

FCC Test Report

FCC ID : 2AU6R04011

Equipment : 802.11be (WiFi 7) Triple-Radio PoE Access

Point

(Please refer to section 1.1.1 for more details)

Model No. : NWA130BE

(Please refer to section 1.1.1 for more details)

Brand Name : ZYXEL

Applicant : Zyxel Networks Corporation

Address : No.2 Industry East RD. IX, Hsinchu Science

Park, Hsinchu 30075, Taiwan, R.O.C

Standard : 47 CFR FCC Part 15.247

Received Date : Sep. 11, 2023

Tested Date : Nov. 24 ~ Dec. 26, 2023

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen // Assistant Manager Gary

Gary Chang / Manager

Report No.: FR391101AC Page: 1 of 22

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	10
1.3	Test Setup Chart	10
1.4	The Equipment List	12
1.5	Test Standards	13
1.6	Reference Guidance	13
1.7	Deviation from Test Standard and Measurement Procedure	13
1.8	Measurement Uncertainty	13
2	TEST CONFIGURATION	14
2.1	Testing Facility	14
2.2	The Worst Test Modes and Channel Details	14
3	TRANSMITTER TEST RESULTS	15
3.1	6dB and Occupied Bandwidth	15
3.2	Conducted Output Power	16
3.3	Power Spectral Density	17
3.4	Unwanted Emissions into Restricted Frequency Bands	18
3.5	Emissions in Non-Restricted Frequency Bands	20
3.6	AC Power Line Conducted Emissions	21
4	TEST I AROPATORY INFORMATION	22

- Appendix A. 6dB and Occupied Bandwidth
- **Appendix B. Conducted Output Power**
- **Appendix C. Power Spectral Density**
- Appendix D. Unwanted Emissions into Restricted Frequency Bands
- Appendix E. Emissions in Non-Restricted Frequency Bands
- **Appendix F. AC Power Line Conducted Emissions**

Release Record

Report No.	Version	Description	Issued Date
FR391101AC	Rev. 01	Initial issue	Feb. 07, 2024

Report No.: FR391101AC Page : 3 of 22

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emission	[dBuV]: 11.525MHz 45.24 (Margin -4.76dB) - AV	Pass
15.247(d) 15.209	Unwanted Emissions	[dBuV/m at 3m]: 2390.00MHz 53.90 (Margin -0.10dB) - AV	Pass
15.247(b)(3)	Conducted Output Power	Max Power [dBm]: Non-beamforming mode 27.39 Beamforming mode 23.79	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR391101AC Page: 4 of 22

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description
ZYXEL	NWA130BE	, , ,	The difference
ZYXEL	WBE530	802.11be (WiFi 7) Triple-Radio unified Access Point	between the two models is marketing purpose.

Note: The above models, model **NWA130BE** was selected as a representative one for the final test and only its data was recorded in this report.

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N⊤x)	Data Rate / MCS	
2400-2483.5	b	2412-2462	1-11 [11]	2	1-11 Mbps	
2400-2483.5	g	2412-2462	1-11 [11]	2	6-54 Mbps	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	2	MCS 0-15	
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	2	MCS 0-15	
2400-2483.5	ax (HE20)	2412-2462	1-11 [11]	2	MCS 0-11	
2400-2483.5	ax (HE40)	2422-2452	3-9 [7]	2	MCS 0-11	
2400-2483.5	be (EHT20)	2412-2462	1-11 [11]	2	MCS 0-13	
2400-2483.5	be (EHT40)	2422-2452	3-9 [7]	2	MCS 0-13	

Note 1: RF output power specifies that Maximum Conducted (Average) Output Power.

Note 2: DSSS-DBPSK, DQPSK, CCK modulation

OFDM- BPSK, QPSK, 16QAM, 64QAM, 1024QAM and 4096QAM modulation.

Note 3: 802.11 be supports beamforming function.

Report No.: FR391101AC Page: 5 of 22

1.1.3 Antenna Details

Ant.	Brand	Model	Type	Connector	Operating Frequencies (MHz) / Antenna Gain (dBi)
NO.					2400~2483.5
1	A riotatla	DEA 42422 V2	DIEA	I I E I	1.77
2		RFA-12123-V2	PIFA	UFL	1.27

1.1.4 Configuration of Equipment under Test (EUT)

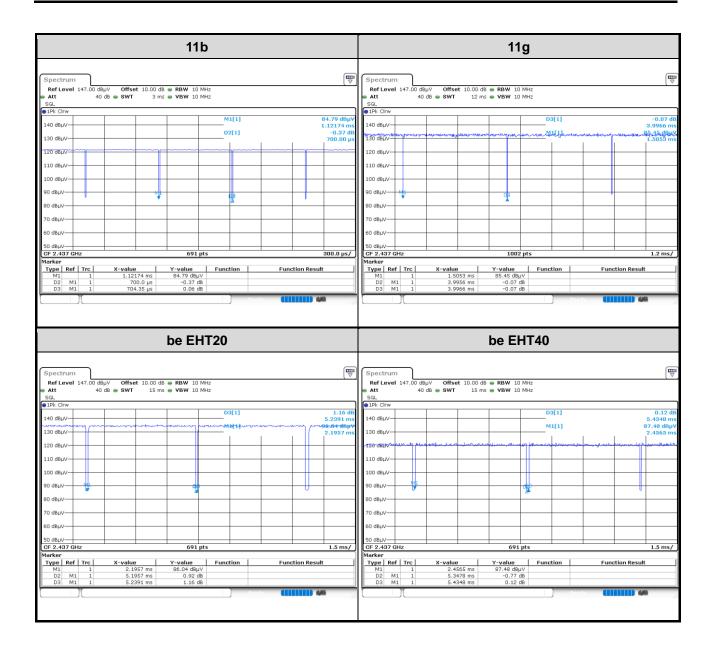
Power Supply Type	12Vdc from AC adapter 56Vdc from POE	
RU Configuration	☑ Full RU	☐ Partial RU

Note: The above power supplies are not bundled in market.

1.1.5 Accessories

N/A

Report No.: FR391101AC Page: 6 of 22


1.1.6 Channel List

Frequency	band (MHz)	2400~2483.5		
802.11 b / g / n HT20	/ ax HE20 / be EHT20	802.11n HT40 / ax HE40 / be EHT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
1	2412	3	2422	
2	2417	4	2427	
3	2422	5	2432	
4	2427	6	2437	
5	2432	7	2442	
6	2437	8	2447	
7	2442	9	2452	
8	2447			
9	2452			
10	2457			
11	2462			

1.1.7 Test Tool and Duty Cycle

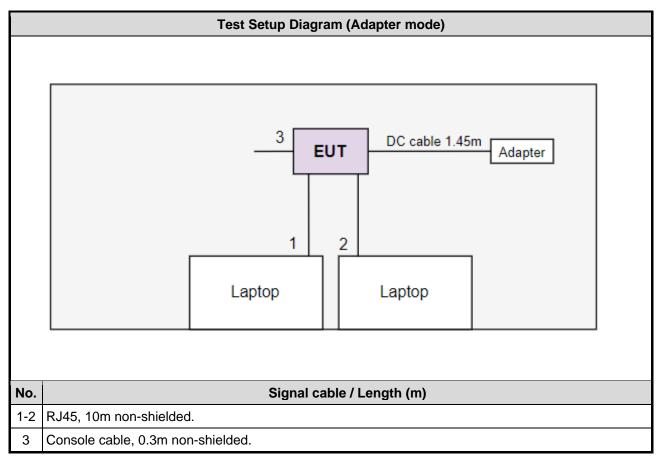
Test Tool	QSPR, Version: V5.14.00227.1				
	Mode	Duty Cycle (%)	Duty Factor (dB)		
	11b	99.38%	0.03		
Duty Cycle and Duty Factor	11g	99.97%	0.00		
	be EHT20	99.17%	0.04		
	be EHT40	98.40%	0.07		

Report No.: FR391101AC Page : 7 of 22

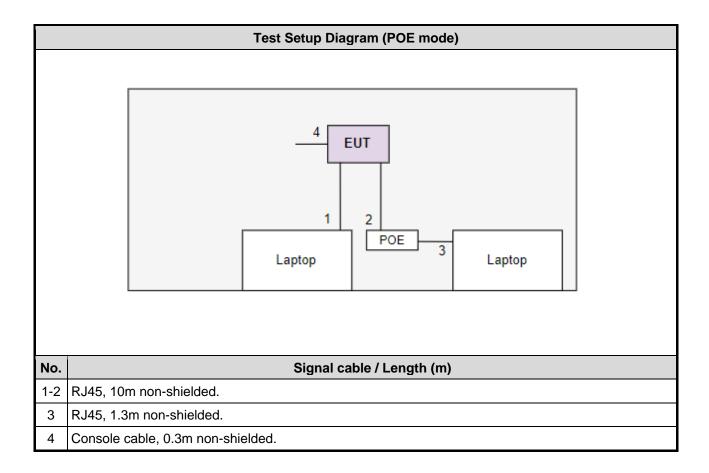
Report No.: FR391101AC Page: 8 of 22

1.1.8 Power Index of Test Tool

Modulation Mode	Test Frequency (MHz)	Power Index
11b	2412	24
11b	2437	24
11b	2462	23
11g	2412	23
11g	2437	24
11g	2462	21
be EHT20	2412	22.5
be EHT20	2437	24
be EHT20	2462	20
be EHT40	2422	19
be EHT40	2437	21
be EHT40	2452	20


Report No.: FR391101AC Page : 9 of 22

1.2 Local Support Equipment List


	Support Equipment List								
No.	No. Equipment Brand Model FCC ID Remarks								
1	Laptop	DELL	Vostro 5410	DoC					
2	Laptop	DELL	Latitude 5400	DoC					
3	POE	Zyxel	PoE12-60W		For POE mode only. (Provided by applicant.)				
4	Adapter	DVE	DSA-24PFS-12 FCA 120200		For Adapter mode only. (Provided by applicant.)				

1.3 Test Setup Chart

Report No.: FR391101AC Page: 10 of 22

Report No.: FR391101AC Page: 11 of 22

1.4 The Equipment List

Test Item Conducted Emission									
Test Site	Conduction room 1 / ((CO01-WS)							
Tested Date	Dec. 20, 2023	Dec. 20, 2023							
Instrument	Brand	Brand Model No. Serial No. Calibration Date Calibration Until							
Receiver R&S ESR3 101658 Feb. 17, 2023 Feb. 16									
LISN	LISN R&S ENV216 101579 May 09, 2023 Ma								
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 11, 2023	Oct. 10, 2024				
LISN (Support Unit)	SCHWARZBECK	Schwarzbeck 8127	8127667	Jan. 03, 2023	Jan. 02, 2024				
50 ohm terminal (Support Unit) NA 50 01 Jun. 14, 2023 Jun. 13, 202									
Measurement Software Sporton SENSE-EMI V5.11.6 NA NA									

Test Item	Radiated Emission					
Test Site	966 chamber3 / (03CH03-WS)					
Tested Date	Nov. 24 ~ Dec. 18, 2023					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Receiver	R&S	ESR3	101657	Mar. 03, 2023	Mar. 02, 2024	
Spectrum Analyzer	R&S	FSV40	101499	Mar. 16, 2023	Mar. 15, 2024	
Loop Antenna	R&S	HFH2-Z2	100330	Oct. 31, 2023	Oct. 30, 2024	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Jul. 04, 2023	Jul. 03, 2024	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Sep. 01, 2023	Aug. 31, 2024	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 30, 2023	Oct. 29, 2024	
Preamplifier	EMC	EMC02325	980187	Jul. 10, 2023	Jul. 09, 2024	
Preamplifier	EMC	EMC118A45SE	980897	Aug. 01, 2023	Jul. 31, 2024	
Preamplifier	EMC	EMC184045SE	980903	Jul. 17, 2023	Jul. 16, 2024	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 03, 2023	Oct. 02, 2024	
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Sep. 22, 2023	Sep. 21, 2024	
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Sep. 22, 2023	Sep. 21, 2024	
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Sep. 22, 2023	Sep. 21, 2024	
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Sep. 22, 2023	Sep. 21, 2024	
RF cable-8M	EMC	EMC104-SM-SM-80 00	181107	Sep. 22, 2023	Sep. 21, 2024	
HIGHPASS FILTER	WI	WHK3.1-18G-10SS	43	Sep. 27, 2023	Sep. 26, 2024	
Attenuator	Pasternack	PE7005-10	10-3	Sep. 27, 2023	Sep. 26, 2024	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	
Note: Calibration Interval of instruments listed above is one year.						

Report No.: FR391101AC Page : 12 of 22

Test Item	RF Conducted						
Test Site	TH01-WS)						
Tested Date	Dec. 16 ~ Dec. 26, 20	Dec. 16 ~ Dec. 26, 2023					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101910	Apr. 14, 2023	Apr. 13, 2024		
Power Meter	Anritsu	ML2495A	1241002	Nov. 21, 2023	Nov. 20, 2024		
Power Sensor	Anritsu	MA2411B	1207366	Nov. 21, 2023	Nov. 20, 2024		
Attenuator	Pasternack	PE7005-10	10-2	Oct. 05, 2023	Oct. 04, 2024		
Measurement Software	Sporton	SENSE-15247_DTS	V5.11	NA	NA		
Note: Calibration Inte	rval of instruments liste	d above is one year.		•			

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 FCC KDB 662911 D01 Multiple Transmitter Output v02r01

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty				
Parameters	Uncertainty			
Bandwidth	±34.130 Hz			
Conducted power	±0.808 dB			
Power density	±0.583 dB			
Conducted emission	±2.715 dB			
AC conducted emission	±2.92 dB			
Unwanted Emission ≤ 1GHz	±3.96 dB			
Unwanted Emission > 1GHz	±4.51 dB			

Report No.: FR391101AC Page: 13 of 22

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corporation
Test Site	CO01-WS, TH01-WS
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)
Test Site	03CH03-WS
Address of Test Site	No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

FCC Designation No.: TW0009FCC site registration No.: 207696

➤ ISED#: 10807C

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration		
Non-beamforming mode						
AC Power Line Conducted Emission	11b	2412	1 Mbps	1, 2		
Unwanted Emissions ≤ 1GHz	11b	2412	1 Mbps	1, 2		
Unwanted Emissions >1GHz Conducted Output Power 6dB bandwidth Power spectral density	11b 11g be EHT20 be EHT40	2412 / 2437 / 2462 2412 / 2437 / 2462 2412 / 2437 / 2462 2422 / 2437 / 2452	1 Mbps 6 Mbps MCS 0 MCS 0	2		
Beamforming mode						
Conducted Output Power	be EHT20 be EHT40	2412 / 2437 / 2462 2422 / 2437 / 2452	MCS 0 MCS 0	1, 2		

NOTE

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- Beamforming mode is calculated not measured. The calculation method is conducted power of non-beamforming 3.01 dB.
- 3. The EUT had been tested by following test configurations.
 - 1) Configuration 1: Adapter mode
 - 2) Configuration 2: POE mode

Report No.: FR391101AC Page: 14 of 22

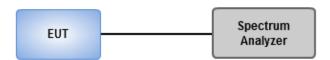
3 Transmitter Test Results

3.1 6dB and Occupied Bandwidth

3.1.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.1.2 Test Procedures


6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set resolution bandwidth (RBW) = 1% ~ 5 % of OBW, Video bandwidth = 3 x RBW
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.1.3 Test Setup

3.1.4 Test Results

	·	·	
Ambient Condition	21~22°C / 65~66%	Tested By	Akun Chung

Refer to Appendix A.

Report No.: FR391101AC Page: 15 of 22

3.2 Conducted Output Power

3.2.1 Limit of Conducted Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

Antenna gain > 6dBi

Non Fixed, point to point operations.

The conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB

Fixed, point to point operations

Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point Operations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Test Procedures

A broadband RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.2.3 Test Setup

3.2.4 Test Results

Ambient Condition 21~22°C / 65~66% Tested By Akun Chung

Refer to Appendix B.

Report No.: FR391101AC Page: 16 of 22

3.3 Power Spectral Density

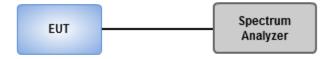
3.3.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.3.2 Test Procedures

Peak PSD

- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- 2. Detector = Peak, Sweep time = auto couple.
- 3. Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.


Average PSD, duty cycle ≥ 98%

- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- 2. Detector = RMS, Sweep time = auto couple.
- 3. Sweep time = auto couple.
- 4. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 5. Use the peak marker function to determine the maximum amplitude level.

Average PSD, duty cycle < 98%

- 1 Set the RBW = 3 kHz, VBW = 10 kHz
- 2 Detector = RMS, Sweep time = auto couple.
- 3 Sweep time = auto couple.
- 4 Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 5 Use the peak marker function to determine the maximum amplitude level.
- 6 Add 10 log (1/x), where x is the duty cycle.

3.3.3 Test Setup

3.3.4 Test Results

Ambient Condition 21~22°C / 65~66% Tested By Akun Chung

Refer to Appendix C.

Report No.: FR391101AC Page: 17 of 22

3.4 Unwanted Emissions into Restricted Frequency Bands

3.4.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

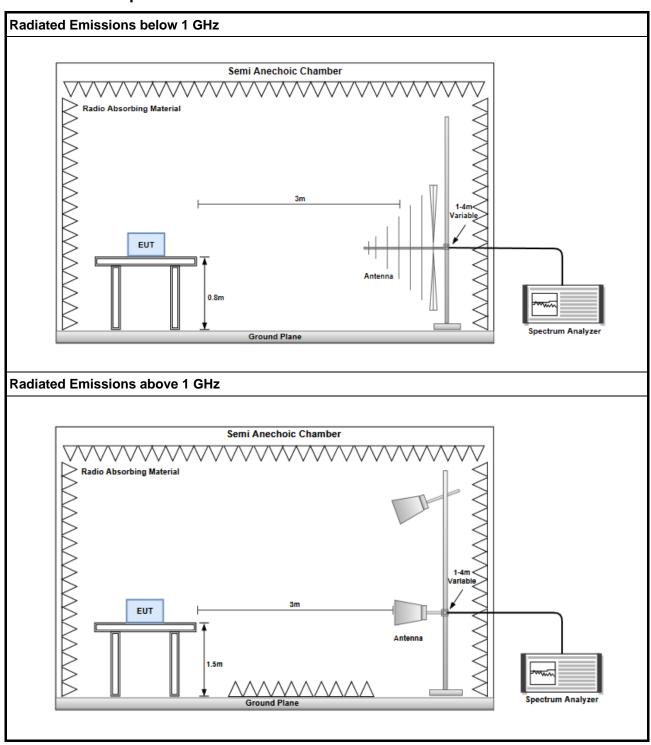
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.4.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR391101AC Page: 18 of 22

3.4.3 Test Setup

3.4.4 Test Results

Refer to Appendix D.

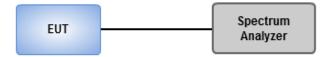
Report No.: FR391101AC Page: 19 of 22

3.5 Emissions in Non-Restricted Frequency Bands

3.5.1 Emissions in Non-Restricted Frequency Bands Limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.5.2 Test Procedures


Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.5.3 Test Setup

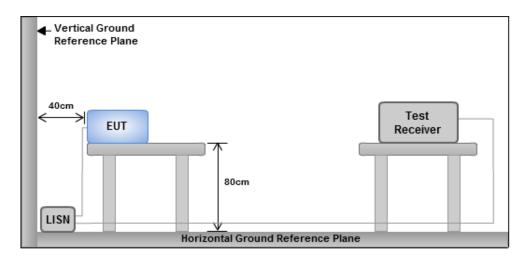
3.5.4 Test Results

Ambient Condition 21~22°C / 65~66%	Tested By	Akun Chung	
---	-----------	------------	--

Refer to Appendix E.

Report No.: FR391101AC Page: 20 of 22

3.6 AC Power Line Conducted Emissions


3.6.1 Limit of AC Power Line Conducted Emissions

Conducted Emissions Limit					
Frequency Emission (MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30	60	50			
Note 1: * Decreases with the logarithm of the frequency.					

3.6.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.6.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.6.4 Test Results

Refer to Appendix F.

Report No.: FR391101AC Page: 21 of 22

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666
No.3-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)
No.2-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC_Service@icertifi.com.tw

==END==

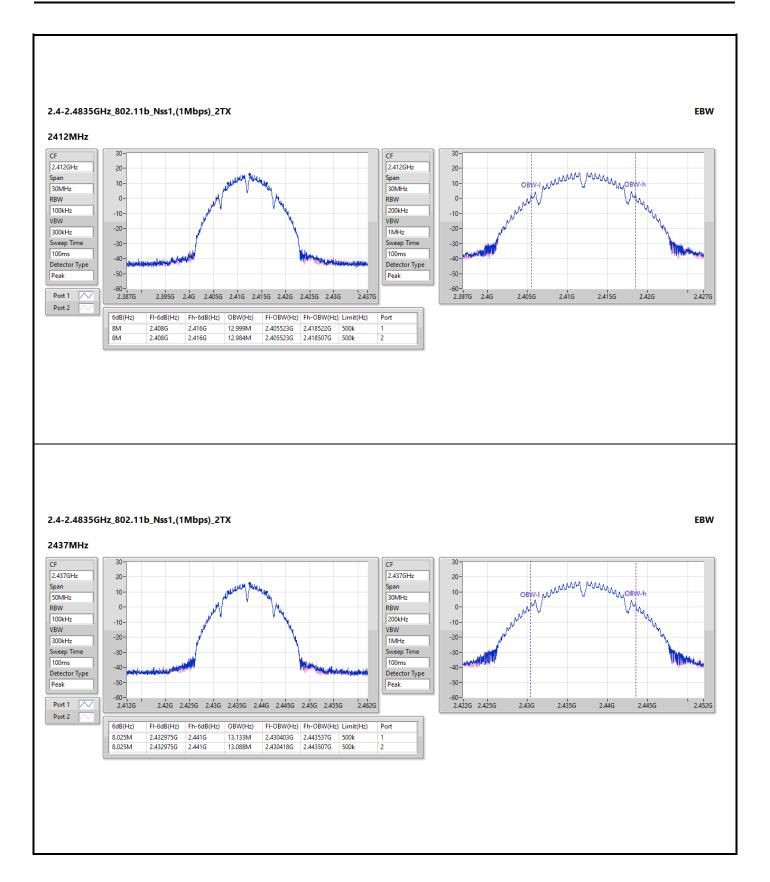
Report No.: FR391101AC Page: 22 of 22

6dB and Occupied Bandwidth

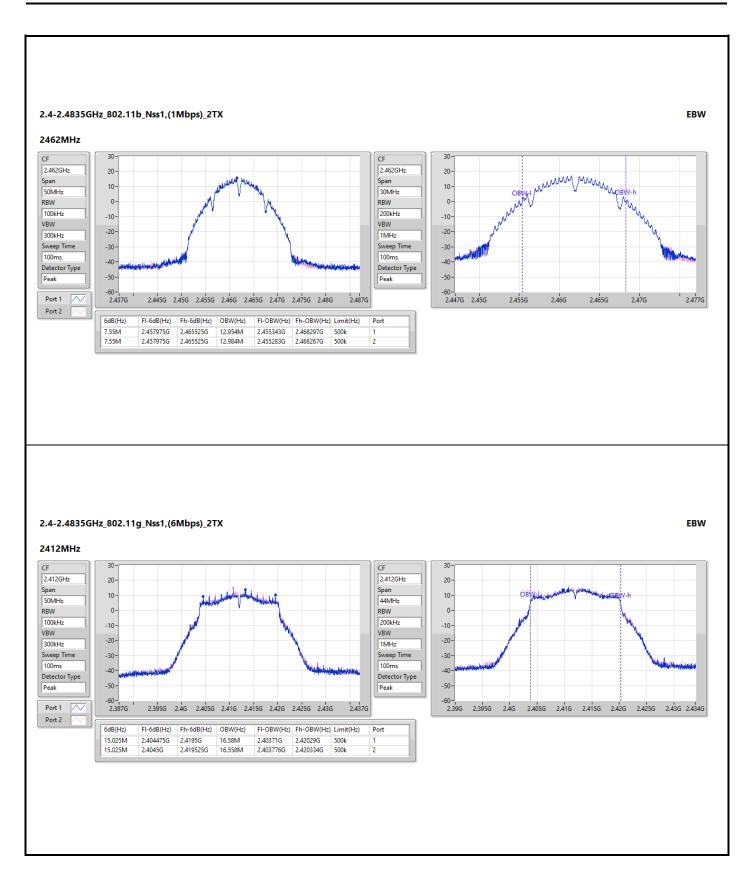
Appendix A

Summary

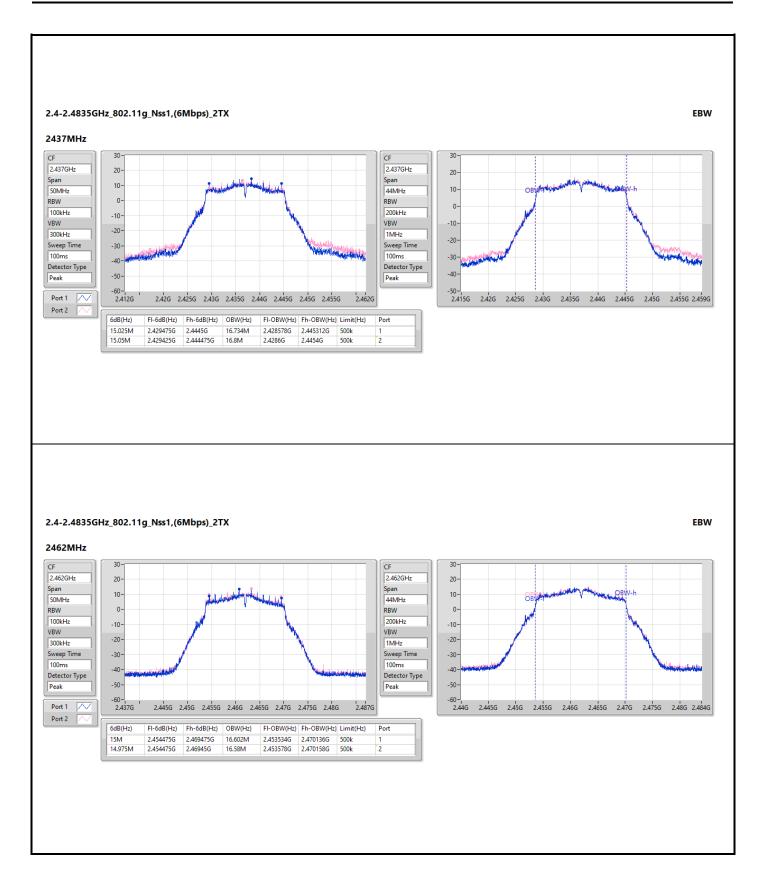
Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
802.11b_Nss1,(1Mbps)_2TX	8.025M	13.133M	13M1G1D	7.55M	12.954M
802.11g_Nss1,(6Mbps)_2TX	15.05M	16.8M	16M8D1D	14.975M	16.558M
802.11be EHT20_Nss1,(MCS0)_2TX	17.4M	18.991M	19M0D1D	13.675M	18.791M
802.11be EHT40_Nss1,(MCS0)_2TX	37.8M	37.931M	37M9D1D	28.85M	37.581M

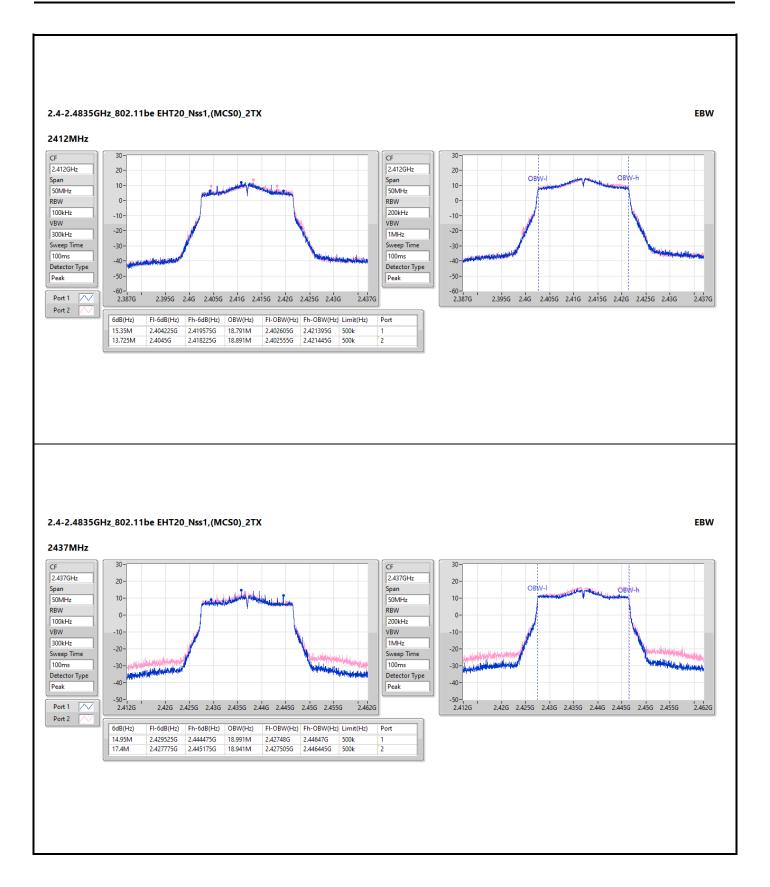

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth

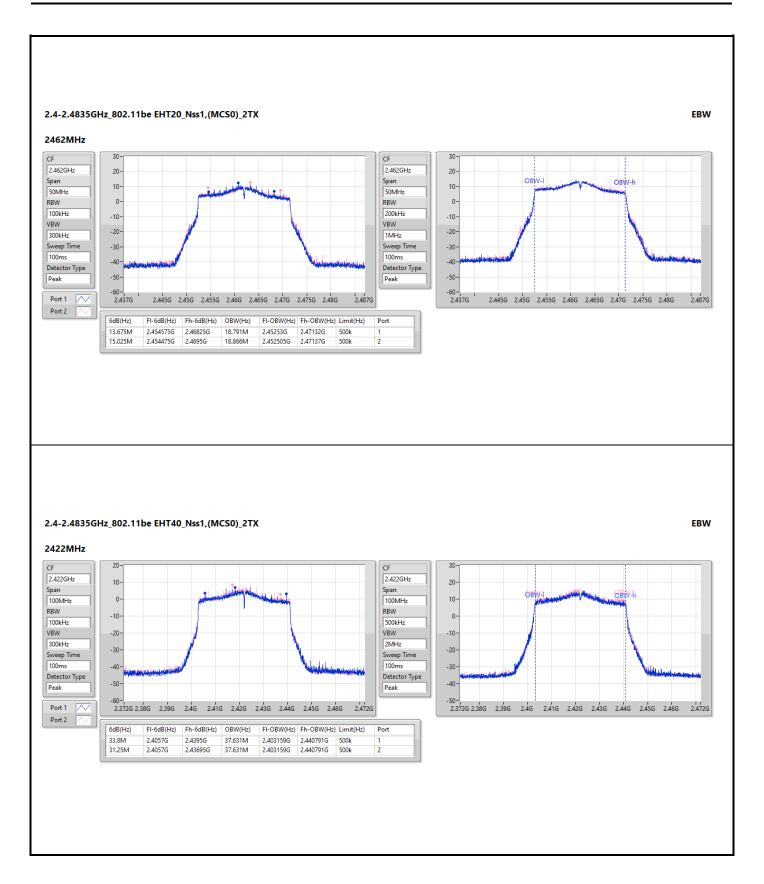
Result

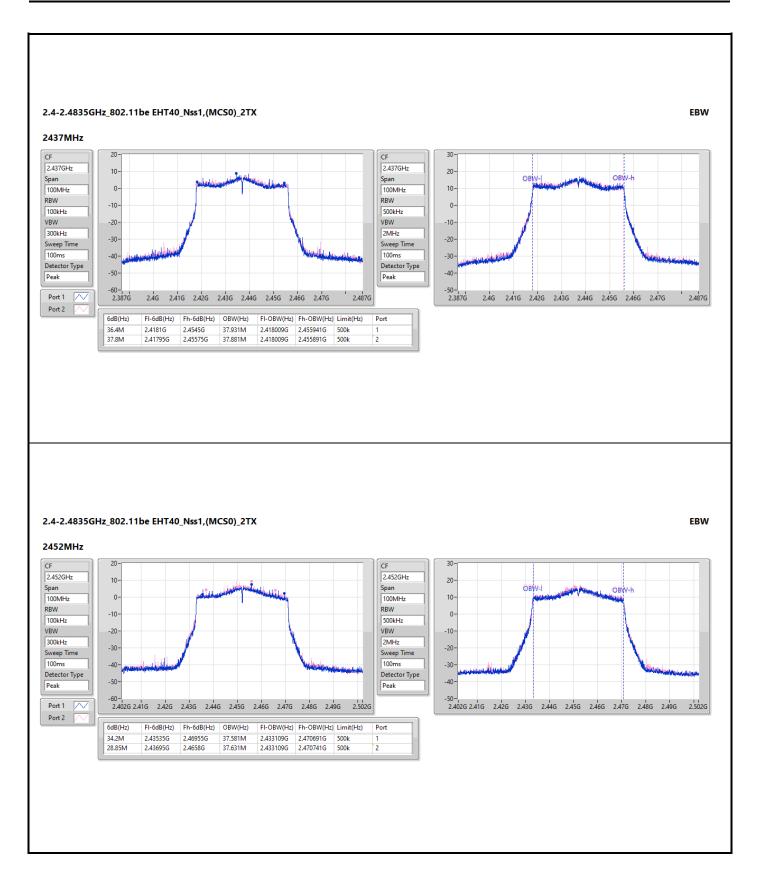

Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	8M	12.999M	8M	12.984M
2437MHz	Pass	500k	8.025M	13.133M	8.025M	13.088M
2462MHz	Pass	500k	7.55M	12.954M	7.55M	12.984M
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	15.025M	16.58M	15.025M	16.558M
2437MHz	Pass	500k	15.025M	16.734M	15.05M	16.8M
2462MHz	Pass	500k	15M	16.602M	14.975M	16.58M
802.11be EHT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	15.35M	18.791M	13.725M	18.891M
2437MHz	Pass	500k	14.95M	18.991M	17.4M	18.941M
2462MHz	Pass	500k	13.675M	18.791M	15.025M	18.866M
802.11be EHT40_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	500k	33.8M	37.631M	31.25M	37.631M
2437MHz	Pass	500k	36.4M	37.931M	37.8M	37.881M
2452MHz	Pass	500k	34.2M	37.581M	28.85M	37.631M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth









Conducted Output Power(Average)

Appendix B.1

Summary

Mode	Total Power	Total Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
802.11b_Nss1,(1Mbps)_2TX	27.39	0.54828
802.11g_Nss1,(6Mbps)_2TX	26.72	0.46989
802.11be EHT20_Nss1,(MCS0)_2TX	26.80	0.47863
802.11be EHT40_Nss1,(MCS0)_2TX	24.49	0.28119

Result

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit	EIRP	EIRP Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-	-	-
2412MHz	Pass	1.77	23.75	24.93	27.39	30.00	29.16	36.00
2437MHz	Pass	1.77	24.11	24.31	27.22	30.00	28.99	36.00
2462MHz	Pass	1.77	24.12	24.57	27.36	30.00	29.13	36.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-	-	-
2412MHz	Pass	1.77	22.78	23.38	26.10	30.00	27.87	36.00
2437MHz	Pass	1.77	23.35	24.04	26.72	30.00	28.49	36.00
2462MHz	Pass	1.77	22.07	22.53	25.32	30.00	27.09	36.00
802.11be EHT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
2412MHz	Pass	1.77	22.6	22.85	25.74	30.00	27.51	36.00
2437MHz	Pass	1.77	23.63	23.94	26.80	30.00	28.57	36.00
2462MHz	Pass	1.77	21.09	21.38	24.25	30.00	26.02	36.00
802.11be EHT40_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
2422MHz	Pass	1.77	19.61	20.26	22.96	30.00	24.73	36.00
2437MHz	Pass	1.77	21.32	21.63	24.49	30.00	26.26	36.00
2452MHz	Pass	1.77	20.62	21.03	23.84	30.00	25.61	36.00

DG = Directional Gain; Port X = Port X output power

Conducted Output Power(Average)

Appendix B.2

Summary

Mode	Total Power (dBm)	Total Power (W)	
2.4-2.4835GHz	-	-	
802.11be EHT20-BF_Nss1,(MCS0)_2TX	23.79	0.23933	
802.11be EHT40-BF_Nss1,(MCS0)_2TX	21.48	0.14060	

Result

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit	EIRP	EIRP Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
802.11be EHT20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
2412MHz	Pass	4.53	19.59	19.84	22.73	30.00	27.26	36.00
2437MHz	Pass	4.53	20.62	20.93	23.79	30.00	28.32	36.00
2462MHz	Pass	4.53	18.08	18.37	21.24	30.00	25.77	36.00
802.11be EHT40-BF_Nss1,(MCS0)_2TX	-	-	-	1	1	1	-	1
2422MHz	Pass	4.53	16.6	17.25	19.95	30.00	24.48	36.00
2437MHz	Pass	4.53	18.31	18.62	21.48	30.00	26.01	36.00
2452MHz	Pass	4.53	17.61	18.02	20.83	30.00	25.36	36.00

DG = Directional Gain; Port X = Port X output power

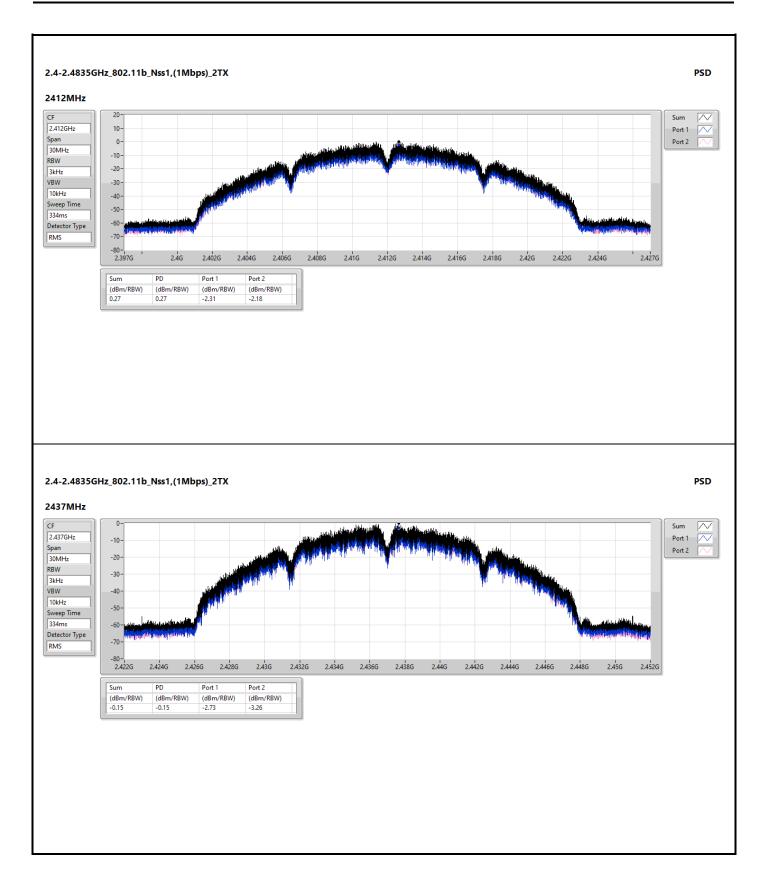
Directional gain = $10 * \log((10^{1.77/20} + 10^{1.27/20})^2/2) = 4.53$

Summary

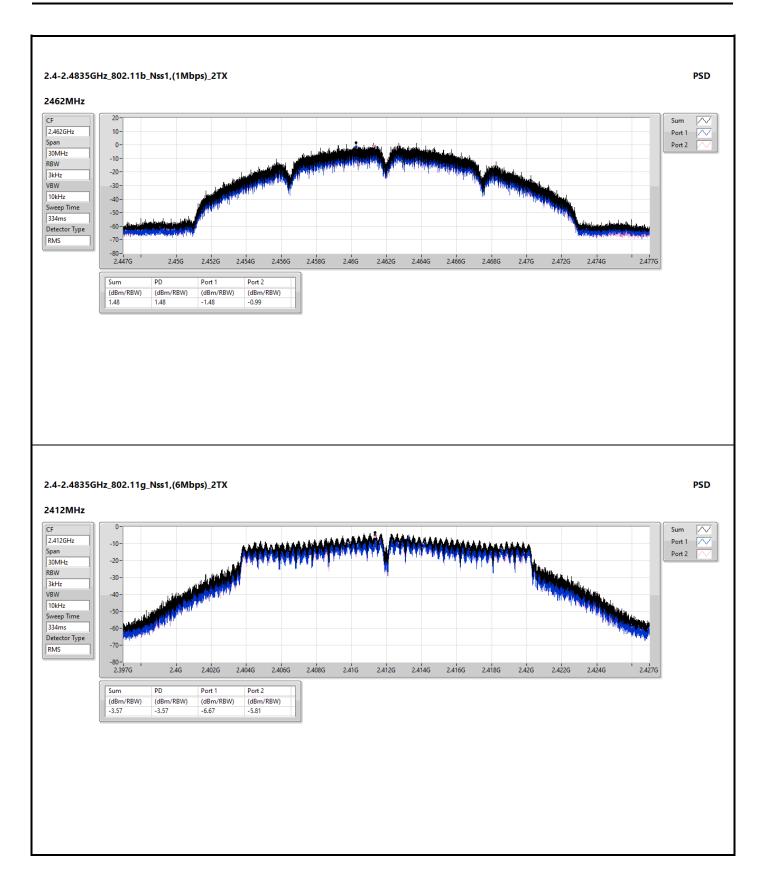
Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	-
802.11b_Nss1,(1Mbps)_2TX	1.48
802.11g_Nss1,(6Mbps)_2TX	-3.10
802.11be EHT20_Nss1,(MCS0)_2TX	-4.21
802.11be EHT40_Nss1,(MCS0)_2TX	-8.94

RBW = 3kHz;

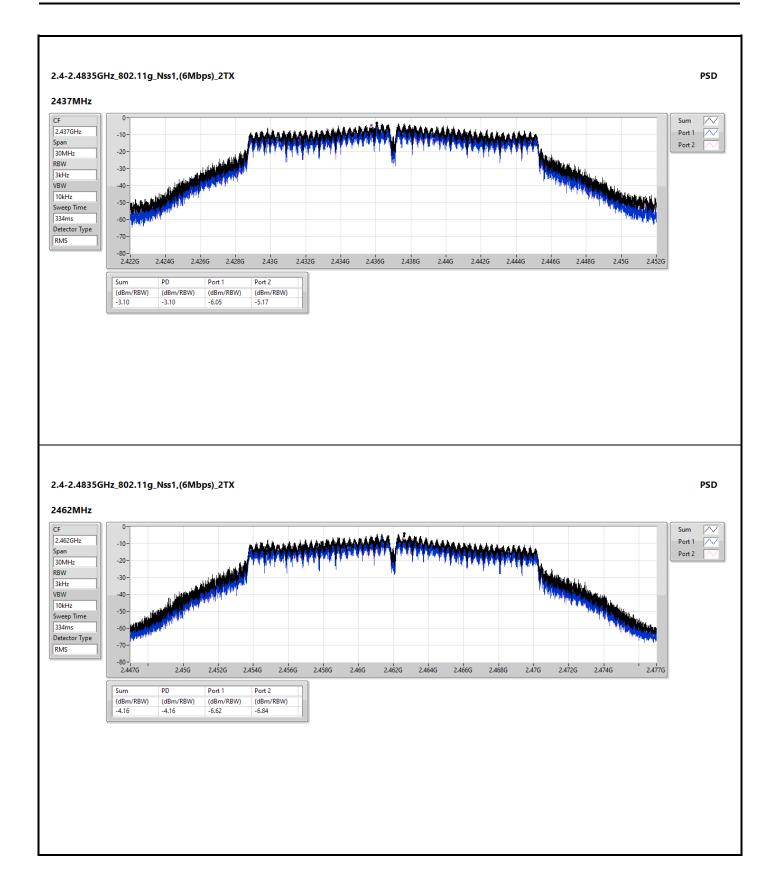
Result

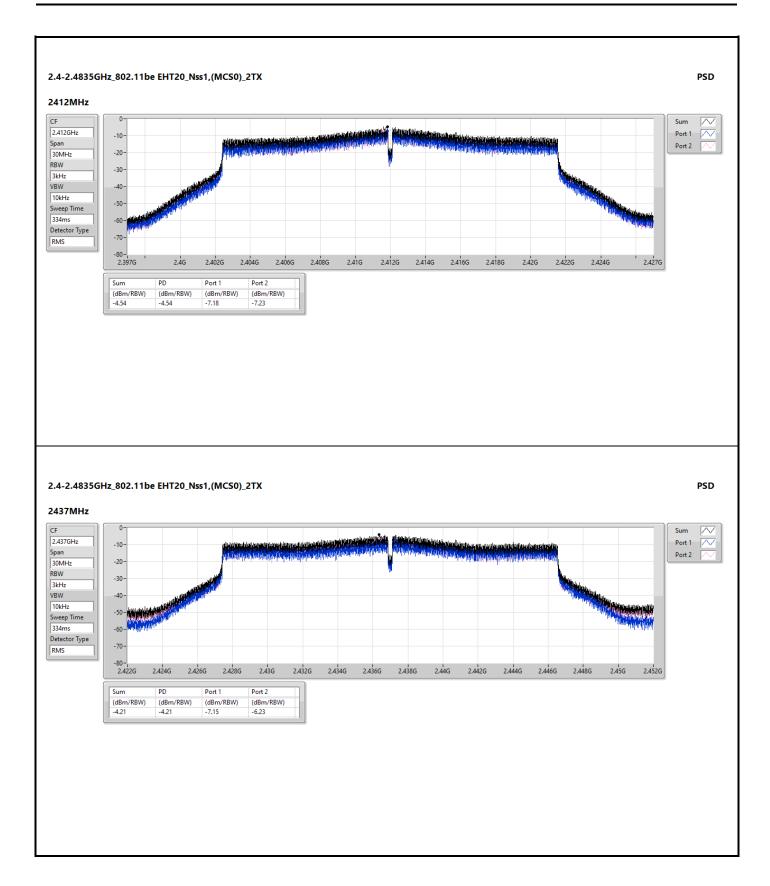

Mode	Result	DG	Port 1	Port 2	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	4.53	-2.31	-2.18	0.27	8.00
2437MHz	Pass	4.53	-2.73	-3.26	-0.15	8.00
2462MHz	Pass	4.53	-1.48	-0.99	1.48	8.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	4.53	-6.67	-5.81	-3.57	8.00
2437MHz	Pass	4.53	-6.05	-5.17	-3.10	8.00
2462MHz	Pass	4.53	-6.62	-6.84	-4.16	8.00
802.11be EHT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	4.53	-7.18	-7.23	-4.54	8.00
2437MHz	Pass	4.53	-7.15	-6.23	-4.21	8.00
2462MHz	Pass	4.53	-8.56	-8.93	-6.57	8.00
802.11be EHT40_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	4.53	-13.91	-12.49	-10.99	8.00
2437MHz	Pass	4.53	-12.33	-12.22	-9.82	8.00
2452MHz	Pass	4.53	-12.71	-11.30	-8.94	8.00

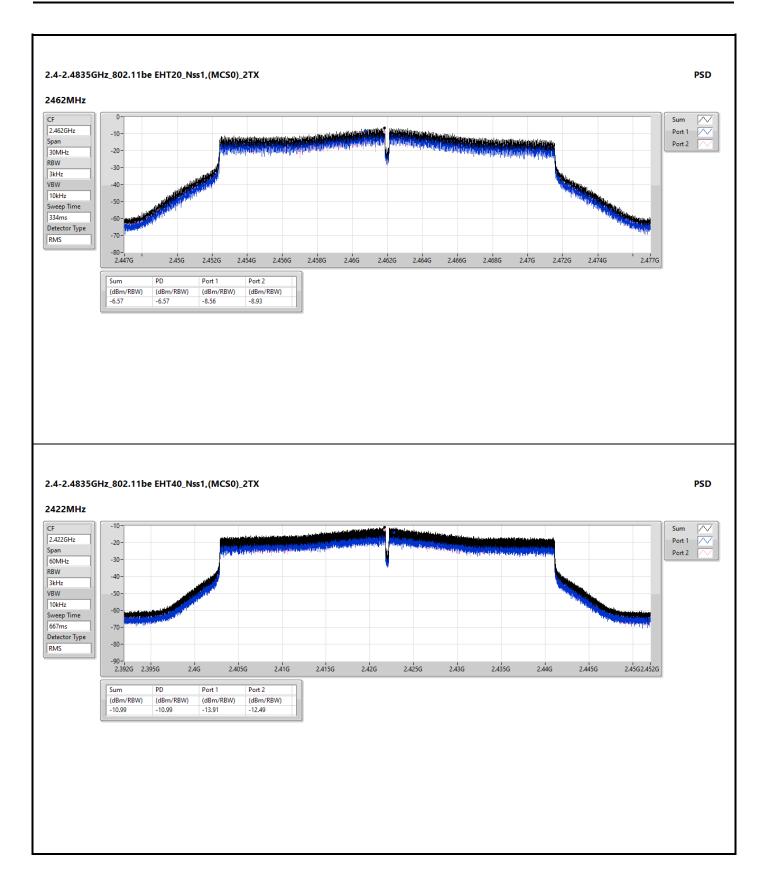
DG = Directional Gain; RBW = 3kHz;

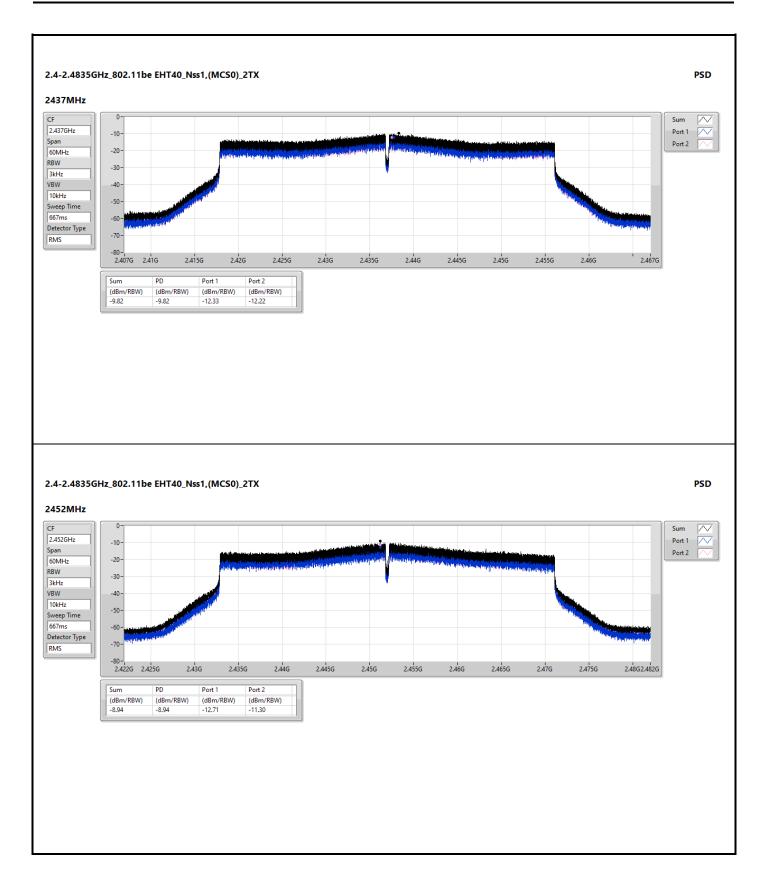

Directional gain = $10 * log((10^{1.77/20}+10^{1.27/20})^2/2) = 4.53$

PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;

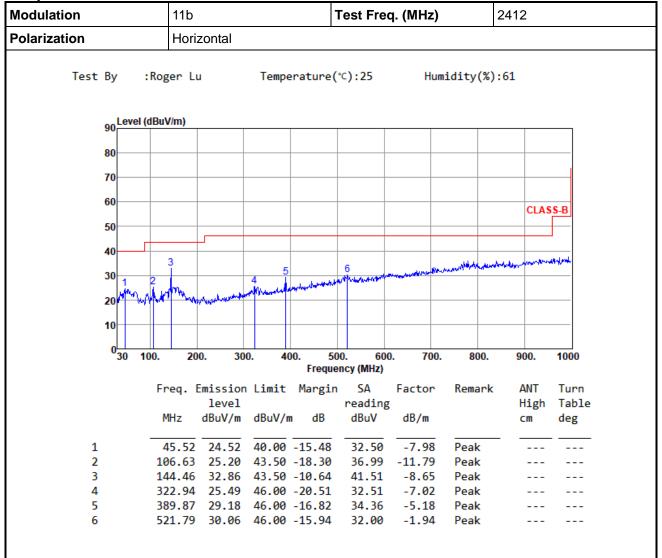








Report No.: FR391101AC Page No. : 6 of 7



Report No.: FR391101AC Page No. : 7 of 7

Unwanted Emissions (Below 1GHz)

Adapter mode

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

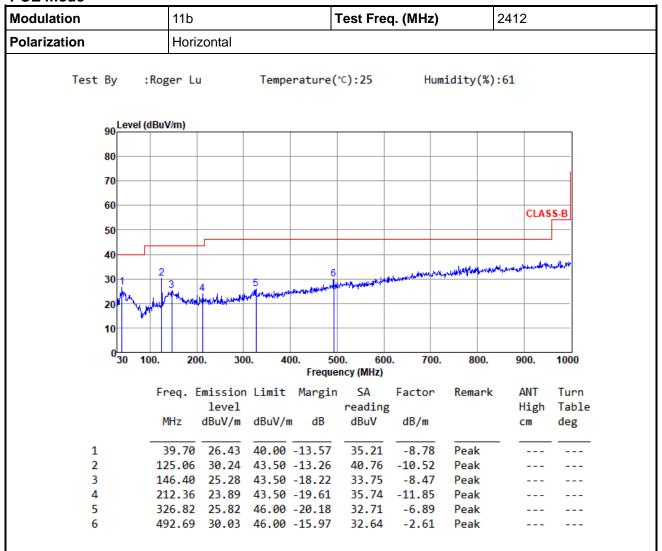
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR391101AC Page: 1 of 28

Modulation	11b	11b				q. (MHz)	2412				
Polarization	Vertio	Vertical									
Test By :	Roger Lu		Tempe	erature(℃):25	Hum	idity(%)	:61			
90 Level (d	IBuV/m)										
90											
80											
70											
60											
								CLAS	S-B		
50									_		
40											
2010	23		5		6	manufacture of the state of the	MANAGER CARRES	administration of the contract of the	or any other hands		
30	ı İva	4		contract for many states	A CHAINMAN	down and a					
20	Walson WHOM	and the second second	P-Withingtonia								
10											
0 30 10	00. 200). 300	0. 40	00. 50 Freque	0. 600 ncy (MHz)). 700.	800.	900.	1000		
	Freq. E	mission	Limit	Margin		Factor	Remark	ANT	Turn		
	·	level			reading			High	Table		
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB/m		cm	deg		
1	53.28	34.48	40.00	-5.52	42.57	-8.09	Peak				
2	125.06			-15.19	38.83	-10.52	Peak				
3	144.46			-12.35	39.80	-8.65	Peak				
4	290.93			-23.01	31.09	-8.10	Peak				
5	389.87			-17.19	33.99	-5.18	Peak				
6	514.03	30.68	46.00	-15.32	32.81	-2.13	Peak				

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR391101AC Page: 2 of 28

POE mode

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

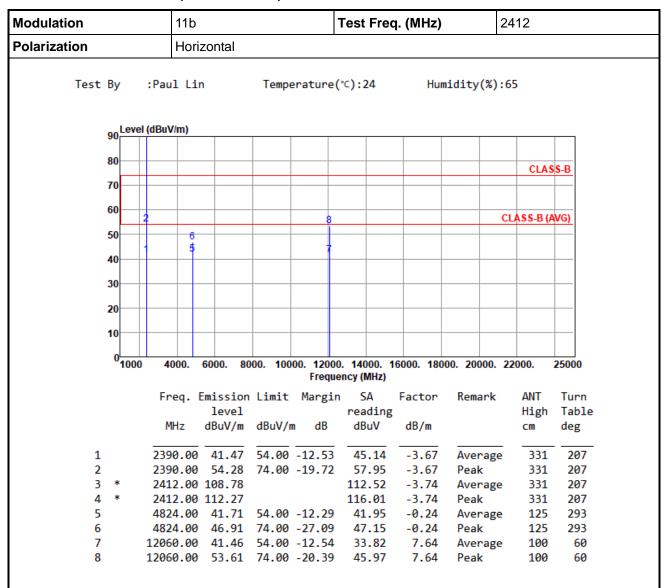
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR391101AC Page: 3 of 28

Modulation	Modulation 11b				Test Fred	q. (MHz)		2412		
Polarization	Vert	ical								
Test By :	Roger L	u	Tempe	erature((℃):25	Hum	idity(%)	:61		
90 Level (d	BuV/m)									
80										
70										
60										
								CLAS	S-B	
50										
40										
30	3			5	6	مهاسر الموسعة والمالية والمالية		entroment of the state of	pypore	
[17]	N. DANKANNA	4	A PROPERTY AND A PROP	AND THE PROPERTY OF	A Secretary of the second	, - ,				
20	L	Maylohamanan								
10										
0 <mark>30 10</mark>	0. 20	00. 30	0. 40		00. 600 ency (MHz)	. 700.	800.	900.	1000	
	Fred	Emission	limit			Factor	Remark	ANT	Turn	
		level		6=.	reading			High	Table	
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB/m		cm	deg	
1	40.67	35.89	40.00	-4.11	44.59	-8.70	Peak			
2	58.13			-10.19	38.26	-8.45	Peak			
3	125.06		43.50		39.28	-10.52	Peak			
4	206.54	22.92	43.50	-20.58	34.74	-11.82	Peak			
5	445.16	28.47	46.00	-17.53		-3.63	Peak			
6	521.79	20 08	46.00	16 00	31.92	-1.94	Peak			


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR391101AC Page: 4 of 28

Unwanted Emissions (Above 1GHz) for 11b

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 5 of 28

Modulation		11b			Test Fre	q. (MHz)		2412	
Polarization		Vertical							
Test By	:Pau	l Lin	Temp	perature	(°C):24	Hum	idity(%)	:65	
90 <mark>Le</mark>	vel (dBu\	//m)							
80-								CLAS	S-B
70									
60-	2			8				CLASS-B (A	WG)
50	1	5							
40									
30									-
20									
10									
0_10	00 4	000. 6000.	8000. 10	000. 1200	00. 14000.	16000. 1800	00. 20000.	22000.	2500

		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg
1		2390.00	43.17	54.00	-10.83	46.84	-3.67	Average	325	339
2		2390.00	55.65	74.00	-18.35	59.32	-3.67	Peak	325	339
3	*	2412.00	115.27			119.01	-3.74	Average	325	339
4	*	2412.00	118.77			122.51	-3.74	Peak	325	339
5		4824.00	44.45	54.00	-9.55	44.69	-0.24	Average	136	182
6		4824.00	48.98	74.00	-25.02	49.22	-0.24	Peak	136	182
7		12060.00	41.63	54.00	-12.37	33.99	7.64	Average	100	45
8		12060.00	53.69	74.00	-20.31	46.05	7.64	Peak	100	45

Frequency (MHz)

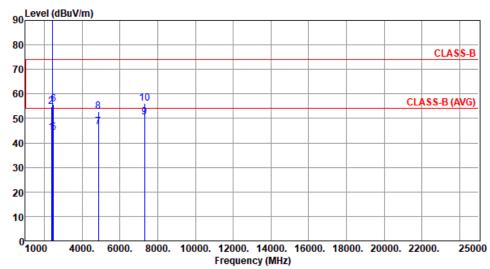
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency

Page: 6 of 28 Report No.: FR391101AC

Modulation		11b	11b Test Freq. (MHz) 2437							
Polarization		Horiz	zontal							
Test By	:Pau	ıl Lin	1	Temp	erature(℃):24	Hum	nidity(%):	65	
on Le	vel (dBu\	//m)								
80										
70									CLAS	S-B
60—	25								CLASS-B (A	WC)
50		8	11	0					CLA33-D (A	(VG)
40	15									
30-										
20										
10										
010	00 4	000.	6000.	8000. 100). 14000. 1 ency (MHz)	6000. 1800	00. 20000.	22000.	25000
	Fr	eq. E			Margin		Factor	Remark	ANT	Turn
	M	Mz	level dBuV/m	ı dBuV/	m dB	reading dBuV	dB/m		High cm	Table deg
1	239	0.00	42.60	54.00	-11.40	46.27	-3.67	Average	277	307
2			54.41		-19.59	58.08	-3.67	Peak	277	307
3 *			110.28			114.04	-3.76	Average		307
4 *			113.75		44 75	117.51	-3.76	Peak	277	307
5				54.00		46.10	-3.86	Average		307
6				74.00		58.28	-3.86	Peak	277	307
7				1 54.00	-9.16 -24.97	45.09 49.28	-0.25 -0.25	Average Peak	121 121	296 296
			44 11	1 /4 00	-/4 7/			CHAK	1/1	/ 710
8 9		1.00				40.83	5.16	Average		94

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency

Page: 7 of 28 Report No.: FR391101AC

Modulation	11b	Test Freq. (MHz)	2437
Polarization	Vertical		

Test By :Paul Lin Temperature(°C):24 Humidity(%):65

		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg
1		2390.00	44.14	54.00	-9.86	47.81	-3.67	Average	311	315
2		2390.00	54.94	74.00	-19.06	58.61	-3.67	Peak	311	315
3	*	2437.00	115.46			119.22	-3.76	Average	311	315
4	*	2437.00	119.00			122.76	-3.76	Peak	311	315
5		2483.50	44.06	54.00	-9.94	47.92	-3.86	Average	311	315
6		2483.50	55.71	74.00	-18.29	59.57	-3.86	Peak	311	315
7		4874.00	46.39	54.00	-7.61	46.64	-0.25	Average	100	211
8		4874.00	52.70	74.00	-21.30	52.95	-0.25	Peak	100	211
9		7311.00	50.36	54.00	-3.64	45.20	5.16	Average	236	340
10		7311.00	56.20	74.00	-17.80	51.04	5.16	Peak	236	340

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 8 of 28

Modulation		11b	11b Test Freq. (MHz) 2462								
Polarization		Horizontal									
Test By	:Pau	ul Li	n	Tempe	erature(°C):24	Hum	idity(%):	65		
an Le	vel (dBu	V/m)									
90		T									
80		+							CLAS	S-B	
70											
60-											
00	4		8					(CLASS-B (A	VG)	
50	+	6	+								
40											
20											
30											
20		-									
10											
0 <mark>1</mark> 0	00 4	1000.	6000. 8	000. 100			6000. 180	00. 20000.	22000.	25000	
	_					ncy (MHz)			****	_	
	FI	req.	level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table	
	N	MHz		dBuV/r	n dB	dBuV	dB/m		cm	deg	
1 *	24		400 73			443.50			272		
1 * 2 *			109.73 113.23			113.52 117.02	-3.79 -3.79	Average Peak	272 272	308 308	
3			43.10	54.00	-10.90	46.96	-3.79	Average		308	
4			55.33			59.19	-3.86	Peak	272	308	
5					-11.91	42.34	-0.25	Average		297	
6	492	24.00	47.29	74.00	-26.71	47.54	-0.25	Peak	119	297	
								_	4.00		
7	738	36.00	43.32	54.00	-10.68	38.29	5.03	Average	102	91	

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

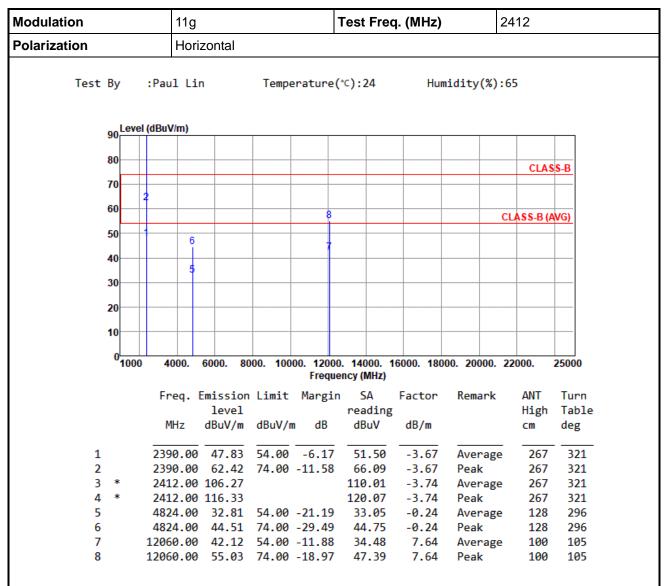
Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 9 of 28

Modulation	11b		Test Freq. (MHz) 24	2462						
Polarization	Vertical	Vertical									
Test By :	Paul Lin	Temperature	(°⊂): 24 Hu	umidity(%):65	;						
90 Level (d	BuV/m)										
30											
80					CLASS-B						
70											
60											
	6 7			CL	ASS-B (AVG)						
50	5										
40											
30											
20											
10											
0											
01000	4000. 6000.		0. 14000. 16000. 18 ency (MHz)	000. 20000. 22	000. 25000						
	Freq. Emissio	n Limit Margi	n SA Factor	Remark	ANT Turn						
	level		reading		High Table						
	MHz dBuV/n	ı dBuV/m dB	dBuV dB/m		cm deg						
1 *	2462.00 115.92		119.71 -3.79	Average	316 313						
	2462.00 119.52		123.31 -3.79	_	316 313						
		54.00 -6.96	50.90 -3.86		316 313						
	2483.50 58.26				316 313						
	4924.00 44.35 4924.00 49.06				100 208 100 208						
		54.00 -24.94 54.00 -5.00			244 345						
/	7,000.00 49.00	ששוכ- ששוויב י	43.3/ 3.03	Average	244 343						

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 10 of 28

Unwanted Emissions (Above 1GHz) for 11g

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 11 of 28

Modulation		11g		Test Freq.	Test Freq. (MHz)		
Polarization		Vertical					
Test By	/ :Pa	ul Lin	Temperature	e(°⊂):24	Humidity(%):65	
90	Level (dBu	V/m)					
80						CLASS-B	
70	1					CLASS-B	
60			8			CLASS-B (AVG)	
50		6				CLASS-B (AVO)	
40		<u> </u>		,			
30		5					
20							
40							

	1000	4000.	6000. 80	00. 1000	0. 12000.	14000. 1	16000. 1800	0. 20000.	22000.	25000
					Freque	ncy (MHz)				
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		cm	deg
1		2390.00	53.31	54.00	-0.69	56.98	-3.67	Average	317	322
2		2390.00	68.87	74.00	-5.13	72.54	-3.67	Peak	317	322
3	*	2412.00	110.98			114.72	-3.74	Average	317	322
4	*	2412.00	120.69			124.43	-3.74	Peak	317	322
5		4824.00	32.03	54.00	-21.97	32.27	-0.24	Average	102	13
6		4824.00	44.89	74.00	-29.11	45.13	-0.24	Peak	102	13
7		12060.00	42.01	54.00	-11.99	34.37	7.64	Average	100	48
8		12060.00	56.01	74.00	-17.99	48.37	7.64	Peak	100	48

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency

Page: 12 of 28 Report No.: FR391101AC

Modulation		11g				Test Fred	q. (MHz)	2	2437		
Polarization		Horizontal									
Test By		ul Lin	n	Tempe	erature((℃):24	Hum	idity(%):	65		
90 Le	vel (dBu	V/m)									
80									CLAS	S-B	
70											
60											
60	12		10					(CLASS-B (A	WG)	
50	+	8								-	
40			9								
		7									
30	+										
20	\bot										
10											
0 10	00 4	4000.	6000. 80	000. 100	00. 12000	D. 14000. 1	6000. 1800	00. 20000. 2	22000.	25000	
					Freque	ency (MHz)					
	F	req. I	Emission	Limit	Margir	s SA	Factor	Remark	ANT	Turn	
			level			reading			High	Table	
		MHz	dBuV/m	dBuV/r	n dB	dBuV	dB/m		CM	deg	
1	23	90.00	43.07	54.00	-10.93	46.74	-3.67	Average	324	320	
2			56.35		-17.65	60.02	-3.67	Peak	324	320	
3 *	24	37.00	105.79			109.55	-3.76	Average	324	320	
4 *	24	37.00	115.46			119.22	-3.76	Peak	324	320	
5	24	83.50	43.32	54.00	-10.68	47.18	-3.86	Average	324	320	
6	24	83.50	57.74	74.00	-16.26	61.60	-3.86	Peak	324	320	
7	48	74.00	33.73	54.00	-20.27	33.98	-0.25	Average	126	294	
8			45.71				-0.25	Peak	126	294	
9	73	11.00	41.09	54.00	-12.91	35.93	5.16	Average	102	358	

5.16 Peak

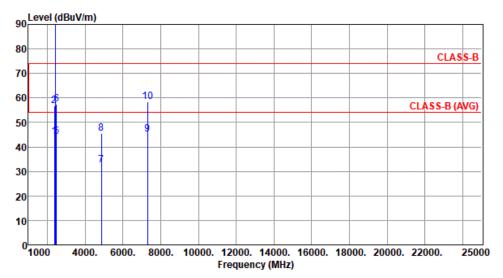
102

358

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7311.00 53.92 74.00 -20.08 48.76

Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency


10

Page: 13 of 28 Report No.: FR391101AC

Modulation	11g	Test Freq. (MHz)	2437
Polarization	Vertical		

Test By :Paul Lin Temperature(°C):24 Humidity(%):65

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		cm	deg
1		2390.00	44.10	54.00	-9.90	47.77	-3.67	Average	295	331
2		2390.00	56.79	74.00	-17.21	60.46	-3.67	Peak	295	331
3	*	2437.00	111.26			115.02	-3.76	Average	295	331
4	*	2437.00	121.01			124.77	-3.76	Peak	295	331
5		2483.50	44.15	54.00	-9.85	48.01	-3.86	Average	295	331
6		2483.50	57.60	74.00	-16.40	61.46	-3.86	Peak	295	331
7		4874.00	32.68	54.00	-21.32	32.93	-0.25	Average	102	9
8		4874.00	45.52	74.00	-28.48	45.77	-0.25	Peak	102	9
9		7311.00	45.22	54.00	-8.78	40.06	5.16	Average	237	115
10		7311.00	58.47	74.00	-15.53	53.31	5.16	Peak	237	115

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 14 of 28

Modulation		11g			Ţ	Test Fred	ą. (MHz)	2	2462			
Polarization		Horiz	zontal		•			,				
Test By		ul Lin	1	Tempe	erature(nidity(%):	65					
90 Level (dBuV/m)												
80												
70									CLAS	S-B		
	4											
60			8					(CLASS-B (A	VG)		
50		6										
40		+	+ 7									
30		╅										
20		++								-		
10												
0100	00 4	1000.	6000. 8	000. 100). 14000. 1 ency (MHz)	6000. 180	00. 20000.	22000.	25000		
	Fr	req. E	mission	n Limit	Margin	SA	Factor	Remark	ANT	Turn		
	N	ИНz	level dBuV/m	dBuV/r	n dB	reading dBuV	dB/m		High cm	Table deg		
1 *	246	52.00	104.88			108.67	-3.79	Average	310	316		
2 *	246	52.00	115.48			119.27	-3.79	Peak	310	316		
3					-5.55	52.31	-3.86	Average		316		
4			65.37			69.23	-3.86	Peak	310	316		
5 6					-22.70 -29.67	31.55 44.58	-0.25 -0.25	Average		297		
n	497	44.00	44.33	74.00	-29.0/	44.58	-0.75	Peak	100	297		
7					-16.72	32.25	5.03	Average	102	355		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 15 of 28

Modulation	11g	Test Freq. (MHz)	2462		
Polarization	Vertical				
Test By :Pau	ıl Lin Temperature	(°C):24 Humidity(%)	1:65		
90 Level (dBu\	V/m)				
80			CLASS-B		
70 4			CERSS-D		
60	8		CLASS-B (AVG)		
50	6 7				
40	5				
30					
10					
		0. 14000. 16000. 18000. 20000. ency (MHz)	22000. 25000		
	req. Emission Limit Margi	reading	ANT Turn High Table		

1	*	2462.00	110.41			114.20	-3.79	Average	276	310
2	*	2462.00	119.79			123.58	-3.79	Peak	276	310
3		2483.50	53.57	54.00	-0.43	57.43	-3.86	Average	276	310
4		2483.50	69.28	74.00	-4.72	73.14	-3.86	Peak	276	310
5		4924.00	31.34	54.00	-22.66	31.59	-0.25	Average	102	13
6		4924.00	44.34	74.00	-29.66	44.59	-0.25	Peak	102	13
7		7386.00	41.98	54.00	-12.02	36.95	5.03	Average	236	112
8		7386.00	55.30	74.00	-18.70	50.27	5.03	Peak	236	112

dBuV

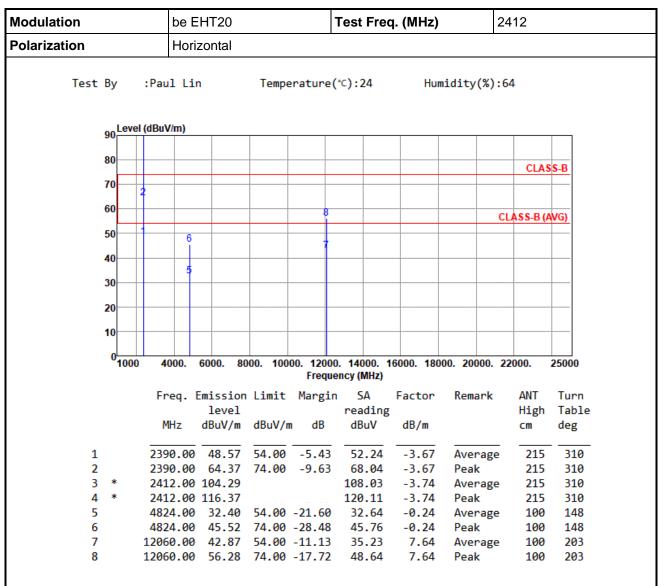
dB/m

deg

dB

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency


MHz

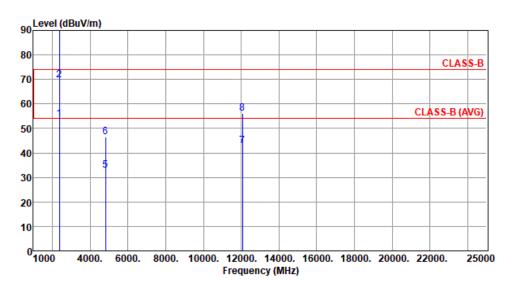
dBuV/m dBuV/m

Page: 16 of 28 Report No.: FR391101AC

Unwanted Emissions (Above 1GHz) for be EHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 17 of 28

Modulation	be EHT20		Test Freq	. (MHz)	2412
Polarization	Vertical				
Test By	:Paul lin	Temperature	(°c)·24	Humidity(%)	1:64

Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
	level			reading			High	Table
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		cm	deg

1		2390.00	53.90	54.00	-0.10	57.57	-3.67	Average	309	312
2		2390.00	69.62	74.00	-4.38	73.29	-3.67	Peak	309	312
3	*	2412.00	111.33			115.07	-3.74	Average	344	344
4	*	2412.00	123.50			127.24	-3.74	Peak	344	344
5		4824.00	33.00	54.00	-21.00	33.24	-0.24	Average	100	339
6		4824.00	46.60	74.00	-27.40	46.84	-0.24	Peak	100	339
7		12060.00	42.77	54.00	-11.23	35.13	7.64	Average	100	208
8		12060.00	56.20	74.00	-17.80	48.56	7.64	Peak	100	208

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 18 of 28

Modulation		be E	HT20			Test Fred	q. (MHz)		2437	
Polarization		Horiz	zontal							
Test By		an Yu		Tempe	erature	(°⊂):24	Hum	nidity(%)	:65	
90 Lev	rel (dBu\	//m)								
80										
70		+							CLAS	S-B
	6									
60	1		10						CLASS-B (A	(VG)
50	+	8	+							
40	-	++	3							
30		1								
20										
10										
0 <mark>100</mark>	00 4	1000.	6000. 8	000. 100		0. 14000. 1 ency (MHz)	16000. 180	00. 20000.	22000.	25000
	Fr	req. F		n Limit	Margi		Factor	Remark	ANT	Turn
			level		ID.	reading			High	Table
	ľ	MHz	qRnv/m	dBuV/r	u an	dBuV	dB/m		CM	deg
1	239	90.00	41.67	54.00	-12.33		-3.67	Average	208	331
2			58.21		-15.79		-3.67	Peak	208	331
3 *			105.12			108.88	-3.76	Average		308
4 *			116.28		2.00	120.04	-3.76	Peak	211	308
5				54.00			-3.86	Average		331
6				74.00			-3.86	Peak	208	331
7				54.00			-0.25	Average		248
8				74.00			-0.25	Peak	100	248
9				54.00			5.16	Average		359
10	/31	11.00	53./3	74.00	-20.27	48.57	5.16	Peak	100	359

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 19 of 28

7

8

9

10

Modulation			be I	EHT20				Test Fre	eq. (MHz)	2437		
Polarization			Vert	ical						•			
Test E	Зу	:Sea	an Yu	l		Tempe	rature	(°⊂):24	Hu	umidity(%)	:65		
,	90 Leve	l (dBu	V/m)							,			
	80												
		1									CLAS	S-B	
7	70	4											
(60	1-	_	1	10						C: 400 D //		
		5	+		+						CLASS-B (A	WG)	
5	50				9								
4	40	+-	+		+							-	
	30												
•	70												
2	20	+	+		+								
1	10				_							-	
	1000	4	1000.	6000.	80	00. 1000		0. 14000. ency (MHz)		000. 20000.	22000.	25000	
		Fr	req.	Emissi	on	Limit	Margi	n SA	Factor	Remark	ANT	Turn	
				leve			_	readin	g		High	Table	
		N	MHz	dBuV/	m	dBuV/m	dB	dBuV	dB/m		cm	deg	
1		230	99 90	46.6	2	54.00	-7 32	50.35	-3.67	Averag	e 312	314	
2						74.00				_	312	314	
3	*			112.1		•		115.95				314	
4	*	243	37.00	123.8	8			127.64	-3.76	Peak	312	314	
5		248	83.50	49.4	7	54.00	-4.53	53.33	-3.86	Averag	e 312	314	

-3.86

-0.25

-0.25

5.16

5.16

55.57

Peak

Peak

Peak

Average

Average

312

100

100

255

255

314

346

346

121

121

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

2483.50 68.51 74.00 -5.49 72.37

4874.00 34.32 54.00 -19.68 34.57

4874.00 47.48 74.00 -26.52 47.73

7311.00 45.90 54.00 -8.10 40.74

7311.00 60.73 74.00 -13.27

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 20 of 28

8

Modulation		be E	HT20			Test Fred	ղ. (MHz)		2462	
Polarization		Horiz	zontal							
Test By	:Pau	ul Lir	n	Tempe	rature	(°C):24	Hum	nidity(%)	:64	
90 <mark>Le</mark>	vel (dBu	V/m)								
80—										
70									CLAS	S-B
60	\prod								CLASS-B (A	WG)
50	3	6	8						CLN33-D (F	-
40		+	+ 7							
30		3								
20										
10										
0 <mark>0</mark> 10	00 4	000.	6000. 80	000. 100		0. 14000. 1 ency (MHz)	6000. 180	00. 20000.	22000.	25000
	Fr	req. E	Emission	Limit	Margin		Factor	Remark	ANT	Turn
	N	ИHz	level dBuV/m	dBuV/m	n dB	reading dBuV	dB/m		High cm	Table deg
1 *			102.38			106.17	-3.79	Average		334
2 *			114.32			118.11	-3.79	Peak	207	334
3			48.27			52.13	-3.86	Average		334
4				74.00	-9.39		-3.86	Peak	207	334
5			32.01				-0.25	Average		179
6	492	24.00	45.51	/4.00	-28.49	45.76	-0.25	Peak	100	179

34.26

5.03

5.03

Average

Peak

100

100

358

358

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7386.00 39.29 54.00 -14.71

7386.00 52.69 74.00 -21.31 47.66

Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency

Page: 21 of 28 Report No.: FR391101AC

Modulation		be	EHT2	20			Test F	req.	(MHz)		2462	
Polarization		Ve	rtical									
Test By			in		Tempe	erature	(°⊂):24		Hum	nidity(%):64	
90	Level	(dBuV/m)										
80												
	4										CLA	SS-B
70												
60	<u> </u>	3		-8-							CLASS-B (AVG)
50			6	-								
40												
			5									
30												
20												+
10												-
0	1000	4000.	6000	. 80	00. 100		0. 14000 ency (MH		000. 180	00. 20000	. 22000.	25000
		Freq.	Emis	sion	Limit	Margi	n SA	ı	Factor	Remark	ANT	Turn
		MII		vel	4D. 377	- 40	readi		4D (High	
		MHz	abu	V/m	aBuv/i	m dB	dBuV	1	dB/m		CM	deg
1 *		2462.0	0 109	.61			113.4		-3.79	Averag	•	313
2 *		2462.0			E4 00	0.40	125.3		-3.79	Peak	321	313
3 4		2483.5 2483.5			54.00 74.00	-0.12 -4.01			-3.86 -3.86	Averag Peak	ge 321 321	313 313
5		4924.0				-21.80			-0.25	Averag		
6		4924.0				-28.53			-0.25	Peak	100	155
7		7386.0	0 43	.45		-10.55			5.03	Averag		120
_		7700		40	74 00	46 54					0.50	400

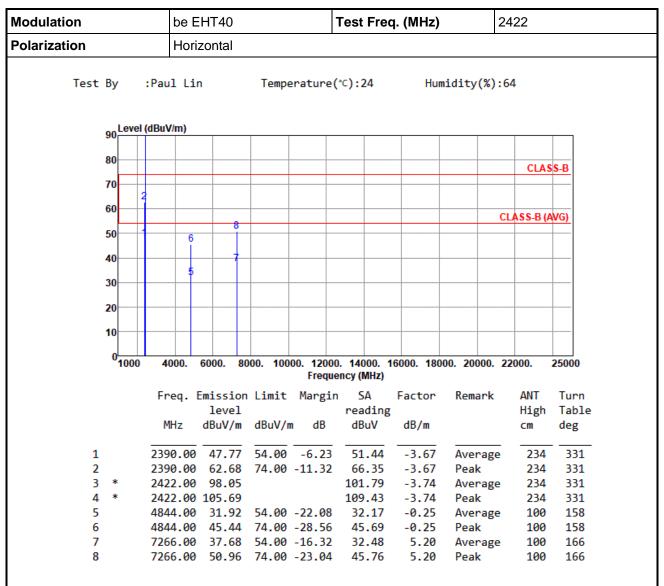
5.03

Peak

253

120

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


7386.00 57.49 74.00 -16.51 52.46

Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency

Page: 22 of 28 Report No.: FR391101AC

Unwanted Emissions (Above 1GHz) for be EHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 23 of 28

3

4

5

6

7

8

Modulation	be EHT40		Test Freq. (MHz)	2422	2422		
Polarization	Vertical						
Test By :F	aul Lin	Temperature	(°⊂):24 Humi	idity(%):64			
90 Level (di	BuV/m)				\neg		
80				CLAS	. D		
70 2				CLAS	<u>5-B</u>		
60	8			CLASS-B (A	VG)		
50	6			CEASO-D (A			
40	1 7						
30	5						
20							
10							
0 <mark></mark> 1000	4000. 6000.		0. 14000. 16000. 1800 ency (MHz)	0. 20000. 22000.	25000		
	Freq. Emissio	on Limit Margi		Remark ANT High	Turn Table		
		dBuV/m dB	dBuV dB/m	CM	deg		
1 2	390.00 53.89	54.00 -0.11	57.56 -3.67	Average 300	319		

72.29

108.08

119.92

32.28

45.73

35.42

49.47

-3.67

-3.74

-3.74

-0.25

-0.25

5.20

5.20

Peak

Peak

Peak

Peak

Average

Average

Average

300

327

327

100

100

220

220

319

345

345

147

147

123

123

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

2390.00 68.62 74.00 -5.38

4844.00 32.03 54.00 -21.97

4844.00 45.48 74.00 -28.52

7266.00 40.62 54.00 -13.38

7266.00 54.67 74.00 -19.33

2422.00 104.34

2422.00 116.18

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 24 of 28

Modulation	be E	HT40			Test Fred	q. (MHz)	2437						
Polarization			Hori	Horizontal									
Test By :Sea			:Sean Yu		Tempe	erature((°⊂):24	Hum	idity(%):	65			
	an L	evel (dBuV/m)										
	80-									CLAS			
7	70									CLAS	5-B		
	60	2	6										
	L 50			10						CLASS-B (A	(VG)		
	40-		8	9									
	30-		7										
7	20												
1	10												
	0 1	000	4000.	6000. 80	000. 100		0. 14000. 1 ency (MHz)	16000. 180	00. 20000.	22000.	25000		
			Freq.	Emission	limit			Factor	Remark	ANT	Turn		
				level		62.	reading			High	Table		
			MHz	dBuV/m	dBuV/r	n dB	dBuV	dB/m		cm	deg		
1			2390.00			-8.30	49.37	-3.67	Average		321		
2			2390.00		74.00	-13.83	63.84	-3.67	Peak	234	321		
3	*		2437.00				102.88	-3.76	Average		321		
4	*		2437.00		E4 00	7.05	114.67	-3.76	Peak	234	321		
5			2483.50					-3.86	Average		321		
6 7			2483.50 4874.00					-3.86	Peak	234	321 179		
8			4874.00					-0.25 -0.25	Average Peak	100 100	179		
9			7311.00					5.16	Average		358		
, ,			/311.00	50.01	34.00	-13.35	33.43	3.10	Average	100	550		

7311.00 52.58 74.00 -21.42 47.42 5.16 Peak

100

358

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency

10

Page: 25 of 28 Report No.: FR391101AC

Modulation		be EHT40 Test Freq. (MHz) 2437								
Polarization	Vertical									
Test By	:Se	an Yu		Tempe	erature(℃):24	idity(%):):65		
90 <mark>Le</mark>	vel (dBu	V/m)								
80									CLAS	S-B
70	4									
60-										
_	↓		10						LASS-B (A	VG)
50		8								
40-			9							
		17								
30—										
20	_									
40										
10										
0 10	00 4	4000.	6000. 80	000. 100	00. 12000	. 14000. 1	6000. 1800	00. 20000. 2	22000.	25000
					Freque	ncy (MHz)				
	F	req. I	Emission	Limit	Margin		Factor	Remark	ANT	Turn
			level			reading			High	Table
		MHz	dBuV/m	dBuV/r	n dB	dBuV	dB/m		CM	deg
1	23	90.00	51.16	54.00	-2.84	54.83	-3.67	Average	294	307
2			67.17	74.00		70.84	-3.67	Peak	294	307
3 *	24	37.00	105.92			109.68	-3.76	Average	294	334
4 *	24	37.00	117.77			121.53	-3.76	Peak	294	334
5	24	83.50	53.70	54.00	-0.30	57.56	-3.86	Average	318	327
6	24	83.50	69.94	74.00	-4.06	73.80	-3.86	Peak	318	327
7	48	74.00	32.01	54.00	-21.99	32.26	-0.25	Average	100	188
		74 00	46.49	74 00	27 61	16 71	-0.25	Peak	100	188
8	48	74.00	40.49	74.00	-2/.51	46.74	-0.25	reak	100	T00

5.16 Peak

253

129

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7311.00 54.41 74.00 -19.59 49.25

Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"" is Peak / Average value of fundamental frequency

10

Page: 26 of 28 Report No.: FR391101AC

Modulation	be E	HT40		7	Test Fred	2452				
Polarization	Horizontal									
Test By	an Yu		Tempe	erature(°C):24	Hum	nidity(%):	65		
an Le	evel (dBu	V/m)								
90										
80									CLAS	S-B
70										
60	4									
	\perp							(CLASS-B (A	(VG)
50	╅	6								
40										
30		5								
30										
20		+++								
10		_							-	
0										
0 10	000 4	1000.	6000. 8	000. 100		. 14000. 1 ncy (MHz)	6000. 180	00. 20000.	22000.	25000
	E,	rea	Emission	limit	Margin		Factor	Remark	ANT	Turn
		cq.	level	LIMIT	riai giii	reading		Remark	High	Table
	1	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB/m		cm	deg
1 *	24	52.00	98.53			102.30	-3.77	Average	312	312
2 *	24	52.00	110.80			114.57	-3.77	Peak	312	312
3			47.62			51.48	-3.86	Average		336
4			60.12			63.98	-3.86	Peak	333	336
5					-22.09		-0.25	Average		176
6					-28.82		-0.25	Peak	100	176
	771	CC 00	20 22	5/1 00	-15.68	22 27	5.05	Average	100	176
7 8			52.08		-21.92	33.27 47.03	5.05	Peak	100	176

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

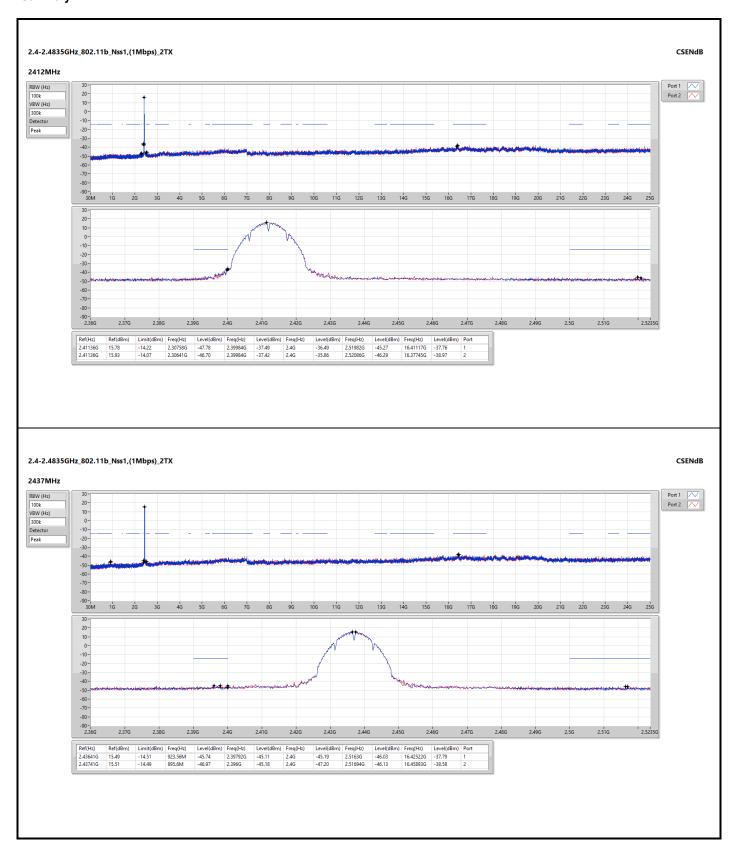
Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR391101AC Page: 27 of 28

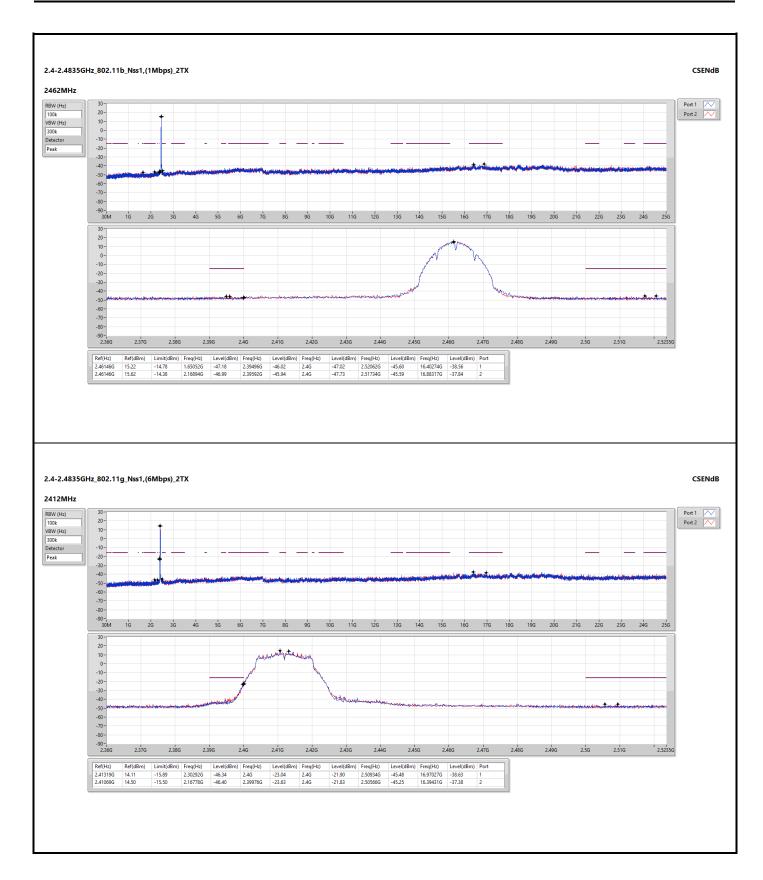
Modulation	be E	HT40		-	Test Fred	q. (MHz)	2452			
Polarization	Vertical									
Test By	:Sea	an Yu		Tempe	erature(℃):24	65			
on Le	vel (dBu	V/m)								
80									CLAS	S-B
70—	4	-								-
60 —										
		+	8						CLASS-B (A	(VG)
50		6	1							
40		+								
30—		5								
20										
20										
10	_	+								_
0_10	00 4	1000.	6000. 80	000. 100	00. 12000). 14000. 1	6000. 180	00. 20000.	22000.	25000
						ency (MHz)				
	Fr	req.	Emission	Limit	Margin		Factor	Remark	ANT	Turn
			level	ID. V	40	reading			High	Table
	r	ИHz	dBuV/m	aBuv/r	n dB	dBuV	dB/m		CM	deg
1 *	245	52.00	105.53			109.30	-3.77	Average	312	312
2 *	245	52.00	117.80			121.57	-3.77	Peak	312	312
3			53.62			57.48	-3.86	Average	333	336
4	248	33.50	66.12	74.00	-7.88	69.98	-3.86	Peak	333	336
5	496	14.00	31.86	54.00	-22.14	32.11	-0.25	Average	100	206
	400	M OO	45.13	74.00	-28.87	45.38	-0.25	Peak	100	206
6	496	74.00	75.15							
6 7			40.52				5.05	Average	251	131

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

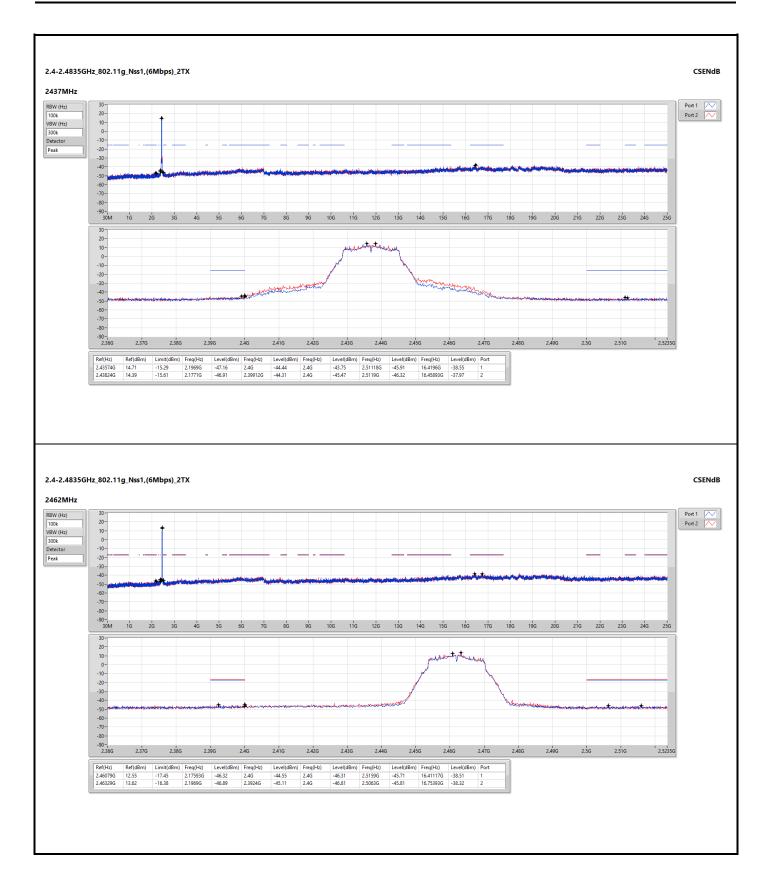
*Factor includes antenna factor, cable loss and amplifier gain

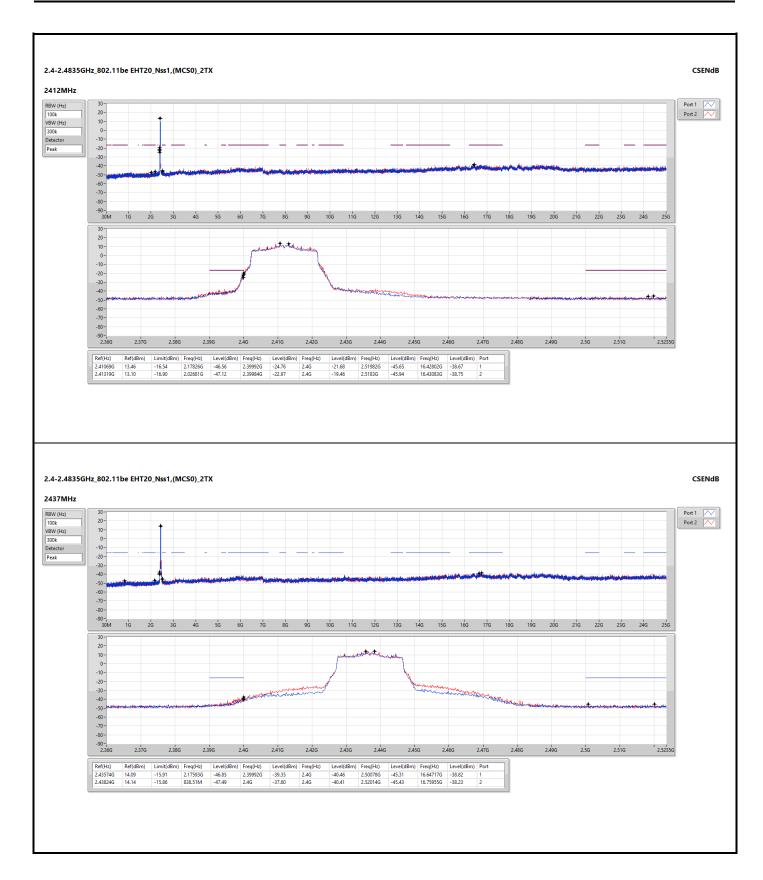

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

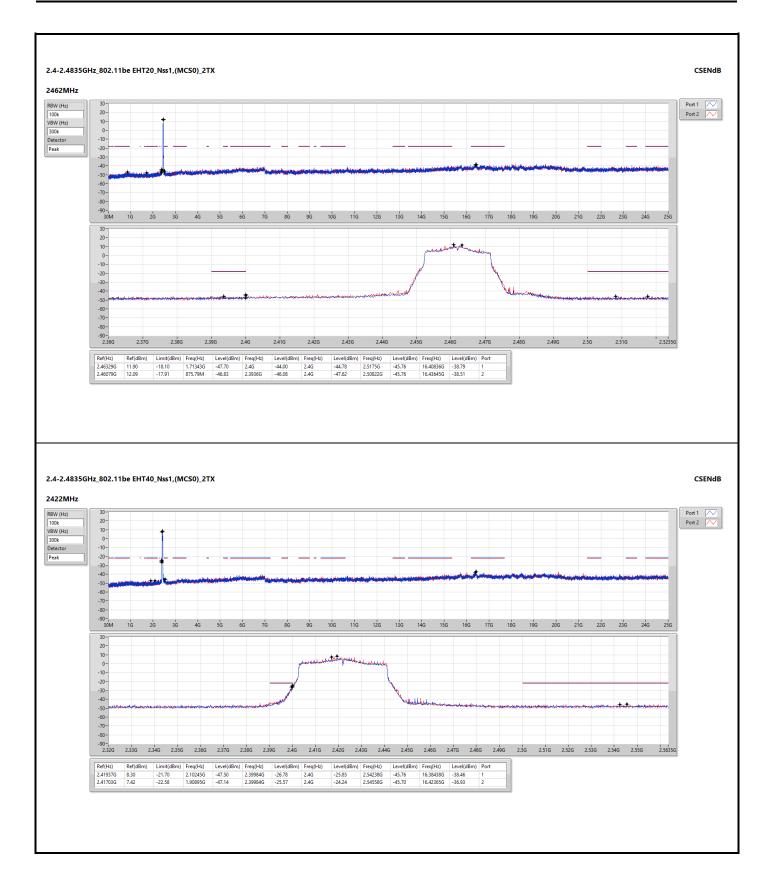
Note 3:"*" is Peak / Average value of fundamental frequency


Report No.: FR391101AC Page: 28 of 28

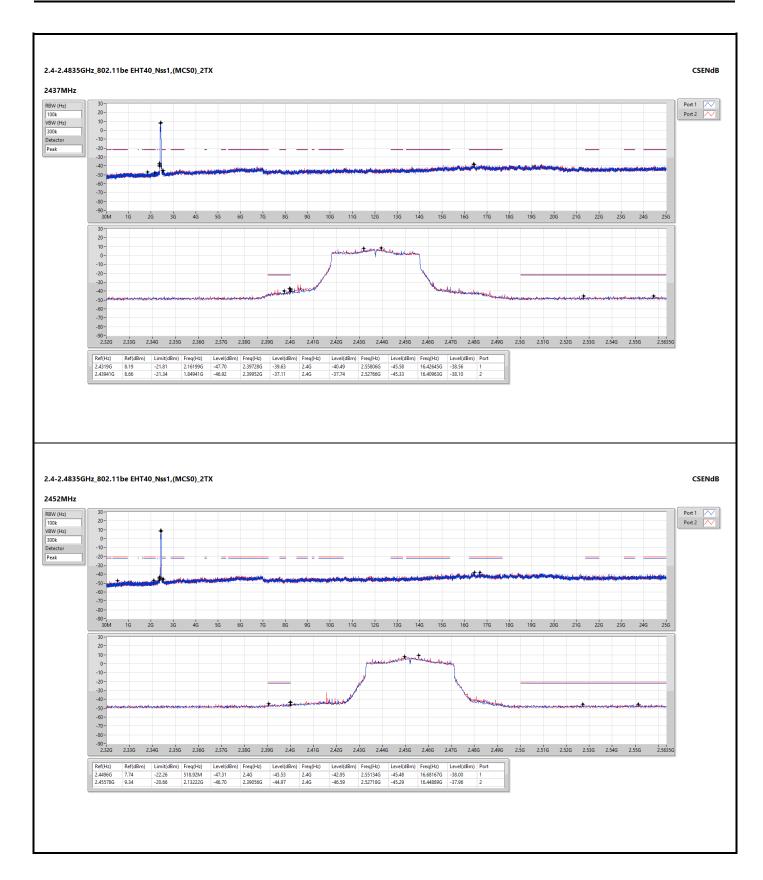
Summary

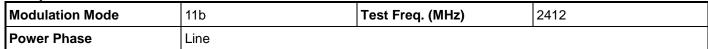


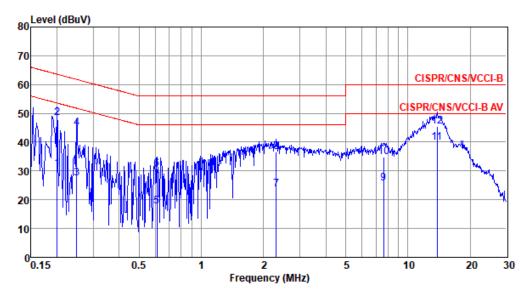

Report No.: FR391101AC Page No. : 2 of 6



Report No.: FR391101AC Page No. : 3 of 6

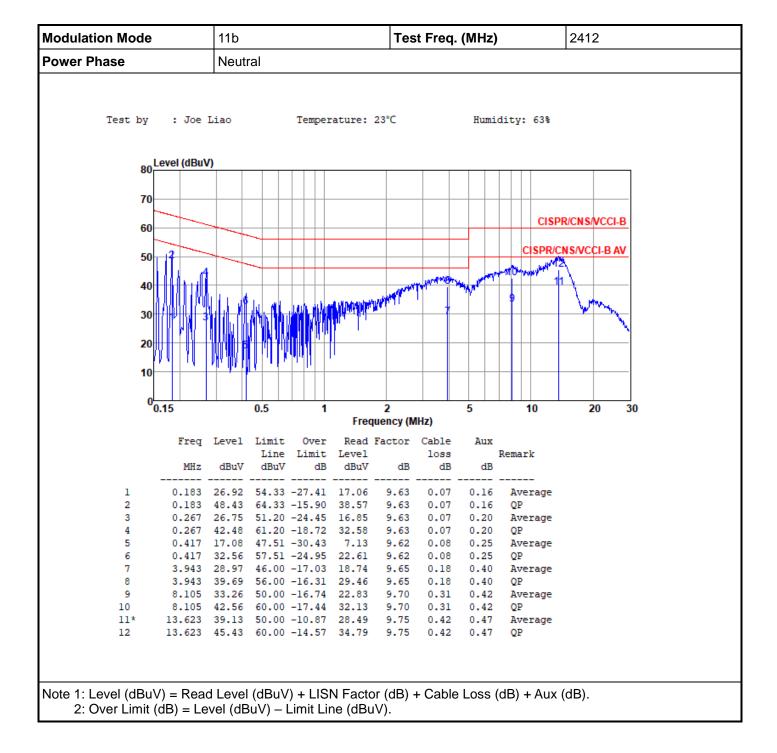






Adapter mode

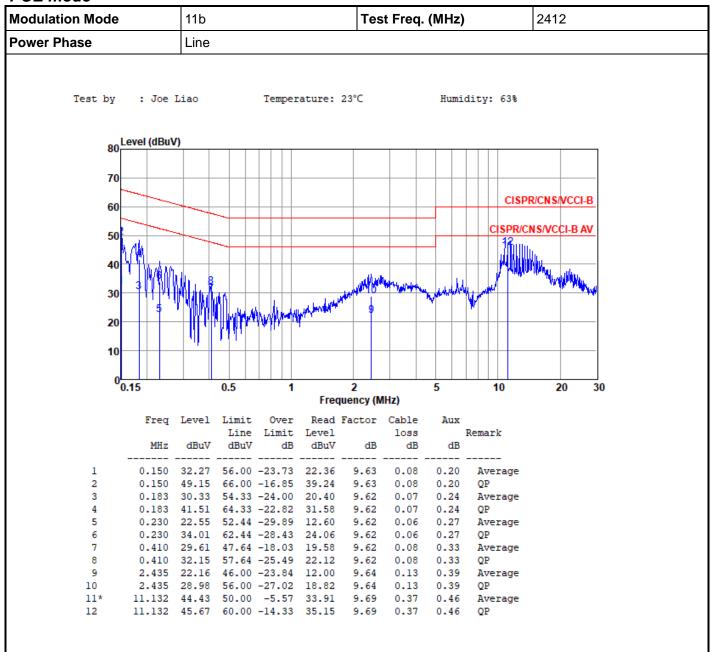
Test by : Joe Liao Temperature: 23°C Humidity: 63%


	Freq	Level dBuV	Limit Line dBuV	Over Limit dB	Read Level dBuV	Factor dB	Cable loss dB	Aux	Remark
1	0.201	30.82	53.58	-22.76	20.89	9.62	0.06	0.25	Average
2	0.201	48.55	63.58	-15.03	38.62	9.62	0.06	0.25	QP
3	0.249	27.46	51.78	-24.32	17.49	9.62	0.07	0.28	Average
4	0.249	44.77	61.78	-17.01	34.80	9.62	0.07	0.28	QP
5	0.611	17.71	46.00	-28.29	7.67	9.62	0.08	0.34	Average
6	0.611	30.74	56.00	-25.26	20.70	9.62	0.08	0.34	QP
7	2.309	23.70	46.00	-22.30	13.56	9.63	0.12	0.39	Average
8	2.309	36.52	56.00	-19.48	26.38	9.63	0.12	0.39	QP
9	7.646	25.58	50.00	-24.42	15.16	9.68	0.30	0.44	Average
10	7.646	34.89	60.00	-25.11	24.47	9.68	0.30	0.44	QP
11*	13.841	39.72	50.00	-10.28	29.13	9.69	0.42	0.48	Average
12	13.841	45.49	60.00	-14.51	34.90	9.69	0.42	0.48	OP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) + Aux (dB).

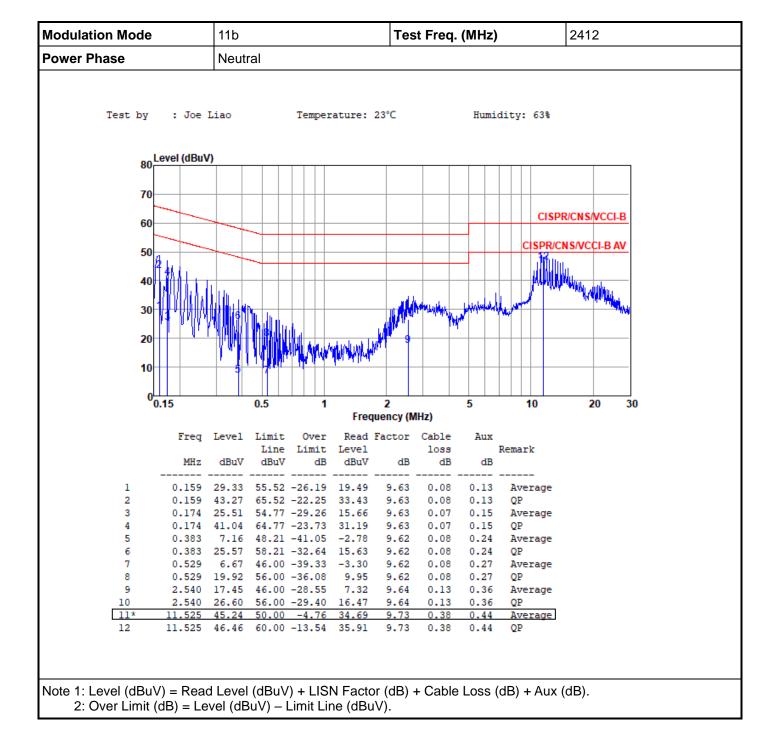
2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR391101AC Page No. : 1 of 4



Report No.: FR391101AC Page No. : 2 of 4

POE mode



Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) + Aux (dB).

2: Over Limit (dB) = Level (dBuV) - Limit Line (dBuV).

Report No.: FR391101AC Page No. : 3 of 4

Report No.: FR391101AC Page No. : 4 of