36	Pass

Table 13. Peak Power and EIRP, Test Results

HID Global Corporation (US) HID Signo PIV Contact Reader Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(e) Peak Power Spectral Density

Test Requirements: §15.247(e): For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure:The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power
level was set to the maximum level. The RBW was set between 3kHz and 100 kHz. The VBW
was set to at least 3x the RBW. The spectrum analyzer was set to an auto sweep time and a peak
detector was used. Measurements were carried out at the low, mid and high channels.

The analyzer settings are shown in the following table:

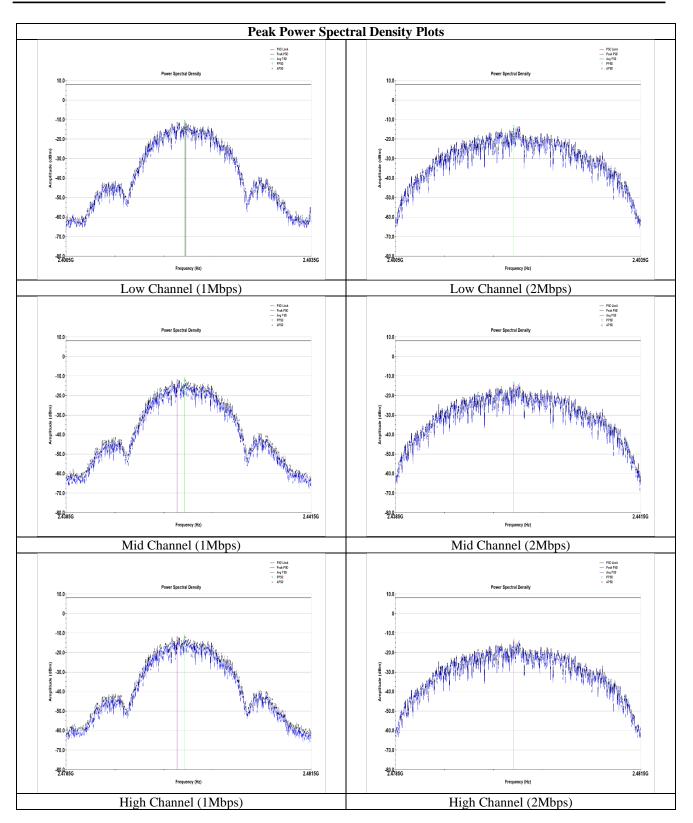
RBW:	3kHz	Detector:	Peak	Reference	10dBm
				Level:	
VBW:	30kHz	Sweep Time:	Auto	Internal	20dB
				Attenuation:	

Figure 5. Analyzer Settings During Measurement

Test Software: TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) was utilized to perform these measurements.

HID Global Corporation (US) HID Signo PIV Contact Reader

Test Results:	The EUT was compliant with the peak power spectral density limits of § 15.247 (e).			
Test Engineer:	Bryan Taylor			
Test Date:	8/27/2024			
	EUT		Spectrum Analyzer	


Figure 6. Block Diagram, Peak Power Spectral Density Test Setup

Data Rate	Channel	Frequency (MHz)	Peak Power Spectral Density (dBm / 3kHz)	Peak Power Spectral Density Limit (dBm / 3kHz)	Result
	Low	2402MHz	-10.75	8	Pass
1Mbps	Middle	2440MHz	-11.09	8	Pass
	High	2480MHz	-11.19	8	Pass
	Low	2402MHz	-13.41	8	Pass
2Mbps	Middle	2440MHz	-13.38	8	Pass
	High	2480MHz	-13.35	8	Pass

Table 14. Peak Power Spectral Density, Test Results

HID Global Corporation (US) HID Signo PIV Contact Reader Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) RF Conducted Spurious Emissions Requirements

Test Requirement: 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure: For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power level was set to the maximum level. The RBW was set to 100 kHz. The VBW was set to 3x the RBW. The spectrum analyzer was set to an auto sweep time and a peak detector was used. Measurements were carried out at the low, mid and high channels.

See following pages for detailed test results with RF Conducted Spurious Emissions.

The analyzer settings are shown in the following table:

RBW:	100kHz	Detector:	Peak	Reference	30dBm
				Level:	
VBW:	300kHz	Sweep Time:	Auto	Internal	30dB
				Attenuation:	

Figure 7. Analyzer Settings During Measurement

Test Software:	TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) was utilized to perform these measurements.				
Test Results:	The EUT was compliant with the Conducted Spurious Emission limits of §15.247(d).				
Test Engineer(s):	Bryan Taylor				
Test Date(s):	8/27/2024				
	EUT	Spectrum Analyzer			

Figure 8. Block Diagram, Conducted Spurious Emissions Test Setup

HID Global Corporation (US) HID Signo PIV Contact Reader

Spurious Frequency (MHz)	Peak Amplitude (dBm)	-20dBd Limit (dBm)	Margin (dB)	Result
4804.381	-27.77	-15.44	12.33	Pass
7201.989	-43.95	-15.44	28.51	Pass
39890.0	-41.49	-15.44	26.05	Pass
2396.515	-55.05	-15.44	39.61	Pass
2397.265	-54.71	-15.44	39.27	Pass
2398.585	-52.53	-15.44	37.09	Pass

Figure 9. -20dB Down Spurious Emissions (Low Channel, 1Mbps)

Spurious Frequency (MHz)	Peak Amplitude (dBm)	-20dBd Limit (dBm)	Margin (dB)	Result
4880.574	-31.55	-17.37	14.18	Pass
7313.911	-41.66	-17.37	24.29	Pass
39,890.0,	-42.49	-17.37	25.12	Pass

Figure 10. -20dB Down Spurious Emissions (Mid Channel, 1Mbps)

Spurious Frequency (MHz)	Peak Amplitude (dBm)	-20dBd Limit (dBm)	Margin (dB)	Result
4960.23	-36.59	-17.04	19.55	Pass
7433.294	-48.09	-17.04	31.05	Pass
39,880.0	-42.8	-17.04	25.76	Pass
2485.19	-54.36	-17.04	37.32	Pass
2486.19	-55.26	-17.04	38.22	Pass
2488.54	-55.39	-17.04	38.35	Pass

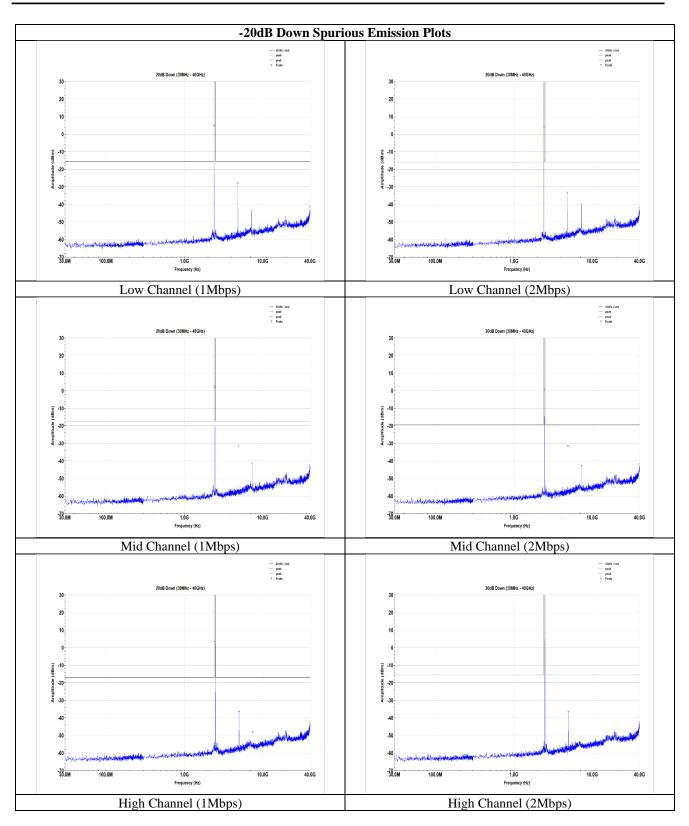
Figure 11. -20dB Down Spurious Emissions (High Channel, 1Mbps)

HID Global Corporation (US) HID Signo PIV Contact Reader

Spurious Frequency (MHz)	Peak Amplitude (dBm)	-20dBd Limit (dBm)	Margin (dB)	Result
4804.381	-33.48	-15.86	17.62	Pass
7201.989	-40.3	-15.86	24.44	Pass
39,091.0	-41.81	-15.86	25.95	Pass
2397.43	-52.28	-15.86	36.42	Pass
2398.06	-51.92	-15.86	36.06	Pass
2399.98	-27.45	-15.86	11.59	Pass

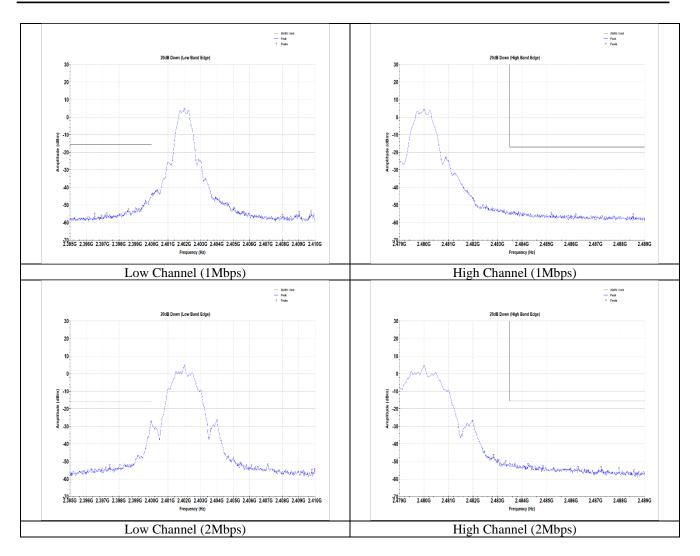
Figure 12. -20dB Down Spurious Emissions (Low Channel, 2Mbps)

Spurious Frequency (MHz)	Peak Amplitude (dBm)	-20dBd Limit (dBm)	Margin (dB)	Result
4880.574	-31.59	-19.35	12.23	Pass
7313.911	-42.96	-19.35	23.6	Pass
39,920.0	-42.02	-19.35	22.67	Pass


Figure 13. -20dB Down Spurious Emissions (Mid Channel, 2Mbps)

Spurious Frequency (MHz)	Peak Amplitude (dBm)	-20dBd Limit (dBm)	Margin (dB)	Result
4960.23	-36.84	-15.66	21.18	Pass
39,930.0	-42.30	-15.66	26.64	Pass
2484.24	-51.48	-15.66	35.82	Pass
2484.86	-52.53	-15.66	36.87	Pass
2486.29	-53.26	-15.66	37.6	Pass
2487.23	-53.23	-15.66	37.57	Pass
2487.96	-54.01	-15.66	38.35	Pass
2488.57	-55.02	-15.66	39.36	Pass

Figure 14. -20dB Down Spurious Emissions (High Channel, 2Mbps)


HID Global Corporation (US) HID Signo PIV Contact Reader Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

Low and High Band Edge Plots

HID Global Corporation (US) HID Signo PIV Contact Reader Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600-4400	(²)

Table 15. Restricted Bands of Operation

 1 Until February 1, 1999, this restricted band shall be 0.490 – 0.510 MHz.

² Above 38.6

Test Requirement(s): § 15.209 (a

§ 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 16.

Frequency (MHz)	§ 15.209(a), Radiated Emission Limits
	(dBµV) @ 3m
30 - 88	40.00
88 - 216	43.50
216 - 960	46.00
Above 960	54.00

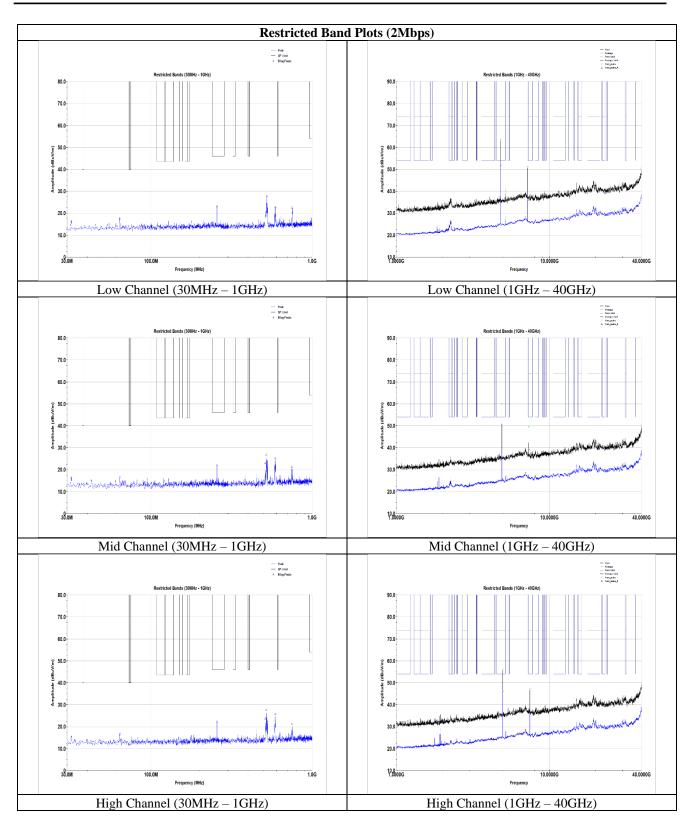
Table 16. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

Test Procedures: The radiated methodology referenced in ANSI C63.10: 2013 Section 11.12.1 was utilized in order to assess the unwanted emissions in the restricted bands.

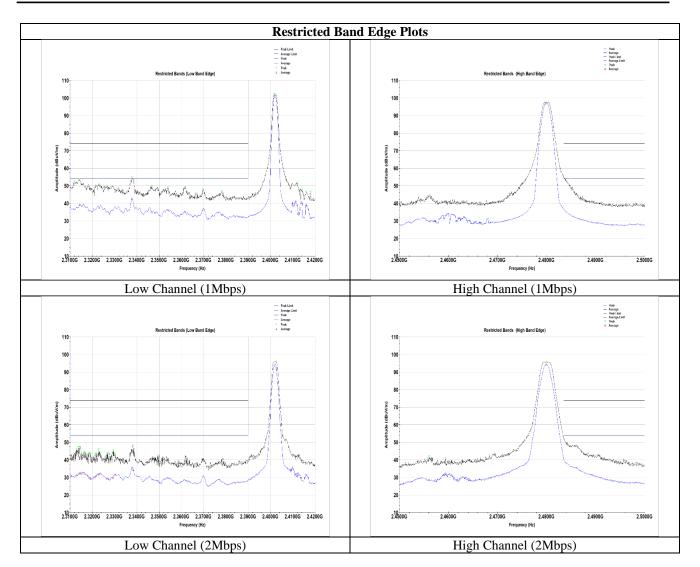
A radiated scan was performed with the antenna of proper impedance installed. The transmitter was turned on. Measurements were performed of the low, mid and high Channels. The EUT was rotated orthogonally through all three axes if multiple mounting orientations are supported. Plots shown are corrected for both antenna correction factor and distance and compared to a 3 m limit line.

Radiated measurements below 30MHz were performed in a semi-anechoic chamber that has been correlated to an open area site.

- Test Software:TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) and ELEKTRA Version 4.61
(Manufactured by Rohde&Schwarz) was utilized to perform these measurements.
- **Test Results:** The EUT was compliant with the Radiated Spurious Emission limits of § 15.247(d).
- **Test Engineer(s):** Bryan Taylor, Sergio Gutierrez
- **Test Date(s):** 8/27/2024 8/30/2024



HID Global Corporation (US) HID Signo PIV Contact Reader



HID Global Corporation (US) HID Signo PIV Contact Reader

HID Global Corporation (US) HID Signo PIV Contact Reader Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

HID Global Corporation (US) HID Signo PIV Contact Reader

	Peak		Peak	Avg		Avg	
Frequency	Reading	Peak Limit	Margin	Reading	Avg Limit	Margin	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
2314.29	53.81	74	20.19	39.19	54	14.81	Pass
2323.2	50.9	74	23.1	37.46	54	16.54	Pass
2337.72	55.17	74	18.83	42.71	54	11.29	Pass
2346.63	49.85	74	24.15	34.99	54	19.01	Pass
2353.89	49.25	74	24.75	36.14	54	17.86	Pass
2361.81	49.41	74	24.59	35.25	54	18.75	Pass
2369.51	47.96	74	26.04	36.19	54	17.81	Pass
2378.31	46.84	74	27.16	33.54	54	20.46	Pass
4802.00	63.22	74	10.78	53.83	54	0.17	Pass

Figure 15. Restricted Band Edge Spurious Emissions (Low Channel, 1Mbps)

	Peak		Peak	Avg		Avg	
Frequency	Reading	Peak Limit	Margin	Reading	Avg Limit	Margin	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
2310.55	43.05	74	30.95	30.88	54	23.12	Pass
2312.97	46.34	74	27.66	31.35	54	22.65	Pass
2313.96	47.36	74	26.64	32.23	54	21.77	Pass
2314.51	47.37	74	26.63	32.69	54	21.31	Pass
2315.06	44.49	74	29.51	32.37	54	21.63	Pass
2316.49	44.76	74	29.24	32.31	54	21.69	Pass
2318.03	43.55	74	30.45	30.67	54	23.33	Pass
2318.58	44.12	74	29.88	29.8	54	24.2	Pass
2319.24	44.03	74	29.97	29.26	54	24.74	Pass
2321.22	43.3	74	30.7	30.14	54	23.86	Pass
2321.77	43.92	74	30.08	30.91	54	23.09	Pass
2322.87	45.9	74	28.1	31.71	54	22.29	Pass
2323.64	44.26	74	29.74	32.18	54	21.82	Pass
2326.72	43.68	74	30.32	29.5	54	24.5	Pass
2327.27	44.02	74	29.98	29.38	54	24.62	Pass
2329.36	45.31	74	28.69	30.03	54	23.97	Pass
2330.24	43.62	74	30.38	31.62	54	22.38	Pass
2338.38	48.49	74	25.51	34.58	54	19.42	Pass
2349.49	42.65	74	31.35	28.17	54	25.83	Pass
4802.00	63.46	74	10.54	51.94	54	2.06	Pass

Figure 16. Restricted Band Edge Spurious Emissions (Low Channel, 2Mbps)

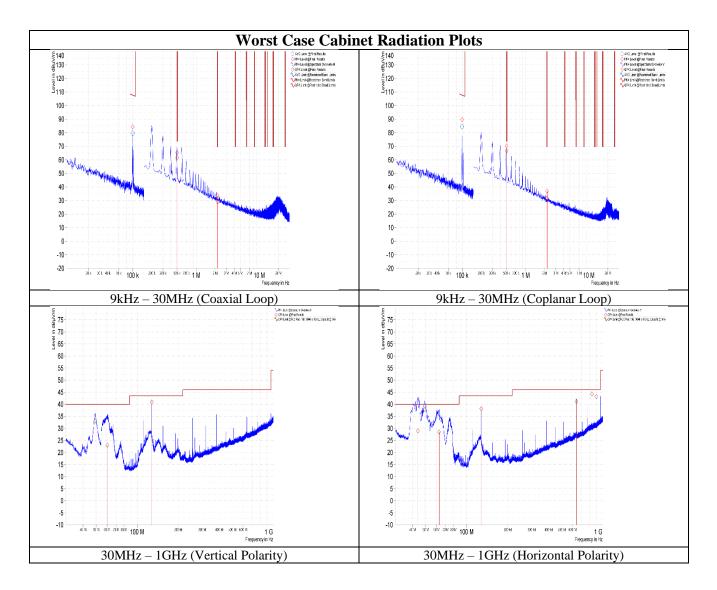
HID Global Corporation (US) HID Signo PIV Contact Reader

Frequency (MHz)	Peak Reading (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)	Avg Reading (dBuV/m)	Avg Limit (dBuV/m)	Avg Margin (dBuV/m)	Result
4877.00	62.33	74	11.67	52.71	54	1.29	Pass
7321.00	52.05	74	21.95	41.48	54	12.52	Pass

Frequency (MHz)	Peak Reading (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)	Avg Reading (dBuV/m)	Avg Limit (dBuV/m)	Avg Margin (dBuV/m)	Result
4877.00	59.88	74	14.12	50.00	54	4.00	Pass
7321.00	49.47	74	24.53	39.39	54	14.61	Pass

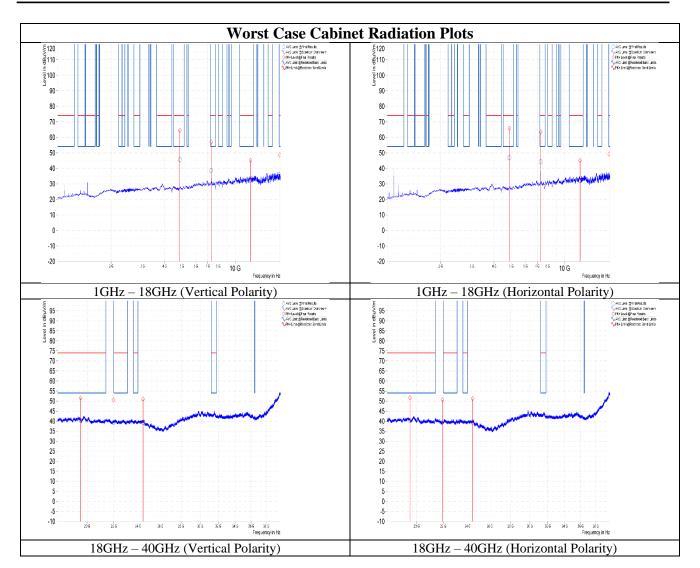
Figure 18. Restricted Band Edge Spurious Emissions (Mid Channel, 2Mbps)

	Peak		Peak	Avg		Avg	
Frequency (MHz)	Reading (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dBuV/m)	Result
2483.50	54.65	74	19.35	37.09	54	16.91	Pass
2484.10	53.34	74	20.66	35.12	54	18.88	Pass
4958.00	58.18	74	15.82	47.34	54	6.66	Pass
7439.00	50.21	74	23.79	38.92	54	15.08	Pass


Figure 19. Restricted Band Edge Spurious Emissions (High Channel, 1Mbps)

Frequency (MHz)	Peak Reading (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)	Avg Reading (dBuV/m)	Avg Limit (dBuV/m)	Avg Margin (dBuV/m)	Result
2483.50	52.41	74	21.59	39.51	54	14.49	Pass
2486.20	48.51	74	25.49	35.87	54	18.13	Pass
4958.00	56.19	74	17.81	46.31	54	7.69	Pass
7439.00	47.19	74	26.81	36.13	54	17.87	Pass

Figure 20. Restricted Band Edge Spurious Emissions (High Channel, 2Mbps)



Worst Case Cabinet Spurious Emissions

HID Global Corporation (US) HID Signo PIV Contact Reader Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

HID Global Corporation (US) HID Signo PIV Contact Reader

Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
0.099	84.30	107.68	23.37	11.31	Н	262	1	0.200	Pass
0.099	89.55	107.68	18.12	11.31	V	297.4	1	0.200	Pass
0.501	65.35	73.69	8.34	11.27	Н	264.4	1	9.000	Pass
0.501	70.22	73.69	3.47	11.27	V	310.8	1	9.000	Pass
2.184	33.50	69.54	36.04	11.69	Н	268	1	9.000	Pass
2.184	36.86	69.54	32.68	11.69	V	279.1	1	9.000	Pass
0.099	84.30	107.68	23.37	11.31	Н	262	1	0.200	Pass

Figure 21. Worst Case Cabinet Radiation, 9kHz - 30MHz

Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
43.830	28.99	40.00	11.01	-10.74	V	180.8	1.47	120.000	Pass
49.020	33.00	40.00	7.00	-12.85	Н	208.4	2.68	120.000	Pass
49.320	37.80	40.00	2.20	-12.81	V	83.6	1.1	120.000	Pass
60.390	22.99	40.00	17.01	-13.46	Н	255.4	2.85	120.000	Pass
62.730	28.44	40.00	11.56	-13.10	V	293.8	1.22	120.000	Pass
127.980	40.93	43.50	2.57	-6.34	Н	287.4	2.42	120.000	Pass
128.010	38.14	43.50	5.36	-6.75	V	37.2	0.99	120.000	Pass
639.990	41.16	46.00	4.84	2.58	V	179	0.99	120.000	Pass
831.990	44.26	46.00	1.74	5.43	V	16.7	1.06	120.000	Pass
896.010	43.17	46.00	2.83	6.61	V	6	0.99	120.000	Pass

Figure 22. Worst Case Cabinet Radiation, 30MHz - 1GHz

Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Result
4,880.000	65.37	74.00	8.63	41.11	54.00	12.89	-3.35	Н	96	2.98	Pass
4,880.000	62.38	74.00	11.62	38.79	54.00	15.21	-3.35	V	277.7	1.19	Pass
7,318.500	58.56	74.00	15.44	35.08	54.00	18.92	-2.80	Н	0.1	2.77	Pass
7,320.000	64.19	74.00	9.81	39.47	54.00	14.53	-2.79	V	332	1.49	Pass
12,219.000	45.23	74.00	28.77	32.28	54.00	21.72	-1.95	V	300.9	2.84	Pass
12,222.000	45.23	74.00	28.77	32.41	54.00	21.59	-1.96	Н	187.2	1.02	Pass
19,526.938	51.67	74.00	22.33	40.30	54.00	13.70	12.34	V	319.6	1.48	Pass
19,534.500	51.50	74.00	22.50	40.41	54.00	13.59	12.32	Н	178.8	4	Pass

Figure 23. Worst Case Cabinet Radiation, Above 1GHz

Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

MET Asset #	Description	Manufacturer	Model	Last Cal Date	Cal Due Date
1A1065	Receiver	Rohde & Schwarz	ESCI	08/20/2024	08/20/2025
1A1250	Receiver	Rohde & Schwarz	ESW44	04/08/2024	04/08/2025
1A1234	Signal Analyzer	Rohde & Schwarz	FSV40	01/23/2023	01/23/2025
1A1176	Active Loop Antenna (9KHz-30MHz)	ETS-Lindgren	6502	8/22/2024	8/22/2026
1A1147	Bi-Log Antenna	Suno Sciences Corp	JB3	04/06/2023	04/06/2025
1A1047	Horn Antenna (1GHz – 18GHz)	ETS - Lindgren	3117	06/26/2024	06/26/2025
1A1161	Horn Antenna (18GHz – 40GHz)	ETS Lindgren	3116C	08/01/2024	08/01/2026
1A1177	Pulse Limiter	Rohde & Schwarz	ESH3Z2	12/14/2023	12/14/2024
1A1122	LISN	TESEQ	NNB 51	09/21/2023	09/21/2024
1A1149	DC Milliohm Meter	GW Instek	GOM-802	09/20/2023	09/20/2024
1A1099	Generator	Com-Power	CGO-51000	See Note	
1A1088	Preamplifier	Rohde & Schwarz	TS-PR1	See Note	
1A1044	Generator	Com-Power	CG-520	See Note	
1A1073	Multi Device Controller	ETS	2090	See Note	
1A1074	System Controller	Panasonic	WV-CU101	See Note	
1A1080	Multi-Device	ETS	2090	See Note	
1A1180	Preamplifier	Miteq	AMF-7D- 01001800-22- 10P	See Note	

Table 17. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

Bluetooth Low Energy Test Report FCC Part 15.247 and RSS-247 Issue 3

End of Report