

Report No.: SUHR/2022/1001007

Rev.: 01 Page: 1 of 169

FCC SAR TEST REPORT

Application No.: HR/2022/10010

Honor Device Co., Ltd. **Applicant:** Manufacturer: Honor Device Co., Ltd.

Product Name: Smart Phone Model No.(EUT): CMA-LX3 **Trade Mark: HONOR**

FCC ID: 2AYGCCMA-LX3 Standards: FCC 47CFR §2.1093

Date of Receipt: 2022-02-11

Date of Test: 2022-02-13 to 2022-03-01

Date of Issue: 2022-03-06 Test conclusion: PASS *

In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Authorized Signature:

Wireless Laboratory Manager

hang Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区满胜路1号的6号厂房南部 邮编: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 2 of 169

REVISION HISTORY

Report Number	Revision	Description	Issue Date
SUHR/2022/1001007	01	Original	2022-03-06

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikot Free Tracke Zone 215000 中国・苏州・中国(江苏)自由医易式製区苏州片区苏州工业国区湘産路1号的6号厂房南部 単編: 215000

t (86–512) 62992980 t (86–512) 62992980

www.sgsgroup.com.cn sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 3 of 169

TEST SUMMARY

	Maximum Reported SAR(W/kg)			
Frequency Band	Head	Body-worn	Hotspot	Product specific 10g SAR
GSM850	0.67	0.35	0.58	/
GSM1900	0.94	0.55	1.08	1.98
WCDMA Band II	1.08	0.58	0.87	/
WCDMA Band IV	1.06	0.79	1.07	2.89
WCDMA Band V	1.06	0.37	0.66	/
LTE Band 2	1.09	0.46	0.93	1.99
LTE Band 4	0.95	0.71	1.07	2.66
LTE Band 5	0.72	0.22	0.38	/
LTE Band 7	1.08	0.42	1.03	2.26
LTE Band 13	0.46	0.24	0.40	/
LTE Band 26	0.59	0.21	0.36	/
LTE Band 38	1.04	0.34	0.67	/
LTE Band 66	0.73	0.86	1.08	/
WI-FI (2.4GHz)	0.20	0.27	0.40	/
WI-FI (5GHz)	0.55	0.34	0.72	1.18
ВТ	0.17	0.09	0.19	/
SAR Limited(W/kg)		1.6		4.0
N	laximum Simultaneou	s Transmission SA	R (W/kg)	
Scenario	Head	Body-worn	Hotspot	Product specific 10g SAR
Sum SAR	1.53	1.20	1.55	3.71
SPLSR	N/A	N/A	N/A	N/A
SPLSR Limited	0.04 0.1			0.1
Note:				

1) The Simultaneous transmission SAR is the same test position of the WWAN antenna + WiFi/BT antenna.

Reviewed by Well Wei

Prepared by

Nature Shen

中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 4 of 169

CONTENTS

1	GENERAL INFORMATION	6
	1.1 DETAILS OF CLIENT	6
	1.2 Test Location	ε
	1.3 Test Facility	
	1.4 GENERAL DESCRIPTION OF EUT	
	1.4.1 DUT ,Antenna Locations (Back View)	
	1.4.2 Power reduction specification	
	1.5 TEST SPECIFICATION	
	1.6 RF EXPOSURE LIMITS	13
2	LABORATORY ENVIRONMENT	14
3	SAR MEASUREMENTS SYSTEM CONFIGURATION	15
	3.1 THE SAR MEASUREMENT SYSTEM	15
	3.2 ISOTROPIC E-FIELD PROBE EX3DV4	16
	3.3 DATA ACQUISITION ELECTRONICS (DAE)	17
	3.4 SAM TWIN PHANTOM	17
	3.5 ELI PHANTOM	
	3.6 DEVICE HOLDER FOR TRANSMITTERS	
	3.7 MEASUREMENT PROCEDURE	
	3.7.1 Scanning procedure	
	3.7.2 Data Storage	22
	3.7.3 Data Evaluation by SEMCAD	22
4	SAR MEASUREMENT VARIABILITY AND UNCERTAINTY	24
	4.1 SAR MEASUREMENT VARIABILITY	24
	4.2 SAR MEASUREMENT UNCERTAINTY	24
5	DESCRIPTION OF TEST POSITION	25
	5.1 HEAD EXPOSURE CONDITION	25
	5.1.1 SAM Phantom Shape	
	5.1.2 EUT constructions	
	5.1.3 Definition of the "cheek" position	26
	5.1.4 Definition of the "tilted" position	27
	5.2 Body Exposure Condition	
	5.2.1 Body-worn accessory exposure conditions	
	5.2.2 Wireless Router exposure conditions	29
	5.3 EXTREMITY EXPOSURE CONDITIONS	29
6	SAR SYSTEM VERIFICATION PROCEDURE	32
	6.1 TISSUE SIMULATE LIQUID	
	6.1.1 Recipes for Tissue Simulate Liquid	
	6.1.1 Recipes for Tissue Simulate Liquid	33
	6.1.1 Recipes for Tissue Simulate Liquid	33 34
	6.1.1 Recipes for Tissue Simulate Liquid	33 34 35
	6.1.1 Recipes for Tissue Simulate Liquid	34 34 35

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service prints overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.ga. and conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspattention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the Au-Unless otherwise stated the results shown in this test report refer only to the sample(e) tested and such sample(e) are retained for 30 days only.

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01 Page: 5 of 169

7	TEST (CONFIGURATION	37
	7.1 30	G SAR TEST REDUCTION PROCEDURE	37
	7.2 0	PERATION CONFIGURATIONS	37
	7.2.1	GSM Test Configuration	37
	7.2.2	WCDMA Test Configuration	38
	7.2.3	WiFi Test Configuration	44
	7.2.4	LTE Test Configuration	50
В	TEST F	RESULT	53
	8.1 M	EASUREMENT OF RF CONDUCTED POWER	53
	8.1.1	Conducted Power of GSM	
	8.1.2	Conducted Power of WCDMA	
	8.1.3	Conducted Power of LTE	
	8.1.4	Conducted Power of WIFI and BT	
	8.2 M	EASUREMENT OF SAR DATA	
	8.2.1	SAR Result of GSM850	
	8.2.2	SAR Result of GSM1900	
	8.2.3	SAR Result of WCDMA Band II	
	8.2.4	SAR Result of WCDMA Band IV	
	8.2.5	SAR Result of WCDMA Band V	
	8.2.6	SAR Result of LTE Band 2	
	8.2.1	SAR Result of LTE Band 4	
	8.2.2	SAR Result of LTE Band 5	
	8.2.3	SAR Result of LTE Band 7	
	8.2.4	SAR Result of LTE Band 13	
	8.2.5	SAR Result of LTE Band 26	
	8.2.1	SAR Result of LTE Band 38	
	8.2.2	SAR Result of LTE Band 66	
	8.2.3	SAR Result of WIFI 2.4G	
	8.2.1	SAR Result of WIFI 5G	
	8.2.2	SAR Result of BT	
		ULTIPLE TRANSMITTER EVALUATION	
	8.3.1	Simultaneous SAR SAR test evaluation	
	8.3.2	Simultaneous Transmission SAR Summation Scenario	
9		MENT LIST	
10	CALIB	RATION CERTIFICATE	168
11	PHOTO	OGRAPHS	168
ΑP	PENDIX	A: DETAILED SYSTEM CHECK RESULTS	169
ΑF	PENDIX	B: DETAILED TEST RESULTS	169
ΑF	PENDIX	C: CALIBRATION CERTIFICATE	169
ΑF	PENDIX	D: PHOTOGRAPHS	169
ΔΡ	PENDIX	F. DUT ANTENNA I OCATIONS	169

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-an-Document.aspx. Attention is drawn to the limitation of liability, indemnitication and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client in the control of the service of the control of the control

t (86–512) 62992980 www.sgsgroup.com t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 6 of 169

1 General Information

1.1 Details of Client

Applicant:	Honor Device Co., Ltd.
Address:	Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089, Hongli West Road, Xiangmihu Street, Futian District, Shenzhen, Guangdong 518040, People's Republic of China
Manufacturer:	Honor Device Co., Ltd.
Address:	Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089, Hongli West Road, Xiangmihu Street, Futian District, Shenzhen, Guangdong 518040, People's Republic of China

1.2 Test Location

Company:	SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.
Address:	South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone
Post code:	215000
Test Engineer:	Nature Shen, KING-P li

Report No.: SUHR/2022/1001007

Rev.: 01 Page: 7 of 169

1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 6336.01)

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 6336.01.

• Innovation, Science and Economic Development Canada

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0120.

IC#: 27594.

• FCC -Designation Number: CN1312

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized as an

accredited testing laboratory. Designation Number: CN1312.

Test Firm Registration Number: 717327

Report No.: SUHR/2022/1001007

Rev.: 01 Page: 8 of 169

1.4 General Description of EUT

Device Type :	portable device			
Exposure Category:	uncontrolled environment / general population			
Product Name:	Smart Phone			
Model No.(EUT):	CMA-LX3			
FCC ID:	2AYGCCMA-LX3			
Trade Mark:	HONOR			
Product Phase:	Identical Prototype			
IMEI:	869937050026684 869937050026890 869937050014300 869937050014318 869937050018624 869937050014185 869937050018657	869937050026684 869937050026890 869937050014300 869937050014318 869937050018624 869937050014185		
Hardware Version:	HL2CMAM			
Software Version:	4.2.0.32(C900E32R1P1)			
Antenna Type:	Internal Antenna			
Device Operating Configuration	ns:			
Modulation Mode:	GSM: GMSK, 8PSK; WCDMA: QPSK; LTE: QPSK,16QAM, WIFI: DSSS, OFDM, OFDMA; BT: GFSK, π/4DQPSK,8DPSK			
Device Class:	В			
GPRS Multi-slots Class:	12	EGPRS Multi-slots Class:	12	
HSDPA UE Category:	14	HSUPA UE Category	6	
DC-HSDPA UE Category:	24	24		
	4,tested with power level 5(G	SSM850)		
Power Class	1,tested with power level 0(GSM1900)			
1 Ower Olass	3, tested with power control "all 1"(WCDMA Band)			
	3, tested with power control I	Max Power(LTE Band)		
	Band	Tx (MHz)	Rx (MHz)	
	GSM850	824~849	869~894	
	GSM1900	1850~1910	1930~1990	
	WCDMA Band II	1850~1910	1930~1990	
	WCDMA Band IV	1710~1755	2110~2155	
	WCDMA Band V	824~849	869~894	
Frequency Bands:	LTE Band 2	1850 ~1910	1930 ~1990	
Frequency Bands.	LTE Band 4	1710~1755	2110~2155	
	LTE Band 5			
	LTE Band 7	2500~2570	2620~2690	
	LTE Band 13	777~787	746~756	
	LTE Band 26	814~849	859~894	
	LTE Band 38	2570~2620	2570~2620	
	LTE Band 66	1710~1780	2110~2200	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents start http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample (s) tested and such sample(s) are retained for 30 days only.

t (86–512) 62992980

www.sgsgroup.com.cn sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01 Page: 9 of 169

		1 agc. 3 01 103			
	Bluetooth	2400~2483.5	2400~2483.5		
	Wi-Fi 2.4G	2402~2462	2402~2462		
		5150~5250	5150~5250		
	Mi Fi FC	5250~5350	5250~5350		
	Wi-Fi 5G	5470~5725	5470~5725		
		5725~5850	5725~5850		
RF Cable:	☐ Provided by	the aplicant Provided by the la	boratory		
	Model:	HB496590EFW-F			
Dattar d Information	Normal Voltage:	+3.87V			
Battery1 Information:	Rated capacity:	4900mAh			
	Manufacturer:	Honor Device Co., Ltd.(Factor	y: NVT)		
	Model:	HB496590EFW	,		
Dattage O lafage attage	Normal Voltage:	+3.87V			
Battery2 Information:	Rated capacity:	4900mAh			
	Manufacturer:	Honor Device Co., Ltd.(Factor)	y: NVT)		
	Model:	HB496590EFW	,		
D " 01 ("	Normal Voltage:	+3.87V			
Battery3 Information:	Rated capacity:	4900mAh			
	Manufacturer:	Honor Device Co., Ltd.(Factor	Honor Device Co., Ltd.(Factory: Desay)		
	Model:	HB496590EFW-F			
D " 41 6 "	Normal Voltage:	+3.87V			
Battery4 Information:	Rated capacity:	4900mAh			
1 ,		Honor Device Co., Ltd.(Factor	y: Desay)		
	Model:	HB496590EFW-F			
Datter 5 leferentie	Normal Voltage:	+3.87V			
Battery5 Information:	Rated capacity:	4900mAh			
	Manufacturer:	Honor Device Co., Ltd.(Factory: SUCD)			
	Model:	HB496590EFW	•		
Dottom C Information	Normal Voltage:	+3.87V			
Battery6 Information:	Rated capacity:	4900mAh			
	Manufacturer:	Honor Device Co., Ltd.(Factor)	y: SUCD)		
	Model:	MEND1532B528A11	•		
Earphone1 Information: Manufacturer:		Jiangxi Lianchuang Hongsheng Electronic Co., LTD.			
	Model:	EPAB542-2WH05-DH			
Earphone2 Information:	Manufacturer:	FOXCONN INTERCONNECT TECHNOLOGY LIMITED			
	Model:	1293-3283-3.5mm-339			
Earphone3 Information:	Manufacturer:	BOLUO COUNTY QUANCHE CO., LTD.	NG ELECTRONIC		

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document-aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its Intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alteration for progrey or fastification of the content of appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runshary Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Plot Free Tisote Zone 215000 中国・苏州・中国(江苏)自由医易式製区苏州片区苏州工业国区深建路1号的6号厂房南部 略編: 215000

t (86–512) 62992980 t (86–512) 62992980

www.sgsgroup.com.cn sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 10 of 169

1.4.1 DUT ,Antenna Locations (Back View)

The DUT Antenna Locations (Back View) can be refer to Appendix E.

Note:

- 1) The test device is a smart phone. The overall diagonal dimension of this device is 177 mm. Per KDB 648474 D04, because the diagonal distance of this device is ≥160mm, so it is a phablet.
- 2) DIV Antenna does not support transmitter function.

According to the distance between LTE/WCDMA/GSM&WIFI&BT antennas and the sides of the EUT we can draw the conclusion that:

EUT Sides for SAR Testing							
Mode	Exposure Condition	Front	Back	Left	Right	Тор	Bottom
Ant 0	Hotspot/Product specific 10g SAR	Yes	Yes	Yes	No	No	Yes
Ant 1	Hotspot/Product specific 10g SAR	Yes	Yes	No	Yes	No	Yes
Ant 3	Hotspot/Product specific 10g SAR	Yes	Yes	No	Yes	Yes	No
Ant 9	Hotspot/Product specific 10g SAR	Yes	Yes	No	Yes	No	No
Ant 11	Hotspot/Product specific 10g SAR	Yes	Yes	No	Yes	Yes	No

Table 1: EUT Sides for SAR Testing Note:

1) When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 11 of 169

1.4.2 Power reduction specification

This device uses a single fixed level of power reduction through static table look-up for SAR compliance and it is triggered by a single event or operation

- 1) A fixed level power reduction is applied for some frequency bands when hotspot mode becomes active. When the hotspot is disabled, the power value will be recovered.
- 2) A fixed level power reduction is applied for some frequency bands when handset operate "held to the ear" condition, the power reduction triggered by audio receiver detection. The audio receiver detection is used to determine head or body scenario.
- 3) This device uses the mobile country code (MCC) detection mechanism to indicate whether the users in CE countries and FCC countries in set the relevant power level for some bands. The selection between different power levels is based on the country code detection mechanism.
- 4) For FCC SAR test should be evaluated at the power level of FCC mobile country code for each exposure conditions.

The detailed power reduction information can be referred to RF conducted power.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 12 of 169

1.5 Test Specification

=Identity	Document Title	
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices	
ANSI/IEEE C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.	
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	
KDB 941225 D01	3G SAR Measurement Procedures v03r01	
KDB 941225 D05	SAR for LTE Devices v02r05	
KDB 941225 D05A	LTE Rel.10 KDB Inquiry Sheet v01r02	
KDB 941225 D06	Hotspot Mode SAR v02r01	
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02	
KDB 648474 D04	Handset SAR v01r03	
KDB 447498 D04	Interim General RF Exposure Guidance v01	
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04	
KDB 865664 D02	RF Exposure Reporting v01r02	
KDB 690783 D01	SAR Listings on Grants v01r03	
KDB 616217 D04	SAR for laptop and tablets v01r02	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document aspx Attention is drawn to the limitation of liability, indemnitication and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client in the contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client and this document. The company's allowed the contained the co

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 13 of 169

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Notes:

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 14 of 169

2 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in	compliance with requirement of standards.	

Table 2: The Ambient Conditions

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer, worded, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents ubject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx strents of a training the formation contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a ransaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized elleration, foreign or faisfication of the content or preparance of this document is unlawful and offendors may be prosecuted to the fullest extent of the law. Unloss otherwise stated the earths and such sample(s) are retained for 30 days only.

South of No. 5 Piert, No. 1, Runshere; Road, Suchou Industrial Park, Suchou Area, China (Jangsu) Pilot Free Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景文教区苏州片区苏州工业园区湾走路1号的6号厂房南部 鄉編: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

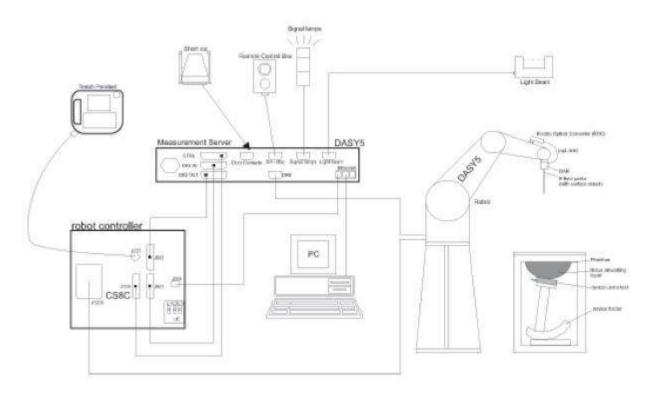
Rev.: 01

Page: 15 of 169

3 SAR Measurements System Configuration

3.1 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.


The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents start http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Prest, No. 1, Punsherry Road, Suchou Industria Park, Suchou Area, China (Jangsu) Plot Free Texte Zoze 215000中国 - 苏州 - 中国(江苏)自由吴景定和区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄉海: 215000

t (86–512) 62992980 t (86–512) 62992980

www.sgsgroup.com.cn sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 16 of 169

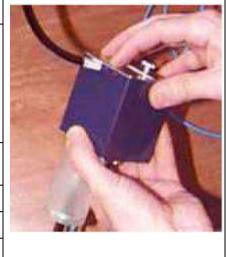
• The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

3.2 Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 <u>calibration service</u> available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-an-Document.aspx. Attention is drawn to the limitation of liability, indemnitication and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client in the control of the service of the control of the control


Report No.: SUHR/2022/1001007

Rev.: 01

Page: 17 of 169

3.3 Data Acquisition Electronics (DAE)

Model	DAE
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)
Input Offset Voltage	< 5μV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

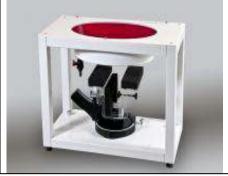
3.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet
Filling Volume	approx. 25 liters
Wooden Support	SPEAG standard phantom table

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents start http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


Report No.: SUHR/2022/1001007

Rev.: 01

Page: 18 of 169

3.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)					
Liquid	Compatible with all SPEAG tissue					
Compatibility	simulating liquids (incl. DGBE type)					
Shell Thickness	2.0 ± 0.2 mm (bottom plate)					
Dimensions	Major axis: 600 mm					
	Minor axis: 400 mm					
Filling Volume	approx. 30 liters					
Wooden Support	SPEAG standard phantom table					

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document-aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its Intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alteration for progrey or fastification of the content of appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 19 of 169

3.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document aspx Attention is drawn to the limitation of liability, indemnitication and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client in the contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client and this document. The company's allowed the contained the co

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 20 of 169

3.7 Measurement procedure

3.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 32mm*32mm*30mm (f≤2GHz), 30mm*30mm*30mm (f for 2-3GHz) and 24mm*24mm*22mm (f for 5-6GHz) was assessed by measuring 5x5x7 points (f≤2GHz), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-and-Conditions-and-

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 21 of 169

			<u> </u>			
			≤ 3 G Hz	> 3 GHz		
Maximum distance from (geometric center of pr			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm		
Maximum probe angle surface normal at the n			30° ± 1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan sp	atial resoli	ation: ∆x _{Area} , ∆y _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
	uniform	grid: Δz _{Z∞m} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
surface	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Documents subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alterations for growing and the content of appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) have retained for 30 days only.

South of No. 6 Pient, No. 1, Runsherg Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Tiscle Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州片区苏州工业团区河逛路(号的6号厂房商部 庫場: 215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 22 of 169

3.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi
- Diode compression point Dcpi

Device parameters: - Frequency

- Crest factor cf

Media parameters: - Conductivity ϵ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$$

South of No. 6 Pient, No. 1, Punshero, Read, Suchou Industrial Park, Suchou Area, China (Liangsui) Pilot Free Teade Zoze 215000中国 - 苏州 - 中国(江苏)自由吴景文省区苏州片区苏州工业园区湖走路(号的6号厂房南部 - 路場: 215000

t (86–512) 62992980

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.:

Page: 23 of 169

H-field probes:

$$H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$$

With Vi = compensated signal of channel i (i = x, y, z)

Normi = sensor sensitivity of channel I

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$$

SAR = local specific absorption rate in mW/g Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 2 / 3770_{or} P_{pwe} = H_{tot}^2 \cdot 37.7$$

Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区满胜路1号的6号厂房南部 邮编: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 24 of 169

4 SAR measurement variability and uncertainty

4.1 SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

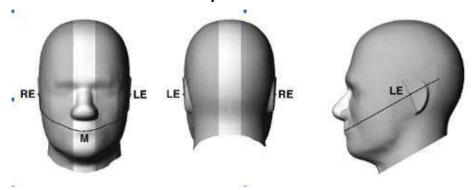
- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

4.2 SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

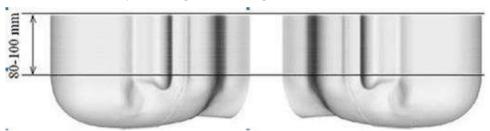
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions-and-Conditions-and-Conditions/Terms-and-Conditions-and-Condi

Report No.: SUHR/2022/1001007

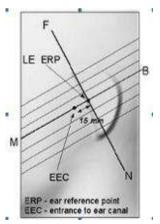

Rev.: 01

Page: 25 of 169

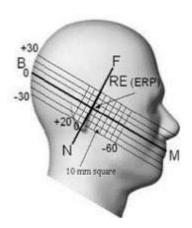
5 **Description of Test Position**


5.1 Head Exposure Condition

SAM Phantom Shape 5.1.1



Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.

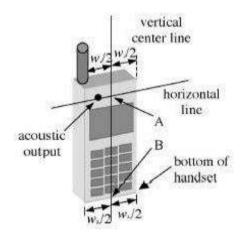

Note: The centre strip including the nose region has a different thickness tolerance.

F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

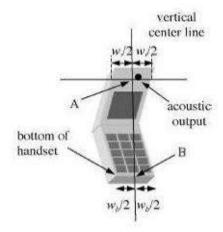
F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven crosssectional plane locations

F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations

中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区满胜路1号的6号厂房南部 邮编: 215000



Report No.: SUHR/2022/1001007


Rev.: 01

Page: 26 of 169

5.1.2 EUT constructions

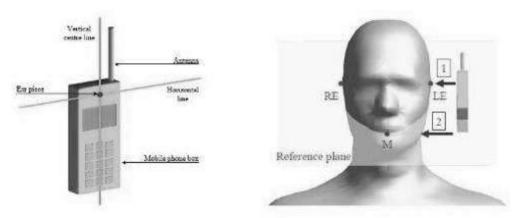
F-7. Handset vertical and horizontal reference lines-"fixed case"

F-8. Handset vertical and horizontal reference lines-"clam-shell case"

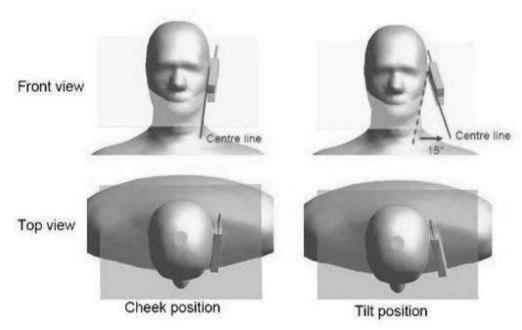
5.1.3 Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE.
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document-aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its Intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alteration for progrey or fastification of the content of appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.


Report No.: SUHR/2022/1001007

Rev.: 01


Page: 27 of 169

5.1.4 Definition of the "tilted" position

- a) Position the device in the "cheek" position described above;
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

F-9. Definition of the reference lines and points, on the phone and on the phantom and initial position

F-10. "Cheek" and "tilt" positions of the mobile phone on the left side

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ggs.com/en/Terms-and-Conditions.ayax and, for electronic format documents at http://www.ggs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

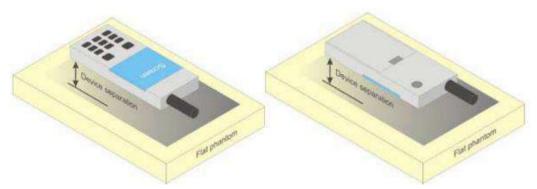
South of No. 6 Prant, No. 1, Punshang Hoad, Suzhou Industria Prant, Suzhou Area, China (Jangsu) Prof. Free Trace Zone 215000 中国 · 苏州 · 中国(江苏)自由贸易式建区苏州 片区苏州 工业园区海ш街 (号的6号厂房南部 庫場: 215000 t (86–512) 62992980 t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 28 of 169

5.2 Body Exposure Condition


5.2.1 Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Bodyworn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-11. Test positions for body-worn devices

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.ayax and, for electronic format documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document one not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) stated and such sample(s) are retained for 30 days only.

South of No. 5 Prant, No. 1, Runshang Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Phot Free Tisoe Zone 215000 中国 · 苏州 · 中国(江苏)自由贸易试验区苏州 FI 区苏州工业园区海胜路1号的6号厂房南部 邮编: 215000

t (86-512) 62992980

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 29 of 169

5.2.2 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

5.3 Extremity exposure conditions

Per FCC KDB 648474 D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the device is marketed as "Phablet". The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for Product Specific 10-g SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Due to the SAR result, only the following frequency bands need to test with 0mm for the Product Specific 10-g SAR, the others are not required.

GSM1900 (Ant3)

CONTINUO (Anto)										
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 10-g		Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 10-g (W/kg)	Product Specific 10-g SAR SAR Exclusio
			H	otspot Test data	a(Separate 1	Omm)				
Front side	GPRS 4TS	661/1880	1:2.075	0.253	0.01	20.18	22.90	1.871	0.473	Yes
Back side	GPRS 4TS	661/1880	1:2.075	0.560	0.17	20.18	22.90	1.871	1.048	Yes
Left side	GPRS 4TS	661/1880	1:2.075	0.209	0.11	20.18	22.90	1.871	0.391	Yes
Top side	GPRS 4TS	661/1880	1:2.075	0.654	0.13	20.18	22.90	1.871	1.223	No

WCDMA Band IV (Ant0)

WCDMA Band IV	(Antu)										
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 1-g (W/kg)	Product Specific 10-g SAR SAR Exclusio	
Hotspot Test data(Separate 10mm)											
Front side	RMC	1412/1732.4	1:1	0.298	0.08	20.48	22.90	1.746	0.520	Yes	
Back side	RMC	1412/1732.4	1:1	0.795	0.03	20.48	22.90	1.746	1.388	No	
Back side	RMC	1312/1712.4	1:1	0.630	0.03	20.34	22.90	1.803	1.136	Yes	
Back side	RMC	1513/1752.6	1:1	0.687	0.07	20.46	22.90	1.754	1.205	No	
Right side	RMC	1412/1732.4	1:1	0.190	0.11	20.48	22.90	1.746	0.332	Yes	
Bottom side	RMC	1412/1732.4	1:1	0.676	0.08	20.48	22.90	1.746	1.180	Yes	
Bottom side	RMC	1312/1712.4	1:1	0.636	0.07	20.34	22.90	1.803	1.147	Yes	
Bottom side	RMC	1513/1752.6	1:1	0.709	0.07	20.46	22.90	1.754	1.244	No	
Back side with Battery 2#	RMC	1412/1732.4	1:1	0.791	0.05	20.48	22.90	1.746	1.381	No	
Back side with Battery 3#	RMC	1412/1732.4	1:1	0.784	0.15	20.48	22.90	1.746	1.369	No	
Back side with Battery 4#	RMC	1412/1732.4	1:1	0.777	0.19	20.48	22.90	1.746	1.357	No	
Back side with Battery 5#	RMC	1412/1732.4	1:1	0.770	0.13	20.48	22.90	1.746	1.344	No	
Back side with Battery 6#	RMC	1412/1732.4	1:1	0.766	0.15	20.48	22.90	1.746	1.337	No	

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents ubject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx tatention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is downers in the subject of t

t (86–512) 62992980 www.sgsgroup t (86–512) 62992980 sgs.china@sg

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 30 of 169

LTE B2 (Ant3)

Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 1-g (W/kg)	Product Specific 10-g SAR SAR Exclusio	
	Hotspot Test data(Separate 10mm 1RB)											
Front side	20	QPSK 1_0	18900/1880	1:1	0.217	0.07	16.94	20.90	2.489	0.540	Yes	
Back side	20	QPSK 1_0	18900/1880	1:1	0.489	0.01	16.94	20.90	2.489	1.217	No	
Left side	20	QPSK 1_0	18900/1880	1:1	0.090	0.03	16.94	20.90	2.489	0.225	Yes	
Top side	20	QPSK 1_0	18900/1880	1:1	0.447	0.18	16.94	20.90	2.489	1.113	Yes	
			Ho	spot Tes	t data(Separate	e 10mm 50 ^o	%RB)					
Front side	20	QPSK 50_0	18900/1880	1:1	0.220	0.02	16.77	20.90	2.588	0.569	Yes	
Back side	20	QPSK 50_0	18900/1880	1:1	0.503	0.05	16.77	20.90	2.588	1.302	No	
Left side	20	QPSK 50_0	18900/1880	1:1	0.102	0.02	16.77	20.90	2.588	0.264	Yes	
Top side	20	QPSK 50_0	18900/1880	1:1	0.427	0.09	16.77	20.90	2.588	1.105	Yes	

LTE B4 (Ant1)

Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 1-g (W/kg)	Product Specific 10-g SAR SAR Exclusio	
Hotspot Test data(Separate 10mm 1RB)												
Front side	20	QPSK 1_0	20175/1732.5	1:1	0.351	0.05	21.56	23.10	1.426	0.500	Yes	
Back side	20	QPSK 1_0	20175/1732.5	1:1	0.946	0.06	21.56	23.10	1.426	1.349	No	
Back side-Repeat	20	QPSK 1_0	20175/1732.5	1:1	0.932	0.09	21.56	23.10	1.426	1.329	No	
Right side	20	QPSK 1_0	20175/1732.5	1:1	0.202	0.15	21.56	23.10	1.426	0.288	Yes	
Bottom side	20	QPSK 1_0	20175/1732.5	1:1	0.909	0.03	21.56	23.10	1.426	1.296	No	
Back side with Battery 2#	20	QPSK 1_0	20175/1732.5	1:1	0.789	0.12	21.56	23.10	1.426	1.125	Yes	
Back side with Battery 3#	20	QPSK 1_0	20175/1732.5	1:1	0.774	0.16	21.56	23.10	1.426	1.103	Yes	
Back side with Battery 4#	20	QPSK 1_0	20175/1732.5	1:1	0.759	-0.19	21.56	23.10	1.426	1.082	Yes	
Back side with Battery 5#	20	QPSK 1_0	20175/1732.5	1:1	0.795	0.20	21.56	23.10	1.426	1.133	Yes	
Back side with Battery 6#	20	QPSK 1_0	20175/1732.5	1:1	0.805	0.18	21.56	23.10	1.426	1.148	Yes	
			Hotsp	ot Test data(S	Separate 10r	nm 50%RB)					
Front side	20	QPSK 50_0	20175/1732.5	1:1	0.362	0.05	21.55	23.10	1.429	0.517	Yes	
Back side	20	QPSK 50_0	20175/1732.5	1:1	0.820	0.03	21.55	23.10	1.429	1.172	Yes	
Right side	20	QPSK 50_0	20175/1732.5	1:1	0.202	0.04	21.55	23.10	1.429	0.289	Yes	
Bottom side	20	QPSK 50_0	20175/1732.5	1:1	0.711	0.15	21.55	23.10	1.429	1.016	Yes	
			Hotspo	ot Test data(S	eparate 10m	nm 100%RE	3)					
Back side	20	QPSK 100_0	20175/1732.5	1:1	0.770	0.04	21.19	23.10	1.552	1.195	Yes	
Bottom Side	20	QPSK 100_0	20175/1732.5	1:1	0.667	-0.01	21.19	23.10	1.552	1.035	Yes	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Documents as <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Documents as <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention holy and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection regord &certificities.

South of No. 6 Plent, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Fee Texte Zone 中国 · 苏州 · 中国(江苏)自由贸易试验区苏州片区苏州工业园区深胜路1号的6号厂房南部 单编: 215000

(86–512) 62992980 www.sgsgroup.com.c (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 31 of 169

LTE B7 (Ant3)

Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)		
Hotspot Test data(Separate 10mm 1RB)												
Front side	20	QPSK 1_0	21100/2535	1:1	0.176	0.06	18.73	20.50	1.503	0.265	Yes	
Back side	20	QPSK 1_0	21100/2535	1:1	0.629	0.05	18.73	20.50	1.503	0.945	Yes	
Left side	20	QPSK 1_0	21100/2535	1:1	0.263	0.01	18.73	20.50	1.503	0.395	Yes	
Right side	20	QPSK 1_0	21100/2535	1:1	0.011	0.15	18.73	20.50	1.503	0.016	Yes	
Top side	20	QPSK 1_0	21100/2535	1:1	0.753	0.03	18.73	20.50	1.503	1.132	Yes	
Top side	20	QPSK 1_0	20850/2510	1:1	0.747	0.06	18.67	20.50	1.524	1.138	Yes	
Top side	20	QPSK 1_0	21350/2560	1:1	0.839	0.03	18.65	20.50	1.531	1.285	No	
			Hotspot	Test data(Separate	10mm 50%	6RB)						
Front side	20	QPSK 50_0	21100/2535	1:1	0.176	0.02	18.35	20.50	1.641	0.289	Yes	
Back side	20	QPSK 50_0	21100/2535	1:1	0.622	0.07	18.35	20.50	1.641	1.020	Yes	
Left side	20	QPSK 50_0	21100/2535	1:1	0.278	0.06	18.35	20.50	1.641	0.456	Yes	
Right side	20	QPSK 50_0	21100/2535	1:1	0.011	0.02	18.35	20.50	1.641	0.017	Yes	
Top side	20	QPSK 50_0	21100/2535	1:1	0.784	0.01	18.35	20.50	1.641	1.286	No	
Top side	20	QPSK 50_0	20850/2510	1:1	0.785	0.02	18.09	20.50	1.742	1.367	No	
Top side	20	QPSK 50_0	21350/2560	1:1	0.852	0.04	18.27	20.50	1.671	1.424	No	
Top side-Repeat	20	QPSK 50_0	21350/2560	1:1	0.848	0.09	18.27	20.50	1.671	1.417	No	
Top side with Battery 2#	20	QPSK 50_0	21350/2560	1:1	0.843	0.02	18.27	20.50	1.671	1.409	No	
Top side with Battery 3#	20	QPSK 50_0	21350/2560	1:1	0.839	0.05	18.27	20.50	1.671	1.402	No	
Top side with Battery 4#	20	QPSK 50_0	21350/2560	1:1	0.830	0.11	18.27	20.50	1.671	1.387	No	
Top side with Battery 5#	20	QPSK 50_0	21350/2560	1:1	0.821	0.18	18.27	20.50	1.671	1.372	No	
Top side with Battery 6#	20	QPSK 50_0	21350/2560	1:1	0.847	0.20	18.27	20.50	1.671	1.415	No	
			Hotspot 7	Test data(Separate	10mm 100°	%RB)						
Top side	20	QPSK 50_0	21100/2535	1:1	0.841	0.01	18.30	20.50	1.660	1.396	No	

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx stretten in is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is downed therein in the subject of the

South of No. 6 Pent, No. 1, Punshere, Read, Suchou Industria Park, Suchou Avea, China (Jangsu) Pilot Free Tiade Zone 215000 中国 · 苏州 · 中国(江苏)自由吴冕式翁区苏州片区苏州工业园区湾胜路1号的6号厂房南部 單線: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Sucrose: 98+% Pure Sucrose

HEC: Hydroxyethyl Cellulose

Page: 32 of 169

6 SAR System Verification Procedure

6.1 Tissue Simulate Liquid

6.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

3	- 9		3 1							
Ingredients	Frequency (MHz)									
(% by weight)	450	700-900	1750-2000	2300-2500	2500-2700					
Water	38.56	40.30	55.24	55.00	54.92					
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23					
Sucrose	56.32	57.90	0	0	0					
HEC	0.98	0.24	0	0	0					
Bactericide	0.19	0.18	0	0	0					
Tween	0	0	44.45	44.80	44.85					

Salt: 99⁺% Pure Sodium Chloride Water: De-ionized, 16 MΩ⁺ resistivity

Tween: Polyoxyethylene (20) sorbitan monolaurate

HSL5GHz is composed of the following ingredients:

Water: 50-65% Mineral oil: 10-30% Emulsifiers: 8-25% Sodium salt: 0-1.5%

Table 3: Recipe of Tissue Simulate Liquid

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document aspatients of a drawn to the limitation of liability, indemnitication and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client in the contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client and this document. The company's allowed the contained the con

South of No. 6 Plant, No. 1, Runsharry, Road, Suchou Industrial Plank, Suchou Industrial Plank,

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 33 of 169

6.1.2 Measurement for Tissue Simulate Liquid

The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

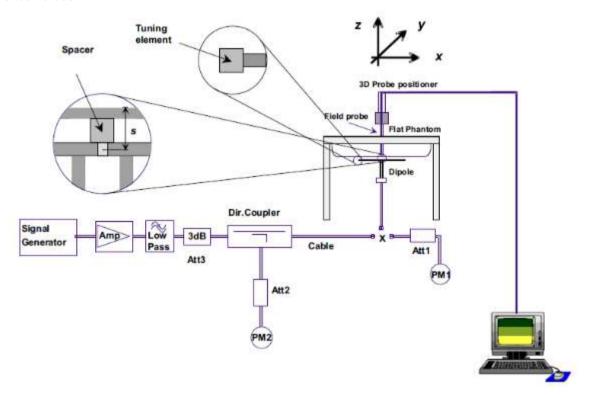
	Measured	Target Tiss	ue (±5%)	Measure	d Tissue	Liquid		
Tissue Type	Frequency (MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)	Temp.(°C)	Measured Date	
750 Head	750	41.9 (39.81~44)	0.89 (0.85~0.94)	41.660	0.877	21.7	2022-02-24	
835 Head	835	41.5 (39.43~43.58)	0.90 (0.86~0.95)	41.624	0.894	22.0	2022-02-15	
835 Head	835	41.5 (39.43~43.58)	0.90 (0.86~0.95)	42.278	0.901	22.3	2022-02-25	
835 Head	835	41.5 (39.43~43.58)	0.90 (0.86~0.95)	41.621	0.894	21.9	2022-02-19	
1750 Head	1750	40.1 (38.10~42.11)	1.37 (1.30~1.44)	39.077	1.367	21.8	2022-02-17	
1750 Head	1750	40.1 (38.10~42.11)	1.37 (1.30~1.44)	38.789	1.330	21.6	2022-02-21	
1750 Head	1750	40.1 (38.10~42.11)	1.37 (1.30~1.44)	39.077	1.367	21.8	2022-02-18	
1900 Head	1900	40.0 (38.00~42.00)	1.40 (1.33~1.47)	40.086	1.402	22.2	2022-02-16	
1900 Head	1900	40.0 (38.00~42.00)	1.40 (1.33~1.47)	40.055	1.400	22.1	2022-02-23	
2450 Head	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	37.607	1.883	22.2	2022-02-27	
2600 Head	2600	39.0 (37.05~40.95)	1.96 (1.86~2.06)	38.364	1.969	22.5	2022-02-13	
2600 Head	2600	39.0 (37.05~40.95)	1.96 (1.86~2.06)	38.445	1.969	22.3	2022-02-14	
5250Head	5250	35.9 (34.11~37.70)	4.66 (4.47~4.95)	35.504	4.707	22.2	2022-03-01	
5600 Head	5600	35.5 (33.73~37.30)	5.07 (4.82~5.32)	34.832	5.179	22.4	2022-03-01	
5750 Head	5750	35.4 (33.63~37.17)	5.22 (4.96~5.48)	34.461	5.362	22.3	2022-03-01	

Table 4: Measurement result of Tissue electric parameters

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. S Plant, No. 1, Runsherry Road, Surhou Industrial Park, Surhou Area, China (Jiangsu) Plot Free Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景试翰区苏州日安斯大工业园区湾胜路(号统6号厂房南部 鄉鄉: 215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com


Report No.: SUHR/2022/1001007

Rev.: 01

Page: 34 of 169

6.2 SAR System Check

The microwave circuit arrangement for system Check is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. the microwave circuit arrangement used for SAR system check

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the true for a forward to the imitation of liability, indemdification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plent, No. 1, Runshang Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Plet Free Trade Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州 上位国区海淮路 1号的6号 「房南部 庫場: 215000

t (86–512) 62992980 t (86–512) 62992980

www.sgsgroup.com.cn sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 35 of 169

6.2.1 Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service prints overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.ga. and conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspattention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the Au-Unless otherwise stated the results shown in this test report refer only to the sample(e) tested and such sample(e) are retained for 30 days only.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 36 of 169

6.2.2 Summary System Check Result(s)

Validation Kit		Measured SAR 250mW 1g (W/kg)	Measured SAR 250mW	Measured SAR (normalized to 1W) 1g (W/kg)	Measured SAR (normalized to 1W) 10g (W/kg)	Target SAR (normalized to 1W) (±10%) 1-g(W/kg)	Target SAR (normalized to 1W) (±10%) 10-q(W/kg)	Liquid Temp. (°C)	Measured Date
D750V3	Head	2.29	1.5	9.16	6.00	8.39 (7.55~9.23)	5.63 (5.07~6.19)	21.7	2022-02-24
D835V2	Head	2.22	1.45	8.88	5.80	9.52 (8.57~10.47)	6.17 (5.55~6.79)	22.0	2022-02-15
D835V2	Head	2.24	1.46	8.96	5.84	9.52 (8.57~10.47)	6.17 (5.55~6.79)	22.3	2022-02-25
D835V2	Head	2.30	1.52	9.20	6.08	9.52 (8.57~10.47)	6.17 (5.55~6.79)	21.9	2022-02-19
D1750V2	Head	8.94	4.74	35.76	18.96	35.3 (31.77~38.83)	18.7 (16.83~20.57)	21.8	2022-02-17
D1750V2	Head	8.70	4.61	34.80	18.44	35.3 (31.77~38.83)	18.7 (16.83~20.57)	21.6	2022-02-21
D1750V2	Head	8.83	4.68	35.32	18.72	35.3 (31.77~38.83)	18.7 (16.83~20.57)	21.8	2022-02-18
D1900V2	Head	9.67	4.94	38.68	19.76	39.7 (35.73~43.67)	20.3 (18.27~22.33)	22.2	2022-02-16
D1900V2	Head	10.00	5.12	40.00	20.48	39.7 (35.73~43.67)	20.3 (18.27~22.33)	22.1	2022-02-23
D2450V2	Head	14.10	6.51	56.40	26.04	52.2 (46.98~57.42)	24.5 (22.05~26.95)	22.2	2022-02-27
D2600V2	Head	13.90	6.23	55.60	24.92	57.1 (51.12~62.48)	25.4 (22.41~27.39)	22.5	2022-02-13
D2600V2	Head	13.90	6.24	55.60	24.96	57.1 (51.12~62.48)	25.4 (22.41~27.39)	22.3	2022-02-14
Validation Kit		Measured SAR 100mW	Measured SAR 100mW 10g (W/kg)	Measured SAR (normalized to 1W) 1g (W/kg)	Measured SAR (normalized to 1W) 10g (W/kg)	Target SAR (normalized to 1W) (±10%) 1-g(W/kg)	Target SAR (normalized to 1W) (±10%) 10-g(W/kg)	Liquid Temp. (°C)	Measured Date
D5GHzV2	Head(5.25 GHz)	7.23	2.07	72.30	20.70	78 (70.2~85.8)	21.8 (19.62~23.98)	22.2	2022-03-01
	Head(5.6 GHz)	8.60	2.45	86.00	24.50	79.9 (71.91~87.89)	22.5 (20.25~24.75)	22.4	2022-03-01
	Head(5.75 GHz)	8.06	2.29	80.60	22.90	76.4 (68.76~84.04)	21.2 (19.08~23.32)	22.3	2022-03-01

Table 5: SAR System Check Result

6.2.3 Detailed System Check Results

Please see the Appendix A

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the true for a forward to the imitation of liability, indemdification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runshang Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Plot Free Trade Zone 215000 中国・苏州・中国(江苏)自由原務式報区苏州片区苏州工业国区海亜路1号前6号「房南部 単編: 215000

t (86–512) 62992980 t (86–512) 62992980

www.sgsgroup.com.cn sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 37 of 169

7 Test Configuration

7.1 3G SAR Test Reduction Procedure

According to KDB 941225D01, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

7.2 Operation Configurations

7.2.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a base station by air link. Using CMW500 the power lever is set to "5" and "0" in SAR of GSM 850 and GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 33 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 33 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.apx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document asyx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 38 of 169

7.2.2 WCDMA Test Configuration

1) . Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

2) . Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure

3) . Body SAR

SAR for body configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported bodyworn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

4) . HSDPA / HSUPA / DC-HSDPA

According to KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is $\leq \frac{1}{4}$ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA

a) HSDPA

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) are set according to values indicated in the following table. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions-And-Conditions-and-Co

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 39 of 169

Sub-test	βς	Bd	βd(SF)	βc/βd	βhs	CM(dB)	MPR (dB)
1	2/15	15/15	64	2/15	4/15	0.0	0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0	0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: \triangle ACK, \triangle NACK and \triangle CQI= 8 Ahs = β hs/ β c=30/15 β hs=30/15* β c

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK= 8 (Ahs=30/15) with β hs=30/15* β c,and \triangle CQI=

7 (Ahs=24/15) with β hs=24/15* β c.

Note3: CM=1 forβc/βd =12/15, βhs/βc=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI"s
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	
	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 6: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.appx and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Condi

South of No. 6 Prant, No. 1, Runshang Road, Suzhou Industria Prant, Suzhou Area, China (Jangsu) Prot Free Trade Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易式全区苏州 片区苏州工业园区海ш省(号的6号) 后南部 庫編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 40 of 169

			rage. +0 01 10	
HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter- TTI Interval	MaximumH S-DSCH Transport BlockBits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 7: HSDPA UE category

b) HSUPA

Due to inner loop power control requirements in HSUPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSUPA should be configured according to the values indicated below as well as other applicable procedures described in the "WCDMA Handset" and "Release 5 HSUPA Data Device" sections of 3G device.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the true for a forward to the imitation of liability, indemdification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Piert, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pike Free Trade Zome 215000 中国 - 苏州 - 中国(江苏)自由周易试验区苏州片区苏州工业国区深建路1号的6号厂房南部 鄉線: 215000

t (86–512) 62992980 www.sgsgroup.co t (86–512) 62992980 sgs.china@sgs.co

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 41 of 169

Sub -test₽	βee	βd€	β _d (SF) _e	β₀∕β₄₽	β _{hs} (1	βec↔	β _{ed} ₽	β ₆ ₆₄ (SF)+2	βed↔ (code)↔	CM(2)+ (dB)+2	MP R↓ (dB)↓	AG ⁽⁴)↔ Inde x↔	E- TFC I&
1₽	11/15(3)+2	15/15(3)	64₽	11/15(3)+2	22/15	209/22 5 ₄ 3	1039/225₽	4€	1₽	1.04	0.0	20₽	75₽
2₽	6/15₽	15/15∉	64₽	6/15₽	12/15₽	12/15₽	94/75₽	4₽	1₽	3.0₽	2.0₽	12 ₀	67₽
3₽	15/150	9/15	64₽	15/9₽	30/15₽	30/15₽	β _{ed1} :47/1 5 ₄ β _{ed2:} 47/1 5 ₄	4.	2₽	2.0₽	1.0₽	15.0	92₽
40	2/15₽	15/15∉	64₽	2/15∉	4/15₽	2/150	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15(4)	15/15(4)	64₽	15/15(4)+3	30/15₽	24/15₽	134/15₽	4€	1₽	1.0₽	0.0₽	21	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_e = 30/15$ $\beta_{hs} = 30/15 * \beta_{e4}$

Note 2: CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1ge

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 8: Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296	
2	2	8	2	4	2798	1 4500	
2	2	4	10	4	14484	1.4592	
3	2	4	10	4	14484	1.4592	
4	2	8	2	2	5772	2.9185	
4	2	4	10	2	20000	2.00	
5	2	4	10	2	20000	2.00	
6	4	8	10	2SF2&2SF	11484	5.76	
(No DPDCH)	CH) 4 4 2		2	4	20000	2.00	
7	4	8	2	2SF2&2SF	22996	?	
(No DPDCH)	4	4	10	4	20000	?	

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 9: HSUPA UE category

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/ferms-and-Conditions.aspx.and. for electronic Documents at <a href="http://www.sgs.com/en/ferms-and-Conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.and.conditions/ferms-e-Document.and.conditions/ferms-e-Document.and.conditions/ferms-e-Document.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions/ferms-e-Document.aspx.and.conditions.and

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 42 of 169

c) DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a Second serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS 34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13.

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK.

Parameter	Value
Nominal average inf. bit rate	60 kbit/s
Inter-TTI Distance	1 TTI's
Number of HARQ Processes	6 Processes
Information Bit Payload	120 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	960 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	3200 SMLs
Coding Rate	0.15
Number of Physical Channel Codes	1

Table 10: settings of required H-Set 12 QPSK acc. to 3GPP 34.121

Note:

- 1. The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.
- 2. Maximum number of transmission is limited to 1,i.e.,retransmission is not allowed. The redundancy and constellation version 0 shall be used.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.appx.and. for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions-and-Conditions-and-Conditions/Terms-and-Conditions-and-Conditi

South of No. 6 Pient, No. 1, Runshero, Read, Suchou Industrial Park, Suchou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景文教区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄉海: 215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 43 of 169

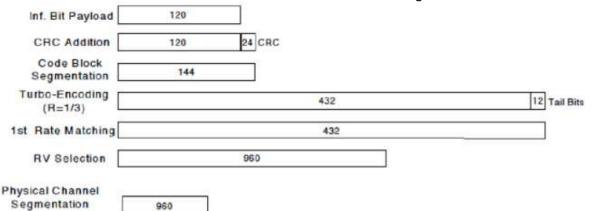


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

Sub-test₽	βe₽	$eta_{\mathbf{d}^{\wp}}$	β _d ·(SF)₽	$\beta_c \cdot / \beta_{d^{e}}$	β _{hs} .(1)₽	CM(dB)(2)	MPR (dB)
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2₽	12/15(3)	15/15(3)	64₽	12/15(3)	24/15₽	1.0₽	0₽
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note: 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c = 30/15$

Note 2: CM=1 for $\beta_c/\beta_{d=}$ 12/15, $\beta_{hs}/\beta_c=$ 24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Up commands are set continuously to set the UE to Max power. Note:

- 1. The Dual Carriers transmission only applies to HSDPA physical channels
- 2. The Dual Carriers belong to the same Node and are on adjacent carriers.
- 3. The Dual Carriers do not support MIMO to serve UEs configured for dual cell operation
- 4. The Dual Carriers operate in the same frequency band.
- 5. The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.
- 6. The device doesn't support carrier aggregation for it just can operate in Release 8.

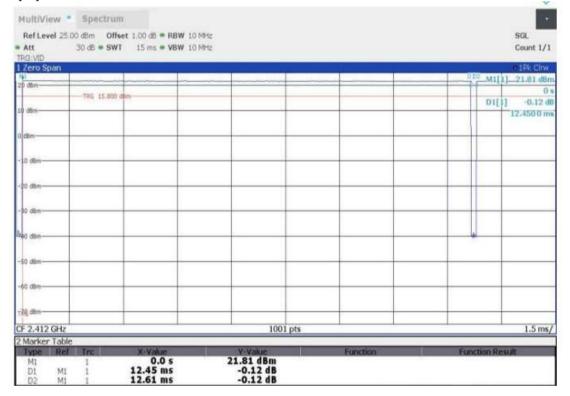
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.appx.and. for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.appx.ttention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is divised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of illent's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a ransaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or papearance of this document is unlawfully and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the esults shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

t (86–512) 62992980 www.sgsgroup.com t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 44 of 169


7.2.3 WiFi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

7.2.3.1 Duty cycle

Wi-Fi 2.4GHz 802.11b:

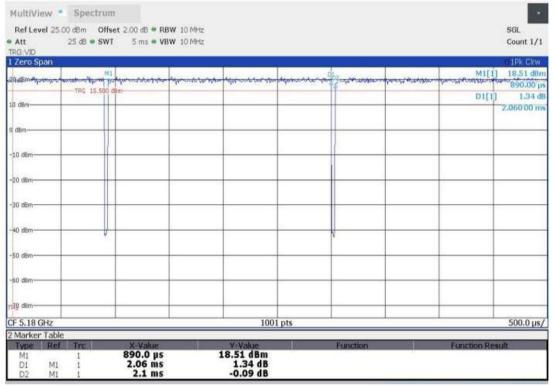
Duty cycle=12.45/12.61=98.73%

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions/Terme-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clients instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing fungection report & certificities, please contact us at technology.

South of No. 5 Pietr, No. 1, Runshere; Road, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86-512) 62992980 www.sgsgroup.com. t (86-512) 62992980 sgs.china@sgs.com


Report No.: SUHR/2022/1001007

Rev.: 01

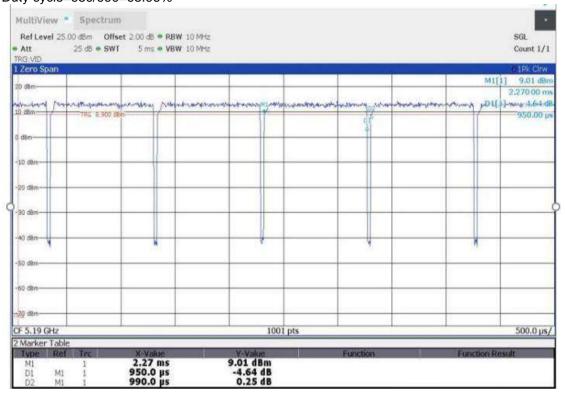
Page: 45 of 169

Wi-Fi 5GHz 802.11a:

Duty cycle=2.06/2.10=98.10%

South of No. 5 Piert, No. 1, Runshere, Road, Scathou Industrial Park, Suzhou Area, Chira (Jangsu) Pilot Free Tisete Zone 215000 中国 · 苏州 · 中国(江苏)自由吴泰定翰区苏州上区两州工业园区湖胜路(号岛6号)房南部 維第:215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com



Report No.: SUHR/2022/1001007

Rev.: 01

Page: 46 of 169

Wi-Fi 5GHz 802.11n-HT40: Duty cycle=950/990=95.96%

South of No. 5 Piert, No. 1, Runshere, Road, Scathou Industrial Park, Suzhou Area, Chira (Jangsu) Pilot Free Tisete Zone 215000 中国 · 苏州 · 中国(江苏)自由吴泰定翰区苏州上区苏州工业园区湖胜路(号岛6号)房南部 維第:215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 47 of 169

7.2.3.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1) . When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

7.2.3.3 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is \leq 1.2 W/kg or all required channels are tested.

7.2.3.4 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/terms-and-Conditions.aspx.and. for electronic format documents, subject to Terms and Conditions (Felectronic Documents at http://www.sgs.com/en/terms-en/conditions/terms-en/coment.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clients instructions, if any. The Company sole responsibility is to its Client and this document does not expensite that the stream of the stream

South of No. S Plant No. 1, Runshere Road, Sachou Industrial Park, Suchou JArea, China (Liangsu) Pilot Free Tesde Zone 215000 中国 - 苏州 - 中国(江苏)自由吴夏戈敦区苏州片区苏州工业园区湾胜路(号的6号厂房南部 峰線: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 48 of 169

2) . When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - a) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - b) replace "initial test configuration" with "all tested higher output power configurations"

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer, worded, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents ubject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx strents of a training the formation contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a ransaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized elleration, forject or faisfication of the content or preparance of this document is unlawful and offendors may be prosecuted to the fullest extent of the law. Unloss otherwise stated the earths and such sample(s) are retained for 30 days only.

South of No. 6 Prest, No. 1, Punsherry Road, Suchou Industria Park, Suchou Area, China (Jangsu) Plot Free Texte Zoze 215000中国 - 苏州 - 中国(江苏)自由吴景定和区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄉海: 215000

t (86–512) 62992980 www.sgsgroup t (86–512) 62992980 sgs.china@sgs

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 49 of 169

7.2.3.5 2.4 GHz WiFi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

• 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.apx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document asyx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

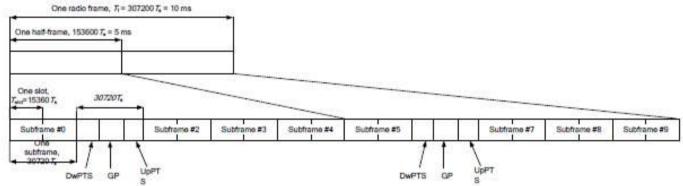
Report No.: SUHR/2022/1001007

Rev.: 01

Page: 50 of 169

7.2.4 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The Anritsu MT8820C was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.


TDD LTE test consideration

For Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

SAR was tested with the highest transmission duty factor (63.33%) using Uplink-downlink configuration 0 and Special subframe configuration 7.

LTE TDD Band support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Frame structure type 2:

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/ferms-and-Conditions.aspx.and.for electronic format documents.subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/ferms-en-Conditions-en-Conditions-en-Conditio

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 51 of 169

Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Special	•	nal cyclic prefix in	downlink	Extended cyclic prefix in downlink				
subframe	DwPTS	Up	PTS	DwPTS	Up	PTS		
configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		
0	6592.Ts			7680.Ts				
1	19760.Ts			20480.Ts	2192.Ts	2560.Ts		
2	21952.Ts	2192.Ts	2560.Ts	23040.Ts	2192.15			
3	24144.Ts			25600.Ts				
4	26336.Ts			7680.Ts				
5	6592.Ts			20480.Ts	4384.Ts	5120.Ts		
6	19760.Ts			23040.Ts	4304.15	5120.15		
7	21952.Ts	4384.Ts	5120.Ts	25600.Ts				
8	24144.Ts				-	-		
9	13168.Ts			-	-	-		

Uplink-downlink configurations.

Uplink-downlink	Downlink-to-	Subframe number										
configuration	Uplink Switch- point periodicity	0	1	2	3	4	5	6	7	8	9	
0	5 ms	D	S	J	U	0	D	S	U	U	U	
1	5 ms	D	S	٥	U	D	D	S	U	U	D	
2	5 ms	D	S	U	D	D	D	S	U	D	D	
3	10 ms	D	S	U	U	U	D	D	D	D	D	
4	10 ms	D	S	٥	U	D	D	D	D	D	D	
5	10 ms	D	S	٥	D	D	D	D	D	D	D	
6	5 ms	D	S	U	U	U	D	S	U	U	D	

Calculated Duty Cycle=[Extended cyclic prefix in uplink x (Ts) x # of S + # of U]/10ms

Uplink- Downlink Configurat	Downlink-to- Uplink Switch- point Periodicity	0	Subframe Number 0 1 2 3 4 5 6 7 8 9									Calculated Duty Cycle (%)
ion			<u> </u>			4			/	_		
0	5 ms	D	S	U	U	U	D	S	J	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	J	J	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx stretten in is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is downed therein in the subject of the

South of No. 6 Pient, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jiangau) Pilot Free Track Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州片区苏州工业团区河逛路1号的6号厂房南部 庫場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 52 of 169

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

Modulation	Cha	nnel bandw	idth / Tra	ansmission	bandwidth ((N _{RB})	MPR (dB)
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3

C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > ½ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.apxx.and. for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions-and-Conditions/Terms-and-Conditions-and-Conditi

South of No. 6 Prest, No. 1, Punsherry Road, Suchou Industria Park, Suchou Area, China (Jangsu) Plot Free Texte Zoze 215000中国 - 苏州 - 中国(江苏)自由吴景定和区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄉海: 215000

t (86–512) 62992980 sg

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 53 of 169

8 Test Result

8.1 Measurement of RF conducted Power

8.1.1 Conducted Power of GSM

Surst Output Power(dBm)	24.61 24.62 3 24.63 24.63 24.63 24.63 24.63 24.63 19.61 19.62 19.58 19.63 Tune up
Channel 128 190 251 Tune up Division Factors 128 190 251 GSM(GMSK) GSM 32.57 32.58 32.45 33.80 -9.19 23.38 23.39 23.2 GPRS 2 TX Slots 29.31 32.15 29.15 29.01 30.80 -6.18 23.13 22.97 23.1 (GMSK) 3 TX Slots 26.97 26.93 26.92 29.00 -4.42 22.55 22.57 22.4 EDGE 1 TX Slots 25.51 25.74 25.57 27.80 -3.17 22.34 22.57 22.4 EDGE 2 TX Slots 29.28 29.14 29.05 30.80 -6.18 23.10 22.96 23.1 (GMSK) 3 TX Slots 26.88 26.89 26.81 29.00 -4.42 22.46 22.47 22.9 EGPRS(8PSK) 1 TX Slots 26.15 26.48 26.65 28.80 -9.19 16.96 17.29 17.4 <t< td=""><td>24.61 24.62 3 24.63 24.63 24.63 24.63 24.63 24.63 19.61 19.62 19.58 19.63 Tune up</td></t<>	24.61 24.62 3 24.63 24.63 24.63 24.63 24.63 24.63 19.61 19.62 19.58 19.63 Tune up
GSM(GMSK) GSM 32.57 32.58 32.45 33.80 -9.19 23.38 23.39 23.2 GPRS 1 TX Slot 32.61 32.45 32.21 33.80 -9.19 23.42 23.26 23.0 GPRS 2 TX Slots 29.31 29.15 29.01 30.80 -6.18 23.13 22.97 23.1 (GMSK) 3 TX Slots 26.97 26.93 26.92 29.00 -4.42 22.55 22.51 22.57 4 TX Slots 25.51 25.74 25.57 27.80 -3.17 22.34 22.57 22.4 EDGE 2 TX Slots 29.28 29.14 29.05 30.80 -6.18 23.10 22.96 23.1 (GMSK) 3 TX Slots 26.89 26.81 29.00 -4.42 22.46 22.47 22.4 4 TX Slots 25.46 25.67 25.51 27.80 -3.17 22.29 22.50 22.3 EGPRS(8PSK) 1 TX Slots 26.15	24.61 24.62 24.63 24.63 24.61 24.62 24.58 24.63 19.61 19.62 19.58 19.63 Tune up
GPRS 2 TX Slots 29.31 29.15 29.01 30.80 -9.19 23.42 23.26 23.0 (GMSK) 27 Slots 29.31 29.15 29.01 30.80 -6.18 23.13 22.97 23.1 22.5 (GMSK) 3 TX Slots 26.97 26.93 26.92 29.00 -4.42 22.55 22.51 22.5 (2.51 22.5 4 TX Slots 25.51 25.74 25.57 27.80 -3.17 22.34 22.57 22.4 22.55 27 Slots 29.28 29.14 29.05 30.80 -6.18 23.10 22.96 23.1 (GMSK) 3 TX Slots 26.88 26.89 26.81 29.00 -4.42 22.46 22.47 22.4 4 TX Slots 25.46 25.67 25.51 27.80 -3.17 22.29 22.50 22.3 1 TX Slots 26.48 26.65 28.80 -9.19 16.96 17.29 17.4 27.4 (2.4.26 24.26 25.80 -6.18 17.83 17.88 18.0 27.4 (2.4.26 24.26 25.80 -6.18 17.83 17.88 18.0 27.4 (2.4.26 24.26 25.80 -6.18 17.83 17.88 18.0 27.4 (2.4.26 24.26 25.80 -6.18 17.83 17.88 18.0 27.4 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 (2.4.26 25.80 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.48 17.8 (2.4.26 25.80 20.40 20	24.61 24.62 24.63 24.63 24.61 24.62 24.58 24.63 19.61 19.62 19.58 19.63 Tune up
GPRS (GMSK) 2 TX Slots 29.31 29.15 29.01 30.80 -6.18 23.13 22.97 23.1 (GMSK) 3 TX Slots 26.97 26.93 26.92 29.00 -4.42 22.55 22.51 22.5 4 TX Slots 25.51 25.74 25.57 27.80 -3.17 22.34 22.57 22.4 EDGE 1 TX Slots 29.28 29.28 29.05 30.80 -6.18 23.39 23.27 22.9 EGMSK) 3 TX Slots 29.28 29.29 10.00 -4.42 22.46 22.47 22.4 4 TX Slots 29.54 29.05 30.80 -6.18 23.10 22.96 23.1 (GMSK) 3 TX Slots 26.88 26.81 29.00 -4.42 22.46 22.47 22.4 4 TX Slots 24.01 24.06 25.65 28.80 -9.19 16.96 17.29 17.4 4 TX Slots 21.94 22.19 22.69 24.00 -4.42 <td>24.62 24.58 24.63 24.61 24.62 24.63 24.63 19.61 19.62 19.58 19.63 19.63 19.63 19.63</td>	24.62 24.58 24.63 24.61 24.62 24.63 24.63 19.61 19.62 19.58 19.63 19.63 19.63 19.63
(GMSK) 3 TX Slots 26.97 26.93 26.92 29.00 -4.42 22.55 22.51 22.57 22.4 4 TX Slots 25.51 25.74 25.57 27.80 -3.17 22.34 22.57 22.4 EDGE 1 TX Slot 32.58 32.46 32.18 33.80 -9.19 23.39 23.27 22.9 (GMSK) 3 TX Slots 29.28 29.14 29.05 30.80 -6.18 23.10 22.96 23.1 (GMSK) 3 TX Slots 26.89 26.89 28.81 29.00 -4.42 22.46 22.47 22.4 4 TX Slots 25.46 25.67 25.51 27.80 -3.17 22.29 22.50 22.3 EGPRS(8PSK) 1 TX Slots 26.15 26.48 26.65 28.80 -9.19 16.96 17.29 17.4 EGPRS(8PSK) 2 TX Slots 21.94 22.19 22.69 24.00 -4.42 17.52 17.77 18.2 <t< td=""><td>24.58 24.63 24.61 24.62 24.63 24.63 24.63 19.61 19.62 19.58 19.63 Tune up 24.61 24.61 24.62</td></t<>	24.58 24.63 24.61 24.62 24.63 24.63 24.63 19.61 19.62 19.58 19.63 Tune up 24.61 24.61 24.62
## A TX Slots	24.63 24.61 24.62 24.58 24.63 19.61 19.62 19.58 19.63 Tune up
EDGE (GMSK) 32.58 32.46 32.18 33.80 -9.19 23.39 23.27 22.9 25.01 (GMSK) 27.40 22.46 22.47 22.46 22.47 22.46 22.47 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40 22.46 22.47 22.40	24.61 24.62 24.58 24.63 19.61 19.62 19.58 19.63 Tune up
EDGE (GMSK) 2 TX Slots 29.28 29.14 29.05 30.80 -6.18 23.10 22.96 23.1 3 TX Slots 26.88 26.89 26.81 29.00 -4.42 22.46 22.47 22.4 4 TX Slots 25.46 25.67 25.51 27.80 -3.17 22.29 22.50 22.3 1 TX Slots 26.15 26.48 26.65 28.80 -9.19 16.96 17.29 17.4 2 TX Slots 24.01 24.06 24.26 25.80 -6.18 17.83 17.88 18.0 3 TX Slots 21.94 22.19 22.69 24.00 -4.42 17.52 17.77 18.2 4 TX Slots 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 17.8	24.62 24.58 24.63 19.61 19.62 19.58 19.63 Tune up 24.61 24.61 24.62
(GMSK) 3 TX Slots 26.88 26.89 26.81 29.00 -4.42 22.46 22.47 22.4 4 TX Slots 25.46 25.67 25.51 27.80 -3.17 22.29 22.50 22.3 EGPRS(8PSK) 2 TX Slots 24.01 24.06 24.26 25.80 -9.19 16.96 17.29 17.4 2 TX Slots 24.01 24.06 24.26 25.80 -6.18 17.83 17.88 18.0 3 TX Slots 21.94 22.19 22.69 24.00 -4.42 17.52 17.77 18.2 4 TX Slots 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 Burst Output Power(dBm)	24.58 24.63 19.61 19.62 19.58 19.63 19.63 Tune up
4 TX Slots 25.46 25.67 25.51 27.80 -3.17 22.29 22.50 22.3 EGPRS(8PSK) 1 TX Slot 26.15 26.48 26.65 28.80 -9.19 16.96 17.29 17.4 2 TX Slots 24.01 24.06 24.26 25.80 -6.18 17.83 17.88 18.0 3 TX Slots 21.94 22.19 22.69 24.00 -4.42 17.52 17.77 18.2 Art Slots 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 Burst Output Power(dBm) Tune up T	24.63 19.61 19.62 19.58 19.63 Tune up 24.61 24.61 24.62
EGPRS(8PSK) 1 TX Slot 26.15 26.48 26.65 28.80 -9.19 16.96 17.29 17.4 2 TX Slots 24.01 24.06 24.26 25.80 -6.18 17.83 17.88 18.0 3 TX Slots 21.94 22.19 22.69 24.00 -4.42 17.52 17.77 18.2 4 TX Slots 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8 Burst Output Power(dBm) Tune up Channel Tune up Division Factors Frame-Average Output Power(dBm) GSM(GMSK) GSM 32.75 32.80 32.51 33.80 -9.19 23.56 23.61 23.3 GPRS 2 TX Slots 29.75 29.94 29.65 30.80 -6.18 23.57 23.76 23.5 (GMSK) 3 TX Slots 27.49 27.77 27.52 29.00 -4.42 23.07 23.35 23.62 23.5	19.61 19.62 19.58 19.63 19.63 Tune up 24.61 24.61 24.62
EGPRS(8PSK) 2 TX Slots	19.62 19.58 19.63 Tune up 24.61 24.61 24.62
STX Slots 21.94 22.19 22.69 24.00 -4.42 17.52 17.77 18.2 17.77 17.48 17.8 17.77 17.48 17.8 17.77 17.48 17.8 17.77 17.48 17.8 17.77 17.48 17.8 17.77 17.48 17.8 17.77 17.48 17.8 17.77 17.48 17.8 17.77 17.48 17.77 17.77 17.48 17.77	19.58 19.63 Tune up 24.61 24.61 24.62
A TX Slots 20.34 20.65 21.03 22.80 -3.17 17.17 17.48 17.8	Bm) Tune up 2 24.61 2 24.62
Ant3 GSM 850	Bm) Tune up 2 24.61 2 24.61 2 24.62
Burst Output Power(dBm) Tune up Division Factors Frame-Average Output Power(d Deptition Factors) Channel 128 190 251 GSM(GMSK) GSM 32.75 32.80 32.51 33.80 -9.19 23.56 23.61 23.3 GPRS 2 TX Slots 29.75 29.94 29.65 30.80 -6.18 23.57 23.76 23.5 (GMSK) 3 TX Slots 27.49 27.77 27.52 29.00 -4.42 23.07 23.35 23.0 4 TX Slots 26.06 26.33 26.11 27.80 -3.17 22.89 23.16 22.9 EDGE 2 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 (GMSK) 3 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 4 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.	24.61 24.62
Channel 128 190 251 Tune up Division Factors 128 190 251 GSM(GMSK) GSM 32.75 32.80 32.51 33.80 -9.19 23.56 23.61 23.3 GPRS 1 TX Slot 32.77 32.84 32.75 33.80 -9.19 23.58 23.65 23.5 (GMSK) 2 TX Slots 29.75 29.94 29.65 30.80 -6.18 23.57 23.76 23.5 (GMSK) 3 TX Slots 27.49 27.77 27.52 29.00 -4.42 23.07 23.35 23.0 4 TX Slots 26.06 26.33 26.11 27.80 -3.17 22.89 23.16 22.9 EDGE 1 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 (GMSK) 3 TX Slots 27.35 27.67 27.49 29.00 -4.42 22.93 23.70 23.5 4 TX Slots 26.01 <t< td=""><td>24.61 24.62</td></t<>	24.61 24.62
GSM(GMSK) GSM 32.75 32.80 32.51 33.80 -9.19 23.56 23.61 23.3 GPRS 1 TX Slot 32.77 32.84 32.75 33.80 -9.19 23.58 23.65 23.5 GPRS 2 TX Slots 29.75 29.94 29.65 30.80 -6.18 23.57 23.76 23.5 (GMSK) 3 TX Slots 27.49 27.77 27.52 29.00 -4.42 23.07 23.35 23.0 4 TX Slots 26.06 26.33 26.11 27.80 -3.17 22.89 23.16 22.9 EDGE 1 TX Slots 32.74 32.81 32.71 33.80 -9.19 23.55 23.62 23.5 (GMSK) 3 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 (GMSK) 3 TX Slots 27.35 27.67 27.49 29.00 -4.42 22.93 23.25 22.9 4 TX Slots <t< td=""><td>24.61</td></t<>	24.61
GPRS (GMSK) 1 TX Slot 32.77 32.84 32.75 33.80 -9.19 23.58 23.65 23.5 (GMSK) 2 TX Slots 29.75 29.94 29.65 30.80 -6.18 23.57 23.76 23.5 3 TX Slots 27.49 27.77 27.52 29.00 -4.42 23.07 23.35 23.0 4 TX Slots 26.06 26.33 26.11 27.80 -3.17 22.89 23.16 22.9 1 TX Slot 32.74 32.81 32.71 33.80 -9.19 23.55 23.62 23.5 EDGE 2 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 (GMSK) 3 TX Slots 27.35 27.67 27.49 29.00 -4.42 22.93 23.25 22.9 4 TX Slots 26.01 26.22 26.05 27.80 -3.17 22.84 23.05 22.8	24.61
GPRS (GMSK) 2 TX Slots 29.75 29.94 29.65 30.80 -6.18 23.57 23.76 23.5 3 TX Slots 27.49 27.77 27.52 29.00 -4.42 23.07 23.35 23.0 4 TX Slots 26.06 26.33 26.11 27.80 -3.17 22.89 23.16 22.9 1 TX Slot 32.74 32.81 32.71 33.80 -9.19 23.55 23.62 23.5 EDGE 2 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 (GMSK) 3 TX Slots 27.35 27.67 27.49 29.00 -4.42 22.93 23.25 22.9 4 TX Slots 26.01 26.22 26.05 27.80 -3.17 22.84 23.05 22.8	24.62
(GMSK) 3 TX Slots 27.49 27.77 27.52 29.00 -4.42 23.07 23.35 23.0 4 TX Slots 26.06 26.33 26.11 27.80 -3.17 22.89 23.16 22.9 1 TX Slot 32.74 32.81 32.71 33.80 -9.19 23.55 23.62 23.5 EDGE 2 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 (GMSK) 3 TX Slots 27.35 27.67 27.49 29.00 -4.42 22.93 23.25 22.9 4 TX Slots 26.01 26.22 26.05 27.80 -3.17 22.84 23.05 22.8	
4 TX Slots 26.06 26.33 26.11 27.80 -3.17 22.89 23.16 22.9 1 TX Slot 32.74 32.81 32.71 33.80 -9.19 23.55 23.62 23.5 EDGE 2 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 (GMSK) 3 TX Slots 27.35 27.67 27.49 29.00 -4.42 22.93 23.25 22.9 4 TX Slots 26.01 26.22 26.05 27.80 -3.17 22.84 23.05 22.8	
EDGE (GMSK) 1 TX Slots 29.77 29.88 29.59 30.80 -9.19 23.55 23.62 23.5 25.6 (GMSK) 27.35 27.67 27.49 29.00 -4.42 22.93 23.25 22.9 4 TX Slots 26.01 26.22 26.05 27.80 -3.17 22.84 23.05 22.8	
EDGE (GMSK) 2 TX Slots 29.77 29.88 29.59 30.80 -6.18 23.59 23.70 23.5 27.67 27.49 29.00 -4.42 22.93 23.25 22.9 4 TX Slots 26.01 26.22 26.05 27.80 -3.17 22.84 23.05 22.8	
(GMSK) 3 TX Slots 27.35 27.67 27.49 29.00 -4.42 22.93 23.25 22.9 4 TX Slots 26.01 26.22 26.05 27.80 -3.17 22.84 23.05 22.8	
4 TX Slots 26.01 26.22 26.05 27.80 -3.17 22.84 23.05 22.8	
1 TX Slot 26.90 26.91 26.99 28.80 -9.19 17.71 17.72 17.8	
2 TX Slots 24 24 35 24 29 25 80 -6 18 18 06 18 17 18 1	
EGPRS(8PSK) 3 TX Slots 22.19 22.38 22.19 24.00 -4.42 17.77 17.96 17.7	
4 TX Slots 21.19 21.45 21.31 22.80 -3.17 18.02 18.28 18.1	
Ant1 GSM 1900	10.00
Burst Output Power(dBm) Frame-Average Output Power(d	3m)L
Channel 512 661 810 Tune up Division Factors 512 661 810	Tune up
GSM(GMSK) GSM 29.46 30.07 29.56 30.80 -9.19 20.27 20.88 20.3	21.61
1 TX Slot 29.43 30.04 29.51 30.80 -9.19 20.24 20.85 20.3	
GPRS 2 TX Slots 26.42 27.03 26.56 27.80 -6.18 20.24 20.85 20.2	
(GMSK) 3 TX Slots 24.47 25.08 24.60 26.00 -4.42 20.05 20.66 20.0	
4 TX Slots 23.18 23.79 23.15 24.80 -3.17 20.01 20.62 19.9	
1 TX Slot 29.47 30.08 29.50 30.80 -9.19 20.28 20.89 20.3	
EDGE 2 TX Slots 26.60 27.21 26.62 27.80 -6.18 20.42 21.03 20.4	
(GMSK) 3 TX Slots 24.41 25.02 24.65 26.00 -4.42 19.99 20.60 19.9	
4 TX Slots 23.04 23.65 23.11 24.80 -3.17 19.87 20.48 19.9	
1 TX Slot 25.21 25.82 25.22 27.80 -9.19 16.02 16.63 16.0	
2 TV Slote 22 49 24 00 22 56 24 90 6 19 17 20 17 01 17 2	
EGPRS(8PSK) 2 1X Slots 23.46 24.09 25.30 24.80 40.10 17.30 17.31 17.3 17.3 17.31 17.	
4 TX Slots 20.30 20.91 20.18 21.80 -3.17 17.13 17.74 17.0	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention holy and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 5 Pietr, No. 1, Runshere; Road, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 54 of 169

	Ant3 GSM 1900 Receiver off/Hotspot Off									
D	t Output Daws	or/dDmc\	Ant	o GOIVI	1900 RE	ceiver on/noispot (From a Arran	aga Outport	Dower(dDres)	
	t Output Powe		004	040	Tune up	Division Factors	Frame-Average Output Power(dBm)			Tune up
Chan		512	661	810		0.40	312	001	010	
GSM(GMSK)	GSM		28.61		28.90	-9.19	19.17	19.42	19.27	19.71
0.000	1 TX Slot		28.73		28.90	-9.19	19.47	16.15	19.19	19.71
GPRS	2 TX Slots		25.62	_	25.90	-6.18	19.16	19.44	19.18	19.72
(GMSK)	3 TX Slots		23.61		24.10	-4.42	18.70	19.19	18.70	19.68
	4 TX Slots		22.15		22.90	-3.17	18.78	18.98	18.87	19.73
	1 TX Slot		28.82		28.90	-9.19	19.54	16.33	19.30	19.71
EDGE	2 TX Slots		25.71		25.90	-6.18	19.34	19.53	19.29	19.72
(GMSK)	3 TX Slots		_		24.10	-4.42	18.82	19.29	18.82	19.68
	4 TX Slots	22.09	22.27	22.16	22.90	-3.17	18.92	19.10	18.99	19.73
	1 TX Slot	25.39	25.68	25.48	25.90	-9.19	16.20	16.49	16.29	16.71
EGPRS(8PSK)	2 TX Slots		22.72	22.47	22.90	-6.18	16.35	16.54	16.29	16.72
LO1 ((0) (0)	3 TX Slots	20.86	20.91	20.82	21.10	-4.42	16.44	16.49	16.40	16.68
	4 TX Slots	19.65	19.69	19.68	19.90	-3.17	16.48	16.52	16.51	16.73
			Ant	3 GSM	1900 Re	eceiver on/Hotspot (On			
Burs	t Output Powe	er(dBm)			Tune up	Division Factors	Frame-Aver	age Output I	Power(dBm)	Tung un
Chann	el	512	661	810	i une up	DIVISION FACIOIS	512	661	810	Turie up
GSM(GMSK)	GSM	26.33	26.58	26.13	26.80	-9.19	17.14	17.39	16.94	17.61
	1 TX Slot	26.38	26.77	26.43	26.80	-9.19	17.19	17.58	17.24	17.61
GPRS	2 TX Slots	23.18	23.61	23.21	23.80	-6.18	17.00	17.43	17.00	17.62
(GMSK)	3 TX Slots	21.23	21.66	21.44	22.00	-4.42	16.81	17.24	16.81	17.58
	4 TX Slots	19.80	20.18	19.91	20.80	-3.17	16.63	17.01	16.74	17.63
	1 TX Slot	26.49	26.88	26.54	26.80	-9.19	17.30	17.69	17.35	17.61
EDGE	2 TX Slots	23.24	23.67	23.27	23.80	-6.18	17.06	17.49	17.06	17.62
(GMSK)	3 TX Slots	21.29	21.72	21.50	22.00	-4.42	16.87	17.30	16.87	17.58
	4 TX Slots	19.85	20.23	19.96	20.80	-3.17	16.68	17.06	16.79	17.63
	1 TX Slot	23.59				-9.19	14.40	14.49	14.37	14.61
EODDO(ODC)	2 TX Slots	20.99				-6.18	14.81	14.68	14.60	14.62
EGPRS(8PSK)	3 TX Slots	18.94	19.02	18.87	19.00	-4.42	14.52	14.60	14.45	14.58
	4 TX Slots	17.29	17.63	17.65	17.80	-3.17	14.12	14.46	14.48	14.63

Note:

1) . For GSM SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal::

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075
Time based avg. power compared to slotted avg. power	-9.19	-6.18	-4.42	-3.17

- 2) . The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8
- 3) . When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents start http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Piot Free Track Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易式搬区苏州片区苏州工业园区满胜路1号的6号厂房南部 庫編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 55 of 169

	Ant1 WCDMA E	Band II Receiver of	n/Hotspot off		
	Average	Conducted Power	(dBm)		
C	hannel	9262	9400	9538	Tune up
MCDMA	12.2kbps RMC	22.75	23.45	22.84	24.40
WCDMA	12.2kbps AMR	22.71	23.39	22.75	24.40
	Subtest 1	21.73	22.38	21.90	23.40
11000	Subtest 2	21.65	22.43	21.66	23.40
HSDPA	Subtest 3	21.34	22.01	21.24	22.90
	Subtest 4	21.19	21.90	21.15	22.90
	Subtest 1	21.76	22.42	21.92	23.40
DO HODDA	Subtest 2	21.71	22.47	21.79	23.40
DC-HSDPA	Subtest 3	21.16	21.94	21.31	22.90
	Subtest 4	21.28	21.96	21.20	22.90
	Subtest 1	21.70	22.48	21.83	23.40
	Subtest 2	19.84	20.48	19.88	21.40
HSUPA	Subtest 3	20.72	21.36	20.75	22.40
	Subtest 4	19.76	20.40	19.82	21.40
	Subtest 5	21.75	22.49	21.69	23.40
	Ant1 WCDMA B	and II Receiver o	ff/Hotspot on		
	Average	Conducted Power	(dBm)		
C	hannel	9262	9400	9538	Tune up
14100144	12.2kbps RMC	21.93	22.37	22.14	23.40
WCDMA	12.2kbps AMR	21.84	22.31	22.10	23.40
	Subtest 1	20.95	21.38	21.21	22.40
	Subtest 2	20.81	21.31	21.15	22.40
HSDPA	Subtest 3	20.45	20.84	20.55	21.90
	Subtest 4	20.31	20.86	20.54	21.90
	Subtest 1	20.98	21.45	21.22	22.40
DO 110DDA	Subtest 2	20.80	21.30	21.15	22.40
DC-HSDPA	Subtest 3	20.37	20.85	20.69	21.90
	Subtest 4	20.30	20.84	20.59	21.90
	Subtest 1	20.77	21.21	21.04	22.40
	Subtest 2	18.97	19.42	19.09	20.40
HSUPA	Subtest 3	19.98	20.41	20.21	21.40
	Subtest 4	18.90	19.27	19.17	20.40
	Subtest 5	20.88	21.36	21.05	22.40

中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 56 of 169

			Page:	56 of 169	
	Ant3 WCDMA E	Band II Receiver of	ff/Hotspot off		
	Average	Conducted Power	(dBm)		
(Channel	9262	9400	9538	Tune up
WCDMA	12.2kbps RMC	19.24	19.61	19.34	20.00
WODINA	12.2kbps AMR	19.15	19.57	19.22	20.00
	Subtest 1	18.31	18.56	18.26	19.00
HSDPA	Subtest 2	18.11	18.61	18.32	19.00
HODEA	Subtest 3	17.67	18.21	17.87	18.50
	Subtest 4	17.73	18.09	17.80	18.50
	Subtest 1	18.29	18.53	18.29	19.00
DC HCDDA	Subtest 2	18.05	18.49	18.17	19.00
DC-HSDPA	Subtest 3	17.84	18.13	17.81	18.50
	Subtest 4	17.75	17.97	17.73	18.50
	Subtest 1	18.11	18.47	18.32	19.00
	Subtest 2	16.30	16.69	16.37	17.00
HSUPA	Subtest 3	17.31	17.55	17.35	18.00
	Subtest 4	16.23	16.51	16.31	17.00
	Subtest 5	18.09	18.48	18.25	19.00
	Ant3 WCDMA E	Band II Receiver of	n/Hotspot on		
	Average	Conducted Power	(dBm)		
(Channel	9262	9400	9538	Tune up
MODIA	12.2kbps RMC	15.99	16.33	16.05	17.20
WCDMA	12.2kbps AMR	15.56	15.87	15.22	17.20
	Subtest 1	15.51	15.76	15.46	16.20
110004	Subtest 2	15.31	15.81	15.52	16.20
HSDPA	Subtest 3	14.87	15.41	15.07	15.70
	Subtest 4	14.93	15.29	15.00	15.70
	Subtest 1	15.49	15.73	15.49	16.20
	Subtest 2	15.25	15.69	15.37	16.20
DC-HSDPA	Subtest 3	15.04	15.33	15.01	15.70
	Subtest 4	14.95	15.17	14.93	15.70
	Subtest 1	15.31	15.67	15.52	16.20
	Subtest 2	13.50	13.89	13.57	14.20
HSUPA	Subtest 3	14.51	14.75	14.55	15.20
	Subtest 4	13.43	13.71	13.51	14.20
	Subtest 5	15.29	15.68	15.45	16.20

South of No. 8 Piett, No. 1, Runshere, Road, Scarbou Industrial Park, Starhou Area, China (Jangsu) Pict Free Tised Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定翰区苏州丘安周区满世路(号数6号厂房南部 雌嶺: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

			Page:	57 of 169	
	Ant1 WCD	MA Band IV Rec	eiver on		
	Average	Conducted Power	r(dBm)		
	Channel	1312	1412	1513	Tune up
WCDMA	12.2kbps RMC	23.21	23.47	23.41	24.40
VVCDIVIA	12.2kbps AMR	23.12	23.42	23.34	24.40
	Subtest 1	22.30	22.49	22.43	23.40
HCDDA	Subtest 2	22.07	22.51	22.44	23.40
HSDPA	Subtest 3	21.81	22.00	21.95	22.90
	Subtest 4	21.60	21.89	21.77	22.90
	Subtest 1	22.27	22.37	22.51	23.40
DC HCDDA	Subtest 2	22.03	22.35	22.33	23.40
DC-HSDPA	Subtest 3	21.66	22.02	21.87	22.90
	Subtest 4	21.72	22.01	21.76	22.90
	Subtest 1	22.22	22.46	22.39	23.40
	Subtest 2	20.17	20.44	20.42	21.40
HSUPA	Subtest 3	21.20	21.43	21.41	22.40
	Subtest 4	20.05	20.34	20.27	21.40
	Subtest 5	22.08	22.37	22.34	23.40
	Ant1 WCDMA Ba	and IV Receiver of	off/Hotspot Off		
	Average	Conducted Power	r(dBm)		
	Channel	1312	1412	1513	Tune up
	12.2kbps RMC	21.58	21.67	21.55	22.90
WCDMA	12.2kbps AMR	21.55	21.59	21.54	22.90
	Subtest 1	20.51	20.69	20.64	21.90
	Subtest 2	20.54	20.64	20.60	21.90
HSDPA	Subtest 3	20.14	20.15	20.14	21.40
	Subtest 4	20.02	20.11	20.03	21.40
	Subtest 1	20.63	20.66	20.65	21.90
DO 110224	Subtest 2	20.53	20.61	20.56	21.90
DC-HSDPA	Subtest 3	20.11	20.13	20.06	21.40
	Subtest 4	20.11	20.00	20.07	21.40
	Subtest 1	20.47	20.59	20.51	21.90
	Subtest 2	18.59	18.59	18.55	19.90
HSUPA	Subtest 3	19.67	19.68	19.56	20.90
	Subtest 4	18.58	18.59	18.48	19.90
	Subtest 5	20.48	20.49	20.52	21.90

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

			Page:	58 of 169	
	Ant1	WCDMA Band IV F	lotspot On		
	Ave	erage Conducted Pov	wer(dBm)		
(Channel	1312	1412	1513	Tune up
WCDMA	12.2kbps RMC	20.34	20.48	20.46	21.60
VVODIVI) (12.2kbps AMR	20.25	20.41	20.31	21.60
	Subtest 1	19.25	19.55	19.22	20.60
HSDPA	Subtest 2	19.18	19.48	19.42	20.60
HODI A	Subtest 3	18.98	18.78	18.85	20.10
	Subtest 4	18.67	18.91	18.91	20.10
	Subtest 1	19.28	19.19	19.56	20.60
DC-HSDPA	Subtest 2	19.11	19.28	19.54	20.60
BOTIODITA	Subtest 3	18.72	18.72	18.66	20.10
	Subtest 4	18.58	18.64	18.56	20.10
	Subtest 1	19.05	19.15	19.15	20.60
	Subtest 2	17.11	17.22	17.35	18.60
HSUPA	Subtest 3	18.28	18.31	18.41	19.60
	Subtest 4	17.15	17.22	17.22	18.60
	Subtest 5	19.09	19.28	19.31	20.60
	Ant3 WCI	DMA Band IV Receive	er off/Hotspot off		
	Ave	erage Conducted Pov	wer(dBm)	-	
	Channel	1312	1412	1513	Tune up
WCDMA	12.2kbps RMC	20.69	20.77	20.75	21.40
WODINA	12.2kbps AMR	20.66	20.76	19.69	21.40
	Subtest 1	19.67	19.84	19.77	20.40
LICDDA	Subtest 2	19.67	19.82	18.65	20.40
HSDPA	Subtest 3	19.12	19.27	19.18	19.90
	Subtest 4	19.09	19.25	18.25	19.90
	Subtest 1	19.79	19.73	19.85	20.40
	Subtest 2	19.66	19.70	18.60	20.40
DC-HSDPA	Subtest 3	19.18	19.36	19.21	19.90
	Subtest 4	19.11	19.35	18.21	19.90
	Subtest 1	19.72	19.68	18.69	20.40
	Subtest 2	17.67	17.76	17.67	18.40
HSUPA	Subtest 3	18.62	18.87	18.72	19.40
	Subtest 4	17.61	17.67	17.81	18.40
	Subtest 5	19.69	19.86	18.65	20.40
	Sublest 5	13.03	19.00	10.03	20.40

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

			Page:	59 of 169	
	Ant3 WCDMA E	Band IV Receiver o	n/Hotspot on		
	Average	Conducted Power	(dBm)		
(Channel	1312	1412	1513	Tune up
WCDMA	12.2kbps RMC	20.01	20.09	20.06	20.70
WODIVIT	12.2kbps AMR	19.98	20.08	20.01	20.70
	Subtest 1	18.91	19.15	19.03	19.70
HSDPA	Subtest 2	18.89	19.10	18.02	19.70
HODI A	Subtest 3	18.44	18.55	18.53	19.20
	Subtest 4	18.39	18.62	17.53	19.20
	Subtest 1	18.99	19.06	19.10	19.70
DC-HSDPA	Subtest 2	18.92	18.98	17.84	19.70
DC-HSDPA	Subtest 3	18.40	18.76	18.53	19.20
	Subtest 4	18.39	18.70	17.58	19.20
	Subtest 1	18.92	18.92	17.94	19.70
	Subtest 2	16.87	17.04	16.87	17.70
HSUPA	Subtest 3	17.98	18.22	17.93	18.70
	Subtest 4	16.87	16.94	17.09	17.70
	Subtest 5	19.03	19.07	17.88	19.70
	Ant	0 WCDMA Band	/		
	Average	Conducted Power	(dBm)		
(Channel	4132	4182	4233	Tune up
MODMA	12.2kbps RMC	23.95	23.98	23.91	25.00
WCDMA	12.2kbps AMR	23.89	23.91	23.84	25.00
	Subtest 1	22.96	23.01	22.98	24.00
DO 110DDA	Subtest 2	22.95	22.89	22.93	24.00
DC-HSDPA	Subtest 3	22.49	22.41	22.47	23.50
	Subtest 4	22.33	22.37	22.34	23.50
	Subtest 1	23.05	22.90	22.99	24.00
	Subtest 2	22.79	22.98	22.86	24.00
HSDPA	Subtest 3	22.55	22.44	22.49	23.50
	Subtest 4	22.32	22.48	22.30	23.50
	Subtest 1	22.97	22.96	22.92	24.00
	Subtest 2	20.86	20.95	20.87	22.00
HSUPA	Subtest 3	21.86	22.07	21.93	23.00
11501 A		20.00	24.07	20.95	22.00
	Subtest 4	20.96	21.07	20.93	22.00

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 60 of 169

Ant3 WCDMA Band V										
Average Conducted Power(dBm)										
Channel 4132 4182 4233 Tune up										
WCDMA	12.2kbps RMC	23.88	23.95	23.85	25.00					
VVCDIVIA	12.2kbps AMR	23.79	23.88	23.84	25.00					
	Subtest 1	22.97	23.00	22.80	24.00					
ПСДВУ	Subtest 2	22.75	22.89	22.85	24.00					
HSDPA	Subtest 3	22.31	22.43	22.27	23.50					
	Subtest 4	22.39	22.34	22.26	23.50					
	Subtest 1	22.93	23.03	22.81	24.00					
DC-HSDPA	Subtest 2	22.80	22.90	22.89	24.00					
DC-HODFA	Subtest 3	22.44	22.39	22.34	23.50					
	Subtest 4	22.35	22.41	22.30	23.50					
	Subtest 1	22.78	22.93	22.80	24.00					
	Subtest 2	20.94	20.89	20.94	22.00					
HSUPA	Subtest 3	21.94	21.93	21.91	23.00					
	Subtest 4	20.78	20.95	20.75	22.00					
	Subtest 5	22.80	22.91	22.77	24.00					

Note:

1) when the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx stretten in is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is downed therein in the subject of the

South of No. 6 Perit, No. 1, Punsherg Read, Suchou Industria Park, Suchou Avea, China (Jangsu) Pilot Free Trade Zone 中国 · 苏州 - 中国(江苏)自由吴景玄翁区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

t (86–512) 62992980 www.sgsgroup.com t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 61 of 169

8.1.3 Conducted Power of LTE

Ant1 L	Ant1 LTE Band 2 Receiver off/Hotspot Off				Conducted Power(dBm)			
Danish dala	Ma delation	DD -:	DD -#+	Channel	Channel	Channel	T	
Bandwidth	Modulation	RB size	RB offset	18607	18900	19193	Tune up	
		1	0	21.49	21.85	21.47	23.40	
		1	2	21.6	21.92	21.55	23.40	
		1	5	21.45	21.94	21.45	23.40	
	QPSK	3	0	21.46	21.89	21.45	23.40	
		3	2	21.43	21.94	21.44	23.40	
		3	3	21.47	21.89	21.52	23.40	
1.4MHz		6	0	21.55	22.02	21.59	23.40	
1.411172		1	0	21.77	22.13	21.61	23.40	
		1	2	21.6	22.42	21.88	23.40	
		1	5	21.56	22.1	21.99	23.40	
	16QAM	3	0	21.53	22.07	21.55	23.40	
		3	2	21.52	22.09	21.66	23.40	
		3	3	21.41	22.07	21.53	23.40	
		6	0	20.58	20.72	20.52	22.40	
Bandwidth	Bandwidth Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Bandwidth	Woddiation	IND SIZE	IVD Olloct	18615	18900	19185	rune up	
		1	0	21.58	22.05	21.69	23.40	
		1	7	21.65	22.05	21.63	23.40	
		1	14	21.51	21.74	21.4	23.40	
	QPSK	8	0	21.45	21.93	21.61	23.40	
		8	4	21.45	21.97	21.61	23.40	
		8	7	21.49	21.97	21.56	23.40	
3MHz		15	0	21.45	21.9	21.52	23.40	
SIVITZ		1	0	21.62	22.03	21.92	23.40	
		1	7	21.57	21.77	21.89	23.40	
		1	14	21.51	21.87	21.76	23.40	
	16QAM	8	0	20.84	21.25	20.58	22.40	
		8	4	20.88	21.12	20.64	22.40	
		8	7	21.07	20.91	20.67	22.40	
		15	0	20.79	21.2	20.84	22.40	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun	
Bandwidth	Modulation	VD 2176	VD 011261	18625	18900	19175	Tune up	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Trade Zone 21.5000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 62 of 169

	1	1	1	, P	age: c	2 01 169	i .
		1	0	21.44	21.98	21.68	23.40
		1	13	21.46	21.84	21.42	23.40
		1	24	21.73	21.75	21.46	23.40
	QPSK	12	0	21.45	21.88	21.56	23.40
		12	6	21.48	21.88	21.61	23.40
		12	13	21.65	21.89	21.55	23.40
		25	0	21.4	21.92	21.54	23.40
5MHz		1	0	21.49	21.8	21.47	23.40
		1	13	21.45	21.61	21.55	23.40
		1	24	21.62	22.36	21.66	23.40
	16QAM	12	0	20.67	21.26	20.85	22.40
		12	6	20.82	21.14	20.85	22.40
		12	13	20.54	21.21	20.8	22.40
		25	0	20.84	21.1	20.75	22.40
5 1 114			DD " .	Channel	Channel	Channel	_
Bandwidth	Modulation	RB size	RB offset	18650	18900	19150	Tune up
		1	0	21.65	21.94	21.57	23.40
		1	25	21.6	22.13	21.79	23.40
		1	49	21.55	21.63	21.42	23.40
	QPSK	25	0	21.52	21.89	21.64	23.40
		25	13	21.42	21.96	21.51	23.40
		25	25	21.44	21.87	21.52	23.40
		50	0	21.48	21.92	21.53	23.40
10MHz		1	0	21.68	22.03	21.7	23.40
		1	25	21.72	22.05	21.69	23.40
		1	49	21.55	21.78	21.48	23.40
	16QAM	25	0	20.59	21.25	20.57	22.40
		25	13	20.56	21.01	20.8	22.40
		25	25	20.75	21.08	20.57	22.40
		50	0	20.58	21.07	20.58	22.40
				Channel	Channel	Channel	_
Bandwidth	Modulation	RB size	RB offset	18675	18900	19125	Tune up
		1	0	21.58	21.42	21.63	23.40
		1	38	21.55	21.41	21.54	23.40
		1	74	21.67	21.5	21.42	23.40
15MHz	QPSK	36	0	21.69	21.42	21.49	23.40
		36	18	21.57	21.65	21.53	23.40
		36	39	21.57	21.64	21.63	23.40
		75	0	21.5	21.57	21.56	23.40

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx.and, contended to the limitation of liability, indemification and jurisdiction issues define therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or fallsfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 63 of 169

			•	Г.	age: c	3 01 109	
		1	0	21.52	21.47	21.62	23.40
		1	38	21.52	21.4	21.59	23.40
		1	74	21.45	21.57	21.76	23.40
	16QAM	36	0	20.79	20.71	20.82	22.40
		36	18	20.8	20.67	20.66	22.40
		36	39	20.72	20.55	20.71	22.40
		75	0	20.9	20.56	20.85	22.40
Donalissialth	Bandwidth Modulation	DD oizo	DD offeet	Channel	Channel	Channel	Tunaun
bandwidth		RB size	RB offset	18700	18900	19100	Tune up
	QPSK	1	0	21.76	21.77	21.59	23.40
		1	50	21.45	21.43	21.43	23.40
		1	99	21.69	21.62	21.69	23.40
		50	0	21.58	21.68	21.55	23.40
		50	25	21.55	21.41	21.49	23.40
		50	50	21.48	21.56	21.49	23.40
20MHz		100	0	21.56	21.62	21.49	23.40
20141112		1	0	21.74	21.4	21.52	23.40
		1	50	21.63	21.65	21.44	23.40
		1	99	21.72	21.48	21.59	23.40
	16QAM	50	0	21.19	20.93	21.17	22.40
		50	25	21.19	20.93	21.06	22.40
		50	50	20.95	20.68	21.02	22.40
		100	0	21.14	20.96	20.99	22.40

А	nt1 LTE Band 2 Red	ceiver on		Conducted Power(dBm)			
Bandwidth	Modulation	DD .:	RB offset	Channel	Channel	Channel	Tungun
Danawiath	Modulation	RB size	KD Ollset	18607	18900	19193	Tune up
		1	0	22.48	22.90	22.53	24.40
	QPSK	1	2	22.52	22.85	22.61	24.40
		1	5	22.44	23.03	22.44	24.40
		3	0	22.58	23.29	22.92	24.40
		3	2	22.63	23.26	23.08	24.40
1.4MHz		3	3	22.70	23.25	23.02	24.40
		6	0	21.75	22.20	21.85	23.40
		1	0	21.70	22.26	21.62	23.40
	16QAM	1	2	21.40	22.05	21.56	23.40
	IOQAIVI	1	5	21.84	22.03	22.14	23.40
		3	0	21.77	22.09	21.60	23.40

South of No. 5 Pietr, No. 1, Runshere; Road, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 64 of 169

		3	2	21.77	age: 6 _{22.17}	22.06	23.40
		3	3	21.63	22.17	21.73	23.40
		6	0	20.54	21.04	20.95	22.40
		U	U	Channel	Channel	Channel	22.40
Bandwidth	Modulation	RB size	RB offset	18615	18900	19185	Tune up
		1	0	22.58	22.8	22.91	24.40
		1	7	22.76	23.48	23.14	24.40
		1	14	22.48	22.96	22.92	24.40
	QPSK	8	0	21.74	22.21	21.8	23.40
	<u> </u>	8	4	21.81	22.25	21.89	23.40
	3MHz 16QAM	8	7	21.76	22.27	21.85	23.40
		15	0	21.72	22.19	21.81	23.40
3MHz		1	0	21.63	22.26	22.17	23.40
		1	7	21.83	22.05	21.7	23.40
		1	14	21.82	22.34	21.88	23.40
		8	0	20.73	20.95	20.61	22.40
		8	4	20.67	21.13	20.58	22.40
		8	7	20.77	21.05	20.53	22.40
		15	0	20.58	21.19	20.86	22.40
			55 11	Channel	Channel	Channel	_
Bandwidth	Modulation	RB size	RB offset	18625	18900	19175	Tune up
		1	0	22.53	22.74	22.52	24.40
		1	13	22.71	23.06	22.73	24.40
		1	24	22.6	23.1	22.63	24.40
	QPSK	12	0	21.78	22.25	21.91	23.40
		12	6	21.78	22.29	21.94	23.40
		12	13	21.66	22.18	21.8	23.40
EMU-		25	0	21.8	22.22	21.89	23.40
5MHz		1	0	21.79	22.39	21.59	23.40
		1	13	22.2	22.64	21.93	23.40
		1	24	21.69	22.61	21.85	23.40
	16QAM	12	0	20.78	21.17	20.89	22.40
		12	6	20.83	21.07	20.83	22.40
		12	13	20.78	21.01	20.78	22.40
		25	0	20.63	21.34	20.79	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	IVD SIZE	VD 011961	18650	18900	19150	rune up
10MHz	QPSK	1	0	22.4	23.14	22.64	24.40
1 (1411 12	Q, OIV	1	25	22.7	23.4	22.97	24.40

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

t (86–512) 62992980 sgs.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 65 of 169

1 49 22.51 23.14 22.81 24.40
25 13 21.49 21.94 21.57 23.40
25 25 21.46 21.96 21.51 23.40
Tune up
1
1 25 21.75 22 22.08 23.40 1 49 21.57 21.79 21.84 23.40 25 0 21.07 21.53 20.96 22.40 25 13 20.75 21.29 21.02 22.40 25 25 20.56 21.59 20.69 22.40 25 50 0 20.67 21.27 20.79 22.40 Bandwidth Modulation RB size RB offset RB offset Tune up
1 49 21.57 21.79 21.84 23.40 25 0 21.07 21.53 20.96 22.40 25 13 20.75 21.29 21.02 22.40 25 25 20.56 21.59 20.69 22.40 50 0 20.67 21.27 20.79 22.40 Bandwidth Modulation RB size RB offset RB offset Tune up
16QAM 25 0 21.07 21.53 20.96 22.40
25 13 20.75 21.29 21.02 22.40
25 25 20.56 21.59 20.69 22.40
50 0 20.67 21.27 20.79 22.40
BandwidthModulationRB sizeRB offsetChannelChannelChannelChannel186751890019125
Bandwidth Modulation RB size RB offset 18675 18900 19125 Tune up
18675 18900 19125
1 0 22.51 22.01 22.67 24.40
1 0 22.31 22.91 22.07 24.40
1 38 22.4 22.93 22.61 24.40
1 74 22.52 22.85 22.53 24.40
QPSK 36 0 21.5 22.02 21.68 23.40
36 18 21.49 21.99 21.73 23.40
36 39 21.54 21.96 21.56 23.40
75 0 21.46 21.96 21.72 23.40
15MHz 1 0 21.63 21.87 21.43 23.40
1 38 21.53 21.61 21.41 23.40
1 74 21.41 22.03 21.66 23.40
16QAM 36 0 20.52 20.86 20.54 22.40
36 18 20.43 20.94 20.62 22.40
36 39 20.5 21.07 20.58 22.40
75 0 20.53 21.06 20.72 22.40
_ Channel Channel _
Bandwidth Modulation RB size RB offset 18700 18900 19100 Tune up
1 0 22.53 23.15 22.9 24.40
1 50 22.52 23.01 22.68 24.40
1 99 22.49 23.13 22.82 24.40
QPSK 50 0 21.91 22.29 22.15 23.40
20MHz 50 25 21.82 22.22 22 23.40
50 50 21.95 22.26 21.85 23.40
100 0 21.89 22.24 21.97 23.40
1 0 21.58 21.74 22.43 23.40
16QAM 1 50 21.61 22.42 21.82 23.40

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路1号的6号厂房南部 邮编: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 66 of 169

					.90.	0 000	
		1	99	21.82	21.98	21.56	23.40
		50	0	20.55	20.95	20.88	22.40
		50	25	20.52	21.06	20.65	22.40
	50	50	20.64	20.99	20.68	22.40	
		100	0	20.65	21.05	20.58	22.40

A	nt1 LTE Band 2 Hot	spot On		Conducted Power(dBm)				
Danish didb	NA - de destina	DD -i	DD -#+	Channel	Channel	Channel	T	
Bandwidth	Modulation	RB size	RB offset	18607	18900	19193	Tune up	
		1	0	21.15	21.78	21.44	22.10	
		1	2	21.43	21.97	21.33	22.10	
		1	5	21.12	21.85	21.21	22.10	
	QPSK	3	0	21.50	21.72	21.50	22.10	
		3	2	21.34	21.92	21.42	22.10	
		3	3	21.45	21.90	21.46	22.10	
1.4MHz		6	0	21.34	21.91	21.46	22.10	
1.411172		1	0	21.18	21.71	21.51	22.10	
		1	2	21.56	21.92	21.18	22.10	
		1	5	21.77	21.97	21.68	22.10	
	16QAM	3	0	21.44	21.73	21.80	22.10	
		3	2	21.63	22.03	21.75	22.10	
		3	3	21.38	21.86	21.64	22.10	
		6	0	20.14	20.63	20.60	22.10	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tung up	
Bandwidth	Woddiation	RD SIZE	KD Ollset	18615	18900	19185	Tune up	
		1	0	21.08	21.55	21.61	22.10	
		1	7	21.39	21.93	21.76	22.10	
		1	14	21.13	21.51	21.32	22.10	
	QPSK	8	0	21.49	21.9	21.65	22.10	
		8	4	21.36	21.94	21.52	22.10	
3MHz		8	7	21.5	21.87	21.45	22.10	
SIVITIZ		15	0	21.43	21.88	21.51	22.10	
		1	0	21.31	21.75	21.28	22.10	
		1	7	21.02	21.65	22.08	22.10	
	16QAM	1	14	20.73	21.91	21.14	22.10	
		8	0	20.45	20.59	20.14	22.10	
		8	4	20.49	20.64	20.36	22.10	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikof Pree Tracke Zone 215000中国 • 苏州 • 中国(江苏)自由贸易试验区苏州 H区苏州 工业国区湘建路 1号的6号厂 房南部 鄉鄉: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 67 of 169

	İ	1 .	1 -		ı	67 OF 169	İ
		8	7	20.28	20.53	20.75	22.10
		15	0	20.34	20.83	20.43	22.10
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				18625	18900	19175	
		1	0	20.89	21.5	21.46	22.10
		1	13	21.35	21.85	21.45	22.10
		1	24	20.97	21.53	21.12	22.10
	QPSK	12	0	21.41	21.92	21.52	22.10
		12	6	21.5	21.96	21.56	22.10
		12	13	21.38	21.85	21.43	22.10
5MHz		25	0	21.41	21.86	21.5	22.10
U	16QAM	1	0	20.95	21.84	20.89	22.10
		1	13	20.91	21.94	21.57	22.10
		1	24	21.19	21.91	21.24	22.10
		12	0	20.44	20.75	20.5	22.10
		12	6	20.43	20.83	20.47	22.10
		12	13	20.43	20.51	20.39	22.10
		25	0	20.41	20.71	20.38	22.10
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Modulation	KD SIZE	KD Ollset	18650	18900	19150	Turie up
		1	0	21.27	21.76	21.38	22.10
		1	25	21.41	21.97	21.76	22.10
		1	49	21.2	21.57	21.3	22.10
	QPSK	25	0	21.45	21.82	21.56	22.10
		25	13	21.47	21.82	21.46	22.10
		25	25	21.42	21.84	21.48	22.10
401411-		50	0	21.52	21.89	21.56	22.10
10MHz		1	0	21.27	21.64	21.5	22.10
		1	25	21.63	21.6	21.28	22.10
		1	49	21.25	21.94	21.02	22.10
	16QAM	25	0	20.6	20.79	20.64	22.10
		25	13	20.63	21.04	20.8	22.10
		25	25	20.57	20.67	20.73	22.10
		50	0	20.31	20.84	20.48	22.10
				Channel	Channel	Channel	_
Bandwidth	Modulation	RB size	RB offset	18675	18900	19125	Tune up
		1	0	21.38	21.92	21.73	22.10
15MHz	QPSK	1	38	21.44	21.81	21.47	22.10
		1	74	21.54	21.73	21.44	22.10

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikof Pree Tracke Zone 215000中国 • 苏州 • 中国(江苏)自由贸易试验区苏州 H区苏州 工业国区湘建路 1号的6号厂 房南部 鄉鄉: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 68 of 169

			•		age:	68 01 169	
		36	0	21.42	21.86	21.6	22.10
		36	18	21.39	21.82	21.62	22.10
		36	39	21.43	21.83	21.49	22.10
		75	0	21.47	21.88	21.61	22.10
		1	0	21.66	21.95	21.72	22.10
		1	38	21.41	21.44	21.72	22.10
		1	74	21.05	21.74	21.22	22.10
	16QAM	36	0	20.34	20.8	20.55	22.10
		36	18	20.3	20.78	20.62	22.10
		36	39	20.45	20.78	20.47	22.10
		75	0	20.52	20.76	20.59	22.10
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun
Bandwidth		RD SIZE	RD Oliset	18700	18900	19100	Tune up
		1	0	21.88	21.95	21.79	22.10
		1	50	21.43	21.57	21.75	22.10
		1	99	21.44	21.69	21.39	22.10
	QPSK	50	0	21.48	21.86	21.73	22.10
		50	25	21.45	21.83	21.57	22.10
		50	50	21.61	21.85	21.52	22.10
20MHz		100	0	21.51	21.81	21.66	22.10
ZOWITZ		1	0	21.26	21.74	21.31	22.10
		1	50	21.61	21.83	21.36	22.10
		1	99	21.27	21.5	21.6	22.10
	16QAM	50	0	20.46	20.88	20.77	22.10
		50	25	20.43	20.77	20.62	22.10
		50	50	20.53	20.8	20.54	22.10
I		100	0	20.48	20.85	20.62	22.10

Ant3 LTE Band 2 Receiver off/Hotspot off				Conducted Power(dBm)			
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tung up
	Modulation	KD SIZE	KD Ollset	18607	18900	19193	Tune up
		1	0	19.54	19.98	19.64	20.90
		1	2	19.54	20	19.65	20.90
		1	5	19.62	19.74	19.5	20.90
1.4MHz	QPSK	3	0	19.64	19.9	19.65	20.90
		3	2	19.54	19.94	19.56	20.90
		3	3	19.49	19.96	19.54	20.90
		6	0	19.5	20.12	19.54	20.90

South of No. 5 Pietr, No. 1, Runshere; Road, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 69 of 169

•	1	1	1	, F	'age: (59 of 169	1
		1	0	19.13	19.15	19.72	20.90
		1	2	19.59	20.04	19.21	20.90
		1	5	19.11	19.95	19.41	20.90
	16QAM	3	0	19.66	20.15	19.57	20.90
		3	2	19.66	20.07	19.72	20.90
		3	3	19.51	20.01	19.54	20.90
		6	0	19.4	19.81	19.42	20.90
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawidin	Woddiation	IND SIZE	IVD Ollset	18615	18900	19185	rune up
		1	0	19.51	19.6	19.48	20.90
		1	7	19.36	19.74	19.67	20.90
	QPSK 3MHz	1	14	19.29	19.62	19.38	20.90
		8	0	19.48	20.05	19.38	20.90
		8	4	19.5	19.86	19.44	20.90
		8	7	19.51	19.85	19.37	20.90
28411-		15	0	19.48	19.9	19.37	20.90
SIVITIZ		1	0	19.03	19.64	19.26	20.90
		1	7	19.44	19.87	19.49	20.90
		1	14	19.34	19.65	19.65	20.90
	16QAM	8	0	19.43	19.68	19.12	20.90
		8	4	19.42	19.6	19.23	20.90
		8	7	19.6	19.59	19.18	20.90
		15	0	19.33	19.41	19.41	20.90
Don duri déb			DD offeet				
Bandwidth	Modulation	DD size	DD offeet	Channel	Channel	Channel	Tungun
	Modulation	RB size	RB offset	Channel 18625	Channel 18900	Channel 19175	Tune up
	Modulation	RB size	RB offset				Tune up 20.90
	Modulation			18625	18900	19175	·
	Modulation	1	0	18625 19.2	18900 19.78	19175 19.33	20.90
	Modulation QPSK	1	0	18625 19.2 19.41	18900 19.78 19.74	19175 19.33 19.49	20.90
		1 1 1	0 13 24	18625 19.2 19.41 19.31	18900 19.78 19.74 19.52	19175 19.33 19.49 19.27	20.90 20.90 20.90
		1 1 1 1 12	0 13 24 0	18625 19.2 19.41 19.31 19.56	18900 19.78 19.74 19.52 19.99	19175 19.33 19.49 19.27 19.48	20.90 20.90 20.90 20.90
EMI I-		1 1 1 1 12	0 13 24 0 6	18625 19.2 19.41 19.31 19.56 19.54	18900 19.78 19.74 19.52 19.99 19.95	19175 19.33 19.49 19.27 19.48 19.57	20.90 20.90 20.90 20.90 20.90
5MHz		1 1 1 12 12 12	0 13 24 0 6 13	18625 19.2 19.41 19.31 19.56 19.54 19.56	18900 19.78 19.74 19.52 19.99 19.95 19.93	19175 19.33 19.49 19.27 19.48 19.57 19.45	20.90 20.90 20.90 20.90 20.90 20.90
5MHz		1 1 1 12 12 12 12 25	0 13 24 0 6 13	18625 19.2 19.41 19.31 19.56 19.54 19.56 19.57	18900 19.78 19.74 19.52 19.99 19.95 19.93 19.92	19175 19.33 19.49 19.27 19.48 19.57 19.45 19.52	20.90 20.90 20.90 20.90 20.90 20.90 20.90
5MHz		1 1 1 12 12 12 12 25	0 13 24 0 6 13 0	18625 19.2 19.41 19.31 19.56 19.54 19.56 19.57 19.65	18900 19.78 19.74 19.52 19.99 19.95 19.93 19.92 19.51	19175 19.33 19.49 19.27 19.48 19.57 19.45 19.52 19.62	20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90
5MHz		1 1 1 12 12 12 12 25 1	0 13 24 0 6 13 0 0	18625 19.2 19.41 19.31 19.56 19.54 19.56 19.57 19.65 19.43	18900 19.78 19.74 19.52 19.99 19.95 19.93 19.92 19.51 19.65	19175 19.33 19.49 19.27 19.48 19.57 19.45 19.52 19.62 19.47	20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90
5MHz	QPSK	1 1 1 12 12 12 12 25 1 1	0 13 24 0 6 13 0 0 13 24	18625 19.2 19.41 19.31 19.56 19.54 19.56 19.57 19.65 19.43 19.36	18900 19.78 19.74 19.52 19.99 19.95 19.93 19.92 19.51 19.65 19.88	19175 19.33 19.49 19.27 19.48 19.57 19.45 19.52 19.62 19.47 19.05	20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90
5MHz	QPSK	1 1 1 12 12 12 25 1 1 1 1	0 13 24 0 6 13 0 0 13 24	18625 19.2 19.41 19.31 19.56 19.54 19.56 19.57 19.65 19.43 19.36 19.45	18900 19.78 19.74 19.52 19.99 19.95 19.93 19.92 19.51 19.65 19.88 19.88	19175 19.33 19.49 19.27 19.48 19.57 19.45 19.52 19.62 19.47 19.05 19.38	20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plent, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Teole Zone 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州片区苏州工业园区湾社路1号的6号厂房南部 邮编: 215000

t (86–512) 62992980 w t (86–512) 62992980 s

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 70 of 169

RB size							70 01 169	
1	Bandwidth	Modulation	RB size	RB offset				Tune up
1								·
1			1	0	19.33	19.79	19.39	20.90
Table Part			1	25	19.69	20.05	19.71	20.90
10MHz			1	49	19.65	19.58	19.51	20.90
10MHz		QPSK	25	0	19.54	20.01	19.59	20.90
10MHz			25	13	19.61	19.96	19.59	20.90
1			25	25	19.51	19.93	19.48	20.90
1	10MHz		50	0	19.48	19.98	19.47	20.90
1	TOWITZ		1	0	19.38	19.8	19.15	20.90
Table Tabl			1	25	19.66	19.94	19.78	20.90
Bandwidth Modulation RB size RB offset 13 19.6 20.13 19.51 20.90			1	49	19.26	20.07	19.37	20.90
Bandwidth Modulation RB size RB offset Channel Channel Channel Tune up		16QAM	25	0	19.54	19.91	19.65	20.90
Bandwidth Modulation RB size RB offset Channel Channel Channel Channel Tune up			25	13	19.6	20.13	19.51	20.90
RB size RB offset Channel Channel Tune up			25	25	19.52	20.04	19.43	20.90
Tune up			50	0	19.65	20.06	19.54	20.90
15MHz Table Donduridth	Modulation	DP oizo	DD offeet	Channel	Channel	Channel	Tungun	
Application The property of the property o	bandwidth	Modulation	RD SIZE	KD Ollset	18675	18900	19125	Tune up
Application Text			1	0	19.58	19.89	19.74	20.90
Tune up			1	38	19.65	20.11	19.55	20.90
15MHz			1	74	19.65	19.9	19.56	20.90
15MHz		QPSK	36	0	19.54	19.99	19.68	20.90
15MHz			36	18	19.48	19.99	19.64	20.90
15MHz			36	39	19.58	19.88	19.57	20.90
1	45MU-		75	0	19.55	20.02	19.65	20.90
1	ISWINZ		1	0	19.5	19.77	18.95	20.90
Tune up			1	38	19.07	19.45	19.26	20.90
36			1	74	19.06	19.64	19.35	20.90
Bandwidth Modulation RB size RB offset Channel 18700 Channel 18900 Channel 19100 Tune up 1 0 19.34 20.18 19.58 20.90 1 50 19.62 20.1 19.65 20.90		16QAM	36	0	19.59	19.91	19.66	20.90
Bandwidth Modulation RB size RB offset Channel (Dhannel) Channel (Dhannel) Channel (Dhannel) Tune up 1 0 19.34 20.18 19.58 20.90 1 50 19.62 20.1 19.65 20.90			36	18	19.59	20.02	19.61	20.90
Bandwidth Modulation RB size RB offset Channel Channel Channel Tune up 1 0 19.34 20.18 19.58 20.90 1 50 19.62 20.1 19.65 20.90			36	39	19.62	19.92	19.58	20.90
Bandwidth Modulation RB size RB offset 18700 18900 19100 Tune up 1 0 19.34 20.18 19.58 20.90 1 50 19.62 20.1 19.65 20.90			75	0	19.59	20.03	19.63	20.90
18700 18900 19100 1 0 19.34 20.18 19.58 20.90 1 50 19.62 20.1 19.65 20.90	Donalis dillo	Modulation	DD ains	DD 6#554	Channel	Channel	Channel	Tuna
1 50 19.62 20.1 19.65 20.90	Bandwidth	iviodulation	KB SIZE	KB OIISE	18700	18900	19100	rune up
			1	0	19.34	20.18	19.58	20.90
20MHz OPSK 1 99 19.74 19.5 19.63 20.90			1	50	19.62	20.1	19.65	20.90
201112	20MHz	QPSK	1	99	19.74	19.5	19.63	20.90
50 0 19.67 20.16 19.89 20.90			50	0	19.67	20.16	19.89	20.90
50 25 19.56 19.99 19.65 20.90			50	25	19.56	19.99	19.65	20.90

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 71 of 169

					ago.	1 01 100	
		50	50	19.74	19.88	19.56	20.90
		100	0	19.7	19.95	19.73	20.90
		1	0	19.21	19.34	19.81	20.90
		1	50	19.28	19.29	19.43	20.90
		1	99	19.72	19.8	18.91	20.90
	16QAM	50	0	19.72	20	19.89	20.90
		50	25	19.61	20.09	19.76	20.90
		50	50	19.82	19.94	19.61	20.90
		100	0	19.64	20.02	19.7	20.90

Ant3 LT	E Band 2 Receiver	on/Hotspot o	on	Conducted Power(dBm)				
Bandwidth	Madulation	DD size	RB offset	Channel	Channel	Channel	T	
Bandwidth	Modulation	RB size	RB ollset	18607	18900	19193	Tune up	
		1	0	16.44	16.78	16.31	17.80	
		1	2	16.51	16.92	16.25	17.80	
		1	5	16.55	16.77	16.19	17.80	
	QPSK	3	0	16.51	16.66	16.4	17.80	
		3	2	16.48	16.8	16.37	17.80	
		3	3	16.44	16.53	16.44	17.80	
1.4MHz	Hz	6	0	16.46	16.45	16.43	17.80	
1.411172		1	0	16.12	16.43	15.99	17.80	
		1	2	16.58	16.37	16.33	17.80	
		1	5	15.99	16.35	16.36	17.80	
	16QAM	3	0	16.63	16.79	16.51	17.80	
		3	2	16.81	16.97	16.83	17.80	
		3	3	16.66	16.65	16.7	17.80	
		6	0	16.46	16.84	16.12	17.80	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Bandwidth	Modulation	VD 2156	VD 011261	18615	18900	19185	Turie up	
		1	0	16.37	16.71	16.43	17.80	
		1	7	16.39	16.97	16.49	17.80	
		1	14	16.29	16.64	16.14	17.80	
3MHz	QPSK	8	0	16.53	16.79	16.37	17.80	
SIVIFIZ		8	4	16.52	16.53	16.41	17.80	
		8	7	16.46	16.46	16.43	17.80	
		15	0	16.53	16.51	16.44	17.80	
	16QAM	1	0	16.1	16.46	16.43	17.80	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention holy and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 5 Piert, No. 1, Runshere; Road, Suchou Industrial Park, Suchou Area, China (Jangsu) Pilot Free Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景文教区苏州片区苏州工业园区湾走路1号的6号厂房南部 鄉編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 72 of 169

	1	1	1	, F	'age:	72 of 169	ſ
		1	7	16.21	16.44	16.37	17.80
		1	14	16.33	16.4	16.52	17.80
		8	0	16.44	16.57	16.85	17.80
		8	4	16.39	16.68	16.81	17.80
		8	7	16.55	16.53	16.84	17.80
		15	0	16.61	16.73	16.42	17.80
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tung up
5MHz	QPSK	RD SIZE	KD Ollset	18625	18900	19175	Tune up
		1	0	16.2	16.63	16.39	17.80
		1	13	16.45	16.75	16.46	17.80
		1	24	15.93	16.41	15.84	17.80
		12	0	16.32	16.77	16.36	17.80
		12	6	16.41	16.45	16.45	17.80
		12	13	16.33	16.72	16.35	17.80
		25	0	16.4	16.35	16.39	17.80
	16QAM	1	0	16.24	16.25	16.21	17.80
		1	13	15.93	16.39	16.2	17.80
		1	24	16.25	16.29	15.9	17.80
		12	0	16.43	16.62	16.24	17.80
		12	6	16.36	16.81	16.38	17.80
		12	13	16.49	16.78	16.5	17.80
Donahuidkh	Madulation	25	0	16.6	16.82	16.1	17.80
		DD -i	DD -#+	Channel	Channel	Channel	Tungun
Bandwidth 10MHz	Modulation QPSK	RB size	RB offset	18650	18900	19150	Tune up
		1	0	16.2	16.59	16.27	17.80
		1	25	16.48	17.06	16.67	17.80
		1	49	16.38	16.48	16.06	17.80
		25	0	16.48	16.52	16.48	17.80
		25	13	16.37	16.8	16.38	17.80
		25	25	16.31	16.74	16.4	17.80
		50	0	16.44	16.51	16.41	17.80
	16QAM	1	0	16.12	16.4	16.65	17.80
		1	25	16.41	16.45	16.64	17.80
		1	49	15.94	16.54	16.4	17.80
		25	0	16.41	16.88	16.43	17.80
		25	13	16.59	16.65	16.4	17.80
		25	25	16.38	16.86	16.47	17.80
		50	0	16.44	17.01	16.43	17.80
		50	0	10.44	17.01	10.43	17.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx.and, contended to the limitation of liability, indemification and jurisdiction issues define therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or fallsfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. 6 Plent, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Plot Free Tiscle Zone 中国 - 苏州 - 中国(江苏)自由因易试验区苏州片区苏州工业团区河逛路(号的6号厂房商部 庫場: 215000

t (86–512) 62992980 w t (86–512) 62992980 ss

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 73 of 169

		ı		age:		
			18675	18900	19125	
	1	0	16.38	16.81	16.5	17.80
	1	38	16.36	16.74	16.37	17.80
	1	74	16.46	16.78	16.11	17.80
QPSK	36	0	16.43	16.41	16.43	17.80
	36	18	16.41	16.71	16.51	17.80
	36	39	16.41	16.71	16.34	17.80
	75	0	16.37	16.51	16.43	17.80
	1	0	16.42	16.5	16.27	17.80
	1	38	16.38	16.72	16.12	17.80
	1	74	16.4	16.39	16.07	17.80
16QAM	36	0	16.54	16.8	16.43	17.80
	36	18	16.42	16.74	16.44	17.80
	36	39	16.31	16.75	16.51	17.80
	75	0	16.42	16.77	16.45	17.80
Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Modulation			18700	18900	19100	rano up
	1	0	16.74	16.94	16.81	17.80
	1	50	16.6	16.87	16.61	17.80
	1	99	16.54	16.32	16.34	17.80
QPSK	50	0	16.58	16.77	16.59	17.80
	50	25	16.48	16.5	16.56	17.80
	50	50	16.56	16.74	16.35	17.80
	100	0	16.53	16.7	16.53	17.80
	1	0	16.04	16.2	16.73	17.80
	1	50	16.59	16.58	16.27	17.80
	1	99	16.87	16.42	16	17.80
16QAM	50	0	16.53	16.86	16.49	17.80
	50	25	16.47	16.7	16.56	17.80
	50	50	16.53	16.87	16.46	17.80
	100	0	16.46	16.85	16.55	17.80
	16QAM Modulation QPSK	1 1 1 36 36 36 36 36 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QPSK	18675 1	18675 18900 1	18675 18900 19125

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention holy and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 74 of 169

	LTE Band 4 Receiver off/Hotspot Off				Page: 74 01 169				
LTE	Band 4 Receiver o	tt/Hotspot Off			Conducted	Power(dBm)			
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up		
Banawiath	Woodlation	ND 3IZE	ND 011361	19957	20175	20393	rune up		
		1	0	21.79	22.15	21.77	23.10		
		1	2	21.9	22.22	21.85	23.10		
		1	5	21.75	22.24	21.75	23.10		
	QPSK	3	0	21.76	22.19	21.75	23.10		
		3	2	21.73	22.24	21.74	23.10		
		3	3	21.77	22.19	21.82	23.10		
1 4MH=	1.4MHz	6	0	21.85	22.32	21.89	23.10		
1.4111712		1	0	22.07	22.14	21.91	23.10		
		1	2	21.9	22.22	22.18	23.10		
		1	5	21.86	22.1	22.29	23.10		
	16QAM	3	0	21.83	22.17	21.85	23.10		
		3	2	21.82	22.19	21.96	23.10		
		3	3	21.71	22.17	21.83	23.10		
		6	0	20.88	21.02	20.82	22.40		
Danish of alth	Mandalatia a	DD aims	DD -#+	Channel	Channel	Channel	T		
Bandwidth	Modulation	RB size	RB offset	19965	20175	20385	Tune up		
		1	0	21.58	22.05	21.69	23.10		
	QPSK	1	7	21.65	22.05	21.63	23.10		
		1	14	21.81	22.04	21.7	23.10		
		8	0	21.75	22.23	21.91	23.10		
		8	4	21.75	22.27	21.91	23.10		
		8	7	21.79	22.27	21.86	23.10		
2001		15	0	21.75	22.2	21.82	23.10		
3MHz		1	0	21.62	22.33	22.22	23.10		
		1	7	21.57	22.07	22.19	23.10		
		1	14	21.51	22.17	22.06	23.10		
	16QAM	8	0	21.14	21.55	20.88	22.40		
		8	4	21.18	21.42	20.94	22.40		
		8	7	21.37	21.21	20.97	22.40		
		15	0	21.09	21.5	21.14	22.40		
Dandwidth	Modulation	DD oine	DD offeet	Channel	Channel	Channel	Tuna		
Bandwidth	Modulation	RB size	RB offset	19975	20175	20375	Tune up		
		1	0	21.44	21.98	21.68	23.10		
5MHz	QPSK	1	13	21.76	22.14	21.72	23.10		
		1	24	21.73	21.75	21.46	23.10		

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone; (86-755) 3307 1443.

South of No. 8 Piert, No. 1, Runshere; Road, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 75 of 169

	i	1	1	, F	age: /	5 01 169	1
		12	0	21.75	22.18	21.86	23.10
		12	6	21.78	22.18	21.91	23.10
		12	13	21.65	22.19	21.85	23.10
		25	0	21.7	22.22	21.84	23.10
		1	0	21.49	22.1	21.47	23.10
		1	13	21.45	21.91	21.55	23.10
		1	24	21.62	22.36	21.66	23.10
	16QAM	12	0	20.97	21.56	21.15	22.40
		12	6	21.12	21.44	21.15	22.40
		12	13	20.84	21.51	21.1	22.40
		25	0	21.14	21.4	21.05	22.40
5 1 1 11	Maddatata	DD -i	DD - (()	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	20000	20175	20350	Tune up
		1	0	21.65	22.24	21.87	23.10
		1	25	21.9	22.33	22.09	23.10
		1	49	21.55	21.93	21.72	23.10
	QPSK	25	0	21.82	22.19	21.94	23.10
		25	13	21.72	22.26	21.81	23.10
		25	25	21.74	22.17	21.82	23.10
4000		50	0	21.78	22.22	21.83	23.10
10MHz		1	0	21.68	22.33	22	23.10
		1	25	22.02	22.35	21.99	23.10
	16QAM	1	49	21.55	22.08	21.48	23.10
		25	0	20.89	21.55	20.87	22.40
		25	13	20.86	21.31	21.1	22.40
		25	25	21.05	21.38	20.87	22.40
		50	0	20.88	21.37	20.88	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Banawiatn	Modulation	ND SIZE	KD Ollset	20025	20175	20325	rune up
		1	0	21.88	21.72	21.93	23.10
		1	38	21.85	21.71	21.84	23.10
		1	74	21.97	21.5	21.72	23.10
	QPSK	36	0	21.99	21.72	21.79	23.10
15MHz		36	18	21.87	21.65	21.83	23.10
IJWINZ		36	39	21.87	21.64	21.93	23.10
		75	0	21.8	21.57	21.86	23.10
		1	0	21.52	21.77	21.92	23.10
	16QAM	1	38	21.82	21.7	21.89	23.10
		1	74	21.45	21.57	22.06	23.10

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86–512) 62992980

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 76 of 169

			-		aye. <i>i</i>	0 01 109	
		36	0	21.09	21.01	21.12	22.40
		36	18	21.1	20.97	20.96	22.40
		36	39	21.02	20.85	21.01	22.40
		75	0	21.2	20.86	21.15	22.40
Barra de d'Arti	Maria Iada	DD -:	DD -(()	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	20050	20175	20300	Tune up
		1	0	22.31	22.35	22.33	23.10
	QPSK	1	50	21.69	21.62	21.69	23.10
		1	99	21.82	21.88	21.85	23.10
		50	0	21.85	22.11	21.79	23.10
		50	25	21.78	21.56	21.79	23.10
		50	50	21.86	21.62	21.79	23.10
20MHz		100	0	22.04	22.20	21.52	23.10
2011112		1	0	21.93	21.95	21.74	23.10
		1	50	22.02	21.78	21.59	23.10
		1	99	21.49	21.23	21.47	23.10
	16QAM	50	0	21.49	21.23	21.36	22.40
		50	25	21.25	20.98	21.32	22.40
		50	50	21.44	21.26	21.29	22.40
		100	0	21.14	20.96	20.99	22.40

	LTE Band 4 Recei	ver on		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	T	
Bandwidth	Modulation	ND SIZE	RB ollset	19957	20175	20393	Tune up	
		1	0	22.92	22.75	22.81	24.40	
		1	2	23.02	22.73	22.8	24.40	
		1	5	22.98	22.55	22.79	24.40	
	QPSK	3	0	23.06	22.78	22.6	24.40	
		3	2	22.99	22.74	22.77	24.40	
		3	3	22.92	22.73	22.74	24.40	
1.4MHz		6	0	21.82	21.65	21.73	23.40	
1.411172		1	0	21.67	21.46	21.58	23.40	
		1	2	21.59	21.85	21.43	23.40	
		1	5	21.63	21.46	21.41	23.40	
	16QAM	3	0	21.91	21.63	21.88	23.40	
		3	2	21.5	21.62	22.01	23.40	
		3	3	21.47	21.75	21.84	23.40	
		6	0	20.54	20.52	20.85	22.40	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	_	
Danuwiuth	Modulation	KD SIZE	KD UIISEL	19965	20175	20385	Tune up	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions/Terme-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clients instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing fungeration report & certificate, please contact us at technology.

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 77 of 169

1	1		1	. Ра	age: 7	7 of 169	1
		1	0	22.81	22.81	22.55	24.40
		1	7	22.85	22.59	22.75	24.40
		1	14	22.69	22.62	22.8	24.40
	QPSK	8	0	21.96	21.68	21.8	23.40
		8	4	21.89	21.66	21.82	23.40
		8	7	21.75	21.63	21.82	23.40
3MHz		15	0	21.79	21.74	21.74	23.40
SIVIFIZ		1	0	21.51	21.88	21.48	23.40
		1	7	21.53	21.49	21.78	23.40
		1	14	21.47	21.84	21.4	23.40
	16QAM	8	0	20.43	20.41	20.83	22.40
		8	4	20.65	20.43	20.85	22.40
		8	7	20.75	20.42	20.73	22.40
		15	0	20.48	20.51	20.73	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Modulation	KD SIZE	KD OIISEL	19975	20175	20375	rune up
		1	0	22.94	22.88	22.94	24.40
		1	13	22.95	22.92	22.93	24.40
		1	24	22.99	22.46	22.82	24.40
	QPSK	12	0	22.2	21.93	22.09	23.40
		12	6	22.16	21.93	22.19	23.40
		12	13	22.14	21.87	22.12	23.40
5MHz		25	0	22.18	21.92	22.13	23.40
SWITZ		1	0	21.96	21.52	21.74	23.40
		1	13	22.11	22.05	21.9	23.40
		1	24	21.68	21.51	22.27	23.40
	16QAM	12	0	21.02	20.83	21.04	22.40
		12	6	20.79	20.86	21.05	22.40
		12	13	20.84	20.73	21.09	22.40
		25	0	21.17	20.76	21	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Modulation	KD SIZE	KD OIISEL	20000	20175	20350	Turie up
		1	0	22.78	22.46	22.54	24.40
		1	25	22.84	22.82	22.87	24.40
		1	49	22.95	22.43	22.55	24.40
10MHz	QPSK	25	0	22.11	21.94	22.09	23.40
		25	13	22.12	21.9	22.17	23.40
			25	22.42	24.07	22.12	23.40
		25	25	22.12	21.87	22.12	23.40

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 78 of 169

23.40
23.40
23.40
22.40
22.40
22.40
22.40
Tune up
24.40
24.40
24.40
23.40
23.40
23.40
23.40
23.40
23.40
23.40
22 40
22.40
22.40
22.40 22.40
22.40
22.40 22.40
22.40 22.40 22.40 Tune up
22.40 22.40 22.40 Tune up 24.40
22.40 22.40 22.40 Tune up 24.40 24.40
22.40 22.40 22.40 Tune up 24.40 24.40 24.40
22.40 22.40 22.40 Fune up 24.40 24.40 24.40 23.40
22.40 22.40 22.40 Tune up 24.40 24.40 23.40 23.40
22.40 22.40 22.40 Tune up 24.40 24.40 23.40 23.40 23.40
22.40 22.40 22.40 Tune up 24.40 24.40 23.40 23.40
22.40 22.40 22.40 24.40 24.40 23.40 23.40 23.40 23.40 23.40 23.40
22.40 22.40 22.40 Tune up 24.40 24.40 23.40 23.40 23.40 23.40 23.40
22.40 22.40 22.40 Fune up 24.40 24.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40
22.40 22.40 22.40 Tune up 24.40 24.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40
22.40 22.40 22.40 Tune up 24.40 24.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.:

Page: 79 of 169

	LTE Band 4 Hotspo	ot On			Conducted	Power(dBm)	
Don dwidth	Madulation	DD size	DD offeet	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	RB size	RB offset	19957	20175	20393	Tune up
		1	0	20.96	20.62	20.79	22.10
		1	2	21.29	20.64	20.71	22.10
		1	5	20.89	20.62	20.87	22.10
	QPSK	3	0	21.09	20.71	20.8	22.10
		3	2	21.02	20.75	20.78	22.10
1.4MHz		3	3	21.03	20.73	20.75	22.10
		6	0	20.87	20.7	20.77	22.10
1.411172	1.4WITZ	1	0	20.79	20.71	20.78	22.10
		1	2	20.66	20.69	20.62	22.10
		1	5	20.88	20.67	20.7	22.10
	16QAM	3	0	20.99	20.68	20.6	22.10
		3	2	20.98	20.67	20.97	22.10
		3	3	20.95	20.61	20.8	22.10
		6	0	20.87	20.69	20.86	22.10
Dan duri déla	Bandwidth Modulation	RB size	RB offset	Channel	Channel	Channel	T
Bandwidth			RB offset	19965	20175	20385	Tune up
	QPSK	1	0	20.82	21.14	21.01	22.10
		1	7	21.01	21.07	21.01	22.10
		1	14	20.8	20.61	20.96	22.10
		8	0	21.12	21	21.17	22.10
		8	4	21.25	21.01	21.18	22.10
		8	7	21.21	20.99	21.11	22.10
3MHz		15	0	21.15	21.05	21.16	22.10
SIVITZ		1	0	21.17	21.35	20.97	22.10
		1	7	20.8	21.21	20.87	22.10
		1	14	21.02	20.96	21.18	22.10
	16QAM	8	0	21.1	20.69	21.32	22.10
		8	4	21.01	21.01	21.29	22.10
		8	7	20.88	20.89	21.16	22.10
		15	0	20.76	21.03	21.17	22.10
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun
Danuwidin	iviodulation	ND SIZE	KD UIISEL	19975	20175	20375	Tune up
5MHz	QPSK	1	0	20.9	20.6	20.84	22.10
JIVITIZ	QI SIX	1	13	21.22	20.8	21.36	22.10

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone; (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区消胜路(号的6号厂房南部 鄭塢: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 80 of 169

	1	1	1	, t	age:	80 01 169	1
		1	24	21.16	20.6	21.06	22.10
		12	0	21.22	21.08	21.2	22.10
		12	6	21.16	21.1	21.25	22.10
		12	13	21.06	21.06	21.21	22.10
		25	0	21.11	20.99	21.13	22.10
		1	0	21.08	21.15	20.94	22.10
		1	13	20.81	20.98	20.84	22.10
		1	24	20.98	20.74	21.23	22.10
	16QAM	12	0	21.25	21.13	21.27	22.10
		12	6	21.16	20.84	21.15	22.10
		12	13	20.87	20.92	21.27	22.10
		25	0	21.09	21.14	21.28	22.10
Dan dereidth		DD sins	DD effect	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	20000	20175	20350	Tune up
		1	0	20.95	20.86	20.85	22.10
		1	25	21.19	20.95	21.29	22.10
		1	49	21.09	20.6	20.95	22.10
	QPSK	25	0	21.2	21.08	21.15	22.10
		25	13	21.22	21.07	21.19	22.10
		25	25	21.12	20.89	21.13	22.10
40844-		50	0	21.24	20.98	21.18	22.10
10MHz		1	0	21.11	20.82	20.68	22.10
		1	25	21.4	21.31	21.4	22.10
		1	49	20.88	20.8	21.32	22.10
	16QAM	25	0	21.06	20.9	20.98	22.10
		25	13	21.33	21.29	20.98	22.10
		25	25	21.1	21.11	21.42	22.10
		50	0	21.19	20.92	21.25	22.10
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Modulation	IND SIZE	IND Offset	20025	20175	20325	Tune up
		1	0	20.98	20.74	20.81	22.10
		1	38	20.79	20.82	20.77	22.10
		1	74	20.71	20.83	21.14	22.10
	QPSK	36	0	20.83	21.37	21.02	22.10
15MHz		36	18	20.85	21.38	21.07	22.10
		36	39	20.76	21.18	21.1	22.10
		75	0	20.73	21.28	21.08	22.10
	160414	1	0	20.82	21.1	20.9	22.10
	16QAM	1	38	20.78	20.83	20.81	22.10

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention holy and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

t (86-512) 62992980

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 81 of 169

	·		•		age:	81 01 169	
		1	74	20.63	20.79	20.76	22.10
		36	0	20.86	20.96	21.05	22.10
		36	18	20.75	20.91	21.15	22.10
		36	39	20.77	20.85	21.12	22.10
		75	0	20.85	20.98	21.23	22.10
Donalissialth	Madulation	DD size	DD offeet	Channel	Channel	Channel	Tunaun
Bandwidth	Modulation	RB size	RB offset	20050	20175	20300	Tune up
	QPSK	1	0	20.99	21.56	20.95	22.10
		1	50	20.97	20.87	21.11	22.10
		1	99	21	20.94	21.08	22.10
		50	0	21.22	21.55	21.14	22.10
		50	25	21.1	21.03	20.94	22.10
		50	50	21.13	20.89	20.96	22.10
20MHz		100	0	21.15	21.19	21.16	22.10
2011112		1	0	20.89	20.79	20.65	22.10
		1	50	21.24	20.77	21.09	22.10
		1	99	20.7	20.97	21.17	22.10
	16QAM	50	0	21.25	20.96	21.28	22.10
		50	25	21.25	21.04	21.04	22.10
		50	50	21.11	20.97	20.99	22.10
		100	0	20.89	21.01	21.15	22.10

Ant3 LT	E Band 4 Receiver	off/ Hotspot o	off	Conducted Power(dBm)				
Danish dak		DD -:	DD -#4	Channel	Channel	Channel	T	
Bandwidth	Modulation	RB size	RB offset	19957	20175	20393	Tune up	
		1	0	20.7	20.61	20.58	21.30	
		1	2	20.52	20.54	20.74	21.30	
		1	5	20.83	20.7	20.65	21.30	
	QPSK	3	0	20.43	20.35	20.61	21.30	
		3	2	20.54	20.53	20.51	21.30	
		3	3	20.62	20.51	20.57	21.30	
1.4MHz		6	0	20.67	20.39	20.57	21.30	
1.411172		1	0	20.1	20.3	20.9	21.30	
		1	2	20.36	20.09	20.74	21.30	
		1	5	19.97	20.45	20.82	21.30	
	16QAM	3	0	20.32	20.46	20.35	21.30	
		3	2	20.44	20.28	20.33	21.30	
		3	3	20.36	20.17	20.32	21.30	
		6	0	20.4	20.36	20.31	21.30	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	

South of No. 8 Piert, No. 1, Runshere; Road, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 82 of 169

					. •	82 01 169	
				19965	20175	20385	
		1	0	20.68	20.60	20.57	22.50
		1	7	20.52	20.59	20.79	21.30
		1	14	20.86	20.66	20.54	21.30
	QPSK	8	0	20.59	20.29	20.63	21.30
		8	4	20.49	20.34	20.44	21.30
		8	7	20.45	20.3	20.45	21.30
3MHz		15	0	20.51	20.36	20.49	21.30
SIVITIZ		1	0	20.42	20.53	20.29	21.30
		1	7	20.27	20.08	20.22	21.30
		1	14	19.92	20.5	20.06	21.30
	16QAM	8	0	20.42	20.44	20.27	21.30
		8	4	20.45	20.33	20.27	21.30
		8	7	20.43	20.19	20.44	21.30
		15	0	20.29	20.28	20.48	21.30
Bandwidth M	Maria Latin	DD .:	DD . (()	Channel	Channel	Channel	_
	Modulation	RB size	RB offset	19975	20175	20375	Tune up
		1	0	20.7	20.54	20.59	21.30
		1	13	20.52	20.62	20.75	21.30
		1	24	20.85	20.74	20.74	21.30
	QPSK	12	0	20.65	20.38	20.54	21.30
		12	6	20.59	20.46	20.54	21.30
		12	13	20.51	20.38	20.6	21.30
5MHz		25	0	20.52	20.39	20.48	21.30
SIVITIZ		1	0	20.67	19.87	20.01	21.30
		1	13	20.22	20.05	19.99	21.30
		1	24	20.29	20.04	20.07	21.30
	16QAM	12	0	20.37	20.34	20.4	21.30
		12	6	20.45	20.36	20.44	21.30
		12	13	20.43	20.15	20.31	21.30
		25	0	20.49	20.43	20.47	21.30
Bandwidth	Modulation	DD oizo	RB offset	Channel	Channel	Channel	Tupo up
Danuwiutn	Modulation	RB size	RD Ullset	20000	20175	20350	Tune up
		1	0	20.56	20.61	20.6	21.30
		1	25	20.67	20.6	20.72	21.30
400411-	ODCK	1	49	20.78	20.64	20.5	21.30
10MHz	QPSK	25	0	20.6	20.51	20.44	21.30
		25	13	20.53	20.43	20.56	21.30
		25	25	20.56	20.28	20.57	21.30
	•		•	•	•	•	

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 83 of 169

•	1	1	1	, F	age:	83 of 169	1
		50	0	20.58	20.41	20.52	21.30
		1	0	20.42	20.43	20.55	21.30
		1	25	20.14	20.05	20.57	21.30
		1	49	20.1	20.03	20.66	21.30
	16QAM	25	0	20.4	20.34	20.31	21.30
		25	13	20.45	20.37	20.25	21.30
		25	25	20.31	20.2	20.38	21.30
		50	0	20.49	20.28	20.4	21.30
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Balluwiutii	Wodulation	ND SIZE	VD 011261	20025	20175	20325	Turie up
		1	0	20.6	20.51	20.59	21.30
		1	38	20.61	20.63	20.69	21.30
		1	74	20.78	20.69	20.51	21.30
	QPSK	36	0	20.57	20.39	20.31	21.30
		36	18	20.52	20.28	20.38	21.30
		36	39	20.55	20.22	20.41	21.30
45MU-		75	0	20.52	20.27	20.45	21.30
15MHz		1	0	20.44	19.83	20.29	21.30
		1	38	20.06	20.24	19.99	21.30
		1	74	20.75	19.72	20.52	21.30
	16QAM	36	0	20.41	20.43	20.34	21.30
		36	18	20.48	20.32	20.35	21.30
		36	39	20.39	20.15	20.4	21.30
		75	0	20.5	20.34	20.49	21.30
Dan deri dilib	Madulation	DD size	RB offset	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	KD Ollset	20050	20175	20300	Tune up
		1	0	20.74	20.89	20.58	21.30
		1	50	20.63	20.81	20.79	21.30
		1	99	20.54	20.51	20.56	21.30
	QPSK	50	0	20.59	20.60	20.52	21.30
		50	25	20.58	20.38	20.37	21.30
		50	50	20.57	20.16	20.33	21.30
20MHz		100	0	20.52	20.58	20.44	21.30
		1	0	20.31	20.37	20.33	21.30
		1	50	20.17	19.84	20.45	21.30
	160 414	1	99	20.65	20.36	20.56	21.30
	16QAM	50	0	20.43	20.37	20.39	21.30
		50	25	20.41	20.42	20.41	21.30

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention holy and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

t (86-512) 62992980

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 84 of 169

100 0 20.49 20.25 20.47 21.30

A	nt3 LTE Band 4 Re	eceiver on		Conducted Power(dBm)				
-			55 " .	Channel	Channel	Channel	_	
Bandwidth	Modulation	RB size	RB offset	19957	20175	20393	Tune up	
		1	0	20.53	20.28	20.37	21.20	
		1	2	20.66	20.39	20.61	21.20	
		1	5	20.51	20.33	20.33	21.20	
	QPSK	3	0	20.51	20.37	20.41	21.20	
		3	2	20.45	20.23	20.45	21.20	
		3	3	20.53	20.29	20.55	21.20	
1.4MHz		6	0	20.48	20.28	20.49	21.20	
1.411172		1	0	20.11	19.82	20.94	21.20	
		1	2	20.6	20.17	20.41	21.20	
		1	5	20	20.35	20.31	21.20	
	16QAM	3	0	20.62	20.45	20.4	21.20	
		3	2	20.48	20.53	20.5	21.20	
		3	3	20.66	20.57	20.32	21.20	
		6	0	20.55	20.32	20.57	21.20	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Balluwiutii	Modulation	ND 3i26	VD 011261	19965	20175	20385	rune up	
		1	0	20.27	20.46	20.21	21.20	
	QPSK	1	7	20.77	20.61	20.84	21.20	
		1	14	20.54	20.3	20.52	21.20	
		8	0	20.63	20.29	20.43	21.20	
		8	4	20.43	20.34	20.47	21.20	
		8	7	20.4	20.32	20.48	21.20	
3MHz		15	0	20.46	20.36	20.5	21.20	
J		1	0	20.96	20.49	20.58	21.20	
		1	7	20.48	20.08	20.5	21.20	
		1	14	19.97	20.41	20.12	21.20	
	16QAM	8	0	20.65	20.06	20.14	21.20	
		8	4	20.5	20.2	20.17	21.20	
		8	7	20.54	20.06	20.2	21.20	
		15	0	20.45	20.25	20.5	21.20	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tuna un	
Dandwidth	iviodulation	1/0 2126	IVD OIISEL	19975	20175	20375	Tune up	
5MHz	QPSK	1	0	19.86	19.92	20.08	21.20	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.agex and, for electronic Documents at little://www.sgs.gom/en/Terms-and-Conditions.agex and, for electronic Documents at little://www.sgs.gom/en/Terms-en/Conditions/Terms-e-Document.agex. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the full-lest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

| South of No. 6 Plant, No. 1, Runsherg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由原务试验区苏州 计区苏州 工业园区湖走路1号的6号厂房南部 庫場: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 85 of 169

i	ı			, F	'age:	85 of 169	
		1	13	20.26	20.26	20.18	21.20
		1	24	20.16	20.05	20.15	21.20
		12	0	20.34	20.26	20.44	21.20
		12	6	20.3	20.34	20.43	21.20
		12	13	20.21	20.28	20.51	21.20
		25	0	20.26	20.29	20.38	21.20
		1	0	19.99	20.34	20.57	21.20
		1	13	19.83	19.82	20.15	21.20
		1	24	19.88	19.76	20.22	21.20
	16QAM	12	0	20.49	20.18	20.44	21.20
		12	6	20.44	20.25	20.49	21.20
		12	13	20.4	20.15	20.35	21.20
		25	0	20.56	20.29	20.5	21.20
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tupo up
Danuwium	iviodulation	KD SIZE	ND Ullset	20000	20175	20350	Tune up
		1	0	19.92	19.84	20.01	21.20
		1	25	20.48	20.47	20.38	21.20
	QPSK	1	49	20.22	19.72	20.11	21.20
		25	0	20.32	20.36	20.41	21.20
		25	13	20.29	20.29	20.42	21.20
		25	25	20.26	20.12	20.45	21.20
10MHz		50	0	20.29	20.27	20.27	21.20
TOWITZ		1	0	20.49	20.34	20.07	21.20
		1	25	20.44	20.23	20.34	21.20
		1	49	20.15	19.99	20.32	21.20
	16QAM	25	0	20.48	20.37	20.55	21.20
		25	13	20.51	20.33	20.49	21.20
		25	25	20.22	20.42	20.46	21.20
		50	0	20.46	20.22	20.41	21.20
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Wodulation	KD SIZE	KD Ollset	20025	20175	20325	Tune up
		1	0	20.43	20.34	20.36	21.20
		1	38	20.54	20.28	20.37	21.20
		1	74	20.24	19.92	20.57	21.20
15MHz	QPSK	36	0	20.49	20.37	20.29	21.20
I DIVITIZ		36	18	20.45	20.38	20.37	21.20
		36	39	20.37	20.2	20.5	21.20
		75	0	20.44	20.26	20.44	21.20
	16QAM	1	0	20.73	19.98	20.34	21.20

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the true for a forward to the imitation of liability, indemdification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikof Pree Tracke Zone 215000中国 - 苏州 - 中国(江苏)自由贸易式搬区苏州 H区苏州工业国区湘建路 1号的6号厂房南部 庫場: 215000

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 86 of 169

			_	. F	age: 8	36 of 169	
		1	38	20.07	21.16	20.41	21.20
		1	74	19.61	20.14	20.26	21.20
		36	0	20.39	20.36	20.38	21.20
		36	18	20.32	20.31	20.51	21.20
		36	39	20.39	20.18	20.49	21.20
		75	0	20.55	20.22	20.34	21.20
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tung up
Danawiath	Modulation	KD SIZE	KD Ollset	20050	20175	20300	Tune up
	QPSK	1	0	20.36	20.57	20.36	21.20
		1	50	20.46	20.52	20.44	21.20
		1	99	20.28	20.11	20.23	21.20
		50	0	20.49	20.5	20.47	21.20
		50	25	20.49	20.25	20.35	21.20
		50	50	20.35	20.15	20.4	21.20
20MHz		100	0	20.42	20.45	20.4	21.20
ZUWITZ		1	0	20.55	20.43	20.28	21.20
		1	50	20.73	19.92	20.28	21.20
		1	99	20.34	19.61	20.27	21.20
	16QAM	50	0	20.57	20.5	20.32	21.20
		50	25	20.67	20.26	20.38	21.20
		50	50	20.42	20.24	20.46	21.20
		100	0	20.49	20.2	20.42	21.20

А	Ant3 LTE Band 4 Hotspot on				Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tung up		
Danawiath	Modulation	KD SIZE	KD Ollset	19957	20175	20393	Tune up		
		1	0	19.68	19.41	19.6	20.80		
		1	2	19.68	19.43	19.65	20.80		
	QPSK	1	5	19.68	19.46	19.58	20.80		
		3	0	19.6	19.53	19.5	20.80		
		3	2	19.67	19.48	19.68	20.80		
1.4MHz		3	3	19.65	19.45	19.69	20.80		
		6	0	19.72	19.58	19.61	20.80		
		1	0	19.63	19.65	19.5	20.80		
	16QAM	1	2	19.54	19.99	19.73	20.80		
	TOQAM	1	5	19.26	19.96	19.21	20.80		
		3	0	19.85	19.62	19.67	20.80		

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents as the conditions of the co

South of No. 9 Piett, No. 1, Runsherry Road, Suthou Industrial Park, Suthou Area, Chira (Liangsu) Piet Free Tisete Zone 215000 中国 - 苏州 - 中国(江苏)自由吴秀试验区苏州上区苏州工业园区深胜路(号的6号厂房南部 峰编: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 87 of 169

	ı	1	ı	, F	Page:	87 of 169	Ī
		3	2	20.08	19.64	19.69	20.80
		3	3	19.81	19.45	19.75	20.80
		6	0	19.76	19.38	19.64	20.80
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawian	Woddiation	ND 3ize	ND onset	19965	20175	20385	Tune up
		1	0	19.66	19.33	19.13	20.80
		1	7	19.76	19.5	19.7	20.80
		1	14	19.36	19.57	19.28	20.80
	QPSK	8	0	19.73	19.68	19.66	20.80
		8	4	19.66	19.61	19.7	20.80
		8	7	19.62	19.59	19.6	20.80
3MHz		15	0	19.67	19.52	19.63	20.80
SIVILIZ		1	0	19.02	19.52	19.05	20.80
		1	7	19.45	19.02	19.3	20.80
		1	14	19.18	19.4	19.43	20.80
	16QAM	8	0	19.8	19.41	19.5	20.80
		8	4	19.48	19.79	19.45	20.80
		8	7	19.75	19.58	19.22	20.80
		15	0	19.64	19.32	19.59	20.80
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawidin	Woddiation	ND SIZE	ND Ollset	19975	20175	20375	Turie up
	QPSK	1	0	19.35	19.37	19.37	20.80
		1	13	19.68	19.44	19.8	20.80
		1	24	19.51	19.23	19.37	20.80
		12	0	19.76	19.59	19.73	20.80
		12	6	19.7	19.56	19.74	20.80
		12	13	19.58	19.51	19.8	20.80
5MHz		25	0	19.61	19.5	19.66	20.80
SIVIFIZ		1	0	19.61	19.32	19.69	20.80
		1	13	19.62	19.13	19.82	20.80
		1	24	19.21	19.22	19.36	20.80
	16QAM	12	0	19.7	19.56	19.69	20.80
		12	6	19.57	19.48	19.71	20.80
		12	13	19.68	19.55	19.79	20.80
		25	0	19.63	19.66	19.76	20.80
Pandwidth	Modulation	DR size	RB offset	Channel	Channel	Channel	Tupo up
Bandwidth	iviodulation	RB size	KD Ullset	20000	20175	20350	Tune up
101111-	OBSIA	1	0	19.63	19.24	19.28	20.80
10MHz	QPSK	1	25	19.71	19.63	19.87	20.80

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikof Pree Tracke Zone 215000中国 - 苏州 - 中国(江苏)自由贸易式搬区苏州 H区苏州工业国区湘建路 1号的6号厂房南部 庫場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 88 of 169

1	•	•	1	'	age:	88 of 169	ı
		1	49	19.61	19.01	19.53	20.80
		25	0	19.65	19.61	19.62	20.80
		25	13	19.69	19.52	19.73	20.80
		25	25	19.65	19.47	19.64	20.80
		50	0	19.74	19.59	19.6	20.80
		1	0	19.66	19.09	19.33	20.80
		1	25	19.25	19.75	20.1	20.80
		1	49	19.2	19.06	19.79	20.80
	16QAM	25	0	19.97	19.51	19.63	20.80
		25	13	19.71	19.65	19.96	20.80
		25	25	19.67	19.62	19.94	20.80
		50	0	19.78	19.61	19.76	20.80
Donadoui alth	Madulation	DD sins	DD 0#0.04	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	20025	20175	20325	Tune up
		1	0	19.54	19.47	19.43	20.80
		1	38	19.64	19.76	19.71	20.80
		1	74	19.48	19.38	19.67	20.80
	QPSK	36	0	19.73	19.57	19.59	20.80
		36	18	19.69	19.58	19.65	20.80
		36	39	19.63	19.41	19.7	20.80
45841-		75	0	19.7	19.46	19.61	20.80
15MHz		1	0	19.45	19.61	19.73	20.80
		1	38	19.23	18.93	19.7	20.80
		1	74	19.29	19.29	19.41	20.80
	16QAM	36	0	19.66	19.56	19.65	20.80
		36	18	19.69	19.61	19.64	20.80
		36	39	19.62	19.43	19.73	20.80
		75	0	19.64	19.49	19.73	20.80
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tung up
Bandwidth	Modulation	ND SIZE	KD Ollset	20050	20175	20300	Tune up
		1	0	19.51	19.78	19.55	20.80
		1	50	19.77	19.56	19.63	20.80
		1	99	19.49	19.18	19.57	20.80
	QPSK	50	0	19.61	19.74	19.7	20.80
20MHz		50	25	19.69	19.58	19.54	20.80
		50	50	19.69	19.47	19.62	20.80
	-			40.50	10.66	19.61	20.80
		100	0	19.58	19.66	19.01	20.00
	16QAM	100	0	19.58	19.09	19.4	20.80

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 89 of 169

1	99	19.16	19.1	19.71	20.80
50	0	19.7	19.68	19.74	20.80
50	25	19.74	19.56	19.64	20.80
50	50	19.73	19.49	19.73	20.80
100	0	19.55	19.53	19.73	20.80

	Ant0 LTE Ba	and 5		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Bandwidth	Wodulation	KD SIZE	KD Ollset	20407	20525	20643	Turie up	
		1	0	23.64	23.74	23.93	25.00	
		1	2	23.85	24.23	24.21	25.00	
		1	5	23.66	24.02	23.35	25.00	
	QPSK	3	0	22.85	22.79	23.02	24.00	
		3	2	22.86	22.81	22.58	24.00	
		3	3	22.75	22.61	22.62	24.00	
1.4MHz		6	0	22.72	22.82	22.83	24.00	
1.4101712		1	0	22.35	22.26	22.03	24.00	
		1	2	23.05	22.75	22.58	24.00	
	16QAM	1	5	22.88	22.65	22.28	24.00	
		3	0	22.07	21.89	21.92	23.00	
		3	2	21.86	22.08	22.04	23.00	
		3	3	21.69	21.66	21.86	23.00	
		6	0	22.05	21.88	21.8	23.00	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Bandwidth	Woddiation	ND SIZE	KD Ollset	20415	20525	20635	Turie up	
		1	0	23.7	23.91	23.85	25.00	
		1	7	24.09	24.04	24.16	25.00	
		1	14	23.46	23.71	23.4	25.00	
	QPSK	8	0	22.54	22.98	22.86	24.00	
		8	4	22.67	22.69	22.55	24.00	
3MHz		8	7	22.75	22.7	22.5	24.00	
SIVITZ		15	0	22.99	22.76	22.92	24.00	
		1	0	22.32	22.44	22.19	24.00	
		1	7	23.01	22.86	22.48	24.00	
	16QAM	1	14	22.63	22.75	22.28	24.00	
		8	0	21.93	22.08	21.94	23.00	
		8	4	21.92	22.19	22.17	23.00	

中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区消胜路(号的6号厂房南部 鄭塢: 215000

Member of the SGS Group (SGS SA)

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 90 of 169

ı	İ	1	ı	1	, •	1	I
		8	7	21.88	21.68	21.81	23.00
		15	0	22	21.89	22.06	23.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tuna un
bandwidth	Modulation	RD SIZE	RB onset	20425	20525	20625	Tune up
		1	0	23.61	23.75	23.32	25.00
		1	13	23.99	23.95	23.89	25.00
		1	24	23.29	23.56	23.63	25.00
	QPSK	12	0	22.87	22.72	22.59	24.00
		12	6	22.81	22.77	22.68	24.00
		12	13	22.66	22.69	22.6	24.00
5MHz		25	0	22.67	22.73	22.61	24.00
SIVITZ		1	0	22.25	22.64	22.01	24.00
		1	13	22.29	23.03	22.62	24.00
		1	24	22.19	22.66	22.54	24.00
	16QAM	12	0	21.75	22.22	21.52	23.00
		12	6	21.65	21.91	21.73	23.00
		12	13	21.78	21.85	21.66	23.00
		25	0	21.87	21.77	21.63	23.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Balluwiutii	Wodulation	KD Size	KB onset	20450	20525	20600	Tune up
		1	0	24.21	24.29	24.19	25.00
		1	25	24	24.18	24.11	25.00
		1	49	23.83	24.05	24.06	25.00
	QPSK	25	0	22.87	22.99	22.85	24.00
		25	13	22.73	22.89	22.58	24.00
		25	25	22.83	22.82	22.71	24.00
10MHz		50	0	22.75	22.97	22.82	24.00
IUIVITZ		1	0	22.71	22.98	22.47	24.00
		1	25	23.21	22.7	22.71	24.00
		1	49	22.7	23.23	22.51	24.00
	16QAM	25	0	22.05	22.09	21.82	23.00
		25	13	21.73	22.23	21.94	23.00
		25	25	21.91	21.91	21.63	23.00
		50	0	21.76	21.95	21.95	23.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

| South of No. 6 Plant, No. 1, Runsherg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由原务试验区苏州 计区苏州 工业园区湖走路1号的6号厂房南部 庫場: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 91 of 169

	Ant3 LTE Ba	and 5		Conducted Power(dBm)				
				Channel	Channel	Channel		
Bandwidth	Modulation	RB size	RB offset	20407	20525	20643	Tune up	
		1	0	23.78	23.9	24.13	25.00	
		1	2	24.03	24.35	24.41	25.00	
		1	5	23.85	24.12	23.51	25.00	
	QPSK	3	0	22.99	22.9	23.14	24.00	
	4 4001-	3	2	22.98	22.97	22.73	24.00	
		3	3	22.89	22.81	22.77	24.00	
4 4001-		6	0	22.87	22.95	22.99	24.00	
1.4MHz	1	0	22.5	22.58	22.69	24.00		
	1	2	23.19	22.93	22.77	24.00		
		1	5	22.98	22.82	22.78	24.00	
	16QAM	3	0	22.17	22.04	22.02	23.00	
		3	2	21.98	22.22	22.2	23.00	
		3	3	21.81	21.8	21.97	23.00	
		6	0	22.16	22.05	21.91	23.00	
Dan dwidth	Barrier Madalata	RB size	DD offeet	Channel	Channel	Channel	Tungun	
Bandwidth	Modulation		RB offset	20415	20525	20635	Tune up	
		1	0	23.88	24.05	24.05	25.00	
		1	7	24.19	24.17	24.31	25.00	
		1	14	23.58	23.89	23.5	25.00	
	QPSK	8	0	22.7	23.14	23.04	24.00	
		8	4	22.79	22.86	22.65	24.00	
		8	7	22.88	22.88	22.69	24.00	
3MHz		15	0	23.09	22.96	23.03	24.00	
SWIFIZ		1	0	22.54	22.59	22.88	24.00	
		1	7	23.12	22.97	22.66	24.00	
		1	14	22.77	22.85	22.65	24.00	
	16QAM	8	0	22.03	22.21	22.14	23.00	
		8	4	22.07	22.32	22.32	23.00	
		8	7	21.98	21.86	21.91	23.00	
		15	0	22.18	22.08	22.2	23.00	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Danuwidin	Widulation	IVD SIZE	ווס מא	20425	20525	20625	rane ap	
5MHz	QPSK	1	0	23.89	23.88	23.99	25.00	
JIVITZ	QF3f\	1	13	24.13	24.19	24.34	25.00	

South of No. 5 Piert, No. 1, Runshere; Road, Suchou Industrial Park, Suchou Area, China (Jangsu) Pilot Free Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景文教区苏州片区苏州工业园区湾走路1号的6号厂房南部 鄉編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 92 of 169

_	_		_	. г	aye.	92 OI 109	_
		1	24	23.74	23.98	23.49	25.00
		12	0	22.81	22.94	23.05	24.00
		12	6	22.7	22.9	22.71	24.00
		12	13	22.96	22.95	22.66	24.00
		25	0	22.89	22.87	22.88	24.00
		1	0	22.66	22.59	22.89	24.00
		1	13	23.16	22.97	22.61	24.00
		1	24	22.89	22.86	22.5	24.00
	16QAM	12	0	22.23	21.99	22.11	23.00
		12	6	22.02	22.33	22.1	23.00
		12	13	21.81	21.79	22.1	23.00
		25	0	22.16	21.96	21.98	23.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth		RD SIZE	RB Ollset	20450	20525	20600	Tune up
	QPSK	1	0	23.95	24.23	24.12	25.00
		1	25	23.7	23.9	23.98	25.00
		1	49	23.84	23.97	23.68	25.00
		25	0	22.93	23.00	22.79	24.00
		25	13	22.87	22.87	22.91	24.00
		25	25	22.95	22.99	22.82	24.00
10MHz		50	0	23.00	22.97	22.81	24.00
10141112		1	0	22.56	22.59	22.68	24.00
		1	25	23.24	22.75	22.73	24.00
		1	49	23.01	22.80	22.77	24.00
	16QAM	25	0	22.17	22.11	22.09	23.00
		25	13	22.10	22.29	22.24	23.00
		25	25	21.93	21.85	21.96	23.00
		50	0	22.11	22.16	22.08	23.00

	Ant1 LTE Band 7 Receiver off				Conducted Power(dBm)			
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	- Tune up	
Bandwidth	Modulation	RB SIZE RB OTISET	KD OIISEL	20775	21100	21425		
		1	0	21.42	21.65	21.53	22.40	
		1	13	21.39	21.81	21.71	22.40	
5MHz	QPSK	1	24	21.32	21.87	21.62	22.40	
		12	0	21.66	21.73	21.72	22.40	
		12	6	21.71	21.83	21.69	22.40	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the true for a forward to the imitation of liability, indemdification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 5 Prant, No. 1, Hunshang Hoad, Suzhou Industrial Park, Suzhou Area, China (Liangsu) Prof. Free Trace Zone 215000 中国 · 苏州 · 中国(江苏)自由贸易试验区苏州 · Free Trace Zone 215000

t (86-512) 62992980

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 93 of 169

1	1	1	1	P	age: S	93 of 169	1
		12	13	21.64	21.77	21.71	22.40
		25	0	21.57	21.76	21.66	22.40
		1	0	22.01	21.59	21.95	22.40
ļ		1	13	22.36	21.65	21.88	22.40
ļ		1	24	22.02	21.14	21.47	22.40
ļ	16QAM	12	0	21.42	21.76	21.75	22.40
ļ		12	6	21.34	21.69	21.67	22.40
ļ		12	13	21.33	21.74	21.77	22.40
		25	0	21.49	21.69	21.86	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Wodulation	ND SIZE	KD 0115et	20800	21100	21400	rune up
		1	0	22.11	22.19	22.02	22.40
		1	25	21.96	21.91	21.86	22.40
		1	49	21.89	21.96	21.89	22.40
	QPSK	25	0	21.64	21.77	21.62	22.40
		25	13	21.86	21.93	21.77	22.40
ļ		25	25	21.77	21.81	21.71	22.40
10MHz		50	0	21.72	21.83	21.79	22.40
TOWINZ		1	0	22.03	22.34	21.97	22.40
ļ		1	25	21.92	22.11	21.93	22.40
ļ		1	49	21.97	22.09	22.01	22.40
ļ	16QAM	25	0	21.65	21.77	21.55	22.40
		25	13	21.71	21.95	21.73	22.40
		25	25	21.67	21.67	21.39	22.40
		50	0	21.73	21.86	21.9	22.40
Pandwidth	Modulation	DP oizo	RB offset	Channel	Channel	Channel	T
Bandwidth	iviodulation	RB size	ND OIISET	20825	21100	21375	Tune up
		1	0	21.89	21.94	21.71	22.40
		1	38	21.63	21.77	21.58	22.40
		1	74	21.55	21.63	21.47	22.40
	QPSK	36	0	21.42	21.67	21.61	22.40
		36	18	21.69	21.78	21.7	22.40
45MU-		36	39	21.63	21.72	21.71	22.40
15MHz		75	0	21.51	21.77	21.83	22.40
		1	0	22.22	22.38	22.02	22.40
		1	38	22.17	22.31	21.92	22.40
	16QAM	1	74	22.29	22.29	21.96	22.40
	16QAM	ı	1				
	16QAM	36	0	21.62	21.66	21.49	22.40

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exceed except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the results shown in this test report refer only to the sample(s) tested and such sample(s) tested and such sample(s) are testined for 30 days only.

Attention: To check the autherticity of testing (inspection report & certificities, please contact us at telephone (86-755) 3307 1443.

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 94 of 169

	1	36	39	21.65	21.63	21.53	22.40
		75	0	21.79	21.87	21.69	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Wodulation		IND Oliset	20850	21100	21350	Turie up
		1	0	22.12	22.38	22.25	22.40
		1	50	22.06	22.22	21.58	22.40
		1	99	22.01	21.92	21.85	22.40
	QPSK	50	0	22.09	22.16	21.99	22.40
		50	25	21.64	22.11	21.73	22.40
		50	50	21.62	22.15	21.82	22.40
208411-		100	0	21.51	22.07	21.78	22.40
20MHz		1	0	21.9	22.01	22.08	22.40
		1	50	22.02	21.74	21.98	22.40
		1	99	21.82	21.66	22.1	22.40
	16QAM	50	0	21.59	21.82	21.62	22.40
		50	25	21.71	21.88	21.72	22.40
		50	50	21.64	21.91	21.62	22.40
		100	0	21.56	21.92	21.89	22.40

	Ant1 LTE Band	7 Receiver on		Conducted Power(dBm)				
Bandwidth	Modulation	RB size RB	RB offset	Channel	Channel	Channel	Tungun	
Bandwidth			KB oliset	20775	21100	21425	Tune up	
		1	0	23.69	24.12	23.85	24.50	
		1	13	23.79	24.04	24.08	24.50	
		1	24	23.81	23.72	23.98	24.50	
	QPSK	12	0	22.64	23.07	23.01	23.50	
		12	6	22.7	23.14	23.15	23.50	
		12	13	22.79	23.02	23.24	23.50	
5MHz		25	0	22.87	23.03	22.75	23.50	
SWITZ		1	0	22.08	23.5	22.72	23.50	
		1	13	22.53	23.41	23.17	23.50	
		1	24	22.13	23.21	23.09	23.50	
	16QAM	12	0	21.65	21.87	21.9	22.50	
		12	6	21.57	21.95	21.91	22.50	
		12	13	21.52	21.89	21.95	22.50	
		25	0	21.49	21.75	21.72	22.50	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone; (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区消胜路(号的6号厂房南部 鄭塢: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 95 of 169

South of No. 8 Piett, No. 1, Runshere, Road, Scarbou Industrial Park, Starhou Area, China (Jangsu) Pict Free Tisede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定翰区苏州丘安周区苏州丘安周区河胜路1号的6号厂房南部 能编: 215000

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 96 of 169

	_		. α	90.	01 100	
	50	50	22.99	23.15	23.12	23.50
	100	0	23.14	23.23	23.06	23.50
	1	0	23.17	23.29	22.82	23.50
	1	50	23.29	23.39	23.02	23.50
	1	99	22.91	22.76	23.32	23.50
16QAM	50	0	21.95	22.17	22.01	22.50
	50	25	21.87	22.03	22.08	22.50
	50	50	21.98	21.99	22.1	22.50
	100	0	21.79	21.93	22.05	22.50

Ant3 I	_TE Band 7 Receiv	er off/Hotspot	Off		Conducted	Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Dandwidth	Modulation	IVD SIZE	KB onset	20775	21100	21425	Tune up
		1	0	19.75	20.02	19.72	20.50
		1	13	19.86	20.11	19.32	20.50
		1	24	19.42	19.73	19.83	20.50
	QPSK	12	0	19.18	19.46	19.12	20.50
		12	6	19.18	19.49	19	20.50
		12	13	19.14	19.4	19.05	20.50
EMU-		25	0	19.15	19.49	18.5	20.50
5MHz		1	0	18.59	18.87	18.7	20.50
		1	13	18.86	19.13	18.76	20.50
		1	24	18.9	19.23	19.08	20.50
	16QAM	12	0	19.12	19.47	18.99	20.50
		12	6	19.1	19.44	19.04	20.50
		12	13	19.12	19.45	18.98	20.50
		25	0	19.1	19.39	19.47	20.50
D 4	Madulada	DD .:		Channel	Channel	Channel	Tune up
Bandwidth	Modulation	RB size	RB offset	20800	21100	21400	
		1	0	19.77	19.95	19.36	20.50
		1	25	19.93	20.13	19.57	20.50
		1	49	19.93	20.06	19.46	20.50
	QPSK	25	0	19.64	19.82	19.27	20.50
10MHz		25	13	19.77	19.9	19.36	20.50
		25	25	19.78	19.91	19.33	20.50
		50	0	19.75	19.98	19.44	20.50
	160011	1	0	19.37	19.53	19.49	20.50
	16QAM	1	25	19.73	19.91	19.28	20.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.:

97 of 169 Page:

	İ	1	Í	F	'age: s	97 of 169	î.
		1	49	19.61	19.8	19.19	20.50
		25	0	19.81	19.97	19.35	20.50
		25	13	19.7	19.86	19.24	20.50
		25	25	19.64	19.79	19.18	20.50
		50	0	19.65	19.85	19.26	20.50
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Banawian	Modulation	IND SIZE	ND 0113Ct	20825	21100	21375	rune up
		1	0	19.71	20.01	19.66	20.50
		1	38	19.6	19.86	19.48	20.50
		1	74	19.73	20.04	19.64	20.50
	QPSK	36	0	19.57	19.84	19.47	20.50
		36	18	19.6	19.87	19.56	20.50
		36	39	19.51	19.85	19.46	20.50
45841-		75	0	19.67	19.92	19.57	20.50
TOWINZ	15MHz	1	0	19.42	19.76	19.45	20.50
		1	38	19.31	19.61	19.22	20.50
		1	74	19.27	19.53	19.17	20.50
	16QAM	36	0	19.31	19.57	19.23	20.50
		36	18	19.35	19.61	19.22	20.50
		36	39	19.35	19.65	19.31	20.50
		75	0	19.49	19.81	19.45	20.50
			RB offset	Channel	Channel	Channel	_
Bandwidth	Modulation	RB size		20850	21100	21350	Tune up
		1	0	20.2	20.23	19.99	20.50
		1	50	19.93	19.92	19.7	20.50
		1	99	19.82	19.83	19.61	20.50
	QPSK	50	0	19.76	19.81	19.54	20.50
		50	25	19.74	19.69	19.52	20.50
		50	50	19.72	19.66	19.42	20.50
		100	0	19.74	19.75	19.55	20.50
20MHz		1	0	19.26	19.27	19.06	20.50
		1	50	19.84	19.84	19.64	20.50
		1	99	19.78	19.74	19.54	20.50
	16QAM	50	0	19.83	19.81	19.61	20.50
		50	25	19.83	19.8	19.63	20.50
		50	50	19.59	19.57	19.39	20.50
		100	0	19.59	19.56	19.36	20.50
		100		10.00	15.50	10.00	20.50

中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区消胜路(号的6号厂房南部 鄭塢: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 98 of 169

Ant3 L	TE Band 7 Receiv	er on/Hotspot	t On		Conducted	d Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
		1	0	20775 18.13	21100 18.19	21425 18.21	19.10
		1	13	18.37	18.44	18.47	19.10
		1	24	18.1	18.19	18.2	19.10
	QPSK			18.21			19.10
	QFSK	12	6		18.25	18.31	
		12	 	18.21	18.28	18.33	19.10
		12	13	18.2	18.29	18.32	19.10
5MHz		25	0	18.11	18.15	18.16	19.10
		1	0	18	18.01	18.1	19.10
		1	13	17.87	17.89	17.95	19.10
		1	24	18.13	18.21	18.24	19.10
16QAM	16QAM	12	0	18.11	18.13	18.16	19.10
		12	6	18.18	18.26	18.34	19.10
		12	13	18.24	18.25	18.29	19.10
	25	0	18.24	18.25	18.3	19.10	
Bandwidth	Bandwidth Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Banawian	Wioddiation	TO SIZE	TED ONSOL	20800	21100	21400	rano ap
		1	0	18.12	18.44	18.38	19.10
		1	25	18.01	18.37	18.33	19.10
		1	49	18.02	18.29	18.24	19.10
	QPSK	25	0	17.95	18.25	18.15	19.10
		25	13	17.94	18.23	18.16	19.10
		25	25	17.88	18.25	18.16	19.10
40.511		50	0	17.96	18.31	18.27	19.10
10MHz		1	0	18.09	18.43	18.38	19.10
		1	25	17.95	18.3	18.28	19.10
		1	49	17.77	18.13	18.04	19.10
	16QAM	25	0	17.94	18.25	18.19	19.10
		25	13	17.92	18.27	18.18	19.10
		25	25	17.87	18.16	18.13	19.10
		50	0	17.98	18.28	18.26	19.10
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	20825	21100	21375	Tune up
		1	0	18.21	18.42	18.22	19.10
15MHz	QPSK	1	38	18.38	18.54	18.36	19.10
		1	74	18.1	18.36	18.2	19.10

South of No. 8 Piett, No. 1, Runshere, Road, Scarbou Industrial Park, Starhou Area, China (Jangsu) Pict Free Tisede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定翰区苏州丘安周区苏州丘安周区河胜路1号的6号厂房南部 能编: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 99 of 169

	•				Page:	99 of 169	
		36	0	18.08	18.24	18.01	19.10
		36	18	18.01	18.27	18.06	19.10
		36	39	18.07	18.26	18.08	19.10
		75	0	18.07	18.31	18.07	19.10
		1	0	17.68	17.94	17.73	19.10
		1	38	17.81	17.99	17.79	19.10
		1	74	18.07	18.32	18.12	19.10
	16QAM	36	0	17.98	18.16	17.94	19.10
		36	18	18	18.21	18.02	19.10
		36	39	17.94	18.19	18.03	19.10
		75	0	17.86	18.07	17.92	19.10
Bandwidth	Modulation	DD .:-	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Wodulation	RB size		20850	21100	21350	rune up
		1	0	18.67	18.73	18.65	19.10
		1	50	18.17	18.39	18.35	19.10
		1	99	18.23	18.44	18.43	19.10
	QPSK	50	0	18.09	18.35	18.27	19.10
		50	25	18.04	18.26	18.2	19.10
		50	50	18.1	18.27	18.25	19.10
20MHz		100	0	18.05	18.3	18.26	19.10
ZUIVITZ		1	0	18.06	18.23	18.14	19.10
		1	50	18.17	18.36	18.28	19.10
		1	99	18.11	18.28	18.23	19.10
	16QAM	50	0	17.84	18.07	17.99	19.10
		50	25	17.96	18.16	18.08	19.10
		50	50	17.95	18.12	18.1	19.10
		100	0	17.92	18.15	18.13	19.10

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Condit

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 100 of 169

	Ant0 LTE Ba	and 13		Conducted Power(dBm)				
	AIRU LI E Ba				Conducted	- Cwer(ubili)		
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Danawiani	Modulation	RD Size	RB Oliset	23205	23230	23255	Tune up	
		1	0	23.48	23.74	23.48	24.50	
		1	13	23.67	23.34	23.52	24.50	
		1	24	23.22	23.36	23.43	24.50	
	QPSK	12	0	22.74	22.63	22.52	23.50	
		12	6	22.69	22.71	22.61	23.50	
		12	13	22.6	22.54	22.58	23.50	
5MU-		25	0	22.65	22.64	22.61	23.50	
5MHz		1	0	21.96	22.42	22.68	23.50	
		1	13	22.19	22.24	22.1	23.50	
	16QAM	1	24	22.19	22.32	22.26	23.50	
		12	0	21.54	21.53	21.55	22.50	
		12	6	21.67	21.57	21.42	22.50	
		12	13	21.67	21.33	21.57	22.50	
		25	0	21.74	21.79	21.51	22.50	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Danawiani	Modulation	RD SIZE	RD Oliset	/	23230	/	Tune up	
		1	0	/	24.25	/	24.50	
		1	25	/	24.18	/	24.50	
		1	49	/	24.12	/	24.50	
	QPSK	25	0	/	22.99	/	23.50	
		25	13	/	22.86	/	23.50	
		25	25	/	22.88	/	23.50	
10MHz		50	0	/	22.82	/	23.50	
IUWIFIZ		1	0	/	22.98	/	23.50	
		1	25	/	22.86	/	23.50	
		1	49	/	22.46	/	23.50	
	16QAM	25	0	/	22.06	/	22.50	
		25	13	/	22	/	22.50	
		25	25	/	21.83	/	22.50	
		50	0	/	21.85	/	22.50	

	Ant3 LTE Band 13				Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tung up		
	Modulation	RB SIZE R	KD Oliset	23205	23230	23255	Tune up		
		1	0	23.79	23.59	23.88	24.50		
		1	25	23.99	23.95	23.92	24.50		
5MHz	QPSK	1	49	23.67	23.59	23.58	24.50		
		25	0	22.85	22.7	22.85	23.50		
		25	13	22.86	22.88	22.54	23.50		

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer, worded, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents ubject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx strents of a training the formation contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a ransaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized elleration, forgety or faisfication of the content or preparance of this document is unlawful and offendors may be prosecuted to the fullest extent of the law. Unloss otherwise stated the earths and such sample(s) are retained for 30 days only.

South of No. 6 Plent, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Plot Free Tiscle Zone
中国 - 苏州 - 中国(江苏)自由因易试验区苏州片区苏州工业团区河逛路(号的6号厂房商部 庫場: 215000

t (86-512) 62992980 t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 101 of 169

•				. P	'age:	101 of 169	
		25	25	22.75	22.68	22.77	23.50
		50	0	22.83	22.84	22.79	23.50
		1	0	22.5	22.85	22.38	23.50
		1	25	22.72	22.59	23.1	23.50
		1	49	22.54	22.56	22.66	23.50
	16QAM	25	0	21.63	21.87	21.69	22.50
		25	13	21.74	21.86	21.86	22.50
		25	25	21.84	21.76	21.63	22.50
		50	0	21.89	21.84	21.6	22.50
Dan desidab	Madulation	DD size	DD -#+	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	23205	23230	23255	Tune up
		1	0	23.91	23.99	23.98	24.50
		1	25	23.81	23.79	23.83	24.50
		1	49	23.87	23.6	23.49	24.50
	QPSK	25	0	22.81	22.98	22.75	23.50
		25	13	22.97	22.96	22.49	23.50
		25	25	22.68	22.68	22.69	23.50
10MHz		50	0	22.83	22.52	22.79	23.50
TOWITZ		1	0	22.27	22.98	22.41	23.50
		1	25	22.52	22.51	22.98	23.50
		1	49	22.61	22.52	22.76	23.50
	16QAM	25	0	21.59	21.73	21.73	22.50
		25	13	21.75	21.73	21.68	22.50
		25	25	21.82	21.58	21.73	22.50
		50	0	21.81	21.61	21.68	22.50

	Ant0 LTE Ba	nd 26		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	DD - 111	Channel	Channel	Channel	Tungung	
Bandwidth	Modulation	RB SIZE	RB offset	26697	26865	27033	Tune up	
		1	0	23.68	23.94	23.40	25.00	
		1	2	23.78	24.00	23.60	25.00	
		1	5	23.57	23.46	23.81	25.00	
1.4MHz	QPSK	3	0	22.93	23.02	22.74	24.00	
1.411172		3	2	22.94	22.94	22.78	24.00	
		3	3	23.00	22.79	22.81	24.00	
		6	0	22.90	22.73	22.69	24.00	
	16QAM	1	0	22.98	23.06	22.08	24.00	

South of No. 9 Pietr. No. 1, Runsherry Road, Suchou Industrial Park, Suchou JAva, Chira (Jiangsu) Pikot Free Tiecke Zime 215000 中国 - 苏州 - 中国(江苏)自由吴家试验区苏州上区苏州工业园区河胜路(号的6号厂房南部 邮编: 215000

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 102 of 169

	•	1	1	, P	age: 1	02 of 169	1
		1	2	22.79	22.85	22.52	24.00
		1	5	22.83	22.62	22.77	24.00
		3	0	22.02	22.10	21.66	23.00
		3	2	22.09	22.03	21.72	23.00
		3	3	22.12	21.78	21.70	23.00
		6	0	22.15	21.88	21.73	23.00
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	26705	26865	27025	Tune up
		1	0	23.74	23.83	23.53	25.00
		1	7	23.84	23.94	23.78	25.00
		1	14	23.52	23.62	23.73	25.00
	QPSK	8	0	23.00	22.98	22.64	24.00
		8	4	22.98	22.97	22.75	24.00
		8	7	22.92	22.88	22.69	24.00
		15	0	22.96	22.73	22.62	24.00
3MHz		1	0	23.07	22.73	22.59	24.00
		1	7	22.86	22.85	22.59	24.00
		1	14	22.74	22.59	22.72	24.00
	16QAM	8	0	22.10	21.95	21.82	23.00
		8	4	22.12	22.02	21.69	23.00
		8	7	22.07	21.93	21.64	23.00
		15	0	22.24	21.88	21.70	23.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Zanawiani	Modulation			26715	26865	27015	
		1	0	23.67	23.86	23.48	25.00
		1	13	23.88	23.99	23.70	25.00
		1	24	23.59	23.52	23.77	25.00
ļ	QPSK	12	0	22.91	22.94	22.68	24.00
ļ		12	6	22.96	22.87	22.70	24.00
		12 25	13	22.92	22.82	22.71	24.00
5MHz		1	0	22.98 23.04	22.78 22.98	22.69 22.05	24.00 24.00
ļ		1	13	22.79	22.95	22.05	24.00
ļ			24	22.79	22.66	22.69	24.00
	16QAM	1 12	0	22.12	22.00	21.73	23.00
	IOQAW	12	6	22.12	22.04	21.78	23.00
ļ		12	13	22.04	21.85	21.67	23.00
		25	0	22.17	21.81	21.65	23.00
				Channel	Channel	Channel	25.00
Bandwidth	Modulation	RB size	RB offset	26750	26865	26990	Tune up
		1	0	24.08	24.17	23.97	25.00
10MHz	QPSK	1	25	24.34	24.03	23.98	25.00
ļ		1	49	24.20	23.62	23.45	25.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone; (86-755) 3307 1443.

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 103 of 169

	16QAM	25 25 25 50 1 1 1 25	0 13 25 0 0 25 49	23.21 23.13 23.13 23.15 22.99 22.81	22.96 23.03 22.90 23.01 23.21 23.12	22.79 22.70 22.80 22.91 22.61	24.00 24.00 24.00 24.00 24.00
	16QAM	25 50 1 1	25 0 0 25	23.13 23.15 22.99 22.81	22.90 23.01 23.21	22.80 22.91 22.61	24.00 24.00
	16QAM	50 1 1 1	0 0 25	23.15 22.99 22.81	23.01 23.21	22.91 22.61	24.00
	16QAM	1 1 1	0 25	22.99 22.81	23.21	22.61	
	16QAM	1	25	22.81			24.00
	16QAM	1			23.12		1
	16QAM	•	49			22.61	24.00
	16QAM	25		23.03	22.90	22.68	24.00
Bandwidth Mo			0	22.14	22.28	21.78	23.00
Bandwidth Mo		25	13	22.28	21.96	22.01	23.00
Bandwidth Mo		25	25	22.15	22.16	21.81	23.00
Bandwidth Mo		50	0	22.16	22.07	21.67	23.00
Danawan M	odulation F	RB size	RB offset	Channel	Channel	Channel	Tune up
	oddiation	(D SIZO	TE GISCE	26775	26865	26965	rune up
		1	0	24.21	24.33	24.1	25.00
		1	38	24.31	24.09	23.97	25.00
		1	74	24.17	24.01	23.78	25.00
	QPSK	36	0	23.27	23.39	22.99	24.00
		36	18	23.26	23.12	22.89	24.00
		36	39	23.21	23.07	22.93	24.00
15MHz		75	0	23.22	23.1	23.01	24.00
IJIVITIZ		1	0	22.98	22.95	23.05	24.00
		1	38	23.06	23.11	22.67	24.00
		1	74	23.16	22.67	22.23	24.00
1	16QAM	36	0	22.27	22.07	21.96	23.00
		36	18	22.28	22.1	22.04	23.00
		36	39	22.24	21.99	21.84	23.00
1	16QAM						

	Ant3 LTE Ba	ınd 26		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tunaun	
Bandwidth	Modulation	ND Size ND Oils	RB Ollset	26697	26865	27033	Tune up	
		1	0	24.27	23.9	23.69	25.00	
		1	2	24.17	24.02	23.74	25.00	
		1	5	24.1	23.96	23.87	25.00	
	QPSK	3	0	23.55	23.38	23.63	24.00	
		3	2	23.54	23.99	23.61	24.00	
1.4MHz		3	3	23.87	23.88	23.53	24.00	
		6	0	23.12	22.82	22.59	24.00	
		1	0	23.34	22.8	22.54	24.00	
	16QAM	1	2	22.58	22.43	22.37	24.00	
	IOQAIVI	1	5	23.1	23.08	22.5	24.00	
	3	0	22.75	22.64	22.72	23.00		

South of No. 6 Plent, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Teole Zone
中国 - 苏州 - 中国(江苏)自由贸易试验区苏州片区苏州工业园区湾社路1号的6号厂房南部 邮编: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 104 of 169

	_		_		ay c .	104 01 109	_
		3	2	22.56	22.35	22.66	23.00
		3	3	22.67	22.75	22.62	23.00
		6	0	21.99	21.95	21.51	23.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	iviodulation	KD SIZE	KD OIISEL	26705	26865	27025	Turie up
		1	0	23.89	23.86	24.08	25.00
		1	7	23.83	23.8	23.87	25.00
		1	14	23.73	23.4	23.68	25.00
	QPSK	8	0	23.05	22.92	22.84	24.00
		8	4	22.9	22.85	22.81	24.00
		8	7	22.98	22.81	22.82	24.00
2MILI-		15	0	23.06	22.8	22.92	24.00
3MHz		1	0	22.99	22.27	22.81	24.00
		1	7	22.84	22.5	22.54	24.00
	16QAM	1	14	22.76	22.41	22.48	24.00
		8	0	21.97	21.88	21.76	23.00
		8	4	21.91	21.94	21.76	23.00
		8	7	21.93	21.74	21.7	23.00
		15	0	22.06	21.92	21.84	23.00
Dan devideb	Madulatian	DD ei-e	DD -#+	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	26715	26865	27015	Tune up
		1	0	23.98	23.92	23.98	25.00
		1	13	23.92	23.77	23.81	25.00
		1	24	23.74	23.58	23.72	25.00
	QPSK	12	0	22.96	22.93	22.69	24.00
		12	6	23.05	22.86	22.7	24.00
		12	13	22.89	22.85	22.72	24.00
5MHz		25	0	23.12	22.8	22.63	24.00
SIVITZ		1	0	23.12	22.18	22.78	24.00
		1	13	22.87	22.37	22.56	24.00
		1	24	22.94	22.28	22.47	24.00
	16QAM	12	0	22.07	21.69	21.85	23.00
		12	6	21.97	22.03	21.8	23.00
		12	13	21.82	21.88	21.83	23.00
		25	0	21.96	21.79	21.87	23.00
Don duri dela	Modulotica	DD ai	DD offers	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	26750	26865	26990	Tune up
408511-	ODOK	1	0	23.73	23.8	23.8	25.00
10MHz	QPSK	1	25	23.84	23.79	23.93	25.00

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.:

Page: 105 of 169

	-	•			'age:	105 01 169	
		1	49	23.73	23.43	23.5	25.00
		25	0	22.86	22.89	22.69	24.00
		25	13	22.77	22.82	22.84	24.00
		25	25	22.87	22.85	22.78	24.00
		50	0	23.01	22.9	22.91	24.00
		1	0	22.92	22.18	22.68	24.00
		1	25	22.86	22.45	22.63	24.00
		1	49	22.87	22.47	22.49	24.00
	16QAM	25	0	22	21.77	21.86	23.00
		25	13	22.04	21.97	21.69	23.00
		25	25	21.81	21.79	21.63	23.00
		50	0	22.07	21.75	21.85	23.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Wodulation	ND SIZE	KD Ollset	26775	26865	26965	rune up
		1	0	23.78	24.05	24.01	25.00
		1	38	23.73	23.63	23.78	25.00
		1	74	23.89	23.54	23.56	25.00
	QPSK	36	0	23.1	23.19	22.71	24.00
		36	18	22.81	22.83	22.67	24.00
		36	39	23.06	22.78	22.71	24.00
15MHz		75	0	23.01	22.75	22.78	24.00
13141112		1	0	23.18	22.26	22.81	24.00
		1	38	22.77	22.46	22.64	24.00
		1	74	22.83	22.4	22.51	24.00
	16QAM	36	0	22	21.91	21.9	23.00
		36	18	21.9	21.84	21.92	23.00
		36	39	21.76	21.84	21.67	23.00
		75	0	22.1	21.94	21.9	23.00

	Ant1 LTE Ba	and 38		Conducted Power(dBm)				
Bandwidth	h Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Bandwidth		RB SIZE RB C	ND onset	37775	38000	38225	rune up	
		1	0	22.25	22.2	22.29	24.20	
		1	13	22.38	22.59	22.4	24.20	
		1	24	22.3	22.32	22.3	24.20	
5MHz	QPSK	12	0	21.54	21.47	21.47	23.20	
		12	6	21.59	21.49	21.46	23.20	
		12	13	21.56	21.44	21.42	23.20	
		25	0	21.48	21.47	21.46	23.20	

中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路1号的6号厂房南部 邮编: 215000

t (86-512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 106 of 169

	1	1	1	, P	'age:	106 of 169	1
		1	0	21.37	21.35	21.21	23.20
		1	13	21.39	21.38	21.3	23.20
		1	24	21.35	21.38	21.33	23.20
	16QAM	12	0	20.35	20.38	20.27	22.20
		12	6	20.47	20.38	20.26	22.20
		12	13	20.55	20.43	20.3	22.20
		25	0	20.72	20.42	20.59	22.20
Danduridth	Madulation	DD size	DD offeet	Channel	Channel	Channel	Tunaun
Bandwidth	Modulation	RB size	RB offset	37800	38000	38200	Tune up
		1	0	22.32	22.28	22.44	24.20
		1	25	22.53	22.58	22.49	24.20
		1	49	22.51	22.37	22.52	24.20
	QPSK	25	0	21.48	21.55	21.56	23.20
		25	13	21.65	21.55	21.54	23.20
		25	25	21.65	21.47	21.56	23.20
		50	0	21.6	21.52	21.5	23.20
10MHz		1	0	21.49	21.51	21.47	23.20
		1	25	21.42	21.53	21.37	23.20
	16QAM	1	49	21.4	21.51	21.32	23.20
		25	0	20.33	20.56	20.58	22.20
		25	13	20.62	20.86	20.57	22.20
		25	25	20.72	20.76	20.79	22.20
		50	0	20.49	20.44	20.45	22.20
		30	0				22.20
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				37825	38000	38175	
		1	0	22.39	22.42	22.35	24.20
		1	38	22.57	22.57	22.39	24.20
		1	74	22.22	22.6	22.45	24.20
	QPSK	36	0	21.59	21.71	21.61	23.20
		36	18	21.6	21.7	21.6	23.20
		36	39	21.65	21.64	21.59	23.20
15MHz		75	0	21.62	21.72	21.6	23.20
		1	0	21.43	21.35	21.33	23.20
		1	38	21.44	21.55	21.35	23.20
		1	74	21.41	21.52	21.37	23.20
	16QAM	36	0	20.48	20.38	20.42	22.20
		36	18	20.62	20.55	20.43	22.20
		36	39	20.46	20.59	20.54	22.20
		75	0	20.61	20.72	20.49	22.20
Dan de 1 141	Madelete	DD · ·	DD «"	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	37850	38000	38150	Tune up
		1	0	22.67	22.69	22.51	24.20
		1	50	22.46	22.57	22.46	24.20
		1	99	22.37	22.57	22.55	24.20
20MHz	QPSK	50	0	21.43	21.6	21.44	23.20
		50	25	21.54	21.58	21.39	23.20
		50	50	21.5	21.5	21.41	23.20
		100	0	21.54	21.58	21.4	23.20

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx.and, and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the full set extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tested and such sample(e) are retained for 30 days only.

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 107 of 169

				ago. i	07 01 100	
	1	0	21.54	21.55	21.37	23.20
	1	50	21.39	21.4	21.38	23.20
	1	99	21.23	21.21	21.35	23.20
16QAM	50	0	20.25	20.57	20.21	22.20
	50	25	20.51	20.44	20.29	22.20
	50	50	20.48	20.5	20.3	22.20
	100	0	20.42	20.49	20.3	22.20

Ant3 LTE E	Band 38 Receiver off	/Hotspot o	ff		Conducted F	Power(dBm)	
5 1 14		RB	RB	Channel	Channel	Channel	_
Bandwidth	Modulation	size	offset	37775	38000	38225	Tune up
		1	0	20.86	21.1	20.79	21.50
		1	13	20.88	20.87	20.94	21.50
		1	24	20.91	20.86	20.86	21.50
	QPSK	12	0	20.74	20.95	21.12	21.50
		12	6	20.7	20.99	21.08	21.50
		12	13	20.66	21.07	21.11	21.50
5MHz		25	0	20.73	21.08	21.06	21.50
ЭМЦТ		1	0	20.63	20.95	20.62	21.50
		1	13	20.73	21.15	20.66	21.50
		1	24	20.58	20.99	20.57	21.50
	16QAM	12	0	20.85	20.86	20.87	21.50
		12	6	20.89	20.95	20.64	21.50
		12	13	21.06	20.98	20.54	21.50
		25	0	21.03	20.86	20.45	21.50
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun
Ballawiatii	Modulation	size	offset	37800	38000	38200	Tune up
		1	0	20.78	20.88	21	21.50
		1	25	21.02	21.07	21.1	21.50
		1	49	20.73	21	21.17	21.50
	QPSK	25	0	20.78	21.01	21.14	21.50
		25	13	20.74	21.12	21.13	21.50
10MHz		25	25	20.83	21.12	21.19	21.50
TOWINZ		50	0	20.73	21.13	21.11	21.50
		1	0	20.54	20.9	20.99	21.50
		1	25	20.74	21.13	21.13	21.50
	16QAM	1	49	20.7	20.9	20.98	21.50
		25	0	21	21.27	21.29	21.50
		25	13	20.81	20.75	20.76	21.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention holy and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 108 of 169

1		l			Page.	100 01 109	1
		25	25	20.82	20.73	20.79	21.50
		50	0	20.42	20.48	20.66	21.50
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
24114111411	- Incadiation	size	offset	37825	38000	38175	rane ap
		1	0	20.75	20.85	21.03	21.50
		1	38	20.92	21.01	21.02	21.50
		1	74	20.97	21.04	21.07	21.50
	QPSK	36	0	20.73	20.98	21.11	21.50
		36	18	20.8	21.01	21.13	21.50
		36	39	20.88	20.96	21.1	21.50
15MHz		75	0	20.86	21	21.14	21.50
IJIVIE		1	0	20.57	20.69	21.04	21.50
		1	38	20.76	20.81	20.82	21.50
		1	74	20.65	20.88	20.9	21.50
	16QAM	36	0	20.77	20.95	21.1	21.50
		36	18	20.7	20.78	20.85	21.50
		36	39	20.71	20.97	20.93	21.50
		75	0	20.54	20.52	20.45	21.50
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	size	offset	37850	38000	38150	Tune up
		1	0	21.1	21.16	20.83	21.50
		1	50	20.92	21.11	21	21.50
		1	99	20.71	20.74	20.91	21.50
				20.71	20.74	20.91	21.00
	QPSK	50	0	20.79	21.15	21.07	21.50
	QPSK	50 50					
	QPSK		0	20.79	21.15	21.07	21.50
201411-	QPSK	50	0 25	20.79 20.98	21.15 21.08	21.07 21.12	21.50 21.50
20MHz	QPSK	50 50	0 25 50	20.79 20.98 20.9	21.15 21.08 21.14	21.07 21.12 21.09	21.50 21.50 21.50
20MHz	QPSK	50 50 100	0 25 50 0	20.79 20.98 20.9 20.91	21.15 21.08 21.14 21.05	21.07 21.12 21.09 21.04	21.50 21.50 21.50 21.50
20MHz	QPSK	50 50 100 1	0 25 50 0	20.79 20.98 20.9 20.91 20.95	21.15 21.08 21.14 21.05 21.01	21.07 21.12 21.09 21.04 20.9	21.50 21.50 21.50 21.50 21.50
20MHz	QPSK 16QAM	50 50 100 1	0 25 50 0 0 50	20.79 20.98 20.9 20.91 20.95 20.69	21.15 21.08 21.14 21.05 21.01 20.83	21.07 21.12 21.09 21.04 20.9 20.82	21.50 21.50 21.50 21.50 21.50 21.50
20MHz		50 50 100 1 1 1	0 25 50 0 0 50 99	20.79 20.98 20.9 20.91 20.95 20.69 20.84	21.15 21.08 21.14 21.05 21.01 20.83 20.88	21.07 21.12 21.09 21.04 20.9 20.82 21.09	21.50 21.50 21.50 21.50 21.50 21.50 21.50
20MHz		50 50 100 1 1 1 50	0 25 50 0 0 50 99	20.79 20.98 20.9 20.91 20.95 20.69 20.84 20.54	21.15 21.08 21.14 21.05 21.01 20.83 20.88 20.58	21.07 21.12 21.09 21.04 20.9 20.82 21.09 20.79	21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention holy and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Plot Free Teade Zone 215000 中国・苏州・中国(江苏)自由贸易式製区苏州片区茶州工业国区深建路1号的6号「房南部 単編: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 109 of 169

Ant3 LTE E	Band 38 Receiver on	/Hotspot o	n		Conducted I	Power(dBm)	
Dan Jaddu	Marketta.	RB	RB	Channel	Channel	Channel	_
Bandwidth	Modulation	size	offset	37775	38000	38225	Tune up
		1	0	18.88	19.02	18.99	19.70
		1	13	18.81	19.2	19.06	19.70
		1	24	18.82	19.03	19.09	19.70
	QPSK	12	0	18.93	19.19	19.38	19.70
		12	6	18.99	19.21	19.29	19.70
		12	13	18.93	19.3	19.3	19.70
5MHz		25	0	18.99	19.31	19.39	19.70
SIVIEZ		1	0	18.78	18.78	19.05	19.70
		1	13	18.87	19.08	19.17	19.70
	16QAM	1	24	18.79	19.14	19.15	19.70
		12	0	19.05	19.14	19.38	19.70
		12	6	19.12	19.35	19.22	19.70
		12	13	19.05	19.35	19.11	19.70
		25	0	19.25	19.57	19.21	19.70
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Dandwidth	Modulation	size	offset	37800	38000	38200	Tune up
	QPSK	1	0	19.01	19.16	19.36	19.70
		1	25	18.97	19.18	19.34	19.70
		1	49	18.97	19.1	19.36	19.70
		25	0	19.08	19.37	19.27	19.70
		25	13	19	19.4	19.25	19.70
		25	25	19.2	19.39	19.39	19.70
10MHz		50	0	19.08	19.26	19.23	19.70
1011112		1	0	18.81	18.77	18.86	19.70
		1	25	19.07	19.6	18.95	19.70
		1	49	18.94	18.79	18.73	19.70
	16QAM	25	0	19.1	19.5	19.39	19.70
		25	13	19.14	19.43	19.58	19.70
		25	25	19.38	19.52	19.6	19.70
		50	0	18.9	19.17	19.33	19.70
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Darrawiatii	Moddiation	size	offset	37825	38000	38175	Tune up
		1	0	18.98	19.25	19.36	19.70
15MHz	QPSK	1	38	18.93	19.25	19.28	19.70
		1	74	19.1	19.38	19.3	19.70

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runsherg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikot Free Trade Zone 215000 中国 - 苏州 - 中国(江苏)自由医易试验区苏州 计区苏州工业园区润胜路1号的6号厂房南部 庫場: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page. 110 of 169

•				-	Page:	110 of 169	
		36	0	18.99	19.23	19.29	19.70
		36	18	19.03	19.24	19.29	19.70
		36	39	19.03	19.24	19.27	19.70
		75	0	19	19.27	19.3	19.70
		1	0	19.05	19.16	18.88	19.70
		1	38	19.09	19.27	18.78	19.70
		1	74	19.1	19.37	18.81	19.70
	16QAM	36	0	19.04	19.12	19.27	19.70
		36	18	19.03	19.13	19.29	19.70
		36	39	18.95	19.26	19.15	19.70
		75	0	19.06	19.2	19.31	19.70
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun
Danuwium	iviodulation	size	offset	37850	38000	38150	Tune up
		1	0	19.19	19.43	19.31	19.70
		1	50	19.00	19.18	19.21	19.70
		1	99	18.86	19.03	19.18	19.70
	QPSK	50	0	19.08	19.30	19.30	19.70
		50	25	19.07	19.27	19.23	19.70
		50	50	19.10	19.28	19.30	19.70
20MHz		100	0	19.10	19.36	19.26	19.70
ZUIVITIZ		1	0	18.93	18.74	18.85	19.70
		1	50	18.76	18.71	18.78	19.70
		1	99	19.14	18.72	19.16	19.70
	16QAM	50	0	19.00	19.28	19.13	19.70
		50	25	19.00	19.09	19.27	19.70
		50	50	19.14	19.22	19.14	19.70

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 111 of 169

				Page: 111 01 169				
	Ant1 LTE Band 66	Receiver off			Conducted	Power(dBm)		
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun	
Bandwidth	Wodulation	KD SIZE	KD Ollset	131997	132322	132647	Tune up	
		1	0	21.37	21.67	21.49	23.10	
		1	2	21.33	21.63	21.44	23.10	
		1	5	21.47	21.47	21.4	23.10	
	QPSK	3	0	21.57	21.53	21.46	23.10	
		3	1	21.33	21.59	21.52	23.10	
		3	3	21.31	21.61	21.54	23.10	
1.4MHz		6	0	21.44	21.44	21.37	23.10	
1.4111112		1	0	21.38	21.39	21.32	23.10	
		1	2	21.57	21.86	21.79	23.10	
		1	5	21.57	21.57	21.5	23.10	
	16QAM	3	0	21.11	21.41	21.34	22.40	
		3	1	21.06	21.31	21.54	22.40	
		3	3	20.99	21.23	21.46	22.40	
		6	0	20.68	20.88	20.81	22.40	
Bandwidth	Madulation	Ith Modulation	RB size	RB offset	Channel	Channel	Channel	Tung up
Bandwidth	Wodulation	KD SIZE	KD Ollset	131987	132322	132657	Tune up	
		1	0	21.41	21.55	21.32	23.10	
		1	7	21.59	21.35	21.61	23.10	
	QPSK	1	14	21.38	21.43	21.42	23.10	
		8	0	21.49	21.54	21.58	23.10	
		8	4	21.41	21.51	21.51	23.10	
		8	7	21.55	21.58	21.42	23.10	
3MHz		15	0	21.41	21.52	21.38	23.10	
SIVITZ		1	0	21.32	21.42	21.59	23.10	
		1	7	21.47	21.53	21.59	23.10	
		1	14	21.33	21.39	21.32	23.10	
	16QAM	8	0	20.82	20.96	21.25	22.40	
		8	4	20.87	20.93	21.03	22.40	
		8	7	20.81	20.86	21.12	22.40	
		15	0	20.66	20.72	21.05	22.40	
Bandwidth	Modulation	DR oizo	RB offset	Channel	Channel	Channel	Tupo up	
Danuwium	Modulation	RB size	KD Ullset	131997	132322	132647	Tune up	
		1	0	21.51	21.51	21.47	23.10	
5MHz	QPSK	1	13	21.67	21.65	21.59	23.10	
		1	24	21.46	21.37	21.32	23.10	

t (86-512) 62992980 t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 112 of 169

i ·	Ī	İ	Ì	, F	age:	112 01 169	i
		12	0	21.55	21.53	21.48	23.10
		12	6	21.59	21.58	21.53	23.10
		12	13	21.48	21.43	21.36	23.10
		25	0	21.49	21.47	21.42	23.10
		1	0	21.55	21.53	21.72	23.10
		1	13	21.31	21.35	21.53	23.10
		1	24	21.55	21.59	21.49	23.10
	16QAM	12	0	20.72	20.88	21.15	22.40
		12	6	20.78	20.62	20.81	22.40
		12	13	20.67	20.75	20.78	22.40
		25	0	20.63	20.72	20.72	22.40
Dan devidela	Madulation	DD sins	DD -444	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	132022	132322	132622	Tune up
		1	0	21.48	21.42	21.5	23.10
		1	25	21.3	21.56	21.62	23.10
		1	49	21.56	21.49	21.32	23.10
	QPSK	25	0	21.59	21.51	21.56	23.10
		25	13	21.57	21.56	21.38	23.10
		25	25	21.67	21.31	21.36	23.10
40001-		50	0	21.58	21.52	21.34	23.10
10MHz		1	0	21.53	21.43	21.53	23.10
	16QAM	1	25	21.53	21.47	21.5	23.10
		1	49	21.45	21.42	21.45	23.10
		25	0	20.63	20.62	20.73	22.40
		25	13	20.73	20.68	20.81	22.40
		25	25	20.6	20.82	20.91	22.40
		50	0	20.77	20.79	20.86	22.40
Bandwidth	Madulation	DD oize	RB offset	Channel	Channel	Channel	Tungun
Danuwidin	Modulation	RB size	ND UIISEL	132047	132322	132597	Tune up
		1	0	21.59	21.43	21.36	23.10
		1	38	21.44	21.61	21.37	23.10
		1	74	21.53	21.42	21.48	23.10
	QPSK	36	0	21.46	21.58	21.31	23.10
1EMU-		36	18	21.41	21.53	21.33	23.10
15MHz		36	39	21.52	21.4	21.44	23.10
		75	0	21.58	21.42	21.48	23.10
		1	0	21.58	21.41	21.49	23.10
	16QAM	1	38	21.5	21.34	21.37	23.10
		1	74	21.58	21.48	21.41	23.10

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page. 113 of 169

				_ P	age:	13 01 169	
		36	0	20.77	20.67	20.71	22.40
		36	18	20.76	20.63	20.68	22.40
		36	39	20.73	20.71	20.8	22.40
		75	0	20.64	20.75	20.78	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun
bandwidth	Modulation	RD SIZE	RB Oliset	132072	132322	132572	Tune up
		1	0	21.66	21.79	21.75	23.10
		1	50	21.50	21.38	21.72	23.10
	QPSK	1	99	21.53	21.77	21.47	23.10
		50	0	21.50	21.73	21.72	23.10
		50	25	21.59	21.49	21.72	23.10
		50	50	21.36	21.32	21.48	23.10
201411-		100	0	21.38	21.51	21.72	23.10
20MHz		1	0	21.68	21.61	21.62	23.10
		1	50	21.57	21.61	21.75	23.10
		1	99	21.46	21.32	21.58	23.10
160	16QAM	50	0	21.34	20.71	21.08	22.40
		50	25	20.75	20.65	21.01	22.40
		50	50	20.65	20.95	20.80	22.40
		100	0	20.65	20.95	20.87	22.40

	Ant1 LTE Band	66 Receiver on		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tunaun	
Bandwidth	Modulation	RB SIZE	RB oliset	131997	132322	132647	Tune up	
		1	0	22.79	22.72	22.78	24.40	
		1	2	22.67	22.82	22.73	24.40	
		1	5	22.66	22.75	22.82	24.40	
	QPSK	3	0	21.88	22.06	22.08	23.40	
		3	1	21.87	21.99	22.04	23.40	
		3	3	21.7	21.88	21.96	23.40	
1.4MHz		6	0	21.64	21.82	21.91	23.40	
		1	0	22.15	22.28	22.38	23.40	
		1	2	21.71	21.89	21.97	23.40	
	46000	1	5	21.56	21.68	21.75	23.40	
	16QAM	3	0	20.91	21.01	21.09	22.40	
		3	1	20.84	20.98	20.99	22.40	
		3	3	20.81	20.95	20.98	22.40	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 114 of 169

1	1	Ī	i .		ĭ	14 01 109	1
		6	0	20.97	21.06	21.13	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				131987	132322	132657	
		1	0	22.4	22.78	22.53	24.40
		1	7	22.53	22.58	22.69	24.40
		1	14	22.69	22.61	22.65	24.40
	QPSK	8	0	21.6	21.72	21.65	23.40
		8	4	21.61	21.67	21.65	23.40
		8	7	21.6	21.71	21.62	23.40
3MHz		15	0	21.5	21.58	21.68	23.40
SWITZ	J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1	0	21.58	21.62	21.57	23.40
		1	7	21.53	21.58	21.58	23.40
		1	14	21.68	21.52	21.66	23.40
	16QAM	8	0	20.61	20.71	20.68	22.40
		8	4	20.5	20.63	20.58	22.40
		8	7	20.65	20.58	20.5	22.40
		15	0	20.58	20.69	20.65	22.40
Dan desidab	Madulatian	DD ei-e	DD -#+	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	131997	132322	132647	Tune up
		1	0	22.69	22.81	22.73	24.40
		1	13	22.54	22.69	22.61	24.40
		1	24	22.51	22.62	22.59	24.40
	QPSK	12	0	21.83	21.96	21.87	23.40
		12	6	21.77	21.92	21.8	23.40
		12	13	21.85	21.94	21.84	23.40
CANLL.		25	0	21.76	21.89	21.84	23.40
5MHz		1	0	22.07	22.14	22.08	23.40
		1	13	21.98	22.1	21.97	23.40
		1	24	21.66	21.78	21.72	23.40
	16QAM	12	0	20.96	21.03	20.95	22.40
		12	6	20.82	20.98	20.87	22.40
		12	13	20.83	20.92	20.86	22.40
		25	0	20.99	21.09	21.06	22.40
D1 1111	March 1 d	DD :	DD " :	Channel	Channel	Channel	т
Bandwidth	Modulation	RB size	RB offset	132022	132322	132622	Tune up
		1	0	22.61	22.79	22.57	24.40
408411-	ODOK	1	25	22.57	22.72	22.53	24.40
10MHz	QPSK	1	49	22.55	22.54	22.49	24.40
		25	0	21.55	21.57	21.52	23.40
·	1	1	1			1	1

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 115 of 169

	1	1	1		ĭ	15 01 169	I
		25	13	21.47	21.75	21.72	23.40
		25	25	21.63	21.62	21.57	23.40
		50	0	21.41	21.69	21.52	23.40
		1	0	21.43	21.76	21.58	23.40
		1	25	21.63	21.94	21.81	23.40
		1	49	21.53	21.78	21.59	23.40
	16QAM	25	0	20.4	20.72	20.81	22.40
		25	13	20.76	21.05	20.85	22.40
		25	25	20.58	20.52	20.48	22.40
		50	0	20.68	20.62	20.53	22.40
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Modulation	ND SIZE	KB oliset	132047	132322	132597	Turie up
		1	0	22.63	22.54	22.44	24.40
		1	38	22.51	22.44	22.42	24.40
		1	74	22.5	22.77	22.73	24.40
	QPSK	36	0	22.5	22.42	22.37	23.40
		36	18	21.93	21.89	21.82	23.40
		36	39	21.88	21.82	21.78	23.40
45MU-		75	0	21.65	21.51	22.35	23.40
15MHz		1	0	22.19	22.55	21.52	23.40
		1	38	21.83	21.73	21.63	23.40
	16QAM	1	74	21.73	21.67	21.61	23.40
		36	0	20.55	20.46	20.82	22.40
		36	18	20.52	20.47	20.83	22.40
		36	39	20.52	20.41	20.71	22.40
		75	0	20.74	20.63	20.51	22.40
Dan desidab	Madulatian	DD ei-e	DD -#+	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	132072	132322	132572	Tune up
		1	0	22.57	22.79	22.67	24.40
		1	50	22.78	22.56	22.47	24.40
		1	99	22.49	22.63	22.59	24.40
	QPSK	50	0	21.72	21.89	21.57	23.40
		50	25	21.82	21.77	21.53	23.40
20MHz		50	50	21.88	21.74	21.59	23.40
		100	0	21.61	21.68	21.51	23.40
		1	0	21.69	21.86	22.28	23.40
	400	1	50	21.78	22.49	22.42	23.40
	16QAM	1	99	21.55	22.38	22.09	23.40
		50	0	20.76	20.94	20.65	22.40

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 116 of 169

	50	25	20.62	20.79	20.61	22.40
	30	23	20.02	20.79	20.01	22.40
	50	50	20.57	20.76	20.58	22.40
	100	0	20.63	20.86	20.45	22.40

Ant3 L	TE Band 66 Receiv	ver off/Hotspot	Off	Conducted Power(dBm)				
5 1 1 11			DD (()	Channel	Channel	Channel	_	
Bandwidth	Modulation	RB size	RB offset	131979	132322	132665	Tune up	
		1	0	21.03	21.13	21.05	22.60	
		1	2	21.11	21.00	21.13	22.60	
		1	5	21.14	21.13	21.03	22.60	
	QPSK	3	0	21.08	21.01	21.11	22.60	
		3	1	21.07	21.04	21.04	22.60	
		3	3	21.14	21.09	21.01	22.60	
4 48811-	1.4MHz 16QAM	6	0	21.11	21.05	21.05	22.60	
1.4MHZ		1	0	21.04	21.03	21.03	22.60	
		1	2	21.03	21.12	21.14	22.60	
		1	5	21.14	21.00	21.04	22.60	
		3	0	21.09	21.00	21.02	22.60	
		3	1	21.06	21.13	21.11	22.60	
		3	3	21.04	21.04	21.15	22.60	
		6	0	21.03	21.12	21.02	22.60	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tuno un	
Bandwidth	Modulation	RD SIZE	RD Ollset	131987	132322	132657	Tune up	
		1	0	21.03	21.15	21.13	22.60	
		1	7	21.02	21.00	21.11	22.60	
		1	14	21.07	21.13	21.13	22.60	
	QPSK	8	0	21.03	21.02	21.13	22.60	
		8	4	21.07	21.11	21.08	22.60	
		8	7	21.09	21.06	21.04	22.60	
3MHz		15	0	21.07	21.02	21.05	22.60	
SIVITZ		1	0	21.05	21.02	21.11	22.60	
		1	7	21.12	21.09	21.09	22.60	
		1	14	21.10	21.09	21.07	22.60	
	16QAM	8	0	21.00	21.14	21.03	22.60	
		8	4	21.13	21.10	21.13	22.60	
		8	7	21.05	21.08	21.07	22.60	
		15	0	21.10	21.06	21.03	22.60	
Danderstatt	Moduleties	DD -:	DD 6#5-4	Channel	Channel	Channel	Tune	
Bandwidth	Modulation	RB size	RB offset	131997	132322	132647	Tune up	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions/Terme-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing fungection report & certificities, please contact us at technology.

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.:

Page: 117 of 169

	i	•	•	. F	'age:	117 of 169	Ī
		1	0	21.04	21.13	21.12	22.60
		1	13	21.10	21.09	21.09	22.60
		1	24	21.06	21.11	21.12	22.60
	QPSK	12	0	21.06	21.12	21.03	22.60
		12	6	21.02	21.06	21.08	22.60
		12	13	21.00	21.05	21.08	22.60
5841 I-		25	0	21.11	21.12	21.14	22.60
5MHz		1	0	21.00	21.01	21.09	22.60
		1	13	21.11	21.12	21.03	22.60
		1	24	21.12	21.07	21.04	22.60
	16QAM	12	0	21.14	21.07	21.04	22.60
		12	6	21.05	21.12	21.08	22.60
		12	13	21.12	21.10	21.04	22.60
		25	0	21.11	21.04	21.08	22.60
Donahuidth	Modulation	DD oizo	DD offeet	Channel	Channel	Channel	Tuna un
Bandwidth	Modulation	RB size	RB offset	132022	132322	132622	Tune up
		1	0	21.10	21.05	21.04	22.60
		1	25	21.14	21.10	21.10	22.60
	QPSK	1	49	21.05	21.03	21.04	22.60
		25	0	21.15	21.07	21.02	22.60
		25	13	21.04	21.08	21.13	22.60
		25	25	21.06	21.02	21.12	22.60
40000-		50	0	21.10	21.14	21.01	22.60
10MHz		1	0	21.10	21.05	21.13	22.60
		1	25	21.04	21.01	21.14	22.60
		1	49	21.02	21.10	21.11	22.60
	16QAM	25	0	21.11	21.09	21.07	22.60
		25	13	21.11	21.02	21.03	22.60
		25	25	21.05	21.02	21.07	22.60
		50	0	21.02	21.10	21.03	22.60
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth	Modulation	ND SIZE	KD Ollset	132047	132322	132597	Turie up
		1	0	21.07	21.09	21.13	22.60
		1	38	21.13	21.01	21.06	22.60
		1	74	21.09	21.14	21.10	22.60
	QPSK	36	0	21.10	21.10	21.07	22.60
15MHz		36	18	21.05	21.02	21.15	22.60
		36	39	21.09	21.06	21.07	22.60
		75	0	21.06	21.13	21.11	22.60
	160 4 14	1	0	21.13	21.14	21.03	22.60
	16QAM	1	38	21.10	21.08	21.03	22.60

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路1号的6号厂房南部 邮编: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

110 -4 100

				Р	'age: ′	118 of 169	
		1	74	21.13	21.15	21.13	22.60
		36	0	21.03	21.07	21.10	22.60
		36	18	21.02	21.12	21.11	22.60
		36	39	21.08	21.04	21.02	22.60
		75	0	21.03	21.07	21.04	22.60
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Banawiatii	Modulation	IND SIZE	ND onset	132072	132322	132572	rune up
		1	0	21.37	21.53	21.42	22.60
		1	50	20.99	21.30	21.52	22.60
	QPSK	1	99	21.19	21.04	20.90	22.60
		50	0	20.28	21.54	21.32	22.60
		50	25	20.81	21.43	21.26	22.60
		50	50	21.18	21.22	20.86	22.60
20MHz		100	0	20.82	21.30	20.88	22.60
ZUWITZ		1	0	21.37	20.96	21.38	22.60
		1	50	20.95	21.46	21.44	22.60
		1	99	21.48	21.02	21.41	22.60
	16QAM	50	0	20.96	21.08	20.95	22.60
		50	25	21.37	21.45	21.39	22.60
		50	50	20.72	21.08	20.95	22.60
		100	0	21.00	21.10	21.03	22.60

Ant3 L	TE Band 66 Recei	ver on/Hotspo	t On	Conducted Power(dBm)					
Donalis i dele	Madulation	DD ei-e	DD -444	Channel	Channel	Channel	T		
Bandwidth	Modulation	RB size	RB offset	131979	132322	132665	Tune up		
		1	0	20.05	20.06	20.02	21.30		
		1	2	20.07	20.09	20.05	21.30		
		1	5	20.11	20.06	20.03	21.30		
	QPSK	3	0	20.10	20.15	20.05	21.30		
		3	1	20.08	20.02	20.06	21.30		
		3	3	20.09	20.01	20.07	21.30		
1.4MHz		6	0	20.07	20.12	20.14	21.30		
		1	0	20.12	20.00	20.05	21.30		
		1	2	20.03	20.12	20.03	21.30		
	16QAM	1	5	20.01	20.09	20.02	21.30		
	TOGAW	3	0	20.05	20.08	20.11	21.30		
		3	1	20.14	20.07	20.11	21.30		
		3	3	20.12	20.04	20.02	21.30		

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路1号的6号厂房南部 邮编: 215000

Report No.: SUHR/2022/1001007

Rev.:

Page: 119 of 169

					age:	119 01 169	
		6	0	20.10	20.03	20.05	21.30
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bullawiatii	Wiodulation	TED SIZE	TAB Olloct	131987	132322	132657	rane ap
		1	0	20.14	20.03	20.06	21.30
		1	7	20.06	20.04	20.15	21.30
		1	14	20.11	20.05	20.10	21.30
	QPSK	8	0	20.10	20.12	20.12	21.30
		8	4	20.06	20.06	20.03	21.30
		8	7	20.04	20.05	20.08	21.30
3MHz		15	0	20.09	20.06	20.10	21.30
SWITZ		1	0	20.01	20.10	20.04	21.30
		1	7	20.03	20.10	20.03	21.30
		1	14	20.05	20.11	20.09	21.30
	16QAM	8	0	20.04	20.13	20.02	21.30
		8	4	20.05	20.04	20.05	21.30
		8	7	20.10	20.08	20.08	21.30
		15	0	20.07	20.02	20.15	21.30
Donadouidth	Madulation	DD sins	DD effect	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	131997	132322	132647	Tune up
		1	0	20.12	20.02	20.13	21.30
		1	13	20.01	20.03	20.02	21.30
		1	24	20.09	20.06	20.08	21.30
	QPSK	12	0	20.10	20.05	20.15	21.30
		12	6	20.01	20.13	20.01	21.30
		12	13	20.06	20.08	20.05	21.30
5841L		25	0	20.07	20.09	20.12	21.30
5MHz		1	0	20.07	20.01	20.09	21.30
		1	13	20.07	20.06	20.14	21.30
		1	24	20.07	20.11	20.12	21.30
	16QAM	12	0	20.05	20.01	20.13	21.30
		12	6	20.08	20.12	20.14	21.30
		12	13	20.12	20.03	20.03	21.30
		25	0	20.14	20.11	20.08	21.30
Donali di di	Modulatian	DD -:	DD effect	Channel	Channel	Channel	Tuna
Bandwidth	Modulation	RB size	RB offset	132022	132322	132622	Tune up
		1	0	20.04	20.13	20.13	21.30
		1	25	20.02	20.05	20.01	21.30
4085	00014	1	49	20.06	20.10	20.01	21.30
10MHz	QPSK	25	0	20.09	20.08	20.07	21.30
		25	13	20.10	20.04	20.12	21.30
		25	25	20.03	20.03	20.05	21.30
10MHz	QPSK	25 25	49 0 13	20.09 20.10	20.08 20.04	20.07 20.12	21.30 21.30 21.30

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Texice Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 120 of 169

				Г	rage:	120 01 169	
		50	0	20.12	20.07	20.02	21.30
		1	0	20.13	20.10	20.08	21.30
		1	25	20.14	20.09	20.02	21.30
		1	49	20.03	20.01	20.06	21.30
	16QAM	25	0	20.00	20.14	20.02	21.30
		25	13	20.04	20.02	20.11	21.30
		25	25	20.02	20.12	20.05	21.30
		50	0	20.10	20.09	20.14	21.30
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tuno un
Bandwidth	Modulation	KD SIZE	KD Ollset	132047	132322	132597	Tune up
		1	0	20.01	20.03	20.14	21.30
		1	38	20.05	20.13	20.08	21.30
		1	74	20.04	20.01	20.05	21.30
	QPSK	36	0	20.07	20.08	20.09	21.30
		36	18	20.01	20.03	20.05	21.30
		36	39	20.01	20.10	20.03	21.30
4EMU-		75	0	20.12	20.02	20.14	21.30
15MHz		1	0	20.04	20.11	20.10	21.30
		1	38	20.15	20.05	20.12	21.30
		1	74	20.07	20.06	20.04	21.30
	16QAM	36	0	20.07	20.11	20.13	21.30
		36	18	20.02	20.05	20.10	21.30
		36	39	20.15	20.08	20.14	21.30
		75	0	20.12	20.13	20.06	21.30
Danduuidth	Madulation	DD oite	DD offeet	Channel	Channel	Channel	Tuna un
Bandwidth	Modulation	RB size	RB offset	132072	132322	132572	Tune up
		1	0	20.09	20.19	20.11	21.30
		1	50	19.92	20.02	20.03	21.30
		1	99	19.88	19.94	19.96	21.30
	QPSK	50	0	19.87	19.98	19.78	21.30
		50	25	19.86	19.97	19.97	21.30
		50	50	19.33	19.44	19.46	21.30
		100	0	19.50	19.89	19.58	21.30
20MHz		1	0	19.96	20.03	20.06	21.30
		1	50	20.16	20.13	20.18	21.30
		1	99	19.82	19.87	19.87	21.30
	16QAM	50	0	19.78	19.89	19.89	21.30
	IOQAW						
		50	25	20.06	20.16	20.18	21.30
		50	50	19.92	20.02	20.06	21.30
		100	0	19.95	19.99	20.03	21.30

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路1号的6号厂房南部 邮编: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 121 of 169

8.1.4 Conducted Power of WIFI and BT

		WIFI 2.4GHz Receiv	er Off			
Mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune u	
	1	2412		18.50	19.50	
802.11b	6	2437	1	18.35	19.50	
	11	2462		18.23	19.50	
	1	2412		17.47	19.00	
802.11g	6	2437	6	18.48	20.00	
	11	2462		15.42	17.00	
	1	2412		15.34	17.00	
802.11n HT20	6	2437	6.5	18.48	20.00	
0	11	2462		12.28	14.00	
	3	2422		12.03	14.00	
802.11n HT40	6	2437	13.5	14.43	16.00	
	9	2452		11.20	13.00	
		WIFI 2.4GHz Receiv	er On			
Mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune ເ	
	1	2412		15.12	16.00	
802.11b	6	2437	1	14.94	16.00	
	11	2462		14.88	16.00	
	1	2412		14.51	16.00	
802.11g	6	2437	6	14.50	16.00	
	11	2462		14.44	16.00	
	1	2412		14.34	16.00	
802.11n HT20	6	2437	6.5	14.62	16.00	
11120	11	2462		12.28	14.00	
	3	2422		12.03	14.00	
802.11n HT40	6	2437	13.5	14.43	16.00	
11170	9	2452		11.20	13.00	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Documents subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alterations for growing and the content of appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) have retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikot Free Tracke Zone 215000 中国・苏州・中国(江苏)自由医易式製区券州片区券州工业国区海産路1号的6号厂房南部 単編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 122 of 169

			WIFI 5GHz Receiver (Off		
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		15.56	16.00
	U-NII-1	40	5200		18.52	19.00
	0-1111-1	44	5220		18.54	19.00
		48	5240		18.61	19.00
		52	5260		18.55	19.00
	U-NII-2A	56	5280		18.52	19.00
	U-INII-ZA	60	5300		18.48	19.00
		64	5320		13.58	14.00
802.11a		100	5500	6	13.62	14.00
		116	5580		18.59	19.00
	U-NII-2C	124	5620		18.55	19.00
	0-1111-20	132	5660		18.52	19.00
		140	5700		16.48	17.00
		144	5720		18.49	19.00
		149	5745		18.78	19.00
	U-NII-3	157	5785		18.92	19.00
		165	5825		18.69	19.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		15.51	17.00
	U-NII-1	40	5200		17.53	19.00
	0-1411-1	44	5220		17.69	19.00
		48	5240		17.72	19.00
		52	5260		17.48	19.00
	U-NII-2A	56	5280		17.52	19.00
	O-MI-ZA	60	5300		17.49	19.00
		64	5320		12.49	14.00
802.11n-HT20		100	5500	MCS0	12.71	14.00
		116	5580		17.48	19.00
	U-NII-2C	124	5620		17.48	19.00
	0 1111 20	132	5660		17.48	19.00
		140	5700		13.61	15.00
		144	5720		17.52	19.00
		149	5745		17.48	19.00
	U-NII-3	157	5785		17.59	19.00
		165	5825		17.52	19.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	38	5190		10.48	12.00
	O-INII-1	46	5230		16.71	18.00
902 445 LIT40	U-NII-2A	54	5270	MCCO	16.70	18.00
802.11n-HT40	U-MII-ZA	62	5310	MCS0	9.70	11.00
	II NIII OC	102	5510		11.25	12.50
	U-NII-2C	110	5550		16.63	18.00

中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路(号的6号厂房南部 鄭塢: 215000

Report No.: SUHR/2022/1001007

Rev.:

Page: 123 of 169

				Page: 1	23 of 169	•
		126	5630		16.58	18.00
		134	5670		16.60	18.00
		142	5710		16.66	18.00
	U-NII-3	151	5755		16.59	18.00
	U-MII-3	159	5795		16.61	18.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		15.53	17.00
	11 111 4	40	5200		17.54	19.00
	U-NII-1	44	5220		17.71	19.00
		48	5240		17.75	19.00
		52	5260		17.50	19.00
		56	5280		17.54	19.00
	U-NII-2A	60	5300		17.52	19.00
		64	5320		12.53	14.00
802.11ac-20		100	5500	MCS0	12.74	14.00
00200		116	5580		17.51	19.00
		124	5620		17.48	19.00
	U-NII-2C	132	5660		17.32	19.00
		140	5700		13.64	15.00
		144	5720		17.55	19.00
		149	5745		17.51	19.00
	U-NII-3	157	5785		17.59	19.00
		165	5825		17.55	19.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	38	5190		10.52	12.00
	0-1111-1	46	5230		16.73	18.00
		54	5270		16.68	18.00
	U-NII-2A	62	5310		9.72	11.00
		102	5510		11.27	12.50
802.11ac-40		110	5550	MCS0	16.67	18.00
	U-NII-2C	126	5630		16.38	18.00
	0-1411-20	134		_		
			5670	_	16.59	18.00
		142	5710		16.63	18.00
	U-NII-3	151	5755		16.61	18.00
	3 · · · · · 3	159	5795		16.67	18.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	42	5210		9.39	11.00
	U-NII-2A	58	5290		8.71	10.00
802.11ac		106	5530		8.73	10.00
80M	U-NII-2C	122	5610	MCS0	15.95	17.50
	0 1 20	138	5690	_	16.01	17.50
	U-NII-3			\dashv		
	U-NII-3	155	5775		16.21	17.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路1号的6号厂房南部 邮编: 215000

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 124 of 169

			WIFI 5GHz Receiver (On		
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		13.59	15.00
	U-NII-1	40	5200		14.09	15.00
	0-1111-1	44	5220		14.01	15.00
		48	5240		14.16	15.00
		52	5260		14.11	15.00
	U-NII-2A	56	5280		14.02	15.00
	U-INII-ZA	60	5300		14.02	15.00
		64	5320		13.61	14.00
802.11a		100	5500	6	13.64	14.00
		116	5580		14.09	15.00
	U-NII-2C	124	5620		14.02	15.00
	0-1111-20	132	5660		14.01	15.00
		140	5700		13.98	15.00
		144	5720		13.99	15.00
		149	5745		14.08	15.00
	U-NII-3	157	5785		14.12	15.00
		165	5825		14.09	15.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		13.49	15.00
	U-NII-1	40	5200		13.46	15.00
	0-1111-1	44	5220		13.66	15.00
		48	5240		13.70	15.00
		52	5260		13.52	15.00
	U-NII-2A	56	5280		13.52	15.00
	O-MI-ZA	60	5300		13.47	15.00
		64	5320		12.47	14.00
802.11n-HT20		100	5500	MCS0	12.73	14.00
		116	5580		13.48	15.00
	U-NII-2C	124	5620		13.44	15.00
	0 1111 20	132	5660		13.56	15.00
		140	5700		13.62	15.00
		144	5720		13.54	15.00
		149	5745		13.48	15.00
	U-NII-3	157	5785		13.56	15.00
		165	5825		13.50	15.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	38	5190		10.52	12.00
	U-INII- I	46	5230		13.67	15.00
000 44= UT40	11 NIII 0 A	54	5270	MOCO	13.68	15.00
802.11n-HT40	U-NII-2A	62	5310	MCS0	9.72	11.00
	11 111 22	102	5510		11.27	12.50
	U-NII-2C	110	5550		13.71	15.00

South of No. 6 Plent, No. 1, Runsheng Road, Suthou Industrial Park, Suthou Area, China (Jiangsu) Pilot Free Texie Zone 中国 · 苏州 · 中国(江苏)自由因易试验区苏州片区苏州工业团区河逛路(号的6号厂房商部 庫場: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.:

Page: 125 of 169

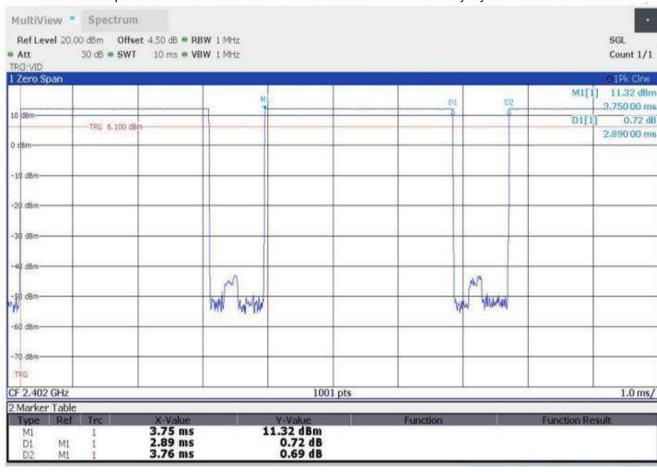
				Page: 12	25 of 169	
		126	5630		13.55	15.00
		134	5670		13.65	15.00
		142	5710		13.68	15.00
	U-NII-3	151	5755		13.65	15.00
	U-INII-3	159	5795		13.64	15.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		13.52	15.00
	11 111111	40	5200		13.56	15.00
	U-NII-1	44	5220		13.69	15.00
		48	5240		13.77	15.00
		52	5260		13.51	15.00
		56	5280		13.52	15.00
	U-NII-2A	60	5300		13.56	15.00
		64	5320		12.57	14.00
802.11ac-20		100	5500	MCS0	12.79	14.00
		116	5580		13.52	15.00
		124	5620		13.51	15.00
	U-NII-2C	132	5660		13.34	15.00
		140	5700		13.62	15.00
		144	5720		13.49	15.00
		149	5745		13.57	15.00
	U-NII-3	157	5785		13.61	15.00
	-	165	5825		13.57	15.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	38	5190		10.54	12.00
	0-1111-1	46	5230		13.77	15.00
		54	5270		13.67	15.00
	U-NII-2A	00				10.00
		62	5310			
000 1100 10					9.69	11.00
602.11ac-40		102	5510	MCS0	9.69 11.31	11.00 12.50
802.11ac-40	LI-NIII-2C	102 110	5510 5550	MCS0	9.69 11.31 13.64	11.00 12.50 15.00
602.11ac-40	U-NII-2C	102 110 126	5510 5550 5630	MCS0	9.69 11.31 13.64 13.41	11.00 12.50 15.00 15.00
6U2.11ac-4U	U-NII-2C	102 110 126 134	5510 5550 5630 5670	MCS0	9.69 11.31 13.64 13.41 13.56	11.00 12.50 15.00 15.00 15.00
602.11ac-40	U-NII-2C	102 110 126 134 142	5510 5550 5630 5670 5710	MCS0	9.69 11.31 13.64 13.41 13.56 13.66	11.00 12.50 15.00 15.00 15.00
602.11ac-40		102 110 126 134 142 151	5510 5550 5630 5670 5710 5755	MCS0	9.69 11.31 13.64 13.41 13.56 13.66 16.57	11.00 12.50 15.00 15.00 15.00 15.00
802.11ac-40	U-NII-2C U-NII-3	102 110 126 134 142	5510 5550 5630 5670 5710	MCS0	9.69 11.31 13.64 13.41 13.56 13.66	11.00 12.50 15.00 15.00 15.00
5GHz		102 110 126 134 142 151	5510 5550 5630 5670 5710 5755	MCS0 Data Rate(Mbps)	9.69 11.31 13.64 13.41 13.56 13.66 16.57	11.00 12.50 15.00 15.00 15.00 15.00
	U-NII-3	102 110 126 134 142 151 159	5510 5550 5630 5670 5710 5755 5795		9.69 11.31 13.64 13.41 13.56 13.66 16.57 13.69	11.00 12.50 15.00 15.00 15.00 15.00 15.00
	U-NII-3 -	102 110 126 134 142 151 159 Channel	5510 5550 5630 5670 5710 5755 5795 Frequency(MHz)		9.69 11.31 13.64 13.41 13.56 13.66 16.57 13.69 Average Power (dBm)	11.00 12.50 15.00 15.00 15.00 15.00 15.00 Tune up
5GHz	U-NII-3 mode	102 110 126 134 142 151 159 Channel	5510 5550 5630 5670 5710 5755 5795 Frequency(MHz) 5210 5290	Data Rate(Mbps)	9.69 11.31 13.64 13.41 13.56 13.66 16.57 13.69 Average Power (dBm) 9.41 8.74	11.00 12.50 15.00 15.00 15.00 15.00 15.00 Tune up
	U-NII-3 - mode U-NII-1 U-NII-2A	102 110 126 134 142 151 159 Channel 42 58 106	5510 5550 5630 5670 5710 5755 5795 Frequency(MHz) 5210 5290 5530		9.69 11.31 13.64 13.41 13.56 13.66 16.57 13.69 Average Power (dBm) 9.41 8.74 8.75	11.00 12.50 15.00 15.00 15.00 15.00 15.00 15.00 Tune up
5GHz 802.11ac	U-NII-3 mode	102 110 126 134 142 151 159 Channel	5510 5550 5630 5670 5710 5755 5795 Frequency(MHz) 5210 5290	Data Rate(Mbps)	9.69 11.31 13.64 13.41 13.56 13.66 16.57 13.69 Average Power (dBm) 9.41 8.74	11.00 12.50 15.00 15.00 15.00 15.00 15.00 Tune up

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区海胜路1号的6号厂房南部 邮编: 215000

Report No.: SUHR/2022/1001007


Rev.: 01

Page: 126 of 169

	ВТ	Aver	Tung up		
Band	Channel	Channel 0 3		78	Tune up
	GFSK	13.01	13.45	13.28	15.00
ВТ	π/4DQPSK	9.37	10.10	10.00	12.50
	8DPSK		10.02	9.98	12.50
Band	Channel	0	19	39	Tune up
BLE	GFSK	6.21	7.37	8.34	11.50

Note

1) . The conducted power of BT is measured with RMS detector. BT DH5 Duty Cycle=2.89/3.76=76.86%

South of No. 8 Piett, No. 1, Runshere, Road, Scarbou Industrial Park, Starhou Area, China (Jangsu) Pict Free Tisede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定翰区苏州丘安周区苏州丘安周区河胜路1号的6号厂房南部 能编: 215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 127 of 169

8.2 Measurement of SAR Data

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8W/kg for 1-g or 2.0W/kg for 10-g respectively, when the transmission band is ≤ 100MHz.
 - \bullet ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz.

WiFi 2.4G:

 When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

WiFi 5G:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. As the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration.
- 2) For Wi-Fi 5G, U-NII-2A (5250-5350 MHz) and U-NII-2C (5470-5725 MHz) bands does not support hotspot function.
- 3) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 128 of 169

8.2.1 SAR Result of GSM850

		Ar	nt 0 Test R	ecord					
Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(°C)
	•	i	Head Test	Data					
GSM	190/836.6	1:8.3	0.155	0.07	32.58	33.80	1.324	0.205	21.9
GSM	190/836.6	1:8.3	0.085	0.05	32.58	33.80	1.324	0.112	21.9
GSM	190/836.6	1:8.3	0.192	0.01	32.58	33.80	1.324	0.254	21.9
GSM	190/836.6	1:8.3	0.088	0.02	32.58	33.80	1.324	0.116	21.9
	Boo	dy worn 7	Test data(S	Separate 15	5mm)				
GSM	190/836.6	1:8.3	0.226	0.10	32.58	33.80	1.324	0.299	21.9
GSM	190/836.6	1:8.3	0.266	0.14	32.58	33.80	1.324	0.352	21.9
GSM	190/836.6	1:8.3	0.257	0.04	32.58	33.80	1.324	0.340	21.9
GSM	190/836.6	1:8.3	0.251	0.01	32.58	33.80	1.324	0.332	21.9
	190/836.6	1:8.3	0.254	0.09	32.58	33.80	1.324	0.336	21.9
	190/836.6	1:8.3	0.263	0.05	32.58	33.80	1.324	0.348	21.9
GSM	190/836.6	1:8.3	0.260	0.19	32.58	33.80	1.324	0.344	21.9
	H	otspot Te	est data(Se	eparate 10r	mm)				
GPRS 4TS		1:2.075	0.275	0.18	25.74	27.80	1.607	0.442	21.9
GPRS 4TS	190/836.6	1:2.075	0.360	0.06	25.74	27.80	1.607	0.578	21.9
GPRS 4TS		1:2.075	0.137	0.01	25.74	27.80	1.607	0.220	21.9
GPRS 4TS	190/836.6	1:2.075	0.005	-0.01	25.74	27.80	1.607	0.008	21.9
GPRS 4TS		1:2.075	0.358	0.16	25.74	27.80	1.607	0.575	21.9
GPRS 4TS	190/836.6	1:2.075	0.338	0.19	25.74	27.80	1.607	0.543	21.9
									21.9
		1:2.075		0.11	25.74	27.80	1.607	0.569	21.9
GPRS 4TS	190/836.6				25.74	27.80	1.607	0.556	21.9
	•	Ar							
	Test	Duty			Conducted	Tune up	Scaled	Scaled	Liquid
Test mode	ch./Freq.					•	factor	SAR 1-g	Temp.(℃)
	•				, ,	, ,		(w/kg)	
GSM	100/936 6				22.80	33.80	1 250	0.542	21.9
									21.9
									21.9
									21.9
								1	21.9
									21.9
								1	21.9
									21.9
									21.9
						00.00	1.200	0.000	21.0
GSM						33.80	1.259	0.130	21.9
									21.9
			0.131		26.33	27.80	1.403	0.184	21.9
GPRS 4TS	190/836.6	11.2.0731	0.131	0.07	20.55			0.104	
GPRS 4TS GPRS 4TS	190/836.6	1:2.075	0.131	0.07	26.33	27.80	1.403	0.325	21.9
	190/836.6								
	GSM GSM GSM GSM GSM GSM GSM GSM GSM GSM	GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GSM 190/836.6 GPRS 4TS 190/836.6 GSM 190/836.6	Test mode	Test mode Test mode Test ch./Freq. Test ch./Freq. Test ch./Freq. Test ch./Freq. Test ch./Freq. Test ch./Freq. Test ch./Freq. Test ch./Freq. Test cycle	Test mode	Test mode	Test mode	Test mode	Test mode

Table 11: SAR of GSM850 for Head and Body

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditi

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 129 of 169

8.2.2 SAR Result of GSM1900

			Α	nt 1 Test i	Record					
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	(ub)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1- g (W/kg)	Liquid Temp.(°C)
				Head Test	Data					
Left cheek	GSM	661/1880	1:8.3	0.100	0.09	30.07	30.80	1.183	0.118	22.1
Left tilted	GSM	661/1880	1:8.3	0.036	0.03	30.07	30.80	1.183	0.042	22.1
Right cheek	GSM	661/1880	1:8.3	0.067	0.07	30.07	30.80	1.183	0.080	22.1
Right tilted	GSM	661/1880	1:8.3	0.030	0.01	30.07	30.80	1.183	0.036	22.1
	0014			Test data(00.00	4.400	0.000	20.4
Front side	GSM	661/1880	1:8.3	0.196	0.11	30.07	30.80	1.183	0.232	22.1
Back side	GSM	661/1880	1:8.3	0.467	0.05	30.07	30.80	1.183	0.552	22.1
Back side with Battery 2#	GSM	661/1880	1:8.3	0.460	-0.02	30.07	30.80	1.183	0.544	22.1
Back side with Battery 3#	GSM	661/1880	1:8.3	0.443	-0.09	30.07	30.80	1.183	0.524	22.1
Back side with Battery 4#	GSM	661/1880	1:8.3	0.436	0.19	30.07	30.80	1.183	0.516	22.1
Back side with Battery 5#	GSM GSM	661/1880	1:8.3	0.453	0.05	30.07	30.80	1.183	0.536	22.1
Back side with Battery 6#	GSIVI	661/1880	1:8.3	0.460 est data(S	0.18	30.07	30.80	1.183	0.544	22.1
Front side	GPRS 4TS				0.19	23.79	24.80	1.262	0.420	22.1
Back side	GPRS 4TS				0.02	23.79	24.80	1.262	0.420	22.1
Back side	GPRS 4TS				0.02	23.18	24.80	1.452	0.839	22.1
Back side	GPRS 4TS				0.17	23.15	24.80	1.462	1.081	22.1
Right side	GPRS 4TS				0.09	23.79	24.80	1.262	0.122	22.1
Bottom side	GPRS 4TS				0.07	23.79	24.80	1.262	0.649	22.1
	GPRS 4TS				0.12	23.15	24.80	1.462	1.043	22.1
Back side with Battery 3#	GPRS 4TS			0.682	0.12	23.15	24.80	1.462	0.997	22.1
					-0.09	23.15	24.80	1.462	1.005	22.1
					0.08	23.15	24.80	1.462	1.019	22.1
Back side with Battery 6#	GPRS 4TS				0.05	23.15	24.80	1.462	1.059	22.1
,		l.		nt 3 Test I	Record					
				SAR	Power				Scaled	
Test position	Test mode	Test ch./Freq.	Duty Cycle	(W/kg) 1-g	drift	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	SAR 1- g (W/kg)	Liquid Temp.(℃)
				L Head Test	Data				(W/Kg)	
Left cheek	GSM	661/1880	1:8.3	0.710	0.06	26.58	26.80	1.052	0.747	22.1
Left tilted	GSM	661/1880	1:8.3	0.720	0.08	26.58	26.80	1.052	0.757	22.1
Right cheek	GSM	661/1880	1:8.3	0.757	0.01	26.58	26.80	1.052	0.796	22.1
Right tilted	GSM	661/1880	1:8.3	0.775	-0.07	26.58	26.80	1.052	0.815	22.1
Right tilted		512/1850.2	1:8.3	0.576	0.03	26.33	26.80	1.114	0.642	22.1
Right tilted		810/1909.8		0.844	-0.01	26.33	26.80	1.114	0.940	22.1
Right tilted repeat		810/1909.8		0.821	0.05	26.33	26.80	1.114	0.915	22.1
Right cheek with Battery 2#		810/1909.8		0.785	0.01	26.33	26.80	1.114	0.875	22.1
Right cheek with Battery 3#		810/1909.8	1:8.3	0.827	0.03	26.33	26.80	1.114	0.922	22.1
Right cheek with Battery 4#		810/1909.8	1:8.3	0.797	-0.04	26.33	26.80	1.114	0.888	22.1
Right cheek with Battery 5#	GSM	810/1909.8	1:8.3	0.767	0.19	26.33	26.80	1.114	0.855	22.1
Right cheek with Battery 6#	GSM	810/1909.8		0.832	0.11	26.33	26.80	1.114	0.927	22.1
				Test data(15mm)				
Front side	GSM	661/1880		0.180	0.01	26.58	26.80	1.052	0.189	22.1
Back side	GSM	661/1880		0.340	0.02	26.58	26.80	1.052	0.358	22.1
				est data(S	eparate 10					
Front side	GPRS 4TS				0.01	20.18	20.80	1.153	0.292	22.1
Back side	IGPRS 4TS	661/1880	1:2.075	0.560	0.17	20.18	20.80	1.153	0.646	22.1
									 	
Left side Top side	GPRS 4TS GPRS 4TS	661/1880	1:2.075	0.209	0.11	20.18 20.18	20.80 20.80	1.153 1.153	0.241 0.754	22.1 22.1

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 6 Plant, No. 1, Runsherg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikot Free Trade Zone 215000 中国 - 苏州 - 中国(江苏)自由医易试验区苏州 计区苏州工业园区润胜路1号的6号厂房南部 庫場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 130 of 169

Test position	BW.	Test ch./Freq.	Duty Cycle	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 10-g (W/kg)	Liquid Temp.(℃)
		Product sp	ecific 10	g SAR Te	st data(Se	eparate 0mm))			
Top side	GSM	661/1880	1:8.3	1.570	0.06	26.58	26.80	1.052	1.652	22.1

Table 12: SAR of GSM1900 for Head and Body.

Test Position	Channel/ Frequency Measured SAR (1g)		1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
	(MHz)	3111 (13)	SAR (1g)	SAR (1g)		SAR (1g)
Right tilted	810/1909.8	0.844	0.821	1.028	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer, worded, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents ubject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx strents of a training the formation contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a ransaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized elleration, forject or faisfication of the content or preparance of this document is unlawful and offendors may be prosecuted to the fullest extent of the law. Unloss otherwise stated the earths and such sample(s) are retained for 30 days only.

South of No. S Plant No. 1, Runsherry Road, Suchou Industrial Park, Suchou Area, Chine (Jangsu) Pikot Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景试翰区苏州上史园区湾胜路(号的6号)后南部 鄉鄉: 215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com

²⁾ A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

³⁾ A third repeated measurement was preformed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

⁴⁾ Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 131 of 169

8.2.3 SAR Result of WCDMA Band II

			А	nt 1 Test I	Record						
									Scaled		
Toot position	Toot made	Test	Duty	SAR	Power drift	Conducted	Tune up		SAR 1-	Liquid	
Test position	Test mode	ch./Freq.	Cycle	(W/kg) 1-g	(dB)	Power(dBm)	Limit(dBm)	factor		Temp.(°C)	
					` '				(W/kg)		
			1	Head Test		1		T	1		
Left cheek	RMC	9400/1880	1:1	0.077	0.08	23.45	24.40	1.245	0.096	22.1	
Left tilted	RMC	9400/1880	1:1	0.057	0.07	23.45	24.40	1.245	0.071	22.1	
Right cheek	RMC	9400/1880	1:1	0.081	0.01	23.45	24.40	1.245	0.100	22.1	
Right tilted	RMC	9400/1880	1:1	0.052	0.19	23.45	24.40	1.245	0.064	22.1	
Front side	DMO		y worn	,			00.40	4 000	0.470	00.4	
Front side	RMC	9400/1880	1:1	0.136	0.07	22.37	23.40	1.268	0.172	22.1	
Back side	RMC	9400/1880	1:1	0.332	0.14	22.37	23.40	1.268	0.421	22.1	
Front side	RMC	9400/1880	1:1	Test data(S 0.224	0.02	22.37	23.40	1.268	0.284	22.1	
Back side	RMC	9400/1880	1:1	0.686	0.02	22.37	23.40	1.268	0.204	22.1	
Back side		9262/1852.4	1:1	0.523	0.03	21.93	23.40	1.403	0.734	22.1	
Back side		9538/1907.6		0.523	0.02	22.14	23.40	1.337	0.734	22.1	
Right side	RMC	9400/1880	1:1	0.170	0.07	22.14	23.40	1.268	0.771	22.1	
Bottom side	RMC	9400/1880	1:1	0.583	0.03	22.37	23.40	1.268	0.739	22.1	
Back side with Battery 2#	RMC	9400/1880	1:1	0.661	0.06	22.37	23.40	1.268	0.838	22.1	
Back side with Battery 3#	RMC	9400/1880	1:1	0.681	0.03	22.37	23.40	1.268	0.863	22.1	
Back side with Battery 4#	RMC	9400/1880	1:1	0.651	0.05	22.37	23.40	1.268	0.825	22.1	
Back side with Battery 5#	RMC	9400/1880	1:1	0.636	0.09	22.37	23.40	1.268	0.806	22.1	
Back side with Battery 6#	RMC	9400/1880	1:1	0.646	0.11	22.37	23.40	1.268	0.819	22.1	
	Ant 3 Test Record										
				CAD	D				Scaled		
Toot position	Toot made	Test	Duty	SAR	Power drift	Conducted	Tune up	Scaled		Liquid	
Test position	Test mode	ch./Freq.	Cycle	(W/kg)		Power(dBm)	Limit(dBm)	factor	g	Temp.(℃)	
					(AR)		,		9		
				1-g Head Test					(W/kg)		
Left cheek	RMC	9400/1880	1:1	Head Test 0.590	Data 0.09	16.33	17.20	1.222	(W/kg) 0.721	22.1	
Left tilted	RMC	9400/1880 9400/1880	1:1	Head Test 0.590 0.724	Data 0.09 0.07	16.33 16.33	17.20 17.20	1.222	0.721 0.885	22.1 22.1	
Left tilted Left tilted	RMC RMC	9400/1880 9400/1880 9262/1852.4	1:1 1:1	Head Test 0.590 0.724 0.543	Data 0.09 0.07 0.03	16.33 16.33 15.99	17.20 17.20 17.20	1.222 1.222 1.321	0.721 0.885 0.717	22.1 22.1 22.1	
Left tilted Left tilted Left tilted	RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6	1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685	Data 0.09 0.07 0.03 0.05	16.33 16.33 15.99 16.05	17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303	0.721 0.885 0.717 0.893	22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek	RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880	1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693	Data 0.09 0.07 0.03 0.05 0.03	16.33 16.33 15.99 16.05 16.33	17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222	0.721 0.885 0.717 0.893 0.847	22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek	RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4	1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561	Data 0.09 0.07 0.03 0.05 0.03 0.01	16.33 16.33 15.99 16.05 16.33 15.99	17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321	0.721 0.885 0.717 0.893 0.847 0.741	22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek	RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6	1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06	16.33 16.33 15.99 16.05 16.33 15.99 16.05	17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303	0.721 0.885 0.717 0.893 0.847 0.741 0.828	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted	RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted	RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted	RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 15.99	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.222 1.321	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081 1.053 0.799	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 15.99 16.05	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.321 1.303	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081 1.053 0.799 1.019	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 15.99 16.05 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081 1.053 0.799 1.019 1.003	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted with Battery 2# Right tilted with Battery 3#	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081 1.053 0.799 1.019 1.003 1.018	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted with Battery 2# Right tilted with Battery 4#	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081 1.053 0.799 1.019 1.003 1.018	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted + Repeat Right tilted Right tilted Right tilted Right tilted with Battery 2# Right tilted with Battery 4# Right tilted with Battery 4# Right tilted with Battery 5#	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.321 1.303 1.222 1.222 1.222 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081 1.053 0.799 1.019 1.003 1.018 1.034 1.050	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted + Repeat Right tilted Right tilted Right tilted Right tilted with Battery 2# Right tilted with Battery 4# Right tilted with Battery 4# Right tilted with Battery 5#	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859 0.840	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06 0.05	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33 16.33 16.33 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081 1.053 0.799 1.019 1.003 1.018	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted + Repeat Right tilted Right tilted Right tilted Right tilted with Battery 2# Right tilted with Battery 4# Right tilted with Battery 5# Right tilted with Battery 5# Right tilted with Battery 6#	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859 0.840 Test data(Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06 0.05 Separate	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.321 1.303 1.222 1.222 1.222 1.222 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.081 1.053 0.799 1.019 1.003 1.018 1.034 1.050 1.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted -Repeat Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted with Battery 2# Right tilted with Battery 4# Right tilted with Battery 5# Right tilted with Battery 6#	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859 0.840 Test data(0.260	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06 0.05 Separate	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33 16.33 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.321 1.303 1.222 1.222 1.222 1.222 1.222 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.053 0.799 1.019 1.003 1.018 1.050 1.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted -Repeat Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted Right tilted with Battery 3# Right tilted with Battery 5# Right tilted with Battery 6# Front side Back side	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859 0.840 Test data(0.260 0.530	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06 0.05 Separate 0.04 0.15	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33 16.33 16.33 16.33 16.33 15.99	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.321 1.303 1.222 1.222 1.222 1.222 1.222 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.053 0.799 1.019 1.003 1.018 1.034 1.050 1.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted + Repeat Right tilted Ri	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859 0.840 Test data(0.260 0.530 0.523	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06 0.05 Separate 0.04 0.15 0.01	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33 16.33 16.33 16.33 16.33 16.33 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.222 1.222 1.222 1.222 1.222	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.053 0.799 1.019 1.003 1.018 1.050 1.026 0.284 0.580 0.572	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted -Repeat Right tilted Rig	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859 0.840 Test data(0.260 0.530 0.523 0.515	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06 0.05 Separate 0.04 0.15 0.01 0.08	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33 16.33 16.33 16.33 16.33 19.61 19.61	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.204 1.094 1.094	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.053 0.799 1.019 1.003 1.018 1.050 1.026 0.284 0.580 0.572 0.563	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted -Repeat Right tilted Right tilted with Battery 2# Right tilted with Battery 5# Right tilted with Battery 6# Front side Back side with Battery 2# Back side with Battery 3# Back side with Battery 3#	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859 0.840 Test data(0.260 0.530 0.523 0.515 0.507	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06 0.05 Separate 0.04 0.15 0.01 0.08 0.09	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33 16.33 16.33 16.33 16.33 16.33 16.33 16.31 16.33	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 20.00 20.00 20.00 20.00	1.222 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.321 1.303 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.204 1.094 1.094 1.094	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.053 0.799 1.019 1.003 1.018 1.050 1.026 0.284 0.580 0.572 0.563 0.555	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	
Left tilted Left tilted Left tilted Right cheek Right cheek Right cheek Right tilted Right tilted Right tilted Right tilted + Repeat Right tilted Ri	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	9400/1880 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9262/1852.4 9538/1907.6 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880 9400/1880	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Head Test 0.590 0.724 0.543 0.685 0.693 0.561 0.635 0.885 0.862 0.605 0.782 0.821 0.833 0.846 0.859 0.840 Test data(0.260 0.530 0.523 0.515	Data 0.09 0.07 0.03 0.05 0.03 0.01 0.06 0.01 -0.13 0.05 0.02 0.06 0.19 0.08 0.06 0.05 Separate 0.04 0.15 0.01 0.08	16.33 16.33 15.99 16.05 16.33 15.99 16.05 16.33 16.33 16.33 16.33 16.33 16.33 16.33 19.61 19.61	17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20	1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.321 1.303 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.204 1.094 1.094	0.721 0.885 0.717 0.893 0.847 0.741 0.828 1.053 0.799 1.019 1.003 1.018 1.050 1.026 0.284 0.580 0.572 0.563	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

|South of No. 6 Plent, No. 1, Runshang Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Tisote Zone 215000 中国 - 苏州 - 中国(江苏)自由因易试验区苏州片区苏州工业团区海胜路号的6号厂房南部 庫場: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 132 of 169

Front side	RMC	9400/1880	1:1	0.205	0.05	16.33	17.20	1.222 0.250	22.1
Back side	RMC	9400/1880	1:1	0.441	0.01	16.33	17.20	1.222 0.539	22.1
Left side	RMC	9400/1880	1:1	0.068	0.02	16.33	17.20	1.222 0.083	22.1
Top side	RMC	9400/1880	1:1	0.465	0.04	16.33	17.20	1.222 0.568	22.1

Table 13: SAR of WCDMA Band II for Head and Body.

Test Position	Channel/ Frequency	Measured SAR (1g)	1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
	(MHz)	(-9)	SAR (1g)		SAR (1g)	SAR (1g)
Right tilted	9400/1880	0.885	0.862	1.027	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx stretten in is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is downed therein in the subject of the

South of No. 6 Pient, No. 1, Runsherg Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Tiede Zone 中国 · 苏州 · 中国(江苏)自由贸易试验区苏州片区苏州工业团区河逛路(号的6号厂房南部 庫場: 215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com

²⁾ A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

³⁾ A third repeated measurement was preformed only if the original, first or second repeated measurement was \ge 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

⁴⁾ Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 133 of 169

8.2.4 SAR Result of WCDMA Band IV

				Ant 1 Test	Record					
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)			Scaled SAR 1- g (W/kg)	Liquid Temp.(°C)
l oft also als	DMC	4.440/4700.4	4.4	Head Test		00.47	04.40	4 000	0.000	04.0
Left cheek	RMC	1412/1732.4	1:1	0.179	0.08	23.47	24.40	1.239	0.222	21.6
Left tilted	RMC	1412/1732.4	1:1	0.086	0.11	23.47	24.40	1.239	0.106	21.6
Right cheek	RMC	1412/1732.4	1:1	0.121	0.04	23.47	24.40	1.239	0.150	21.6
Right tilted	RMC	1412/1732.4	1:1	0.080	0.09	23.47	24.40	1.239	0.098	21.6
					Separate 15n					
Front side	RMC	1412/1732.4	1:1	0.269	0.07	21.67	22.90	1.327	0.357	21.6
Back side	RMC	1412/1732.4	1:1	0.593	0.01	21.67	22.90	1.327	0.787	21.6
Back side with Battery 2#	RMC	1412/1732.4	1:1	0.591	0.11	21.67	22.90	1.327	0.784	21.6
Back side with Battery 3#	RMC	1412/1732.4	1:1	0.580	0.19	21.67	22.90	1.327	0.770	21.6
Back side with Battery 4#	RMC	1412/1732.4	1:1	0.577	0.06	21.67	22.90	1.327	0.766	21.6
Back side with Battery 5#	RMC	1412/1732.4	1:1	0.588	0.05	21.67	22.90	1.327	0.781	21.6
Back side with Battery 6#	RMC	1412/1732.4	1:1	0.590	0.13	21.67	22.90	1.327	0.783	21.6
			Hotspo		eparate 10mr					
Front side	RMC	1412/1732.4	1:1	0.298	0.08	20.48	21.60	1.294	0.386	21.6
Back side	RMC	1412/1732.4	1:1	0.795	0.03	20.48	21.60	1.294	1.029	21.6
Back side	RMC	1312/1712.4	1:1	0.630	0.03	20.34	21.60	1.337	0.842	21.6
Back side	RMC	1513/1752.6	1:1	0.687	0.07	20.46	21.60	1.300	0.893	21.6
Right side	RMC	1412/1732.4	1:1	0.190	0.11	20.48	21.60	1.294	0.246	21.6
Bottom side	RMC	1412/1732.4	1:1	0.676	0.08	20.48	21.60	1.294	0.875	21.6
Bottom side	RMC	1312/1712.4	1:1	0.636	0.07	20.34	21.60	1.337	0.850	21.6
Bottom side	RMC	1513/1752.6	1:1	0.709	0.07	20.46	21.60	1.300	0.922	21.6
Back side with Battery 2#	RMC	1412/1732.4	1:1	0.791	0.05	20.48	21.60	1.294	1.024	21.6
Back side with Battery 3#	RMC	1412/1732.4	1:1	0.784	0.15	20.48	21.60	1.294	1.015	21.6
Back side with Battery 4#	RMC	1412/1732.4	1:1	0.777	0.19	20.48	21.60	1.294	1.006	21.6
Back side with Battery 5#	RMC	1412/1732.4	1:1	0.770	0.13	20.48	21.60	1.294	0.997	21.6
Back side with Battery 6#	RMC	1412/1732.4	1:1	0.766	0.15	20.48	21.60	1.294	0.991	21.6
Back side With Battery O#	KIVIC	1412/1732.4	1.1	0.700	0.13	20.40	21.00	1.234	Scaled	21.0
Test position	BW.	Test ch./Freq.	Duty Cycle	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	SAR 10-g	Liquid Temp.(℃)
									(W/kg)	
					(Separate 0m			1	,	
Back side	RMC	1412/1732.4		2.180	-0.03	21.67	22.90	1.327	2.894	21.6
Back side repeat	RMC	1412/1732.4	1:1	2.160	0.09	21.67	22.90	1.327	2.867	21.6
Back side	RMC	1312/1712.4	1:1	2.120	-0.05	21.58	22.90	1.355	2.873	21.6
Back side	RMC	1513/1752.6	1:1	2.100	0.01	21.55	22.90	1.365	2.866	21.6
Bottom side	RMC	1412/1732.4	1:1	1.980	0.06	21.67	22.90	1.327	2.628	21.6
Bottom side	RMC	1312/1712.4	1:1	1.730	-0.05	21.58	22.90	1.355	2.344	21.6
Bottom side	RMC	1513/1752.6	1:1	1.870	0.01	21.55	22.90	1.365	2.552	21.6
				Ant 3 Test	Record					
Test position	Test mode	Test		SAR (W/kg)		Conducted		Scaled		Liquid
		ch./Freq.	Cycle	1-g	(dB)	Power(dBm)	rimit(aRm)	ractor	g (W/kg)	Temp.(℃)
				Hood Too	Doto				(vv/kg)	
Loft chook	DNAC	1410/4700 4	1.4	Head Test		20.00	20.70	1 151	0.570	21.6
Left cheek	RMC	1412/1732.4	1:1	0.498	0.08	20.09	20.70	1.151	0.573	21.6
	RMC	1412/1732.4	1:1	0.682	0.02	20.09	20.70	1.151	0.785	21.6
Left tilted		4040/4740 1	4.4	0.505	0.05				0 000	
Left tilted	RMC	1312/1712.4		0.585	0.05	20.01	20.70	1.172	0.686	21.6
Left tilted Left tilted	RMC RMC	1513/1752.6	1:1	0.760	0.06	20.06	20.70	1.159	0.881	21.6
Left tilted Left tilted Right cheek	RMC RMC RMC	1513/1752.6 1412/1732.4	1:1 1:1	0.760 0.627	0.06 -0.04	20.06 20.09	20.70 20.70	1.159 1.151	0.881 0.722	21.6 21.6
Left tilted Left tilted Right cheek Right tilted	RMC RMC RMC RMC	1513/1752.6 1412/1732.4 1412/1732.4	1:1 1:1 1:1	0.760 0.627 0.783	0.06 -0.04 0.03	20.06 20.09 20.09	20.70 20.70 20.70	1.159 1.151 1.151	0.881 0.722 0.901	21.6 21.6 21.6
Left tilted Left tilted Right cheek Right tilted Right tilted	RMC RMC RMC RMC RMC	1513/1752.6 1412/1732.4 1412/1732.4 1312/1712.4	1:1 1:1 1:1 1:1	0.760 0.627 0.783 0.611	0.06 -0.04 0.03 0.01	20.06 20.09 20.09 20.01	20.70 20.70 20.70 20.70	1.159 1.151 1.151 1.172	0.881 0.722 0.901 0.716	21.6 21.6 21.6 21.6
Left tilted Left tilted Right cheek Right tilted Right tilted Right tilted Right tilted	RMC RMC RMC RMC RMC RMC	1513/1752.6 1412/1732.4 1412/1732.4 1312/1712.4 1513/1752.6	1:1 1:1 1:1 1:1 1:1	0.760 0.627 0.783 0.611 0.918	0.06 -0.04 0.03 0.01 -0.02	20.06 20.09 20.09 20.01 20.06	20.70 20.70 20.70 20.70 20.70	1.159 1.151 1.151 1.172 1.159	0.881 0.722 0.901 0.716 1.064	21.6 21.6 21.6 21.6 21.6 21.6
Left tilted Left tilted Right cheek Right tilted Right tilted	RMC RMC RMC RMC RMC RMC RMC	1513/1752.6 1412/1732.4 1412/1732.4 1312/1712.4	1:1 1:1 1:1 1:1 1:1	0.760 0.627 0.783 0.611	0.06 -0.04 0.03 0.01	20.06 20.09 20.09 20.01	20.70 20.70 20.70 20.70	1.159 1.151 1.151 1.172	0.881 0.722 0.901 0.716	21.6 21.6 21.6 21.6

| South of No. 6 Plant, No. 1, Runsherg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由原务试验区苏州 计区苏州 工业园区湖走路1号的6号厂房南部 庫場: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 134 of 169

					- 3 -				
Right tilted with Battery 3#	RMC	1513/1752.6 1:1	0.876	0.05	20.06	20.70	1.159	1.015	21.6
Right tilted with Battery 4#	RMC	1513/1752.6 1:1	0.890	0.16	20.06	20.70	1.159	1.031	21.6
Right tilted with Battery 5#	RMC	1513/1752.6 1:1	0.876	0.02	20.06	20.70	1.159	1.015	21.6
Right tilted with Battery 6#	RMC	1513/1752.6 1:1	0.856	0.18	20.06	20.70	1.159	0.992	21.6
		Body w	orn Test data(Separate 15m	nm)				
Front side	RMC	1412/1732.4 1:1	0.148	0.08	20.77	21.40	1.156	0.171	21.6
Back side	RMC	1412/1732.4 1:1	0.292	0.10	20.77	21.40	1.156	0.338	21.6
		Hotsp	ot Test data(S	eparate 10mr	n)				
Front side	RMC	1412/1732.4 1:1	0.204	0.04	20.09	20.70	1.151	0.235	21.6
Back side	RMC	1412/1732.4 1:1	0.491	0.13	20.09	20.70	1.151	0.565	21.6
Left side	RMC	1412/1732.4 1:1	0.125	0.06	20.09	20.70	1.151	0.144	21.6
Top side	RMC	1412/1732.4 1:1	0.479	0.09	20.09	20.70	1.151	0.551	21.6

Table 14: SAR of WCDMA Band IV for Head and Body.

Channel/ Frequency		1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
(MHz)	(19)	SAR (1g)		SAR (1g)	SAR (1g)
1513/1752.6	0.918	0.912	1.007	N/A	N/A
	Frequency (MHz)	Frequency (1g) Measured SAR (1g)	Frequency (1g) Measured SAR (1st Repeated SAR (1g)	Frequency (1g) Ratio SAR (1g)	Frequency (1g) Ratio SAR (1g) SAR (1g)

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was preformed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Test Position	Channel/ Frequency		1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
	(MHz)	(10g)	SAR (10g)		SAR (10g)	SAR (10g)
Back side	1412/1732.4	2.18	2.16	1.009	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 3.0 or when the original or repeated measurement was ≥ 3.625 W/kg ($\sim 10\%$ from the 1-g SAR limit).

3) A third repeated measurement was preformed only if the original, first or second repeated measurement was ≥ 3.75 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 3.0.

4) Repeated measurements are not required when the original highest measured SAR is < 2.0 W/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.com/en/Terms-en/Conditions/Terms-en/Comments.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention To check the authenticity of testing investion records.

South of No. 5 Plant No. 1, Runsherry Road, Suchou Industrial Park, Suchou Area, Chine (Jangsul Pikot Pres Trade Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定省区苏州上亚园区湾走路(号的4号厂房南部 縣場: 215000

t (86-512) 62992980

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 135 of 169

8.2.5 SAR Result of WCDMA Band V

			Ant 0 Test	Record					
Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(°C)
			Head Tes	t Data					
RMC	4182/836.4	1:1	0.170	0.02	23.98	25.00	1.265	0.215	21.9
RMC	4182/836.4	1:1	0.071	-0.01	23.98		1.265	0.090	21.9
RMC	4182/836.4	1:1	0.191	-0.17	23.98	25.00	1.265	0.242	21.9
RMC	4182/836.4	1:1	0.093	0.10	23.98	25.00	1.265	0.117	21.9
		ody woi							•
RMC	4182/836.4	1:1	0.235	-0.04	23.98	25.00	1.265	0.297	21.9
RMC	4182/836.4	1:1		0.07		25.00	1.265	0.368	21.9
									21.9
									21.9
									21.9
									21.9
					23.98				21.9
RMC	4182/836.4					25.00	1.265	0.417	21.9
									21.9
									21.9
									21.9
									21.9
									21.9
									21.9
									21.9
									21.9
11110	1102/000.1				20.00	20.00	1.200	0.000	
								Scaled	T
	Test ch./Freq.			drift				SAR 1-g	Liquid
mode		Cycle	1-g	(dB)	Power(aBm)	Limit(aBm)	tactor	(W/kg)	Temp.(℃)
			Head Tes	t Data					
RMC	4182/836.4	1:1	0.382	0.01	23 95	25.00	1.274	0.406	21.9
RMC	4182/836.4	4.4		0.01	20.00		1.2	0.400	21.9
	4102/030.4	1:1	0.268	0.01	23.95	25.00	1.274	0.466	21.9
RMC		1:1	0.268 0.724			25.00 25.00			21.9
RMC RMC	4182/836.4 4132/826.4		0.724	0.05	23.95		1.274	0.341	21.9 21.9
	4182/836.4	1:1		0.05 0.05	23.95 23.95	25.00 25.00	1.274 1.274	0.341 0.922	21.9
RMC	4182/836.4 4132/826.4 4233/846.6	1:1 1:1	0.724 0.557 0.811	0.05 0.05 -0.03 0.06	23.95 23.95 23.88 23.85	25.00 25.00 25.00	1.274 1.274 1.294 1.303	0.341 0.922 0.721	21.9 21.9 21.9 21.9
RMC RMC	4182/836.4 4132/826.4	1:1 1:1 1:1	0.724 0.557 0.811 0.775	0.05 0.05 -0.03 0.06 0.14	23.95 23.95 23.88 23.85 23.85	25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303	0.341 0.922 0.721 1.057 1.010	21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4	1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376	0.05 0.05 -0.03 0.06 0.14 0.10	23.95 23.95 23.88 23.85 23.85 23.95	25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274	0.341 0.922 0.721 1.057 1.010 0.479	21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6	1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739	0.05 0.05 -0.03 0.06 0.14 0.10	23.95 23.95 23.88 23.85 23.85 23.95 23.85	25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963	21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739 0.757	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18	23.95 23.95 23.88 23.85 23.85 23.95 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18	23.95 23.95 23.88 23.85 23.85 23.95 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739 0.775	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18 0.05	23.95 23.95 23.88 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963 1.010	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739 0.775 0.784	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18 0.05 0.06	23.95 23.95 23.88 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739 0.775 0.784 rn Test data	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18 0.05 0.06 0.02 (Separate	23.95 23.95 23.88 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963 1.010 1.022	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739 0.775 0.784 rn Test data 0.148	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18 0.05 0.06 0.02 (Separate	23.95 23.95 23.88 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303 1.303 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963 1.010 1.022	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739 0.775 0.784 rn Test data 0.148 0.243	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18 0.05 0.06 0.02 (Separate 0.02 -0.01	23.95 23.95 23.88 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963 1.010 1.022	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 0dy wor 1:1 1:1 Hotspot	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739 0.775 0.784 rn Test data 0.148 0.243 Test data(S	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18 0.05 0.06 0.02 (Separate 0.02 -0.01 Geparate 10	23.95 23.95 23.88 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303 1.303 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963 1.010 1.022 0.188 0.309	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4182/836.4	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739 0.775 0.784 rn Test data 0.148 0.243 Test data(S	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18 0.05 0.06 0.02 (Separate 0.02 -0.01 Geparate 10 0.06	23.95 23.95 23.88 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303 1.303 1.303 1.303 1.274 1.274	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963 1.010 1.022 0.188 0.309	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	4182/836.4 4132/826.4 4233/846.6 4233/846.6 4182/836.4 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6 4233/846.6	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 0dy wor 1:1 1:1 Hotspot	0.724 0.557 0.811 0.775 0.376 0.739 0.757 0.739 0.775 0.784 rn Test data 0.148 0.243 Test data(S	0.05 0.05 -0.03 0.06 0.14 0.10 0.05 0.18 0.05 0.06 0.02 (Separate 0.02 -0.01 Geparate 10	23.95 23.95 23.88 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	1.274 1.274 1.294 1.303 1.303 1.274 1.303 1.303 1.303 1.303 1.303 1.303	0.341 0.922 0.721 1.057 1.010 0.479 0.963 0.986 0.963 1.010 1.022 0.188 0.309	21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
	RMC RMC RMC RMC RMC RMC RMC RMC RMC RMC	RMC 4182/836.4 RMC 4182/836.4	mode Test ch./Freq. Cycle RMC 4182/836.4 1:1 RMC 4182/836.4 1:1 RMC 4182/836.4 1:1 Body wo RMC 4182/836.4 1:1 RM	Test mode Test ch./Freq. Duty Cycle RMC	Test mode Test ch./Freq. Duty Cycle SAR (W/kg) 1-g (dB) Power drift (dB) RMC 4182/836.4 1:1 0.170 0.02 RMC 4182/836.4 1:1 0.071 -0.01 RMC 4182/836.4 1:1 0.191 -0.17 RMC 4182/836.4 1:1 0.093 0.10 Body worn Test data (Separate Separate RMC 4182/836.4 1:1 0.235 -0.04 RMC 4182/836.4 1:1 0.291 0.07 RMC 4182/836.4 1:1 0.287 0.16 RMC 4182/836.4 1:1 0.286 0.01 RMC 4182/836.4 1:1 0.280 0.19 RMC 4182/836.4 1:1 0.330 -0.04 RMC <td>Test mode Test ch./Freq. Duty Cycle SAR (W/kg) 1-g drift (dB) Power drift (dB) Conducted Power(dBm) Head Test Data RMC 4182/836.4 1:1 0.170 0.02 23.98 RMC 4182/836.4 1:1 0.071 -0.01 23.98 RMC 4182/836.4 1:1 0.093 0.10 23.98 RMC 4182/836.4 1:1 0.093 0.10 23.98 RMC 4182/836.4 1:1 0.293 0.01 23.98 RMC 4182/836.4 1:1 0.235 -0.04 23.98 RMC 4182/836.4 1:1 0.287 0.16 23.98 RMC 4182/836.4 1:1 0.287 0.16 23.98 RMC 4182/836.4 1:1 0.286 0.01 23.98 RMC 4182/836.4 1:1 0.280 0.19 23.98 RMC 4182/836.4 1:1 0.280 0.19 23.98 RMC</td> <td>Test mode Test ch/Freq. Duty Cycle SAR (W/kg) 1-g (dB) Power diff (dB) Conducted Power(dBm) Tune up Limit(dBm) RMC 4182/836.4 1:1 0.170 0.02 23.98 25.00 RMC 4182/836.4 1:1 0.071 -0.01 23.98 25.00 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 RMC 4182/836.4 1:1 0.235 -0.04 23.98 25.00 RMC 4182/836.4 1:1 0.291 0.07 23.98 25.00 RMC 4182/836.4 1:1 0.287 0.16 23.98 25.00 RMC 4182/836.4 1:1 0.286 0.01 23.98 25.00 RMC 4182/836.4 1:1 0.280 0.19 23.98 25.00</td> <td>Test mode Test ch/Freq. Duty Cycle SAR (W/kg) 1-g (dB) Power driff (dB) Conducted plantit (dBm) Tune up factor Scaled factor RMC 4182/836.4 1:1 0.170 0.02 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.071 -0.01 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.235 -0.04 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.287 0.16 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.286 0.01 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.286 0.01 2</td> <td> Test ch/Freq. Duty Cycle (W/kg) L-g drift (dB) Power(dBm) Limit(dBm) Factor (W/kg) L-g </td>	Test mode Test ch./Freq. Duty Cycle SAR (W/kg) 1-g drift (dB) Power drift (dB) Conducted Power(dBm) Head Test Data RMC 4182/836.4 1:1 0.170 0.02 23.98 RMC 4182/836.4 1:1 0.071 -0.01 23.98 RMC 4182/836.4 1:1 0.093 0.10 23.98 RMC 4182/836.4 1:1 0.093 0.10 23.98 RMC 4182/836.4 1:1 0.293 0.01 23.98 RMC 4182/836.4 1:1 0.235 -0.04 23.98 RMC 4182/836.4 1:1 0.287 0.16 23.98 RMC 4182/836.4 1:1 0.287 0.16 23.98 RMC 4182/836.4 1:1 0.286 0.01 23.98 RMC 4182/836.4 1:1 0.280 0.19 23.98 RMC 4182/836.4 1:1 0.280 0.19 23.98 RMC	Test mode Test ch/Freq. Duty Cycle SAR (W/kg) 1-g (dB) Power diff (dB) Conducted Power(dBm) Tune up Limit(dBm) RMC 4182/836.4 1:1 0.170 0.02 23.98 25.00 RMC 4182/836.4 1:1 0.071 -0.01 23.98 25.00 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 RMC 4182/836.4 1:1 0.235 -0.04 23.98 25.00 RMC 4182/836.4 1:1 0.291 0.07 23.98 25.00 RMC 4182/836.4 1:1 0.287 0.16 23.98 25.00 RMC 4182/836.4 1:1 0.286 0.01 23.98 25.00 RMC 4182/836.4 1:1 0.280 0.19 23.98 25.00	Test mode Test ch/Freq. Duty Cycle SAR (W/kg) 1-g (dB) Power driff (dB) Conducted plantit (dBm) Tune up factor Scaled factor RMC 4182/836.4 1:1 0.170 0.02 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.071 -0.01 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.093 0.10 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.235 -0.04 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.287 0.16 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.286 0.01 23.98 25.00 1.265 RMC 4182/836.4 1:1 0.286 0.01 2	Test ch/Freq. Duty Cycle (W/kg) L-g drift (dB) Power(dBm) Limit(dBm) Factor (W/kg) L-g

Table 15: SAR of WCDMA Band V for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx.and, contended to the standard comments, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention standard information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tested and such sample(e) are retained for 30 days only.

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 136 of 169

8.2.6 SAR Result of LTE Band 2

				Ant 1	Test Rec	ord					
Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
				Head T	est Data(*	IRB)					
Left cheek	20	QPSK 1_0	18900/1880	1:1	0.094	0.07	23.15	24.40	1.334	0.125	22.2
Left tilted	20	QPSK 1_0	18900/1880	1:1	0.038	0.11	23.15	24.40	1.334	0.050	22.2
Right cheek	20	QPSK 1_0	18900/1880	1:1	0.065	0.01	23.15	24.40	1.334	0.087	22.2
Right tilted	20	QPSK 1_0	18900/1880	1:1	0.055 st Data(50	0.07	23.15	24.40	1.334	0.074	22.2
Left cheek	20	QPSK 50_0	18900/1880	1:1	0.077		22.29	23.40	1.291	0.099	22.2
Left tilted	20	QPSK 50_0	18900/1880	1:1	0.077	0.19	22.29	23.40	1.291	0.099	22.2 22.2
Right cheek	20	QPSK 50_0	18900/1880	1:1	0.057	0.08	22.29	23.40	1.291	0.044	22.2
Right tilted	20	QPSK 50_0		1:1	0.037	0.02	22.29	23.40	1.291	0.059	22.2
rtigrit tiitou	20	QI OILOO_O	Body worn		ata(Separ			20.40	1.201	0.000	ZZ.Z
Front side	20	QPSK 1 0	18900/1880	1:1	0.130	0.09	21.77	23.40	1.455	0.189	22.2
Back side	20	QPSK 1 0	18900/1880	1:1	0.316	0.08	21.77	23.40	1.455	0.460	22.2
Back side with Battery 2#	20	QPSK 1 0	18900/1880	1:1	0.310	0.13	21.77	23.40	1.455	0.451	22.2
Back side with Battery 3#	20	QPSK 1_0	18900/1880	1:1	0.303	0.15	21.77	23.40	1.455	0.441	22.2
Back side with Battery 4#	20	QPSK 1_0	18900/1880	1:1	0.314	0.16	21.77	23.40	1.455	0.457	22.2
Back side with Battery 5#	20	QPSK 1_0	18900/1880	1:1	0.310	0.17	21.77	23.40	1.455	0.451	22.2
Back side with Battery 6#	20	QPSK 1_0	18900/1880	1:1	0.300	0.05	21.77	23.40	1.455	0.437	22.2
			Body worn T	est dat	a(Separat	e 15mm					
Front side	20	QPSK 50_0	18900/1880	1:1	0.118	0.05	21.68	23.40	1.486	0.175	22.2
Back side	20	QPSK 50_0	18900/1880	1:1	0.279	0.07	21.68	23.40	1.486	0.415	22.2
			Hotspot T	est dat		e 10mm					
Front side	20	QPSK 1_0	18900/1880	1:1	0.220	0.11	21.77	23.40	1.455	0.320	22.2
Back side	20	QPSK 1_0	18900/1880	1:1	0.636	0.08	21.77	23.40	1.455	0.926	22.2
Back side	20	QPSK 1_0	18700/1860	1:1	0.617	0.07	21.76	23.40	1.459	0.900	22.2
Back side	20	QPSK 1_0	19100/1900	1:1	0.589	0.06	21.59	23.40	1.517	0.894	22.2
Right side	20	QPSK 1_0	18900/1880	1:1	0.153	0.09	21.77	23.40	1.455	0.223	22.2
Bottom side	20	QPSK 1_0	18900/1880	1:1	0.547	0.13	21.77	23.40	1.455	0.796	22.2
Back side with Battery 2#	20	QPSK 1_0	18900/1880	1:1	0.608	0.00	21.77	23.40	1.455	0.885	22.2
Back side with Battery 3#	20	QPSK 1_0	18900/1880	1:1	0.599	0.06	21.77	23.40	1.455	0.872	22.2
Back side with Battery 4#	20	QPSK 1_0 QPSK 1_0	18900/1880	1:1	0.631 0.627	0.01	21.77	23.40	1.455	0.918	22.2
Back side with Battery 5# Back side with Battery 6#	20	QPSK 1_0	18900/1880 18900/1880	1:1 1:1	0.627	0.05	21.77 21.77	23.40	1.455	0.913 0.892	22.2
Dack side with battery 6#	20	QPSK I_U	Hotspot Tes					23.40	1.455	0.092	22.2
Front side	20	QPSK 50_0		1:1	0.219	0.08	21.68	23.40	1.486	0.325	22.2
Back side	20	QPSK 50_0	18900/1880	1:1	0.616	0.02	21.68	23.40	1.486	0.915	22.2
Back side	20	QPSK 50_0		1:1	0.599	0.08	21.58	23.40	1.521	0.911	22.2
Back side	20	QPSK 50_0	19100/1900	1:1	0.602	0.12	21.55	23.40	1.531	0.922	22.2
Rightt side	20	QPSK 50_0	18900/1880	1:1	0.148	0.12	21.68	23.40	1.486	0.220	22.2
Bottom side	20	QPSK 50_0		1:1	0.532	0.11	21.68	23.40	1.486	0.791	22.2
			Hotspot Tes	t data(Separate '	10mm 10	0%RB)				
Back side	20	QPSK 100_0	18900/1880	1:1	0.584	0.09	21.62	23.40	1.507	0.880	
					Test Rec	ord					
				Duty	SAR	Power	Conducted	Tune up	Scaled	Scaled	Liquid
Test position	BW.	Test mode	Test ch./Freq.	Cycle	(VV/Kg)	drift	Power(dBm)			SAR 1-g	Temp.(℃)
					<u> </u>	(dB)				(W/kg)	· · · · · · · · · · · · · · · · · · ·
		000144			est Data(1		1001	47.00	14040	0.747	
Left cheek	20	QPSK 1_0	18900/1880	1:1	0.588	-0.01	16.94	17.80	1.219	0.717	22.2
Left tilted	20	QPSK 1_0	18900/1880	1:1	0.595	0.05	16.94	17.80	1.219	0.725	22.2
Right cheek	20	QPSK 1_0	18900/1880	1:1	0.663	-0.06	16.94	17.80	1.219	0.808	22.2
Right cheek	20	QPSK 1_0	18700/1860	1:1	0.594	0.08	16.74	17.80	1.276	0.758	22.2
Right cheek	20	QPSK 1_0	19100/1900	1:1	0.697	0.09	16.81	17.80	1.256	0.875	22.2
Right tilted	20 20	QPSK 1_0 QPSK 1_0	18900/1880 18700/1860	1:1 1:1	0.790 0.685	0.04	16.94 16.74	17.80 17.80	1.219 1.276	0.963 0.874	22.2 22.2
		1 UE 3N 1 []	1 10/00/1000	1 1 1					- I / / D	U 0 / 4	L
Right tilted Right tilted	20	QPSK 1_0	19100/1900	1:1	0.798	0.09	16.81	17.80	1.256	1.002	22.2

South of No. 6 Piert, No. 1, Runsherg Road, Suzhou Industria Park, Suzhou Area, Chine (Jangsu) Piet Free Texie Zene 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州片区苏州工业园区海准路1号的6号厂房南部 鄉編: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 137 of 169

						Г	rage:	137 0	109		
Left cheek	20	QPSK 50_0	18900/1880	1:1	0.620	0.15	16.77	17.80	1.268	0.786	22.2
Left tilted	20	QPSK 50_0	18900/1880	1:1	0.713	0.05	16.77	17.80	1.268	0.904	22.2
Left tilted	20	QPSK 50_0	18700/1860	1:1	0.638	0.09	16.58	17.80	1.324	0.845	22.2
Left tilted	20	QPSK 50_0	19100/1900	1:1	0.720	0.05	16.59	17.80	1.321	0.951	22.2
Right cheek	20	QPSK 50_0	18900/1880	1:1	0.681	0.17	16.77	17.80	1.268	0.863	22.2
Right cheek	20	QPSK 50_0	18700/1860	1:1	0.627	0.08	16.58	17.80	1.324	0.830	22.2
Right cheek	20	QPSK 50_0	19100/1900	1:1	0.686	0.06	16.59	17.80	1.321	0.906	22.2
Right tilted	20	QPSK 50_0	18900/1880	1:1	0.862	0.04	16.77	17.80	1.268	1.093	22.2
Right tilted -repeat	20	QPSK 50_0	18900/1880	1:1	0.843	0.09	16.77	17.80	1.268	1.069	22.2
Right tilted	20	QPSK 50_0	18700/1860	1:1	0.695	0.06	16.58	17.80	1.324	0.920	22.2
Right tilted	20	QPSK 50_0	19100/1900	1:1	0.788	0.07	16.59	17.80	1.321	1.041	22.2
Right tilted with Battery 2#	20	QPSK 50_0	18900/1880	1:1	0.812	0.15	16.77	17.80	1.268	1.029	22.2
Right tilted with Battery 3#	20	QPSK 50_0	18900/1880	1:1	0.843	0.02	16.77	17.80	1.268	1.069	22.2
Right tilted with Battery 4#	20	QPSK 50_0	18900/1880	1:1	0.849	0.04	16.77	17.80	1.268	1.076	22.2
Right tilted with Battery 5#	20	QPSK 50_0	18900/1880	1:1	0.824	0.14	16.77	17.80	1.268	1.045	22.2
Right tilted with Battery 6#	20	QPSK 50_0	18900/1880	1:1	0.830	0.18	16.77	17.80	1.268	1.052	22.2
				ad Tes	st Data(10	0%RB)					
Left tilted	20	QPSK 100_0	18900/1880	1:1	0.681	0.01	16.70	17.80	1.288	0.877	22.2
Right cheek	20	QPSK 100_0		1:1	0.691	0.01	16.70	17.80	1.288	0.890	22.2
Right tilted	20	QPSK 100_0		1:1	0.778	0.08	16.70	17.80	1.288	1.002	22.2
			Body worn	Test c	lata(Separ	ate 15mm	n 1RB)				
Front side	20	QPSK 1_0	18900/1880	1:1	0.139	0.09	20.18	20.90	1.180	0.164	22.2
Back side	20	QPSK 1_0	18900/1880	1:1	0.258	0.16	20.18	20.90	1.180	0.305	22.2
			Body worn T	est da	ta(Separat	e 15mm :	50%RB)				
Front side	20	QPSK 50_0	18900/1880	1:1	0.143	0.18	20.16	20.90	1.186	0.170	22.2
Back side	20	QPSK 50_0	18900/1880	1:1	0.259	0.06	20.16	20.90	1.186	0.307	22.2
			Hotspot T	est da	ta(Separat	e 10mm 1	1RB)				
Front side	20	QPSK 1_0	18900/1880	1:1	0.217	0.07	16.94	17.80	1.219	0.265	22.2
Back side	20	QPSK 1_0	18900/1880	1:1	0.489	0.01	16.94	17.80	1.219	0.596	22.2
Left side	20	QPSK 1_0	18900/1880	1:1	0.090	0.03	16.94	17.80	1.219	0.110	22.2
Top side	20	QPSK 1_0	18900/1880	1:1	0.447	0.18	16.94	17.80	1.219	0.545	22.2
			Hotspot Tes	st data	(Separate	10mm 50)%RB)				
Front side	20	QPSK 50_0	18900/1880	1:1	0.220	0.02	16.77	17.80	1.268	0.279	22.2
Back side	20	QPSK 50_0	18900/1880	1:1	0.503	0.05	16.77	17.80	1.268	0.638	22.2
Left side	20	QPSK 50_0	18900/1880	1:1	0.102	0.02	16.77	17.80	1.268	0.129	22.2
Top side	20	QPSK 50_0	18900/1880	1:1	0.427	0.09	16.77	17.80	1.268	0.541	22.2
			Test	Duty	SAR	Power	Conducted	Tune up	Scaled	Scaled 10-	Liquid
Test position	BW.	Test mode	Ch./Freq.	Cycle	(W/kg)10-	Drift(dR)	power(dBm)	Limit/dRm)	f4	9 1	Temp.
					y			(\abin)		SAR(W/kg)	. cmp.
			duct specific 1						, .		
Back side	20	QPSK 1_0	18900/1880	1:1	1.640	0.01	20.18	20.90	1.180	1.936	22.2
			ct specific 10g								
Back side	20	QPSK 50_0	18900/1880	1:1	1.680	-0.03	20.16	20.90	1.186	1.992	22.2
Table 16. SAR of LT		and 2 for He	and and Roo	٠,٠							

Table 16: SAR of LTE Band 2 for Head and Body.

Test Position	Channel/ Frequency	Measured SAR (1g)	1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
	(MHz)	(13)	SAR (1g)		SAR (1g)	SAR (1g)
Right tilted	18900/1880	0.862	0.843	1.023	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Ferme-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.com/en/Ferme-and-Conditions/Ferme-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clients instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extend of the law Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention To check the authenticity of testing /inspection report & certificities, please contact us at testing /inspection report & certificities, please contact us at testing /inspection report & certificities.

South of No. 5 Plant, No. 1, Punsherry Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Plot Free Tised Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州上区苏州工业园区河胜路(号的6号厂房南部 邮编: 215000

t (86-512) 62992980

sgs.china@sgs.com

²⁾ A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

³⁾ A third repeated measurement was preformed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

⁴⁾ Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 138 of 169

8.2.1 SAR Result of LTE Band 4

				Ant 1	Test Rec					0	
			L	Dutv	SAR	Power	Conducted	Tune up	Scaled	Scaled	Liquid
Test position	BW.	Test mode	Test ch./Freq.	Cycle	(W/kg)	drift	Power(dBm)			SAR 1-g	Temp.(°C)
					1-g	(dB)	· orror (a.z)		luoto.	(W/kg)	· op.(o
					est Data(*						
Left cheek	20	QPSK 1_0	20175/1732.5		0.175	0.09	23.09	24.40	1.352	0.237	21.8
Left tilted	20	QPSK 1_0	20175/1732.5	1:1	0.040	0.16	23.09	24.40	1.352	0.054	21.8
Right cheek	20	QPSK 1_0	20175/1732.5	1:1	0.126	-0.03	23.09	24.40	1.352	0.170	21.8
Right tilted	20	QPSK 1_0	20175/1732.5	1:1	0.050	0.11	23.09	24.40	1.352	0.068	21.8
			He	ead Tes	st Data(50	%RB)					
Left cheek	20	QPSK 50_0	20175/1732.5	1:1	0.130	0.16	22.25	23.40	1.303	0.169	21.8
Left tilted	20	QPSK 50_0	20175/1732.5	1:1	0.035	0.09	22.25	23.40	1.303	0.046	21.8
Right cheek	20	QPSK 50_0	20175/1732.5	1:1	0.108	0.01	22.25	23.40	1.303	0.141	21.8
Right tilted	20		20175/1732.5	1:1	0.039	0.07	22.25	23.40	1.303	0.050	21.8
<u> </u>		_	Body worn	Test da	ata(Separ	ate 15mn					
Front side	20	QPSK 1 0	20175/1732.5	1:1	0.263	0.05	22.35	23.10	1.189	0.313	21.8
Back side	20	QPSK 1_0	20175/1732.5	1:1	0.540	0.01	22.35	23.10	1.189	0.642	21.8
Baok oldo		Q. O. C.	Body worn T					20.10	1.100	0.0 12	
Front side	20	QPSK 50 0	20175/1732.5	1:1	0.264	0.08	22.11	23.10	1.256	0.332	21.8
Back side	20	QPSK 50_0		1:1	0.567	-0.01	22.11	23.10	1.256	0.712	21.8
Back side with Battery 2#	20	QPSK 50_0		1:1	0.546	0.08	22.11	23.10	1.256	0.686	21.8
Back side with Battery 3#		QPSK 50_0		1:1	0.536	0.08	22.11	23.10	1.256	0.673	21.8
,	20										
Back side with Battery 4#	20	QPSK 50_0		1:1	0.527	0.02	22.11	23.10	1.256	0.662	21.8
Back side with Battery 5#	20		20175/1732.5	1:1	0.525	-0.08	22.11	23.10	1.256	0.659	21.8
Back side with Battery 6#	20	QPSK 50_0	20175/1732.5	1:1	0.515	0.00	22.11	23.10	1.256	0.647	21.8
			Hotspot T								
Front side	20	QPSK 1_0	20175/1732.5	1:1	0.351	0.05	21.56	22.10	1.132	0.397	21.8
Back side	20	QPSK 1_0	20175/1732.5	1:1	0.946	0.06	21.56	22.10	1.132	1.071	21.8
Back side-Repeat	20	QPSK 1_0	20175/1732.5	1:1	0.932	0.09	21.56	22.10	1.132	1.055	21.8
Right side	20	QPSK 1_0	20175/1732.5	1:1	0.202	0.15	21.56	22.10	1.132	0.229	21.8
Bottom side	20	QPSK 1_0	20175/1732.5	1:1	0.909	0.03	21.56	22.10	1.132	1.029	21.8
Back side with Battery 2#	20	QPSK 1_0	20175/1732.5	1:1	0.789	0.12	21.56	22.10	1.132	0.893	21.8
Back side with Battery 3#	20	QPSK 1_0	20175/1732.5	1:1	0.774	0.16	21.56	22.10	1.132	0.876	21.8
Back side with Battery 4#	20	QPSK 1_0	20175/1732.5	1:1	0.759	-0.19	21.56	22.10	1.132	0.859	21.8
Back side with Battery 5#	20	QPSK 1_0	20175/1732.5	1:1	0.795	0.20	21.56	22.10	1.132	0.900	21.8
Back side with Battery 6#	20		20175/1732.5	1:1	0.805	0.18	21.56	22.10	1.132	0.912	21.8
,		_	Hotspot Tes	st data(Separate	10mm 50					
Front side	20	QPSK 50_0	20175/1732.5	1:1	0.362	0.05	21.55	22.10	1.135	0.411	21.8
Back side	20		20175/1732.5	1:1	0.820	0.03	21.55	22.10	1.135	0.931	21.8
Right side	20		20175/1732.5	1:1	0.202	0.04	21.55	22.10	1.135	0.229	21.8
Bottom side	20		20175/1732.5	1:1	0.711	0.15	21.55	22.10	1.135	0.807	21.8
Bottom side	20	QI OIT 30_0	Hotspot Tes					22.10	1.100	0.007	21.0
Back side	20	OBSK 100 C	20175/1732.5	1:1	0.770			22.10	1.233	0.949	21.0
Bottom Side			20175/1732.5	1:1	0.667	-0.04 -0.01	21.19 21.19	22.10 22.10	1.233	0.822	21.8 21.8
Bottom Side	20	QF3K 100_0			CAD	-0.01	21.19	22.10		Scaled 10-	21.0
Took maniking	DW	Took mode	Test	Duty		Power	Conducted	Tune up	PAIS N		Liquid
Test position	DVV.	Test mode	Ch./Freq.	Cycle	(W/Kg)10-	Drift(dB)	power(dBm)	Limit(dBm)	factor	g SAD(M/kg)	Temp.
		D==			9	(Conoro	to Omm 1DD\			SAK(W/Kg)	
Dools old-	20		duct specific 1					22.40	1 100	2 660	04.0
Back side	20		20175/1732.5		2.240	0.03	22.35	23.10	1.189	2.662	21.8
Bottom side	20		20175/1732.5		2.170	0.05	22.35	23.10	1.189	2.579	21.8
			duct specific 10								
Back side	20		20175/1732.5		2.110	0.03	22.11	23.10	1.256	2.650	21.8
Bottom side	20		20175/1732.5		2.010	0.05	22.11	23.10	1.256	2.525	21.8
			luct specific 10								1
Back side	20		20175/1732.5		2.030	0.03	22.11	23.10	1.256	2.550	21.8
Bottom side	20	QPSK 50_0	20175/1732.5		1.880	0.05	22.11	23.10	1.256	2.361	21.8
				Ant 3	Test Rec	ord					
				Duty	SAR	Power	Conducted	Tune up	Scalad	Scaled	Liquid
Test position	BW.	Test mode	Test ch./Freq.	Cycle	(W/kg)	drift	Power(dBm)	Tune up	footor	SAR 1-g	Temp.(℃)
				Cycle	`1-g	(dB)	rower(abm)	riiiit(apw)	ractor	(W/kg)	n emb.(C)

South of No. 5 Pietr, No. 1, Runshere; Read, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 139 of 169

						agc.	1000	1 100					
		F	lead 1	Test Data(1	RB)								
Left cheek	20	QPSK 1_0 20175/1732.5	1:1	0.504	0.06	20.57	21.20	1.156	0.583	21.8			
Left tilted	20	QPSK 1_0 20175/1732.5	1:1	0.735	0.04	20.57	21.20	1.156	0.850	21.8			
Right cheek	20	QPSK 1_0 20175/1732.5	1:1	0.640	-0.11	20.57	21.20	1.156	0.740	21.8			
Right tilted	20	QPSK 1_0 20175/1732.5	1:1	0.738	-0.02	20.57	21.20	1.156	0.853	21.8			
	Head Test Data(50%RB)												
Left cheek	20	QPSK 50_0 20175/1732.5	1:1	0.556	0.07	20.50	21.20	1.175	0.653	21.8			
Left tilted	20	QPSK 50_0 20175/1732.5	1:1	0.751	-0.10	20.50	21.20	1.175	0.882	21.8			
Right cheek	20	QPSK 50_0 20175/1732.5	1:1	0.554	-0.10	20.50	21.20	1.175	0.651	21.8			
Right tilted	20	QPSK 50_0 20175/1732.5	1:1	0.805	-0.04	20.50	21.20	1.175	0.946	21.8			
Right tilted -Repeat	20	QPSK 50_0 20175/1732.5	1:1	0.801	0.06	20.50	21.20	1.175	0.941	21.8			
Right tilted with Battery 2#	20	QPSK 50_0 20175/1732.5	1:1	0.760	0.02	20.50	21.20	1.175	0.893	21.8			
Right tilted with Battery 3#		QPSK 50_0 20175/1732.5	1:1	0.781	0.07	20.50	21.20	1.175	0.918	21.8			
Right tilted with Battery 4#	20	QPSK 50_0 20175/1732.5	1:1	0.790	0.19	20.50	21.20	1.175	0.928	21.8			
Right tilted with Battery 5#	20	QPSK 50_0 20175/1732.5	1:1	0.745	-0.07	20.50	21.20	1.175	0.875	21.8			
Right tilted with Battery 6#	20	QPSK 50_0 20175/1732.5	1:1	0.775	0.03	20.50	21.20	1.175	0.911	21.8			
Head Test Data(100%RB)													
Left tilted	20	QPSK 100_0 20175/1732.5	1:1	0.723	0.04	20.45	21.20	1.189	0.859	21.8			
Right tilted	20	QPSK 100_0 20175/1732.5	1:1	0.775	-0.02	20.45	21.20	1.189	0.921	21.8			
		Body worn	Test c	lata(Separa	ate 15mm	1RB)							
Front side	20	QPSK 1_50 20175/1732.5	1:1	0.129	0.06	20.89	21.30	1.099	0.142	21.8			
Back side	20	QPSK 1_50 20175/1732.5	1:1	0.258	0.05	20.89	21.30	1.099	0.284	21.8			
		Body worn Te		ta(Separat	e 15mm 5	50%RB)		•					
Front side	20	QPSK 50_0 20175/1732.5		0.124	0.13	20.60	21.30	1.175	0.146	21.8			
Back side	20	QPSK 50_0 20175/1732.5	1:1	0.252	-0.20	20.60	21.30	1.175	0.296	21.8			
		Hotspot Te		ta(Separat	e 10mm 1	RB)							
Front side	20	QPSK 1_50 20050/1720	1:1	0.199	-0.08	19.78	20.80	1.265	0.252	21.8			
Back side	20	QPSK 1_50 20050/1720	1:1	0.423	0.10	19.78	20.80	1.265	0.535	21.8			
Left side	20	QPSK 1_50 20050/1720	1:1	0.112	0.06	19.78	20.80	1.265	0.142	21.8			
Top side	20	QPSK 1_50 20050/1720	1:1	0.412	0.12	19.78	20.80	1.265	0.521	21.8			
		Hotspot Tes	t data	(Separate	10mm 50	%RB)		•					
Front side	20	QPSK 50_0 20050/1720	1:1	0.217	0.09	19.74	20.80	1.276	0.277	21.8			
Back side	20	QPSK 50_0 20050/1720	1:1	0.404	0.11	19.74	20.80	1.276	0.516	21.8			
Left side	20	QPSK 50_0 20050/1720	1:1	0.111	0.09	19.74	20.80	1.276	0.142	21.8			
Top side	20	QPSK 50_0 20050/1720	1:1	0.392	-0.09	19.74	20.80	1.276	0.500	21.8			
	- D	and 1 for Hood and Boo	l	•									

Table 17: SAR of LTE Band 4 for Head and Body.

Test Position			1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated	
	(MHz)	(1g)	SAR (1g)		SAR (1g)	SAR (1g)	
Back side	20175/1732.5	0.946	0.932	1.015	N/A	N/A	
Right tilted	20175/1732.5	0.805	0.801	1.005	N/A	N/A	

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents so the transaction of stream and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration foreory or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(e) tasted and such sample(e) are retained for 30 days only.

South of No. S Plant No. 1, Runshere; Road, Suchou Industrial Park, Suchou Area, China (Jangsu) Pikot Free Tracke Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定教区苏州上位国区海走路1号的6号厂房南部 雌编: 215000

t (86–512) 62992980 t (86–512) 62992980

sgs.china@sgs.com

²⁾ A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

³⁾ A third repeated measurement was preformed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

⁴⁾ Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 140 of 169

8.2.2 SAR Result of LTE Band 5

Test position				Ant 0 T	est Reco	rd					
	BW.	Test mode Test ch./F	req.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
				Head Te	st Data(1					(W/Kg)	
Left cheek	10	QPSK 1 0 20525/83	6.5	1:1	0.115	0.01	24.29	25.00	1.178	0.135	22.0
Left tilted	10	QPSK 1_0 20525/83		1:1	0.054	0.05	24.29	25.00	1.178	0.063	22.0
Right cheek	10	QPSK 1_0 20525/83		1:1	0.181	0.05	24.29	25.00	1.178	0.213	22.0
Right tilted	10	QPSK 1_0 20525/83		1:1	0.081	0.16	24.29	25.00	1.178	0.095	22.0
3					Data(50%						
Left cheek	10	QPSK 25_0 20525/83	6.5	1:1	0.107	0.03	22.99	24.00	1.262	0.135	22.0
Left tilted	10	QPSK 25_0 20525/83	6.5	1:1	0.071	0.09	22.99	24.00	1.262	0.090	22.0
Right cheek	10	QPSK 25_0 20525/83		1:1	0.137	0.08	22.99	24.00	1.262	0.173	22.0
Right tilted	10	QPSK 25_0 20525/83	6.5	1:1	0.064	0.09	22.99	24.00	1.262	0.081	22.0
		Body	worr	n Test da	ta(Separa	te 15mm	1RB)				
Front side	10	QPSK 1_0 20525/83		1:1	0.139	-0.06	24.29	25.00	1.178	0.164	22.0
Back side	10	QPSK 1_0 20525/83		1:1	0.167	-0.05	24.29	25.00	1.178	0.197	22.0
			orn ⁻	Test data	(Separate	15mm 5					
Front side	10	QPSK 25_0 20525/83		1:1	0.138	0.02	22.99	24.00	1.262	0.174	22.0
Back side	10	QPSK 25_0 20525/83	6.5	1:1	0.173	-0.04	22.99	24.00	1.262	0.218	22.0
Back side with Battery 2#	10	QPSK 25_0 20525/83	6.5	1:1	0.165	0.16	22.99	24.00	1.262	0.208	22.0
Back side with Battery 3#	10	QPSK 25_0 20525/83	6.5	1:1	0.168	0.08	22.99	24.00	1.262	0.212	22.0
Back side with Battery 4#	10	QPSK 25_0 20525/83	6.5	1:1	0.170	0.03	22.99	24.00	1.262	0.215	22.0
Back side with Battery 5#	10	QPSK 25_0 20525/83		1:1	0.167	0.15	22.99	24.00	1.262	0.211	22.0
Back side with Battery 6#	10	QPSK 25_0 20525/83		1:1	0.166	0.07	22.99	24.00	1.262	0.209	22.0
					(Separate						
Front side	10	QPSK 1_0 20525/83		1:1	0.240	0.05	24.29	25.00	1.178	0.283	22.0
Back side	10	QPSK 1_0 20525/83		1:1	0.290	-0.04	24.29	25.00	1.178	0.342	22.0
Left side	10	QPSK 1_0 20525/83		1:1	0.097	0.08	24.29	25.00	1.178	0.114	22.0
Bottom side	10	QPSK 1_0 20525/83		1:1	0.121	-0.02	24.29	25.00	1.178	0.142	22.0
	1			,	Separate 1						
Front side	10	QPSK 25_0 20525/83		1:1	0.242	0.12	22.99	24.00	1.262	0.305	22.0
Back side	10	QPSK 25_0 20525/83		1:1	0.298	-0.03	22.99	24.00	1.262	0.376	22.0
Left side	10	QPSK 25_0 20525/83		1:1	0.106	0.08	22.99	24.00	1.262	0.134	22.0
Bottom side	10	QPSK 25_0 20525/83		1:1	0.131	0.05	22.99	24.00	1.262	0.165	22.0
Back side with Battery 2#	10	QPSK 25_0 20525/83		1:1	0.285	0.12	22.99	24.00	1.262	0.360	22.0
Back side with Battery 3#	10	QPSK 25_0 20525/83		1:1	0.290	0.15	22.99	24.00	1.262	0.366	22.0
Back side with Battery 4#	10	QPSK 25_0 20525/83		1:1	0.293	0.19	22.99	24.00	1.262	0.370	22.0
Back side with Battery 5#	10	QPSK 25_0 20525/83		1:1	0.291	0.02	22.99	24.00	1.262	0.367	22.0
Back side with Battery 6#	10	QPSK 25_0 20525/83	6.5	1:1	0.283	0.15	22.99	24.00	1.262	0.357	22.0
				Ant 3 I	est Reco		1			Caalad	
Test position	ВW	Test mode Test ch./F	roa	Duty	SAR (W/kg)	Power drift	Conducted		Scaled	Scaled	Liquid
rest position	D***.	Test mode rest chi,	ıcq.	Cycle	1-g	(dB)	Power(dBm)	Limit(dBm)	factor	(W/kg)	Liquid Temp.(℃)
				Head Te	st Data(1					(***,Ng/	
Left cheek	10	QPSK 1_0 20525/83	6.5	1:1	0.227	0.07	24.23	25.00	1.194	0.271	22.0
	10	QPSK 1_0 20525/83		1:1	0.149	0.07	24.23	25.00	1.194	0.178	22.0
		= _ = = = = = = = = = = = = = =									22.0
Left tilted	10	QPSK 1 0 20525/83	6.5	1.1	0.450	0.02	24.23	25.00	1.194	0.537	
Left tilted Right cheek	10 10	QPSK 1_0 20525/83 QPSK 1_0 20525/83		1:1 1:1	0.450 0.263	0.02	24.23 24.23	25.00 25.00	1.194 1.194	0.537 0.314	
Left tilted	10	QPSK 1_0 20525/83 QPSK 1_0 20525/83	6.5	1:1	0.263	0.13	24.23 24.23	25.00 25.00	1.194	0.537	22.0
Left tilted Right cheek Right tilted	10	QPSK 1_0 20525/83	6.5 ⊢	1:1 lead Test		0.13 6RB)	24.23	25.00	1.194	0.314	22.0
Left tilted Right cheek Right tilted Left cheek	10	QPSK 1_0 20525/83 QPSK 25_0 20525/83	6.5 ⊢ 6.5	1:1 lead Test 1:1	0.263 Data(50% 0.242	0.13 6RB) -0.02	24.23	25.00 24.00	1.194	0.314	22.0
Left tilted Right cheek Right tilted Left cheek Left tilted	10 10 10	QPSK 1_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83	6.5 6.5 6.5	1:1 lead Test 1:1 1:1	0.263 Data(50% 0.242 0.164	0.13 6RB) -0.02 0.07	24.23 23.00 23.00	25.00 24.00 24.00	1.194 1.259 1.259	0.314 0.305 0.206	22.0 22.0 22.0
Left tilted Right cheek Right tilted Left cheek Left tilted Right cheek	10	QPSK 1_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83	6.5 6.5 6.5 6.5	1:1 lead Test 1:1	0.263 Data(50% 0.242	0.13 6RB) -0.02	24.23	25.00 24.00	1.194	0.314	22.0
Left tilted Right cheek Right tilted Left cheek Left tilted	10 10 10 10 10	QPSK 1_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83	6.5 6.5 6.5 6.5 6.5	1:1 lead Test 1:1 1:1	0.263 Data(50% 0.242 0.164 0.571	0.13 6RB) -0.02 0.07 0.13 0.11	24.23 23.00 23.00 23.00	25.00 24.00 24.00 24.00	1.194 1.259 1.259 1.259	0.314 0.305 0.206 0.719	22.0 22.0 22.0 22.0
Left tilted Right cheek Right tilted Left cheek Left tilted Right cheek Right tilted	10 10 10 10 10 10	QPSK 1_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83	6.5 6.5 6.5 6.5 6.5	1:1 lead Test 1:1 1:1 1:1	0.263 t Data(50% 0.242 0.164 0.571 0.286	0.13 6RB) -0.02 0.07 0.13	24.23 23.00 23.00 23.00 23.00 23.00	25.00 24.00 24.00 24.00 24.00	1.194 1.259 1.259 1.259 1.259	0.314 0.305 0.206 0.719 0.360	22.0 22.0 22.0 22.0 22.0 22.0
Left tilted Right cheek Right tilted Left cheek Left tilted Right cheek Right tilted Right cheek Right tilted Right cheek with Battery 2#	10 10 10 10 10 10	QPSK 1_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83	6.5 6.5 6.5 6.5 6.5 6.5	1:1 lead Test 1:1 1:1 1:1 1:1	0.263 Data(50% 0.242 0.164 0.571 0.286 0.53 0.540	0.13 6RB) -0.02 0.07 0.13 0.11 0.18	23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00	25.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00	1.194 1.259 1.259 1.259 1.259 1.259 1.259	0.314 0.305 0.206 0.719 0.360 0.667 0.680	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
Left tilted Right cheek Right tilted Left cheek Left tilted Right cheek Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3#	10 10 10 10 10 10 10	QPSK 1_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83	6.5 6.5 6.5 6.5 6.5 6.5 6.5	1:1 lead Test 1:1 1:1 1:1 1:1 1:1	0.263 t Data(50% 0.242 0.164 0.571 0.286 0.53	0.13 6RB) -0.02 0.07 0.13 0.11 0.18 0.11	24.23 23.00 23.00 23.00 23.00 23.00 23.00	25.00 24.00 24.00 24.00 24.00 24.00 24.00	1.194 1.259 1.259 1.259 1.259 1.259	0.314 0.305 0.206 0.719 0.360 0.667	22.0 22.0 22.0 22.0 22.0 22.0
Left tilted Right cheek Right tilted Left cheek Left tilted Right cheek Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4#	10 10 10 10 10 10 10 10	QPSK 1_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83 QPSK 25_0 20525/83	6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	1:1 lead Test 1:1 1:1 1:1 1:1 1:1 1:1	0.263 t Data(509 0.242 0.164 0.571 0.286 0.53 0.540 0.546	0.13 6RB) -0.02 0.07 0.13 0.11 0.18 0.11 0.19	24.23 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00	24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00	1.194 1.259 1.259 1.259 1.259 1.259 1.259 1.259	0.314 0.305 0.206 0.719 0.360 0.667 0.680 0.687	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

South of No. 6 Piert, No. 1, Runsherg Road, Suzhou Industria Park, Suzhou Area, Chine (Jangsu) Piet Free Texie Zene 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州片区苏州工业园区海准路1号的6号厂房南部 鄉編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 141 of 169

Front side	10	QPSK 1_0 20525/836.5	1:1	0.079	0.19	24.23	25.00	1.194	0.094	22.0		
Back side	10	QPSK 1_0 20525/836.5	1:1	0.160	0.02	24.23	25.00	1.194	0.191	22.0		
		Body worn	Test data	(Separate	15mm 50)%RB)						
Front side	10	QPSK 25_0 20525/836.5	1:1	0.083	0.16	23.00	24.00	1.259	0.105	22.0		
Back side	10	QPSK 25_0 20525/836.5	1:1	0.170	0.07	23.00	24.00	1.259	0.214	22.0		
Hotspot Test data(Separate 10mm 1RB)												
Front side	10	QPSK 1_0 20525/836.5	1:1	0.133	0.16	24.23	25.00	1.194	0.159	22.0		
Back side	10	QPSK 1_0 20525/836.5	1:1	0.268	0.04	24.23	25.00	1.194	0.320	22.0		
Left side	10	QPSK 1_0 20525/836.5	1:1	0.238	0.10	24.23	25.00	1.194	0.284	22.0		
Top side	10	QPSK 1_0 20525/836.5	1:1	0.111	0.11	24.23	25.00	1.194	0.133	22.0		
		Hotspot T	est data(S	Separate 1	0mm 50%	6RB)						
Front side	10	QPSK 25_0 20525/836.5	1:1	0.147	0.02	23.00	24.00	1.259	0.185	22.0		
Back side	10	QPSK 25_0 20525/836.5	1:1	0.293	0.07	23.00	24.00	1.259	0.369	22.0		
Left side	10	QPSK 25_0 20525/836.5	1:1	0.238	0.04	23.00	24.00	1.259	0.300	22.0		
Top side	10	QPSK 25_0 20525/836.5	1:1	0.103	0.13	23.00	24.00	1.259	0.130	22.0		

Table 18: SAR of LTE Band 5 for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp. and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alterations for progress of assistance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

South of No. 6 Perit, No. 1, Punsherg Read, Suchou Industria Park, Suchou Avea, China (Jangsu) Pilot Free Trade Zone 中国 · 苏州 - 中国(江苏)自由吴景玄翁区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 142 of 169

8.2.3 SAR Result of LTE Band 7

				Ant 1 Test	Record						
Test position	BW.	Test mode	Test ch./Freq.		SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)			Liquid Temp.(℃)
	1		T	Head Test Da	/						
Left cheek	20	QPSK 1_0	21100/2535	1:1	0.098	0.07	24.35	24.50	1.035	0.101	22.5
Left tilted	20	QPSK 1_0	21100/2535	1:1	0.111	0.02	24.35	24.50	1.035	0.115	22.5
Right cheek	20	QPSK 1_0	21100/2535	1:1	0.195	0.05	24.35	24.50	1.035	0.202	22.5
Right tilted	20	QPSK 1_0	21100/2535	1:1	0.081	0.09	24.35	24.50	1.035	0.084	22.5
				lead Test Dat			1				
Left cheek	20	QPSK 50_0	21100/2535	1:1	0.092	0.01	23.22	23.50	1.067	0.098	22.5
Left tilted	20	QPSK 50_0		1:1	0.105	0.03	23.22	23.50	1.067	0.112	22.5
Right cheek	20	QPSK 50_0		1:1	0.187	0.09	23.22	23.50	1.067	0.199	22.5
Right tilted	20	QPSK 50_0	21100/2535	1:1	0.077	0.01	23.22	23.50	1.067	0.082	22.5
				n Test data(Se							
Front side	20	QPSK 1_0	21100/2535	1:1	0.108	0.09	22.38	22.40	1.005	0.108	22.5
Back side	20	QPSK 1_0	21100/2535	1:1	0.312	0.08	22.38	22.40	1.005	0.313	22.5
				Test data(Sep		mm 50%					
Front side	20	QPSK 50_0		1:1	0.107	0.11	22.16	22.40	1.057	0.113	22.5
Back side	20	QPSK 50_0		1:1	0.321	0.08	22.16	22.40	1.057	0.339	22.5
			Hotspot ⁻	Test data(Sep	arate 10	mm 1RB)				
Front side	20	QPSK 1_0	21100/2535	1:1	0.213	0.06	22.38	22.40	1.005	0.214	22.5
Back side	20	QPSK 1_0	21100/2535	1:1	0.692	0.09	22.38	22.40	1.005	0.695	22.5
Left side	20	QPSK 1_0	21100/2535	1:1	0.041	0.06	22.38	22.40	1.005	0.041	22.5
Right side	20	QPSK 1_0	21100/2535	1:1	0.419	0.02	22.38	22.40	1.005	0.421	22.5
Bottom side	20	QPSK 1_0	21100/2535	1:1	0.570	0.03	22.38	22.40	1.005	0.573	22.5
			Hotspot Te	est data(Sepa	rate 10m	m 50%R	B)				•
Front side	20	QPSK 50_0	21100/2535	1:1	0.212	0.03	22.16	22.40	1.057	0.224	22.5
Back side	20	QPSK 50_0	21100/2535	1:1	0.690	0.02	22.16	22.40	1.057	0.729	22.5
Left side	20	QPSK 50_0		1:1	0.038	0.06	22.16	22.40	1.057	0.040	22.5
Right side	20	QPSK 50_0	21100/2535	1:1	0.404	0.08	22.16	22.40	1.057	0.427	22.5
Bottom side	20	QPSK 50_0	21100/2535	1:1	0.585	0.11	22.16	22.40	1.057	0.618	22.5
				Ant 3 Test	Record						
est position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)			Scaled SAR 1- g (W/kg)	Liquid Temp.(℃)
	1	0.5014.4.6		Head Test Da			1 10 =0 1				
Left cheek	20	QPSK 1_0	21100/2535	1:1	0.803	0.02	18.73	19.10	1.089	0.874	22.5
Left cheek	20	QPSK 1_0	20850/2510	1:1	0.787	0.09	18.67	19.10	1.104	0.869	22.5
Left cheek	20	QPSK 1_0	21350/2560	1:1	0.762	0.06	18.65	19.10	1.109	0.845	22.5
Left tilted	20	QPSK 1_0	21100/2535	1:1	0.792	0.09	18.73	19.10	1.089	0.862	22.5
Left tilted											
Left tilted	20	QPSK 1_0	20850/2510	1:1	0.764	0.04	18.67	19.10	1.104	0.844	22.5
	20	QPSK 1_0	21350/2560	1:1	0.764 0.824	0.04 0.11	18.67 18.65	19.10	1.109	0.914	22.5
Right cheek	20 20	QPSK 1_0 QPSK 1_0	21350/2560 21100/2535	1:1 1:1	0.764 0.824 0.761	0.04 0.11 0.02	18.67 18.65 18.73	19.10 19.10	1.109 1.089	0.914 0.829	22.5 22.5
Right cheek	20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510	1:1 1:1 1:1	0.764 0.824 0.761 0.720	0.04 0.11 0.02 -0.04	18.67 18.65 18.73 18.67	19.10 19.10 19.10	1.109 1.089 1.104	0.914 0.829 0.795	22.5 22.5 22.5
Right cheek Right cheek	20 20 20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510 21350/2560	1:1 1:1 1:1 1:1	0.764 0.824 0.761 0.720 0.687	0.04 0.11 0.02 -0.04 0.03	18.67 18.65 18.73 18.67 18.65	19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109	0.914 0.829 0.795 0.762	22.5 22.5 22.5 22.5
Right cheek	20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535	1:1 1:1 1:1	0.764 0.824 0.761 0.720 0.687 0.878	0.04 0.11 0.02 -0.04 0.03 0.04	18.67 18.65 18.73 18.67 18.65 18.73	19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104	0.914 0.829 0.795 0.762 0.956	22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted	20 20 20 20 20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510	1:1 1:1 1:1 1:1 1:1 1:1	0.764 0.824 0.761 0.720 0.687 0.878 0.830	0.04 0.11 0.02 -0.04 0.03 0.04 0.13	18.67 18.65 18.73 18.67 18.65 18.73 18.67	19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104	0.914 0.829 0.795 0.762 0.956 0.916	22.5 22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted	20 20 20 20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560	1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05	18.67 18.65 18.73 18.67 18.65 18.73	19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089	0.914 0.829 0.795 0.762 0.956	22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted Right tilted	20 20 20 20 20 20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560	1:1 1:1 1:1 1:1 1:1 1:1 1:1 dead Test Dat	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835 a(50%RI	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05	18.67 18.65 18.73 18.67 18.65 18.73 18.67 18.65	19.10 19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104 1.109	0.914 0.829 0.795 0.762 0.956 0.916 0.926	22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted Right tilted Left cheek	20 20 20 20 20 20 20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560	1:1 1:1 1:1 1:1 1:1 1:1 1:1 Head Test Dat	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835 a(50%RI	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05 3)	18.67 18.65 18.73 18.67 18.65 18.73 18.67 18.65	19.10 19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104 1.109	0.914 0.829 0.795 0.762 0.956 0.916	22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted Right tilted Left cheek Left cheek	20 20 20 20 20 20 20 20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 	1:1 1:1 1:1 1:1 1:1 1:1 1:1 Head Test Dat 1:1	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835 a(50%RI 0.766 0.760	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05 3) 0.03 0.12	18.67 18.65 18.73 18.67 18.65 18.73 18.67 18.65	19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104 1.109 1.189 1.262	0.914 0.829 0.795 0.762 0.956 0.916 0.926	22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted Right tilted Left cheek	20 20 20 20 20 20 20 20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 50_0 QPSK 1_0 QPSK 50_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 	1:1 1:1 1:1 1:1 1:1 1:1 1:1 Head Test Dat	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835 a(50%RI	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05 3)	18.67 18.65 18.73 18.67 18.65 18.73 18.67 18.65	19.10 19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104 1.109	0.914 0.829 0.795 0.762 0.956 0.916 0.926	22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted Right tilted Left cheek Left cheek Left cheek Left tilted	20 20 20 20 20 20 20 20 20 20	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21100/2535	1:1 1:1 1:1 1:1 1:1 1:1 1:1 Head Test Dat 1:1	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835 a(50%RI 0.766 0.776 0.810	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05 3) 0.03 0.12	18.67 18.65 18.73 18.67 18.65 18.73 18.67 18.65	19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104 1.109 1.189 1.262	0.914 0.829 0.795 0.762 0.956 0.916 0.926 0.910 0.959 0.939	22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted Right tilted Left cheek Left cheek Left cheek	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 50_0 QPSK 50_0 QPSK 50_0 QPSK 50_0 QPSK 50_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510	1:1 1:1 1:1 1:1 1:1 1:1 1:1 Head Test Dat 1:1 1:1	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835 a(50%RI 0.766 0.760 0.776	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05 3) 0.03 0.12 -0.07	18.67 18.65 18.73 18.67 18.65 18.73 18.67 18.65 18.35 18.09 18.27	19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104 1.109 1.189 1.262 1.211	0.914 0.829 0.795 0.762 0.956 0.916 0.926 0.910 0.959 0.939	22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted Right tilted Left cheek Left cheek Left cheek Left tilted	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 50_0 QPSK 50_0 QPSK 50_0 QPSK 50_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510	1:1 1:1 1:1 1:1 1:1 1:1 1:1 Head Test Dat 1:1 1:1 1:1	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835 a(50%RI 0.766 0.776 0.810	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05 3) 0.03 0.12 -0.07	18.67 18.65 18.73 18.67 18.65 18.73 18.67 18.65 18.35 18.09 18.27 18.35	19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104 1.109 1.189 1.262 1.211 1.189	0.914 0.829 0.795 0.762 0.956 0.916 0.926 0.910 0.959 0.939	22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5
Right cheek Right cheek Right tilted Right tilted Right tilted Left cheek Left cheek Left cheek Left tilted Left tilted Left tilted	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 50_0 QPSK 50_0 QPSK 50_0 QPSK 50_0 QPSK 50_0	21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21100/2535 20850/2510 21350/2560 21350/2560	1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	0.764 0.824 0.761 0.720 0.687 0.878 0.830 0.835 a(50%RI 0.766 0.776 0.810 0.791	0.04 0.11 0.02 -0.04 0.03 0.04 0.13 -0.05 3) 0.03 0.12 -0.07 0.06 0.07	18.67 18.65 18.73 18.67 18.65 18.73 18.67 18.65 18.35 18.09 18.27 18.35 18.09	19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10 19.10	1.109 1.089 1.104 1.109 1.089 1.104 1.109 1.189 1.262 1.211 1.189 1.262	0.914 0.829 0.795 0.762 0.956 0.916 0.926 0.910 0.959 0.939 0.963 0.998	22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5

South of No. 8 Piett, No. 1, Runshere, Road, Scarbou Industrial Park, Starhou Area, China (Jangsu) Pict Free Tised Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定翰区苏州丘安周区满世路(号数6号厂房南部 雌嶺: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

143 of 169 Page: 20 QPSK 50_0 21350/2560 18.27 1.211 0.912 Right cheek 0.753 -0.03 19.10 22.5 QPSK 50_0 21100/2535 Right tilted 20 1:1 0.879 0.05 18.35 19.10 1.189 1.045 22.5 QPSK 50_0 20850/2510 Right tilted 20 1:1 0.821 0.12 18.09 19.10 1.262 1.036 22.5 Right tilted 20 QPSK 50_0 21350/2560 1:1 0.847 0.09 18.27 19.10 1.211 1.025 22.5 Right tilted with Battery 2# 20 QPSK 50_0 21100/2535 22.5 1:1 0.860 0.01 18.35 19.10 1.189 1.022 Right tilted with Battery 3# 20 QPSK 50_0 21100/2535 22.5 1:1 0.842 0.03 18.35 19.10 1.189 1.001 Right tilted with Battery 4# 20 QPSK 50_0 21100/2535 Right tilted with Battery 5# 20 QPSK 50_0 21100/2535 18.35 19.10 1.189 1.028 22.5 1:1 0.865 0.17 18.35 19.10 1.189 0.989 22.5 1:1 0.832 0.03 Right tilted with Battery 6# 20 QPSK 50 0 21100/2535 1.1 0.851 -0.09 18.35 19 10 1.189 1.011 22.5 Head Test Data(100%RB) Left cheek 20 QPSK 50_0 21100/2535 0.817 18.30 19.10 1.202 0.982 22.5 1:1 0.11 QPSK 50_0 21100/2535 Left tilted 20 1:1 0.824 0.04 18.30 19.10 1.202 0.991 22.5 Right cheek 20 QPSK 50 0 21100/2535 1:1 0.758 0.08 18.30 19.10 1.202 0.911 22.5 Right tilted 20 QPSK 50_0 21100/2535 1:1 0.894 0.05 18.30 19.10 1.202 **1.075** 22.5 Right tilted -Repeat 20 QPSK 50_0 21100/2535 1:1 0.891 0.01 18.30 19.10 1.202 1.071 22.5 Body worn Test data(Separate 15mm 1RB) QPSK 1_0 21100/2535 20.50 1.064 0.233 Front side 1:1 0.219 0.07 20.23 22.5 QPSK 1_0 21100/2535 1.064 0.377 1.1 -0.04 20.50 22.5 Back side 20 0.354 20.23 Body worn Test data(Separate 15mm 50%RB) Front side 20 QPSK 50_0 21100/2535 0.219 19.81 20.50 1.172 0.257 22.5 0.11 1:1 20 QPSK 50_0 21100/2535 0.362 19.81 20.50 1.172 **0.424** 22.5 Back side 1:1 -0.04QPSK 50_0 21100/2535 QPSK 50_0 21100/2535 Back side with Battery 2# 20 0.09 19.81 20.50 1.172 0.416 22.5 1:1 0.355 Back side with Battery 3# 20 1:1 0.345 0.18 19.81 20.50 1.172 0.404 22.5 Back side with Battery 4# | 20 | QPSK 50_0 | 21100/2535 1:1 0.343 -0.01 19.81 20.50 1.172 0.402 22.5 Back side with Battery 5# 20 QPSK 50_0 21100/2535 1:1 0.341 0.00 19.81 20.50 1.172 0.400 22.5 Back side with Battery 6# 20 QPSK 50 0 21100/2535 1:1 0.359 0.15 19.81 20.50 1.172 0.421 22.5 Hotspot Test data(Separate 10mm 1RB) Front side QPSK 1 0 21100/2535 1:1 0.176 0.06 18.73 19.10 1.089 0.192 22.5 Back side 20 QPSK 1_0 21100/2535 1:1 0.629 0.05 18.73 19.10 1.089 0.685 22.5 QPSK 1_0 21100/2535 18.73 19.10 Left side 1:1 0.263 0.01 1.089 0.286 22.5 Right side 20 QPSK 1_0 21100/2535 1.1 0.011 0.15 18.73 19.10 1.089 0.012 QPSK 1_0 21100/2535 1:1 0.753 0.03 19.10 1.089 0.820 22.5 Top side 20 18.73 QPSK 1_0 22.5 20 20850/2510 0.747 0.06 18.67 19.10 1.104 0.825 1:1 Top side Top side 20 QPSK 1_0 21350/2560 1:1 0.839 0.03 18.65 19.10 1.109 0.931 22.5 Hotspot Test data(Separate 10mm 50%RB) Front side 20 QPSK 50_0 21100/2535 1:1 0.176 0.02 18.35 19.10 1.189 0.209 22.5 Back side 20 QPSK 50 0 21100/2535 1:1 18.35 19.10 1.189 0.739 22.5 0.622 0.07 20 QPSK 50_0 21100/2535 18.35 22.5 Left side 1:1 0.278 0.06 19.10 1.189 0.330 QPSK 50_0 21100/2535 Right side 20 1:1 0.011 0.02 18.35 19.10 1.189 0.012 22.5 QPSK 50_0 21100/2535 22.5 Top side 20 1:1 0.784 0.01 18.35 19.10 1.189 0.932 Top side 20 QPSK 50_0 20850/2510 1:1 0.785 0.02 18.09 19.10 1.262 0.991 22.5 QPSK 50_0 21350/2560 22.5 20 1.1 0.852 0.04 18 27 19 10 1 211 Top side 1.031 QPSK 50_0 21350/2560 1.211 22.5 Top side-Repeat 1:1 0.848 0.09 18.27 19.10 1.027 1.211 1.021 22.5 QPSK 50_0 21350/2560 0.02 19 10 Top side with Battery 2# 20 1.1 0.843 18.27 QPSK 50_0 21350/2560 1:1 18.27 19.10 1.211 1.016 22.5 Top side with Battery 3# 20 0.839 0.05 20 QPSK 50 0 21350/2560 1.211 1.005 22.5 Top side with Battery 4# 1:1 0.830 0.11 18.27 19.10 Top side with Battery 5# 20 QPSK 50_0 21350/2560 1:1 0.821 0.18 18.27 19.10 1.211 0.994 22.5 Top side with Battery 6# 20 QPSK 50_0 21350/2560 1:1 0.847 0.20 18.27 19.10 1.211 1.025 22.5 Hotspot Test data(Separate 10mm 100%RB) QPSK 50_0 Top side 21100/2535 1:1 0.841 0.01 18.30 19.10 1.202 1.011 22.5 SAR Power SAR Conducted Tune up Scaled Liquid (W/kg) (W/kg) **Test position** BW. Test mode Test ch./Freq. **Duty Cycle** drift Power(dBm)Limit(dBm) factor Temp.(℃) 10-g (dB) 10-q Product specific 10g SAR Test data(Separate 0mm 1RB) Top side 20 QPSK 1 0 21100/2535 1:1 1.860 0.05 20.23 20.50 1.064 1.979 22.5 Product specific 10g SAR Test data(Separate 0mm 50RB) Top side 20 QPSK 50_0 21100/2535 1:1 1.930 0.03 19.81 20.50 1.172 **2.262** 22.5 22.5 20 QPSK 50_0 20850/2510 19.76 Top side 1.1 1.440 0.07 20.50 1.186 1.708 20 QPSK 50_0 21350/2560 19.54 20.50 1.908 22.5 Top side 1:1 1.530 0.09 1.247 Product specific 10g SAR Test data(Separate 0mm 100RB) 20 QPSK 100_0 21100/2535 1.470 0.02 20.50 1.189 1.747 22.5

Table 19: SAR of LTE Band 7 for Head and Body.

Top side

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.com/en/Terms-en/Conditions/Terms-en/Comments.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention To check the authenticity of testing investion records.

fi of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Pilot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区满胜路1号的6号厂房南部 邮编: 215000

1:1

19.75

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 144 of 169

Test Position	Channel/ Frequency	Measured SAR (1g)	1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
	(MHz)	,	SAR (1g)		SAR (1g)	SAR (1g)
Right tilted	21100/2535	0.894	0.891	1.003	N/A	N/A
Top side	21350/2560	0.852	0.848	1.005	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.agex and, for electronic Documents at little://www.sgs.gom/en/Terms-and-Conditions.agex and, for electronic Documents at little://www.sgs.gom/en/Terms-en/Conditions/Terms-e-Document.agex. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the full-lest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 5 Plent, No. 1, Runsherry, Road, Suchou Industrial Park, Suchou Area, China (Jangsu) Pilot Free Tesde Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易支载区苏州片区苏州工业园区洞胜路1号的6号厂房南部 峰線: 215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com

²⁾ A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

³⁾ A third repeated measurement was preformed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 145 of 169

8.2.4 SAR Result of LTE Band 13

				Ant 0 T	est Reco	rd					
Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg)	Power drift	Conducted Power(dBm)	Tune up	Scaled	Scaled SAR 1-g	Liquid Temp.(℃)
				-	1-g	(dB)	rower (dBill)	Liiiii(ubiii)	iactor	(W/kg)	remp.(C)
		•			st Data(1F						
Left cheek	10	QPSK 1_0	23230/782	1:1	0.129	0.10	24.25	24.50	1.059	0.137	21.7
Left tilted	10	QPSK 1_0	23230/782	1:1	0.073	0.16	24.25	24.50	1.059	0.077	21.7
Right cheek	10	QPSK 1_0	23230/782	1:1	0.162	-0.06	24.25	24.50	1.059	0.172	21.7
Right tilted	10	QPSK 1_0	23230/782	1:1	0.076	0.03	24.25	24.50	1.059	0.080	21.7
		T			Data(50%	· · · · · · · · · · · · · · · · · · ·			1	1	1
Left cheek		QPSK 25_0		1:1	0.103	0.01	22.99	23.50	1.125	0.116	21.7
Left tilted	10	QPSK 25_0		1:1	0.059	0.06	22.99	23.50	1.125	0.066	21.7
Right cheek		QPSK 25_0		1:1	0.126	0.07	22.99	23.50	1.125	0.142	21.7
Right tilted	10	QPSK 25_0		1:1	0.062	0.08	22.99	23.50	1.125	0.070	21.7
		T = = - · · ·	Body worr		ta(Separa						
Front side	10	QPSK 1_0	23230/782	1:1	0.129	-0.05	24.25	24.50	1.059	0.137	21.7
Back side	10	QPSK 1_0	23230/782	1:1	0.153	-0.01	24.25	24.50	1.059	0.162	21.7
		0001100	Body worn					00		0.455	0.7 =
Front side		QPSK 25_0		1:1	0.118	0.09	22.99	23.50	1.125	0.133	21.7
Back side	10	QPSK 25_0		1:1	0.143	0.07	22.99	23.50	1.125	0.161	21.7
		0.00/			(Separate						
Front side	10	QPSK 1_0	23230/782	1:1	0.196	0.08	24.25	24.50	1.059	0.208	21.7
Back side	10	QPSK 1_0	23230/782	1:1	0.246	0.07	24.25	24.50	1.059	0.261	21.7
Left side	10	QPSK 1_0	23230/782	1:1	0.116	0.08	24.25	24.50	1.059	0.123	21.7
Bottom side	10	QPSK 1_0	23230/782	1:1	0.097	0.06	24.25	24.50	1.059	0.103	21.7
		T	Hotspot Te							ı	ı
Front side		QPSK 25_0		1:1	0.183	0.10	22.99	23.50	1.125	0.206	21.7
Back side	10	QPSK 25_0		1:1	0.245	0.11	22.99	23.50	1.125	0.276	21.7
Left side	10	QPSK 25_0		1:1	0.106	0.08	22.99	23.50	1.125	0.119	21.7
Bottom side	10	QPSK 25_0	23230/782	1:1	0.095	-0.02	22.99	23.50	1.125	0.107	21.7
	1	T	1	Ant 3 T	est Reco				ı		
				Duty	SAR	Power	Conducted	Tune up	Scaled	Scaled	Liquid
Test position											
	BW.	Test mode	Test ch./Freq.	Cycle	(W/kg)	drift	Power(dBm)	Limit(dBm)	factor	OAK 1-g	Temp.(℃)
To a position	BW.	Test mode	Test ch./Freq.	_	1-g	(dB)		Limit(dBm)	factor	(W/kg)	Temp.(℃)
				Head Te	1-g st Data(1F	(dB) RB)	Power(dBm)	, ,		(· · · · · · · · · · · · · · ·	
Left cheek	10	QPSK 1_0	23230/782	Head Te	1-g st Data(1F 0.283	(dB) RB) 0.09	Power(dBm) 23.99	24.50	1.125	0.318	21.7
Left cheek Left tilted	10	QPSK 1_0 QPSK 1_0	23230/782 23230/782	Head Te	1-g est Data(1F 0.283 0.165	(dB) RB) 0.09 0.10	23.99 23.99	24.50 24.50	1.125 1.125	0.318 0.186	21.7 21.7
Left cheek Left tilted Right cheek	10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1	1-g est Data(1F 0.283 0.165 0.410	(dB) RB) 0.09 0.10 0.17	23.99 23.99 23.99 23.99	24.50 24.50 24.50	1.125 1.125 1.125	0.318 0.186 0.461	21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted	10 10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1	1-g st Data(1F 0.283 0.165 0.410 0.360	(dB) RB) 0.09 0.10 0.17 0.13	23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405	21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2#	10 10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358	(dB) RB) 0.09 0.10 0.17 0.13 0.15	23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403	21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3#	10 10 10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388	(dB) RB) 0.09 0.10 0.17 0.13 0.15 0.18	23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436	21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4#	10 10 10 10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401	(dB) RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451	21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4# Right cheek with Battery 5#	10 10 10 10 10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397	(dB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4#	10 10 10 10 10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383	(dB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451	21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4# Right cheek with Battery 5# Right cheek with Battery 6#	10 10 10 10 10 10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 Data(50%	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB)	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek	10 10 10 10 10 10 10 10	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 Data(50% 0.265	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted	10 10 10 10 10 10 10 10 10	QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 Data(50% 0.265 0.162	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek	10 10 10 10 10 10 10 10 10 10	QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(509 0.265 0.162 0.408	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted	10 10 10 10 10 10 10 10 10 10	QPSK 1_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 Data(509 0.265 0.162 0.408 0.361	(dB) RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right theek Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 5# Right cheek with Battery 5# Left cheek Left tilted Right cheek Right tilted	10 10 10 10 10 10 10 10 10 10 10 10	QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 Body worr	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(509 0.265 0.162 0.408 0.361 ta(Separa	(dB) RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 22.98	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right tilted Front side	10 10 10 10 10 10 10 10 10 10 10 10 10	QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(509 0.265 0.162 0.408 0.361 ta(Separa	(dB) RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 4# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right tilted Front side Back side	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(509 0.265 0.162 0.408 0.361 ta(Separai 0.118 0.211	(dB) RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05 -0.01	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 1RB) 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127 1.127	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 4# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right tilted Front side Back side Back side	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 1_0	23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(509 0.265 0.162 0.408 0.361 ta(Separa 0.118 0.211 0.190	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05 -0.01 0.08	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 22.98 1RB) 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 23.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127 1.127 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 4# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right cheek Right tilted Front side Back side Back side with Battery 2# Back side with Battery 3#	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(509 0.265 0.162 0.408 0.361 ta(Separa 0.118 0.211 0.190 0.195	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05 -0.01 0.08	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 22.98 1RB) 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 23.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127 1.127 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407 0.133 0.237 0.214 0.219	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 5# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right tilted Front side Back side Back side with Battery 2# Back side with Battery 3# Back side with Battery 3#	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(50% 0.265 0.162 0.408 0.361 ta(Separa 0.118 0.211 0.190 0.195 0.200	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05 -0.01 0.08 0.12 0.03	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 1RB) 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 23.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127 1.127 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407 0.133 0.237 0.214 0.219 0.225	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right tilted Right cheek Back side Back side Back side Back side with Battery 2# Back side with Battery 3# Back side with Battery 4# Back side with Battery 4#	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 Data(50% 0.265 0.162 0.408 0.361 ta(Separar 0.118 0.211 0.190 0.195 0.200 0.204	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05 -0.01 0.08 0.12 0.03 0.01	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 1RB) 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127 1.127 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407 0.133 0.237 0.214 0.219 0.225 0.229	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 5# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right tilted Front side Back side Back side with Battery 2# Back side with Battery 3# Back side with Battery 3#	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(509 0.265 0.162 0.408 0.361 ta(Separat 0.118 0.211 0.190 0.195 0.204 0.190	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05 -0.01 0.08 0.12 0.03 0.01 0.06	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 22.98 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 23.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127 1.127 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407 0.133 0.237 0.214 0.219 0.225	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right cheek Right tilted Front side Back side Back side with Battery 2# Back side with Battery 3# Back side with Battery 4# Back side with Battery 4# Back side with Battery 5# Back side with Battery 5# Back side with Battery 5#	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 1_0	23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(50% 0.265 0.162 0.408 0.361 ta(Separate 0.118 0.211 0.190 0.195 0.200 0.204 0.190 (Separate	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05 -0.01 0.08 0.12 0.03 0.01 0.06 15mm 5	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 22.98 1RB) 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 24.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127 1.127 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407 0.133 0.237 0.214 0.219 0.225 0.229 0.214	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Left cheek Left tilted Right cheek Right tilted Right cheek with Battery 2# Right cheek with Battery 3# Right cheek with Battery 5# Right cheek with Battery 6# Left cheek Left tilted Right cheek Right tilted Right cheek Back side Back side Back side Back side with Battery 2# Back side with Battery 3# Back side with Battery 4# Back side with Battery 4#	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 1_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 25_0 QPSK 1_0 QPSK 1_0	23230/782 23230/782	Head Te 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1	1-g st Data(1F 0.283 0.165 0.410 0.360 0.358 0.388 0.401 0.397 0.383 t Data(509 0.265 0.162 0.408 0.361 ta(Separat 0.118 0.211 0.190 0.195 0.204 0.190	(dB) (RB) 0.09 0.10 0.17 0.13 0.15 0.18 0.06 0.17 0.09 6RB) 0.09 0.11 -0.19 0.13 te 15mm 0.05 -0.01 0.08 0.12 0.03 0.01 0.06	23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 22.98 22.98 22.98 22.98 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99 23.99	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 23.50 23.50 23.50 24.50 24.50 24.50 24.50 24.50	1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.127 1.127 1.127 1.127 1.127 1.125 1.125 1.125 1.125 1.125	0.318 0.186 0.461 0.405 0.403 0.436 0.451 0.446 0.431 0.299 0.183 0.460 0.407 0.133 0.237 0.214 0.219 0.225 0.229	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7

South of No. 6 Plant, No. 1, Runshary Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Plot Free Tisote Zone 215000 中国・苏州・中国(江苏)自由医易式製区苏州片区苏州工业国区深建路1号的6号厂房南部 略編: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 146 of 169

			Hotspot ²	Test data	(Separate	10mm 1F	RB)				
Front side	10	QPSK 1_0	23230/782	1:1	0.170	0.09	23.99	24.50	1.125	0.191	21.7
Back side	10	QPSK 1_0	23230/782	1:1	0.355	0.07	23.99	24.50	1.125	0.399	21.7
Left side	10	QPSK 1_0	23230/782	1:1	0.318	0.10	23.99	24.50	1.125	0.358	21.7
Top side	10	QPSK 1_0	23230/782	1:1	0.154	0.10	23.99	24.50	1.125	0.173	21.7
Back side with Battery 2#	10	QPSK 1_0	23230/782	1:1	0.310	0.15	23.99	24.50	1.125	0.349	21.7
Back side with Battery 3#	10	QPSK 1_0	23230/782	1:1	0.336	0.08	23.99	24.50	1.125	0.378	21.7
Back side with Battery 4#	10	QPSK 1_0	23230/782	1:1	0.351	0.19	23.99	24.50	1.125	0.395	21.7
Back side with Battery 5#	10	QPSK 1_0	23230/782	1:1	0.343	0.15	23.99	24.50	1.125	0.386	21.7
Back side with Battery 6#	10	QPSK 1_0	23230/782	1:1	0.336	0.12	23.99	24.50	1.125	0.378	21.7
			Hotspot Te	est data(S	Separate 1	0mm 50%	6RB)				
Front side	10	QPSK 25_0	23230/782	1:1	0.165	0.19	22.98	23.50	1.127	0.186	21.7
Back side	10	QPSK 25_0	23230/782	1:1	0.327	0.17	22.98	23.50	1.127	0.369	21.7
Left side	10	QPSK 25_0	23230/782	1:1	0.284	0.14	22.98	23.50	1.127	0.320	21.7
Top side	10	QPSK 25_0	23230/782	1:1	0.153	0.09	22.98	23.50	1.127	0.172	21.7

Table 20: SAR of LTE Band 13 for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp. and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alterations for progress of assistance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

South of No. 6 Perit, No. 1, Punsherg Read, Suchou Industria Park, Suchou Avea, China (Jangsu) Pilot Free Trade Zone 中国 · 苏州 - 中国(江苏)自由吴景玄翁区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 147 of 169

8.2.5 SAR Result of LTE Band 26

				Ant 0	Test Rec	ord					
Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1- g (W/kg)	Liquid Temp.(℃)
		1			est Data(1		1	1	1	1	
Left cheek	15	QPSK 1_0	26865/831.5	1:1	0.151	0.01	24.33	25.00	1.167	0.176	22.3
Left tilted	15	QPSK 1_0	26865/831.5	1:1	0.072	0.13	24.33	25.00	1.167	0.084	22.3
Right cheek	15	QPSK 1_0	26865/831.5	1:1	0.164	-0.06	24.33	25.00	1.167	0.191	22.3
Right tilted	15	QPSK 1_0	26865/831.5	1:1	0.080	0.11	24.33	25.00	1.167	0.093	22.3
		00011000			t Data(50						
Left cheek	15	QPSK 36_0		1:1	0.107	0.06	23.39	24.00	1.151	0.123	22.3
Left tilted	15	QPSK 36_0		1:1	0.056	0.19	23.39	24.00	1.151	0.064	22.3
Right cheek		QPSK 36_0		1:1	0.130	0.09	23.39	24.00	1.151	0.150	22.3
Right tilted	15	QPSK 36_0		1:1	0.063	0.08	23.39	24.00	1.151	0.072	22.3
	1 4 =	000144	Body wor		ta(Separa			05.00	4.407	0.450	00.0
Front side	15	QPSK 1_0		1:1	0.135	-0.03	24.33	25.00	1.167	0.158	22.3
Back side	15	QPSK 1_0	26865/831.5	1:1	0.180	-0.09	24.33	25.00	1.167	0.210	22.3
Back side with Battery 2#	15	QPSK 1_0	26865/831.5	1:1	0.162	0.09	24.33	25.00	1.167	0.189	22.3
Back side with Battery 3#	15	QPSK 1_0		1:1	0.167	0.15	24.33	25.00	1.167	0.195	22.3
Back side with Battery 4#	15	QPSK 1_0	26865/831.5	1:1	0.169	0.11	24.33	25.00	1.167	0.197	22.3
Back side with Battery 5#	15	QPSK 1_0	26865/831.5	1:1	0.163	0.00	24.33	25.00	1.167	0.190	22.3
Back side with Battery 6#	15	QPSK 1_0		1:1	0.168	0.06	24.33	25.00	1.167	0.196	22.3
Front state	45	b B O I C O O	Body worn		<u>, </u>			04.00	4 4 5 4	0.400	00.0
Front side			26865/831.5	1:1	0.139	-0.02	23.39	24.00	1.151	0.160	22.3
Back side	15	QPSK 36_0		1:1	0.167	0.07	23.39	24.00	1.151	0.192	22.3
Front side	45	lopok 4 o			(Separat			05.00	4 4 0 7	0.000	00.0
Front side	15	QPSK 1_0		1:1	0.255	0.14	24.33	25.00	1.167	0.298	22.3
Back side	15	QPSK 1_0	26865/831.5	1:1	0.304	0.06	24.33	25.00	1.167	0.355	22.3
Left side	15	QPSK 1_0	26865/831.5	1:1	0.095	-0.01	24.33	25.00	1.167	0.110	22.3
Bottom side	15	QPSK 1_0	26865/831.5	1:1	0.126	-0.03	24.33	25.00	1.167	0.147	22.3
Back side with Battery 2#	15	QPSK 1_0	26865/831.5	1:1	0.277	0.12	24.33	25.00	1.167	0.323	22.3
Back side with Battery 3#	15	QPSK 1_0	26865/831.5	1:1	0.280	0.06	24.33	25.00	1.167	0.327	22.3
Back side with Battery 4#	15	QPSK 1_0	26865/831.5	1:1	0.283	0.07	24.33	25.00	1.167	0.330	22.3
Back side with Battery 5#	15	QPSK 1_0	26865/831.5	1:1	0.286	0.04	24.33	25.00	1.167	0.334	22.3
Back side with Battery 6#	15	QPSK 1_0	26865/831.5	1:1	0.275	0.05	24.33	25.00	1.167	0.321	22.3
Frantaida	4.5	DDCK ac. a	Hotspot Te					04.00	4 4 5 4	0.000	00.0
Front side	15	QPSK 36_0		1:1	0.246	0.06	23.39	24.00	1.151	0.283	22.3
Back side		QPSK 36_0		1:1	0.287	0.20	23.39	24.00	1.151	0.330	22.3
Left side		QPSK 36_0 QPSK 36_0		1:1 1:1	0.098	0.10	23.39 23.39	24.00	1.151	0.113	22.3 22.3
Bottom side	15	QPSK 36_0	26865/831.5			0.06	23.39	24.00	1.151	0.152	22.3
				Ailt 3	Test Reco	Jiu				Scaled	
Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg)	Power	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	SAR 1-	Liquid Temp.(℃)
				,	1-g	(dB)	()	,		(W/kg)	,
				Head Te	est Data(1	RB)					
Left cheek	15	QPSK 1_0	26865/831.5	1:1	0.350	0.07	24.05	25.00	1.245	0.436	22.3
Left tilted	15	QPSK 1_0	26865/831.5	1:1	0.215	0.08	24.05	25.00	1.245	0.268	22.3
Right cheek	15	QPSK 1_0	26865/831.5	1:1	0.462	-0.19	24.05	25.00	1.245	0.575	22.3
Right tilted	15		26865/831.5	1:1	0.192	0.01	24.05	25.00	1.245	0.239	22.3
			F	lead Tes	t Data(50	%RB)					
Left cheek	15	QPSK 36_0	26865/831.5	1:1	0.355	0.12	23.19	24.00	1.205	0.428	22.3
Left tilted			26865/831.5	1:1	0.228	0.09	23.19	24.00	1.205	0.275	22.3
Right cheek			26865/831.5	1:1	0.487	0.08	23.19	24.00	1.205	0.587	22.3
Right tilted			26865/831.5	1:1	0.212	0.08	23.19	24.00	1.205	0.255	22.3
Right cheek with Battery 2#			26865/831.5	1:1	0.462	0.15	23.19	24.00	1.205	0.557	22.3
Right cheek with Battery 3#				1:1	0.468	0.09	23.19	24.00	1.205	0.564	22.3
Right cheek with Battery 4#				1:1	0.476	0.09	23.19	24.00	1.205	0.574	22.3
Right cheek with Battery 5#				1:1	0.481	0.06	23.19	24.00	1.205	0.580	22.3

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 148 of 169

							- 3 -				
Right cheek with Battery 6#	15	QPSK 36_0	26865/831.5	1:1	0.484	0.00	23.19	24.00	1.205	0.583	22.3
			Body wor	n Test da	ta(Separa	ate 15mm	1RB)				
Front side	15	QPSK 1_0	26865/831.5	1:1	0.067	0.05	24.05	25.00	1.245	0.084	22.3
Back side	15	QPSK 1_0	26865/831.5	1:1	0.125	0.02	24.05	25.00	1.245	0.156	22.3
			Body worn	Test data	(Separate	e 15mm 5	50%RB)				
Front side	15	QPSK 36_0	26865/831.5	1:1	0.073	0.05	23.19	24.00	1.205	0.088	22.3
Back side	15	QPSK 36_0	26865/831.5	1:1	0.131	0.12	23.19	24.00	1.205	0.158	22.3
			Hotspot	Test data	(Separate	e 10mm 1	IRB)				
Front side	15	QPSK 1_0	26865/831.5	1:1	0.110	0.04	24.05	25.00	1.245	0.137	22.3
Back side	15	QPSK 1_0	26865/831.5	1:1	0.225	0.16	24.05	25.00	1.245	0.280	22.3
Left side	15	QPSK 1_0	26865/831.5	1:1	0.207	0.10	24.05	25.00	1.245	0.258	22.3
Top side	15	QPSK 1_0	26865/831.5	1:1	0.087	0.03	24.05	25.00	1.245	0.109	22.3
			Hotspot To	est data(S	Separate	10mm 50	%RB)				
Front side	15	QPSK 36_0	26865/831.5	1:1	0.126	0.08	23.19	24.00	1.205	0.152	22.3
Back side	15	QPSK 36_0	26865/831.5	1:1	0.243	0.06	23.19	24.00	1.205	0.293	22.3
Left side	15	QPSK 36_0	26865/831.5	1:1	0.215	0.17	23.19	24.00	1.205	0.259	22.3
Top side	15	QPSK 36_0	26865/831.5	1:1	0.093	0.02	23.19	24.00	1.205	0.112	22.3

Table 21: SAR of LTE Band 26 for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp. and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alterations for progress of assistance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 149 of 169

8.2.1 SAR Result of LTE Band 38

				Ant 1	Test Reco	ord					
Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
					est Data(1						
Left cheek	20	QPSK 1_0	38000/2595	1:1.58	0.053	0.11	22.69	24.20	1.416	0.075	22.3
Left tilted	20	QPSK 1_0	38000/2595	1:1.58	0.060	0.20	22.69	24.20	1.416	0.085	22.3
Right cheek	20	QPSK 1_0	38000/2595	1:1.58	0.094	0.02	22.69	24.20	1.416	0.133	22.3
Right tilted	20	QPSK 1_0	38000/2595	1:1.58	0.040	0.09	22.69	24.20	1.416	0.056	22.3
		I = = - · · · ·			t Data(50		1	1		T	
Left cheek	20	QPSK 50_0	38000/2595	1:1.58	0.046	0.13	21.60	23.20	1.445	0.066	22.3
Left tilted	20	QPSK 50_0	38000/2595	1:1.58	0.050	0.01	21.60	23.20	1.445	0.072	22.3
Right cheek	20	QPSK 50_0	38000/2595	1:1.58	0.076	0.01	21.60	23.20	1.445	0.110	22.3
Right tilted	20	QPSK 50_0		1:1.58	0.034	0.02	21.60	23.20	1.445	0.049	22.3
		000144			ata(Separa			04.00	4 440	0.004	00.0
Front side	20	QPSK 1_0	38000/2595	1:1.58	0.067	0.07	22.69	24.20	1.416	0.094	22.3
Back side	20	QPSK 1_0	38000/2595	1:1.58	0.238	0.09	22.69	24.20	1.416	0.337	22.3
Back side with Battery 2#		QPSK 1_0	38000/2595	1:1.58	0.226	0.01	22.69	24.20	1.416	0.320	22.3
Back side with Battery 3#		QPSK 1_0	38000/2595	1:1.58	0.230	0.06	22.69	24.20	1.416	0.326	22.3
Back side with Battery 4#		QPSK 1_0	38000/2595	1:1.58	0.231	0.01	22.69	24.20	1.416	0.327	22.3
Back side with Battery 5#		QPSK 1_0	38000/2595	1:1.58	0.219	0.08	22.69	24.20	1.416	0.310	22.3
Back side with Battery 6#	20	QPSK 1_0	38000/2595	1:1.58	0.218	0.06	22.69	24.20	1.416	0.309	22.3
Frank side	-00	ODCK FO. O	Body worn		a(Separate			00.00	4 445	0.070	00.0
Front side	20	QPSK 50_0	38000/2595 38000/2595	1:1.58 1:1.58	0.055	0.06 0.11	21.60 21.60	23.20	1.445	0.079	22.3
Back side	20	QPSK 50_0			0.209			23.20	1.445	0.302	22.3
Front side	20	QPSK 1 0			(Separate			24.20	1 116	0.400	22.2
	20	QPSK 1_0	38000/2595	1:1.58	0.133	0.02	22.69	24.20	1.416	0.188	22.3
Back side Right Side	20	QPSK 1_0	38000/2595 38000/2595	1:1.58 1:1.58	0.470 0.195	0.00	22.69 22.69	24.20 24.20	1.416 1.416	0.665 0.276	22.3 22.3
Bottom side	20	QPSK 1_0	38000/2595	1:1.58	0.195	0.07	22.69	24.20	1.416	0.276	22.3
Back side with Battery 2#		QPSK 1_0	38000/2595	1:1.58	0.433	0.03	22.69	24.20	1.416	0.631	22.3
Back side with Battery 3#		QPSK 1_0	38000/2595	1:1.58	0.453	0.03	22.69	24.20	1.416	0.641	22.3
Back side with Battery 4#		QPSK 1 0	38000/2595	1:1.58	0.460	0.05	22.69	24.20	1.416	0.651	22.3
Back side with Battery 5#		QPSK 1_0	38000/2595	1:1.58	0.427	0.15	22.69	24.20	1.416	0.605	22.3
Back side with Battery 6#		QPSK 1_0	38000/2595	1:1.58	0.429	0.00	22.69	24.20	1.416	0.607	22.3
Back clae Will Battery on		QI OIT I_O			Separate			21.20	1.110	0.001	LL.O
Front side	20	QPSK 50_0	38000/2595	1:1.58	0.111	0.08	21.60	23.20	1.445	0.160	22.3
Back side	20	QPSK 50_0	38000/2595	1:1.58	0.441	0.06	21.60	23.20	1.445	0.637	22.3
Right Side	20	QPSK 50_0	38000/2595	1:1.58	0.163	0.02	21.60	23.20	1.445	0.236	22.3
Bottom side	20	QPSK 50_0	38000/2595	1:1.58	0.366	0.07	21.60	23.20	1.445	0.529	22.3
		_		Ant 3	Test Reco	ord	•				
				Dute	SAR	Power	Canduated	T	Caalad	Scaled	Liquid
Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	(W/kg)	drift	Conducted Power(dBm)	Tune up	Scaled factor	SAR 1-g	Liquid Temp.(℃)
				-	1-g	(dB)	r ower(abili)	Lillit(abili)	iactor	(W/kg)	remp.(C)
		T			est Data(1						
Left cheek	20		38000/2595		0.719	0.01	19.43	19.70	1.064	0.765	22.3
Left tilted	20		38000/2595	1:1.58	0.913	0.18	19.43	19.70	1.064	0.972	22.3
Right cheek	20	QPSK 1_0	38000/2595	1:1.58	0.732	0.03	19.43	19.70	1.064	0.779	22.3
Right tilted	20	QPSK 1_0	38000/2595	1:1.58	0.848	0.06	19.43	19.70	1.064	0.902	22.3
		00014 = 2 =			t Data(50		10.55	40 ===	1.000	0 =	00.0
Left cheek		QPSK 50_0		1:1.58	0.699	0.05	19.30	19.70	1.096	0.766	22.3
Left tilted				1:1.58	0.944	0.06	19.30	19.70	1.096	1.035	22.3
Left tilted -Repeat		QPSK 50_0		1:1.58	0.938	-0.02	19.30	19.70	1.096	1.028	22.3
Right cheek	20	QPSK 50_0		1:1.58	0.735	0.08	19.30	19.70	1.096	0.806	22.3
Right tilted	20	QPSK 50_0		1:1.58	0.829	0.07	19.30	19.70	1.096	0.909	22.3
Left tilted with Battery 2#		QPSK 50_0		1:1.58	0.896	0.10	19.30	19.70	1.096	0.982	22.3
Left tilted with Battery 3#		QPSK 50_0		1:1.58	0.915	0.16	19.30	19.70	1.096	1.003	22.3
Left tilted with Battery 4#		QPSK 50_0		1:1.58	0.867	0.02	19.30	19.70	1.096	0.951	22.3
Left tilted with Battery 5#		QPSK 50_0		1:1.58	0.929	0.06	19.30	19.70	1.096	1.019	22.3
Left tilted with Battery 6#	20	QPSK 50_0	38000/2595	1:1.58	0.920	0.03	19.30	19.70	1.096	1.009	22.3

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 150 of 169

							- 3 -				
			l	Head Test	t Data(100)%RB)					
Left tilted	20	QPSK 100_0	38000/2595	1:1.58	0.922	0.02	19.36	19.70	1.081	0.997	22.3
Right cheek	20	QPSK 100_0	38000/2595	1:1.58	0.739	0.09	19.36	19.70	1.081	0.799	22.3
Right tilted	20	QPSK 100_0	38000/2595	1:1.58	0.856	0.06	19.36	19.70	1.081	0.926	22.3
_			Body wo	rn Test da	ta(Separa	ate 15mm	1RB)				
Front side	20	QPSK 1_0	38000/2595	1:1.58	0.105	0.08	21.16	21.50	1.081	0.114	22.3
Back side	20	QPSK 1_0	38000/2595	1:1.58	0.260	0.06	21.16	21.50	1.081	0.281	22.3
			Body worn	Test data	a(Separat	e 15mm 5	60%RB)				
Front side	20	QPSK 50_0	38000/2595	1:1.58	0.104	0.02	21.15	21.50	1.084	0.113	22.3
Back side	20	QPSK 50_0	38000/2595	1:1.58	0.267	0.04	21.15	21.50	1.084	0.289	22.3
			Hotspot	Test data	a(Separate	e 10mm 1	RB)				
Front side	20	QPSK 1_0	38000/2595	1:1.58	0.139	0.06	19.43	19.70	1.064	0.148	22.3
Back side	20	QPSK 1_0	38000/2595	1:1.58	0.293	0.06	19.43	19.70	1.064	0.312	22.3
Left side	20	QPSK 1_0	38000/2595	1:1.58	0.115	0.13	19.43	19.70	1.064	0.122	22.3
Top side	20	QPSK 1_0	38000/2595	1:1.58	0.417	0.08	19.43	19.70	1.064	0.444	22.3
			Hotspot 7	est data(Separate	10mm 50	%RB)				
Front side	20	QPSK 50_0	38000/2595	1:1.58	0.131	0.08	19.30	19.70	1.096	0.144	22.3
Back side	20	QPSK 50_0	38000/2595	1:1.58	0.295	0.02	19.30	19.70	1.096	0.323	22.3
Left side	20	QPSK 50_0	38000/2595	1:1.58	0.114	0.11	19.30	19.70	1.096	0.125	22.3
Top side	20	QPSK 50_0	38000/2595	1:1.58	0.368	0.07	19.30	19.70	1.096	0.404	22.3

Table 22: SAR of LTE Band 38 for Head and Body.

Test Position	Channel/ Frequency	Measured SAR (1g)	1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
	(MHz)		SAR (1g)		SAR (1g)	SAR (1g)
Left tilted	38000/2595	0.944	0.938	1.006	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

 A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was preformed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention hold and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Pient, No. 1, Punnsharg Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Piet Free Teole Zone 中国 · 苏州 · 中国(江苏)自由贸易试验区苏州片区苏州工业园区消胜路(号的6号厂房南部 略编: 215000

(86–512) 62992980 www.sgsgroup.com. (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 151 of 169

8.2.2 SAR Result of LTE Band 66

				Ant 1 T	est Reco	rd					
				Duty	SAR	Power	Conducted	Tune up	Scaled	Scaled	Liquid
Test position	BW.	Test mode	Test ch./Freq.	Cycle	(W/kg)	drift	Power(dBm)			SAR 1-g	Liquid Temp.(℃)
				_	1-g	(dB)	ower (abiii)	Lillin (GDIII)	laotoi	(W/kg)	remp.(o)
		1			st Data(1F	,	1		1	ı	ı
Left cheek	20	QPSK 1_0	132322/1745	1:1	0.201	0.06	22.79	24.40	1.449	0.291	21.8
Left tilted	20	QPSK 1_0	132322/1745	1:1	0.050	0.08	22.79	24.40	1.449	0.072	21.8
Right cheek	20	QPSK 1_0	132322/1745	1:1	0.144	0.05	22.79	24.40	1.449	0.209	21.8
Right tilted	20	QPSK 1_0	132322/1745	1:1	0.071	0.06	22.79	24.40	1.449	0.103	21.8
		T			Data(50%		1				
Left cheek	20	QPSK 50_0	132322/1745	1:1	0.145	0.19	21.89	23.40	1.416	0.205	21.8
Left tilted	20	QPSK 50_0		1:1	0.043	0.08	21.89	23.40	1.416	0.061	21.8
Right cheek	20	QPSK 50_0		1:1	0.120	0.11	21.89	23.40	1.416	0.170	21.8
Right tilted	20	QPSK 50_0		1:1	0.064	0.01	21.89	23.40	1.416	0.090	21.8
			Body worn								
Front side	20	QPSK 1_0	132322/1745	1:1	0.282	0.02	21.79	23.10	1.352	0.381	21.8
Back side	20	QPSK 1_0	132322/1745	1:1	0.634	0.06	21.79	23.10	1.352	0.857	21.8
Back side	20	QPSK 1_0	132322/1745	1:1	0.581	0.01	21.66	23.10	1.393	0.809	21.8
Back side	20	QPSK 1_0	132322/1745	1:1	0.602	0.09	21.75	23.10	1.365	0.821	21.8
Back side with Battery 2#	20	QPSK 1_0	132322/1745	1:1	0.629	0.14	21.79	23.10	1.352	0.850	21.8
Back side with Battery 3#	20	QPSK 1_0	132322/1745	1:1	0.622	0.06	21.79	23.10	1.352	0.841	21.8
Back side with Battery 4#	20	QPSK 1_0	132322/1745	1:1	0.624	0.10	21.79	23.10	1.352	0.844	21.8
Back side with Battery 5#	20	QPSK 1_0	132322/1745	1:1	0.594	-0.08	21.79	23.10	1.352	0.803	21.8
Back side with Battery 6#	20	QPSK 1_0	132322/1745	1:1	0.608	-0.05	21.79	23.10	1.352	0.822	21.8
		,	Body worn T							ı	1
Front side	20	QPSK 50_0		1:1	0.257	0.03	21.73	23.10	1.371	0.352	21.8
Back side	20	QPSK 50_0		1:1	0.549	0.11	21.73	23.10	1.371	0.753	21.8
			Body worn Te								
Back side	20	QPSK 50_0		1:1	0.535	0.11	21.51	23.10	1.442	0.772	21.8
		,	Hotspot T							ı	1
Front side	20	QPSK 1_0	132322/1745	1:1	0.357	0.08	21.79	23.10	1.352	0.483	21.8
Back side	20	QPSK 1_0	132322/1745	1:1	0.797	-0.01	21.79	23.10	1.352	1.078	21.8
Back side	20	QPSK 1_0	132072/1720	1:1	0.765	-0.05	21.66	23.10	1.393	1.066	21.8
Back side	20	QPSK 1_0	132572/1770	1:1	0.771	-0.10	21.75	23.10	1.365	1.052	21.8
Right side	20	QPSK 1_0	132322/1745	1:1	0.194	0.20	21.79	23.10	1.352	0.262	21.8
Bottom side	20	QPSK 1_0	132322/1745	1:1	0.670	0.02	21.79	23.10	1.352	0.906	21.8
Bottom side	20	QPSK 1_0	132322/1745	1:1	0.623	0.02	21.79	23.10	1.352	0.842	21.8
Bottom side	20	QPSK 1_0	132322/1745	1:1	0.634	0.02	21.79	23.10	1.352	0.857	21.8
		T = = - · · · ·	Hotspot Tes								
Front side	20	QPSK 50_0		1:1	0.344	0.02	21.73	23.10	1.371	0.472	21.8
Back side	20	QPSK 50_0		1:1	0.683	0.12	21.73	23.10	1.371	0.936	21.8
Back side	20	QPSK 50_0		1:1	0.632	0.12	21.73	23.10	1.371	0.866	21.8
Back side	20	QPSK 50_0		1:1	0.644	0.12	21.50	23.10	1.445	0.931	21.8
Right side	20	QPSK 50_0		1:1	0.194	0.02	21.72	23.10	1.374	0.267	21.8
Bottom side	20	QPSK 50_0		1:1	0.659	0.02	21.73	23.10	1.371	0.903	21.8
Bottom side	20	QPSK 50_0		1:1	0.631	0.02	21.50	23.10	1.445	0.912	21.8
Bottom side	20		132322/1745	1:1	0.627	0.02	21.72	23.10	1.374	0.862	21.8
Back side with Battery 2#	20		132322/1745	1:1	0.762	0.08	21.73	23.10	1.371	1.045	21.8
Back side with Battery 3#	20	QPSK 50_0		1:1	0.739	0.03	21.73	23.10	1.371	1.013	21.8
Back side with Battery 4#	20	QPSK 50_0		1:1	0.703	0.12	21.73	23.10	1.371	0.964	21.8
Back side with Battery 5#	20		132322/1745	1:1	0.739	0.14	21.73	23.10	1.371	1.013	21.8
Back side with Battery 6#	20	QPSK 50_0	132322/1745	1:1	0.756	0.17	21.73	23.10	1.371	1.036	21.8
Dook aida	20	ODCK 400 C	Hotspot Test T		<u> </u>			22.40	4 440	1.040	24.0
Back side			132572/1770	1:1	0.702	-0.03	21.51	23.10	1.442	1.012	21.8
Bottom side	20	WPSK 100_0	132572/1770	1:1	0.611	-0.03	21.51	23.10	1.442	0.881	21.8
			1	Ant 3 I	est Reco					Castari	
Test position	DIM	Toot made	Test ch./Freq.	Duty	SAR	Power	Conducted	Tune up	Scaled	Scaled	Liquid
rest position	BW.	rest mode	lest ch./Freq.	Cycle	(W/kg)	drift (dB)	Power(dBm)	Limit(dBm)	factor	(W/kg)	Liquid Temp.(℃)
				L L	1-g	(dB)	,			(vv/kg)	
				i icau i e	st Data(1F	יטי					

South of No. 5 Piert, No. 1, Runshere; Road, Suchou Industrial Park, Suchou Area, China (Jangsu) Pilot Free Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景文教区苏州片区苏州工业园区湾走路1号的6号厂房南部 鄉編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 152 of 169

						1 (ay c .	132 01	103		
Left cheek	20	QPSK 1_0	132322/1745	1:1	0.396	0.10	20.19	21.30	1.291	0.511	21.8
Left tilted	20	QPSK 1_0	132322/1745	1:1	0.562	0.04	20.19	21.30	1.291	0.726	21.8
Right cheek	20	QPSK 1_0	132322/1745	1:1	0.532	0.12	20.19	21.30	1.291	0.687	21.8
Right tilted	20	QPSK 1_0	132322/1745	1:1	0.660	0.17	20.19	21.30	1.291	0.852	21.8
Right tilted	20	QPSK 1_0	132072/1720	1:1	0.630	0.17	20.09	21.30	1.321	0.832	21.8
Right tilted	20	QPSK 1_0	132572/1770	1:1	0.635	0.17	20.11	21.30	1.315	0.835	21.8
Right tilted with Battery 2#	20	QPSK 1_0	132322/1745	1:1	0.645	0.09	20.19	21.30	1.291	0.833	21.8
Right tilted with Battery 3#	20	QPSK 1_0	132322/1745	1:1	0.630	0.05	20.19	21.30	1.291	0.813	21.8
Right tilted with Battery 4#	20	QPSK 1_0	132322/1745	1:1	0.611	0.08	20.19	21.30	1.291	0.789	21.8
Right tilted with Battery 5#	20	QPSK 1_0	132322/1745	1:1	0.601	0.13	20.19	21.30	1.291	0.776	21.8
Right tilted with Battery 6#	20	QPSK 1_0	132322/1745	1:1	0.594	0.11	20.19	21.30	1.291	0.767	21.8
			He	ead Test	Data(50%	6RB)					
Left cheek	20	QPSK 50_0	132322/1745	1:1	0.411	0.10	19.98	21.30	1.355	0.557	21.8
Left tilted	20	QPSK 50_0	132322/1745	1:1	0.524	0.07	19.98	21.30	1.355	0.710	21.8
Right cheek	20	QPSK 50_0	132322/1745	1:1	0.530	0.09	19.98	21.30	1.355	0.718	21.8
Right tilted	20	QPSK 50_0	132322/1745	1:1	0.624	0.01	19.98	21.30	1.355	0.846	21.8
Right tilted	20	QPSK 50_0	132072/1720	1:1	0.612	0.01	19.87	21.30	1.390	0.851	21.8
Right tilted	20	QPSK 50_0	132572/1770	1:1	0.594	0.01	19.78	21.30	1.419	0.843	21.8
			He	ad Test	Data(1009	%RB)					
Right tilted	20	QPSK 50_0		1:1	0.603	0.01	19.89	21.30	1.384	0.834	21.8
			Body worn	Test dat	ta(Separa	te 15mm	1RB)				
Front side	20	QPSK 1_0	132322/1745	1:1	0.157	0.09	21.53	22.60	1.279	0.201	21.8
Back side	20	QPSK 1_0	132322/1745	1:1	0.290	0.01	21.53	22.60	1.279	0.371	21.8
			Body worn T	est data	(Separate	15mm 50)%RB)				
Front side	20	QPSK 50_0	132322/1745	1:1	0.158	0.15	21.54	22.60	1.276	0.202	21.8
Back side	20	QPSK 50_0	132322/1745	1:1	0.299	0.02	21.54	22.60	1.276	0.382	21.8
			Hotspot T	est data	(Separate	10mm 1F	RB)				
Front side	20	QPSK 1_0	132322/1745	1:1	0.245	0.05	20.19	21.30	1.291	0.316	21.8
Back side	20	QPSK 1_0	132322/1745	1:1	0.584	0.19	20.19	21.30	1.291	0.754	21.8
Left side	20	QPSK 1_0	132322/1745	1:1	0.145	0.02	20.19	21.30	1.291	0.187	21.8
Top side	20	QPSK 1_0	132322/1745	1:1	0.540	0.04	20.19	21.30	1.291	0.697	21.8
			Hotspot Tes	st data(S	Separate 1	0mm 50%	6RB)				•
Front side	20	QPSK 50_0	132322/1745	1:1	0.250	0.02	19.98	21.30	1.355	0.339	21.8
Back side	20	QPSK 50_0	132322/1745	1:1	0.579	0.06	19.98	21.30	1.355	0.785	21.8
Left side	20	QPSK 50_0	132322/1745	1:1	0.103	0.03	19.98	21.30	1.355	0.140	21.8
Top side	20	QPSK 50_0	132322/1745	1:1	0.530	0.03	19.98	21.30	1.355	0.718	21.8
T 11 00 0AD (1T											

Table 23: SAR of LTE Band 66 for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditi

South of No. 6 Perit, No. 1, Punsherg Read, Suchou Industria Park, Suchou Avea, China (Jangsu) Pilot Free Trade Zone 中国 · 苏州 - 中国(江苏)自由吴景玄翁区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

(86–512) 62992980 www.sgsgroup.com.c (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 153 of 169

8.2.3 SAR Result of WIFI 2.4G

				Ant9 Te	st Record	d chain0					
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1- g (W/kg)	Liquid Temp.(℃)
				He	ad Test d	ata					
Left cheek	802.11b	1/2412	98.73%	1.013	0.161	-0.11	15.12	16.00	1.225	0.197	22.2
Left tilted	802.11b	1/2412	98.73%	1.013	0.070	0.07	15.12	16.00	1.225	0.085	22.2
Right cheek	802.11b	1/2412	98.73%	1.013	0.052	0.06	15.12	16.00	1.225	0.064	22.2
Right tilted	802.11b	1/2412	98.73%	1.013	0.040	0.02	15.12	16.00	1.225	0.049	22.2
Left cheek with Battery 2#	802.11b	1/2412	98.73%	1.013	0.152	0.19	15.12	16.00	1.225	0.189	22.2
Left cheek with Battery 3#	802.11b	1/2412	98.73%	1.013	0.148	0.03	15.12	16.00	1.225	0.184	22.2
Left cheek with Battery 4#	802.11b	1/2412	98.73%	1.013	0.158	0.08	15.12	16.00	1.225	0.196	22.2
Left cheek with Battery 5#	802.11b	1/2412	98.73%	1.013	0.154	-0.05	15.12	16.00	1.225	0.191	22.2
Left cheek with Battery 6#	802.11b	1/2412	98.73%	1.013	0.152	0.09	15.12	16.00	1.225	0.189	22.2
-	•	•	Во	dy worn Te	st data(Se	parate 15	mm)				
Front side	802.11b	1/2412	98.73%	1.013	0.143	-0.05	18.50	19.50	1.259	0.180	22.2
Back side	802.11b	1/2412	98.73%	1.013	0.217	0.07	18.50	19.50	1.259	0.273	22.2
Back side with Battery 2#	802.11b	1/2412	98.73%	1.013	0.174	0.12	18.50	19.50	1.259	0.222	22.2
Back side with Battery 3#	802.11b	1/2412	98.73%	1.013	0.171	0.02	18.50	19.50	1.259	0.218	22.2
Back side with Battery 4#	802.11b	1/2412	98.73%	1.013	0.166	0.05	18.50	19.50	1.259	0.212	22.2
Back side with Battery 5#	802.11b	1/2412	98.73%	1.013	0.170	-0.07	18.50	19.50	1.259	0.217	22.2
Back side with Battery 6#	802.11b	1/2412	98.73%	1.013	0.162	0.08	18.50	19.50	1.259	0.207	22.2
_			Н	otspot Test	data (Sep	arate 10m	ım)				
Front side	802.11b	1/2412	98.73%	1.013	0.268	0.04	18.50	19.50	1.259	0.337	22.2
Back side	802.11b	1/2412	98.73%	1.013	0.287	0.11	18.50	19.50	1.259	0.361	22.2
Right side	802.11b	1/2412	98.73%	1.013	0.321	0.01	18.50	19.50	1.259	0.404	22.2
Right side with Battery 2#	802.11b	1/2412	98.73%	1.013	0.316	0.06	18.50	19.50	1.259	0.398	22.2
Right side with Battery 3#		1/2412	98.73%	1.013	0.310	-0.13	18.50	19.50	1.259	0.395	22.2
Right side with Battery 4#	802.11b	1/2412	98.73%	1.013	0.312	0.01	18.50	19.50	1.259	0.398	22.2
Right side with Battery 5#		1/2412	98.73%	1.013	0.301	-0.02	18.50	19.50	1.259	0.384	22.2
Right side with Battery 6#	802.11b	1/2412	98.73%	1.013	0.307	0.09	18.50	19.50	1.259	0.391	22.2

Table 24: SAR of WIFI 2.4G for Head and Body. Note:

 As the adjusted SAR is ≤ 1.2 W/kg for other 802.11 modes, SAR test for the other 802.11 modes are not required.

required.					
Mode	Tune-up (dBm)	Tune-up (mw)	Hightest Reported SAR1-g(W/kg)	Adjusted SAR1-g(W/kg)	SAR test
		Head			
802.11b	16.00	39.81	0.197	/	
802.11g	16.00	39.81	/	0.197	No
802.1n 20M	16.00	39.81	/	0.197	No
802.1n 40M	16.00	39.81	/	0.197	No
	Body wor	n Test data(Sep	parate 15mm)		
802.11b	19.50	89.13	0.273	/	
802.11g	20.00	100.00	/	0.306	No
802.1n 20M	20.00	100.00	/	0.306	No
802.1n 40M	16.00	39.81	/	0.122	No
	Hotspot	Test data (Sepa	arate 10mm)		
802.11b	19.50	89.13	0.404	/	_
802.11g	20.00	100.00	/	0.453	No
802.1n 20M	20.00	100.00	/	0.453	No
802.1n 40M	16.00	39.81	/	0.180	No

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents start http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 154 of 169

8.2.1 SAR Result of WIFI 5G

				Ant11 Te	st Record	chain0					
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)		Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
		•	1	Head Te	st data of U	-NII-2A					•
Left cheek	802.11n- HT40	54/5270	95.96%	1.042	0.210	0.07	13.68	15.00	1.355	0.297	22.2
Left tilted	802.11n- HT40	54/5270	95.96%	1.042	0.195	0.05	13.68	15.00	1.355	0.275	22.2
Right cheek	802.11n- HT40	54/5270	95.96%	1.042	0.092	0.05	13.68	15.00	1.355	0.130	22.2
Right tilted	802.11n- HT40	54/5270	95.96%	1.042	0.087	0.03	13.68	15.00	1.355	0.123	22.2
		1	1	Head Tes	st data of U	-NII-2C	1				1
Left cheek	802.11n- HT40	110/5550	95.96%	1.042	0.256	-0.06	13.71	15.00	1.346	0.359	22.4
Left tilted	802.11n- HT40	110/5550	95.96%	1.042	0.253	-0.05	13.71	15.00	1.346	0.355	22.4
Right cheek	802.11n- HT40	110/5550	95.96%	1.042	0.133	0.03	13.71	15.00	1.346	0.187	22.4
Right tilted	802.11n- HT40	110/5550	95.96%	1.042	0.082	-0.07	13.71	15.00	1.346	0.115	22.4
				Head Te	est data of L	J-NII-3					
Left cheek	802.11n- HT40	151/5755	95.96%	1.042	0.383	-0.04	13.65	15.00	1.365	0.545	22.3
Left tilted	802.11n- HT40	151/5755	95.96%	1.042	0.246	0.02	13.65	15.00	1.365	0.350	22.3
Right cheek	802.11n- HT40	151/5755	95.96%	1.042	0.108	0.11	13.65	15.00	1.365	0.154	22.3
Right tilted	802.11n- HT40	151/5755	95.96%	1.042	0.208	-0.08	13.65	15.00	1.365	0.296	22.3
Left cheek with Battery 2#	802.11n- HT40	151/5755	95.96%	1.042	0.379	0.05	13.65	15.00	1.365	0.539	22.3
Left cheek with Battery 3#	802.11n- HT40	151/5755	95.96%	1.042	0.367	0.09	13.65	15.00	1.365	0.522	22.3
Left cheek with Battery 4#	802.11n- HT40	151/5755	95.96%	1.042	0.359	0.02	13.65	15.00	1.365	0.511	22.3
Left cheek with Battery 5#	802.11n- HT40	151/5755	95.96%	1.042	0.366	-0.01	13.65	15.00	1.365	0.520	22.3
Left cheek with Battery 6#	802.11n- HT40	151/5755	95.96%	1.042	0.357	0.06	13.65	15.00	1.365	0.508	22.3
					of U-NII-2/	_ `					
Front side	802.11a	52/5260		1.019	0.110	0.05	18.55	19.00	1.109	0.124	22.2
Back side	802.11a	52/5260 E	Body worr	1.019 Test data	0.239 of U-NII-20	-0.01 C(Separat		19.00	1.109	0.270	22.2
Front side		116/5580				-0.11	18.59	19.00	1.099	0.151	22.4
Back side	802.11a	116/5580		1.019	0.270	-0.03	18.59	19.00	1.099	0.302	22.4
	000 : :				a of U-NII-3			10.55	40.0	0.000	00.0
Front side		157/5785		1.019	0.094	0.05	18.92	19.00	1.019	0.098	22.3
Back side		157/5785		1.019	0.327	0.19	18.92	19.00	1.019	0.340	22.3
Back side with Battery 2# Back side with Battery 3#				1.019 1.019	0.325 0.318	0.02 -0.06	18.92 18.92	19.00 19.00	1.019	0.337	22.3 22.3
Back side with Battery 4#				1.019	0.316	0.05	18.92	19.00	1.019	0.330	22.3
Back side with Battery 5#				1.019	0.320	0.03	18.92	19.00	1.019	0.330	22.3
Back side with Battery 6#				1.019	0.318	-0.14	18.92	19.00	1.019	0.330	22.3
man zanory on					of U-NII-1(
Front side	802.11a	48/5240		1.019	0.212	0.03	18.61	19.00	1.094	0.236	22.2
Back side	802.11a	48/5240	98.10%	1.019	0.379	0.09	18.61	19.00	1.094	0.423	22.2
Right side	802.11a	48/5240	98.10%	1.019	0.268	-0.01	18.61	19.00	1.094	0.299	22.2

South of No. 8 Piett, No. 1, Runshere, Road, Scarbou Industrial Park, Starhou Area, China (Jangsu) Pict Free Tisede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定翰区苏州丘安周区满世路(号数6号厂房南部 雌嶺: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 155 of 169

						P.	age.	100 01	109		
Top side	802.11a	48/5240	98.10%	1.019	0.170	0.02	18.61	19.00	1.094	0.190	22.2
·			Hotspot	Test data	of U-NII-3 (Separate 1	10mm)				
Front side	802.11a	157/5785	98.10%	1.019	0.119	0.03	18.92	19.00	1.019	0.124	22.3
Back side	802.11a	157/5785	98.10%	1.019	0.453	0.04	18.92	19.00	1.019	0.470	22.3
Right side	802.11a	157/5785	98.10%	1.019	0.696	-0.03	18.92	19.00	1.019	0.723	22.3
Top side	802.11a	157/5785	98.10%	1.019	0.281	0.03	18.92	19.00	1.019	0.292	22.3
Right side with Battery 2#	802.11a	157/5785	98.10%	1.019	0.585	0.08	18.92	19.00	1.019	0.607	22.3
Right side with Battery 3#	802.11a	157/5785	98.10%	1.019	0.573	-0.04	18.92	19.00	1.019	0.595	22.3
Right side with Battery 4#	802.11a	157/5785	98.10%	1.019	0.562	0.02	18.92	19.00	1.019	0.584	22.3
Right side with Battery 5#	802.11a	157/5785	98.10%	1.019	0.597	0.09	18.92	19.00	1.019	0.620	22.3
Right side with Battery 6#	802.11a	157/5785	98.10%	1.019	0.544	0.01	18.92	19.00	1.019	0.565	22.3
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 10-g (W/kg)	Liquid Temp.(℃)
		Product	t specific	10gSAR T	est data of	U-NII-2A(S	Separate 0mm	n)			
Front side	802.11a	52/5260	98.10%	1.019	0.233	-0.09	18.55	19.00	1.109	0.263	22.2
Back side	802.11a	52/5260	98.10%	1.019	0.570	-0.06	18.55	19.00	1.109	0.644	22.2
Right side	802.11a	52/5260		1.019	0.468	-0.09	18.55	19.00	1.109	0.529	22.2
Top side	802.11a	52/5260		1.019	0.211	0.06	18.55	19.00	1.109	0.239	22.2
		Product	t specific	10gSAR T		U-NII-2C(Separate 0mn	ገ)			
Front side	802.11a	116/5580		1.019	0.324	-0.01	18.59	19.00	1.099	0.363	22.4
Back side	802.11a	116/5580	98.10%	1.019	0.730	0.02	18.59	19.00	1.099	0.818	22.4
Right side	802.11a	116/5580	98.10%	1.019	1.050	-0.08	18.59	19.00	1.099	1.176	22.4
Top side	802.11a	116/5580	98.10%	1.019	0.213	0.12	18.59	19.00	1.099	0.239	22.4
Right side with Battery 2#	802.11a	116/5580	98.10%	1.019	0.950	0.02	18.59	19.00	1.099	1.064	22.4
Right side with Battery 3#	802.11a	116/5580	98.10%	1.019	0.912	0.03	18.59	19.00	1.099	1.022	22.4
Right side with Battery 4#	802.11a	116/5580	98.10%	1.019	0.930	-0.05	18.59	19.00	1.099	1.042	22.4
Right side with Battery 5#	802.11a	116/5580	98.10%	1.019	0.917	0.08	18.59	19.00	1.099	1.028	22.4
Right side with Battery 6#	802.11a	116/5580	98.10%	1.019	0.901	0.07	18.59	19.00	1.099	1.009	22.4

Table 25: SAR of WIFI 5G for Head and Body. Note:

1) As the highest reported SAR is smaller than 1.2 W/kg, and the tune-up of the other 802.11 modes are not higher than SAR test select, therefore the adjusted SAR is ≤ 1.2 W/kg for other 802.11 modes, SAR test for the other 802.11 modes are not required. For Product specific 10gSAR the highest reported SAR is smaller than 3.0 W/kg, SAR test for the other 802.11 modes are also not required.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp. and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alterations for progress of assistance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

South of No. 6 Pient, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由限署试验区苏州片区苏州工业国区深胜路1号的6号厂房南部 鄉鄉: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 156 of 169

8.2.2 SAR Result of BT

				An	t9 Test Red	cord					
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)			Scaled SAR 1- g (W/kg)	Liquid Temp.(℃)
				Н	lead Test da	ata					
Left cheek	DH5	39/2441	76.86%	1.301	0.090	-0.04	13.45	15.00	1.429	0.168	22.2
Left tilted	DH5	39/2441	76.86%	1.301	0.043	0.07	13.45	15.00	1.429	0.081	22.2
Right cheek	DH5	39/2441	76.86%	1.301	0.085	0.02	13.45	15.00	1.429	0.159	22.2
Right tilted	DH5	39/2441	76.86%	1.301	0.019	0.04	13.45	15.00	1.429	0.035	22.2
Left cheek with Battery 2#	DH5	39/2441	76.86%	1.301	0.087	0.06	13.45	15.00	1.429	0.162	22.2
Left cheek with Battery 3#	DH5	39/2441	76.86%	1.301	0.086	0.04	13.45	15.00	1.429	0.159	22.2
Left cheek with Battery 4#	DH5	39/2441	76.86%	1.301	0.083	0.08	13.45	15.00	1.429	0.154	22.2
Left cheek with Battery 5#	DH5	39/2441	76.86%	1.301	0.084	-0.05	13.45	15.00	1.429	0.157	22.2
Left cheek with Battery 6#	DH5	39/2441	76.86%	1.301	0.086	0.10	13.45	15.00	1.429	0.160	22.2
			Body	y worn T	est data(Se	parate 15n	nm)				
Front side	DH5	39/2441	76.86%	1.301	0.031	0.03	13.45	15.00	1.429	0.058	22.2
Back side	DH5	39/2441	76.86%	1.301	0.049	0.02	13.45	15.00	1.429	0.092	22.2
Back side with Battery 2#	DH5	39/2441	76.86%	1.301	0.048	0.09	13.45	15.00	1.429	0.090	22.2
Back side with Battery 3#	DH5	39/2441	76.86%	1.301	0.048	-0.05	13.45	15.00	1.429	0.089	22.2
Back side with Battery 4#	DH5	39/2441	76.86%	1.301	0.047	-0.12	13.45	15.00	1.429	0.087	22.2
Back side with Battery 5#	DH5	39/2441	76.86%	1.301	0.046	0.03	13.45	15.00	1.429	0.085	22.2
Back side with Battery 6#	DH5	39/2441	76.86%	1.301	0.045	0.07	13.45	15.00	1.429	0.083	22.2
			Hot	spot Tes	st data (Sep	arate 10m	m)				
Front side	DH5	39/2441	76.86%	1.301	0.066	0.07	13.45	15.00	1.429	0.122	22.2
Back side	DH5	39/2441	76.86%	1.301	0.101	-0.14	13.45	15.00	1.429	0.188	22.2
Right side	DH5	39/2441	76.86%	1.301	0.087	0.03	13.45	15.00	1.429	0.162	22.2
Back side with Battery 2#	DH5	39/2441	76.86%	1.301	0.099	-0.08	13.45	15.00	1.429	0.183	22.2
Back side with Battery 3#	DH5	39/2441	76.86%	1.301	0.096	0.09	13.45	15.00	1.429	0.178	22.2
Back side with Battery 4#	DH5	39/2441	76.86%	1.301	0.094	0.02	13.45	15.00	1.429	0.175	22.2
Back side with Battery 5#	DH5	39/2441	76.86%	1.301	0.096	-0.04	13.45	15.00	1.429	0.178	22.2
Back side with Battery 6#	DH5	39/2441	76.86%	1.301	0.091	0.05	13.45	15.00	1.429	0.169	22.2

Table 26: SAR of BT for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxpx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Condit

South of No. 6 Pient, No. 1, Runsherry Road, Suchou Industria Park, Suchou Area, Chira (Jiangsu) Piot Free Tiede Zone 215000 中国 · 苏州 - 中国(江苏)自由吴景试翰区苏州丘安南区苏州江全国区河胜路1号的6号厂房南部 能编: 215000

(86–512) 62992980 www.sgsgroup.com.c (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 157 of 169

8.3 Multiple Transmitter Evaluation

8.3.1 Simultaneous SAR SAR test evaluation

Simultaneous Transmission Possibilities

NO	Simultaneous TX Combination	Head	Body- worn	Hotspot	Product Specific 10-g (0mm)
1	WWAN+BT	Υ	Υ	Υ	Y
2	WWAN+WIFI 2.4G	Y	Υ	Υ	Υ
3	WWAN+WIFI 5G	Y	Υ	Υ	Υ
4	WWAN+BT+WIFI 5G	N	N	N	N
5	BT+WIFI 5G	N	N	N	N
6	WIFI 2.4G+WIFI 5G	N	N	N	N
7	WIFI 2.4G+BT	N	N	N	N

Note:

- 1) For Wi-Fi 5G, U-NII-2A (5250-5350 MHz) and U-NII-2C (5470-5725 MHz) band do not support hotspot function.
- 2) The device does not support DTM.

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 158 of 169

8.3.2 Simultaneous Transmission SAR Summation Scenario Simultaneous Transmission SAR Summation Scenario for WLAN Head:

			SARmax (W/kg)					
Test pos	sition	Main Ant	WiFi 2.4G Ant6(chain0)	WiFi 5G Ant6(chain0)	ВТ	S	Summed SAI	₹	
		1	2	3	4	1+2	1+3	1+4	
	Left cheek	0.205	0.197	0.545	0.168	0.402	0.750	0.373	
0014050 4 40	Left tilted	0.112	0.085	0.355	0.081	0.197	0.467	0.193	
GSM850 Ant0	Right cheek	0.254	0.064	0.187	0.159	0.318	0.441	0.413	
	Right tilted	0.116	0.049	0.296	0.035	0.165	0.412	0.151	
	Left cheek	0.118	0.197	0.545	0.168	0.315	0.663	0.286	
GSM1900	Left tilted	0.042	0.085	0.355	0.081	0.127	0.397	0.123	
Ant1	Right cheek	0.080	0.064	0.187	0.159	0.144	0.267	0.239	
	Right tilted	0.036	0.049	0.296	0.035	0.085	0.332	0.071	
	Left cheek	0.096	0.197	0.545	0.168	0.293	0.641	0.264	
WCDMA II	Left tilted	0.071	0.085	0.355	0.081	0.156	0.426	0.152	
Ant1	Right cheek	0.100	0.064	0.187	0.159	0.164	0.287	0.259	
	Right tilted	0.064	0.049	0.296	0.035	0.113	0.360	0.099	
	Left cheek	0.222	0.197	0.545	0.168	0.419	0.767	0.390	
WCDMA IV	Left tilted	0.106	0.085	0.355	0.081	0.191	0.461	0.187	
Ant1	Right cheek	0.150	0.064	0.187	0.159	0.214	0.337	0.309	
	Right tilted	0.098	0.049	0.296	0.035	0.147	0.394	0.133	
	Left cheek	0.215	0.197	0.545	0.168	0.412	0.760	0.383	
WCDMA V	Left tilted	0.090	0.085	0.355	0.081	0.175	0.445	0.171	
Ant0	Right cheek	0.242	0.064	0.187	0.159	0.306	0.429	0.401	
	Right tilted	0.117	0.049	0.296	0.035	0.166	0.413	0.152	
	Left cheek	0.125	0.197	0.545	0.168	0.322	0.670	0.293	
LTE Band2	Left tilted	0.050	0.085	0.355	0.081	0.135	0.405	0.131	
Ant1	Right cheek	0.087	0.064	0.187	0.159	0.151	0.274	0.246	
	Right tilted	0.074	0.049	0.296	0.035	0.123	0.370	0.109	
	Left cheek	0.237	0.197	0.545	0.168	0.434	0.782	0.405	
LTE Band4	Left tilted	0.054	0.085	0.355	0.081	0.139	0.409	0.135	
Ant1	Right cheek	0.170	0.064	0.187	0.159	0.234	0.357	0.329	
	Right tilted	0.068	0.049	0.296	0.035	0.117	0.364	0.103	
	Left cheek	0.135	0.197	0.545	0.168	0.332	0.680	0.303	
LTE Band5	Left tilted	0.090	0.085	0.355	0.081	0.175	0.445	0.171	
Ant0	Right cheek	0.213	0.064	0.187	0.159	0.277	0.400	0.372	
	Right tilted	0.095	0.049	0.296	0.035	0.144	0.391	0.130	
	Left cheek	0.101	0.197	0.545	0.168	0.298	0.646	0.269	
LTE Band7	Left tilted	0.115	0.085	0.355	0.081	0.200	0.470	0.196	
Ant1	Right cheek	0.202	0.064	0.187	0.159	0.266	0.389	0.361	
	Right tilted	0.084	0.049	0.296	0.035	0.133	0.380	0.119	
	Left cheek	0.137	0.197	0.545	0.168	0.334	0.682	0.305	
LTE Band13	Left tilted	0.077	0.085	0.355	0.081	0.162	0.432	0.158	
Ant0	Right cheek	0.172	0.064	0.187	0.159	0.236	0.359	0.331	
	Right tilted	0.080	0.049	0.296	0.035	0.129	0.376	0.115	
	Left cheek	0.176	0.197	0.545	0.168	0.373	0.721	0.344	
LTE Band26	Left tilted	0.084	0.085	0.355	0.081	0.169	0.439	0.165	
Ant0	Right cheek	0.191	0.064	0.187	0.159	0.255	0.378	0.350	
	Right tilted	0.093	0.049	0.296	0.035	0.142	0.389	0.128	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions/Terme-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clients instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing fungection report & certificities, please contact us at technology.

South of No. 5 Piert, No. 1, Runshere; Road, Suchou Industrial Park, Suchou Area, China (Jangsu) Pilot Free Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景文教区苏州片区苏州工业园区湾走路1号的6号厂房南部 鄉編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 159 of 169

	Left cheek	0.075	0.197	0.545	0.168	0.272	0.620	0.243
LTE Band38	Left tilted	0.085	0.085	0.355	0.081	0.170	0.440	0.166
Ant1	Right cheek	0.133	0.064	0.187	0.159	0.197	0.320	0.292
	Right tilted	0.056	0.049	0.296	0.035	0.105	0.352	0.091
	Left cheek	0.291	0.197	0.545	0.168	0.488	0.836	0.459
LTE Band66 Ant1	Left tilted	0.072	0.085	0.355	0.081	0.157	0.427	0.153
	Right cheek	0.209	0.064	0.187	0.159	0.273	0.396	0.368
	Right tilted	0.103	0.049	0.296	0.035	0.152	0.399	0.138

			SARmax (W/kg)				
Test po	osition	UP Ant	WiFi 2.4G Ant6(chain0)	WiFi 5G Ant6(chain0)	ВТ	S	Summed SAI	₹
		1	2	3	4	1+2	1+3	1+4
	Left cheek	0.543	0.197	0.545	0.168	0.740	1.088	0.711
OCM050 A-40	Left tilted	0.233	0.085	0.355	0.081	0.318	0.588	0.314
GSM850 Ant3	Right cheek	0.666	0.064	0.187	0.159	0.730	0.853	0.825
	Right tilted	0.437	0.049	0.296	0.035	0.486	0.733	0.472
	Left cheek	0.747	0.197	0.545	0.168	0.944	1.292	0.915
GSM1900	Left tilted	0.757	0.085	0.355	0.081	0.842	1.112	0.838
Ant3	Right cheek	0.927	0.064	0.187	0.159	0.991	1.114	1.086
	Right tilted	0.940	0.049	0.296	0.035	0.989	1.236	0.975
	Left cheek	0.721	0.197	0.545	0.168	0.918	1.266	0.889
WCDMA II	Left tilted	0.893	0.085	0.355	0.081	0.978	1.248	0.974
Ant3	Right cheek	0.847	0.064	0.187	0.159	0.911	1.034	1.006
	Right tilted	1.081	0.049	0.296	0.035	1.130	1.377	1.116
	Left cheek	0.573	0.197	0.545	0.168	0.770	1.118	0.741
WCDMA IV	Left tilted	0.881	0.085	0.355	0.081	0.966	1.236	0.962
Ant3	Right cheek	0.722	0.064	0.187	0.159	0.786	0.909	0.881
	Right tilted	1.064	0.049	0.296	0.035	1.113	1.360	1.099
	Left cheek	0.486	0.197	0.545	0.168	0.683	1.031	0.654
WCDMA V	Left tilted	0.341	0.085	0.355	0.081	0.426	0.696	0.422
Ant3	Right cheek	1.057	0.064	0.187	0.159	1.121	1.244	1.216
	Right tilted	0.479	0.049	0.296	0.035	0.528	0.775	0.514
	Left cheek	0.786	0.197	0.545	0.168	0.983	1.331	0.954
LTE Band2	Left tilted	0.951	0.085	0.355	0.081	1.036	1.306	1.032
Ant3	Right cheek	0.906	0.064	0.187	0.159	0.970	1.093	1.065
	Right tilted	1.093	0.049	0.296	0.035	1.142	1.389	1.128
	Left cheek	0.653	0.197	0.545	0.168	0.850	1.198	0.821
LTE Band4	Left tilted	0.882	0.085	0.355	0.081	0.967	1.237	0.963
Ant3	Right cheek	0.740	0.064	0.187	0.159	0.804	0.927	0.899
	Right tilted	0.946	0.049	0.296	0.035	0.995	1.242	0.981
	Left cheek	0.305	0.197	0.545	0.168	0.502	0.850	0.473
LTE Band5	Left tilted	0.206	0.085	0.355	0.081	0.291	0.561	0.287
Ant3	Right cheek	0.719	0.064	0.187	0.159	0.783	0.906	0.878
	Right tilted	0.360	0.049	0.296	0.035	0.409	0.656	0.395
	Left cheek	0.982	0.197	0.545	0.168	1.179	1.527	1.150
LTE Band7	Left tilted	0.998	0.085	0.355	0.081	1.083	1.353	1.079
Ant3	Right cheek	0.948	0.064	0.187	0.159	1.012	1.135	1.107
	Right tilted	1.075	0.049	0.296	0.035	1.124	1.371	1.110
LTE Band13	Left cheek	0.318	0.197	0.545	0.168	0.515	0.863	0.486

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions/Terme-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clients instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing fungection report & certificities, please contact us at technology.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pick Free Trade Zone 215000中国 - 苏州 - 中国 - 苏州 - 中国 (江苏) 自由 医易式截区苏州 片区苏州 工业国区润置路1号的6号厂房南部 - 廊場: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 160 of 169

				. 490.				
Ant3	Left tilted	0.186	0.085	0.355	0.081	0.271	0.541	0.267
	Right cheek	0.461	0.064	0.187	0.159	0.525	0.648	0.620
	Right tilted	0.407	0.049	0.296	0.035	0.456	0.703	0.442
	Left cheek	0.436	0.197	0.545	0.168	0.633	0.981	0.604
LTE Band26	Left tilted	0.275	0.085	0.355	0.081	0.360	0.630	0.356
Ant3	Right cheek	0.587	0.064	0.187	0.159	0.651	0.774	0.746
	Right tilted	0.255	0.049	0.296	0.035	0.304	0.551	0.290
	Left cheek	0.766	0.197	0.545	0.168	0.963	1.311	0.934
LTE Band38	Left tilted	1.035	0.085	0.355	0.081	1.120	1.390	1.116
Ant3	Right cheek	0.806	0.064	0.187	0.159	0.870	0.993	0.965
	Right tilted	0.926	0.049	0.296	0.035	0.975	1.222	0.961
	Left cheek	0.557	0.197	0.545	0.168	0.754	1.102	0.725
LTE Band66	Left tilted	0.726	0.085	0.355	0.081	0.811	1.081	0.807
Ant3	Right cheek	0.718	0.064	0.187	0.159	0.782	0.905	0.877
	Right tilted	0.000	0.049	0.296	0.035	0.049	0.296	0.035

Inless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printer overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx stretten in is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is downed therein in the subject of the

South of No. 6 Plent, No. 1, Runsheng Road, Suthou Industrial Park, Suthou Area, China (Jiangsu) Pilot Free Texie Zone 中国 · 苏州 · 中国(江苏)自由因易试验区苏州片区苏州工业团区河逛路(号的6号厂房商部 庫場: 215000

t (86–512) 62992980 www.sgsgroup.com.c t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 161 of 169

Simultaneous Transmission SAR Summation Scenario for WLAN Body worn:

			SARmax	(W/kg)				
Test po	osition	Main Ant	WiFi 2.4G Ant6(chain0)	WiFi 5G Ant6(chain0)	ВТ	;	Summed SAF	₹
		1	2	3	4	1+2	1+3	1+4
GSM850 Ant0	Front side	0.299	0.180	0.151	0.058	0.479	0.450	0.357
GSIVIOSO ATILO	Back side	0.352	0.273	0.340	0.092	0.625	0.692	0.444
GSM1900	Front side	0.232	0.180	0.151	0.058	0.412	0.383	0.290
Ant1	Back side	0.552	0.273	0.340	0.092	0.825	0.892	0.644
WCDMA II	Front side	0.172	0.180	0.151	0.058	0.352	0.323	0.230
Ant1	Back side	0.421	0.273	0.340	0.092	0.694	0.761	0.513
WCDMA IV	Front side	0.357	0.180	0.151	0.058	0.537	0.508	0.415
Ant1	Back side	0.787	0.273	0.340	0.092	1.060	1.127	0.879
WCDMA V	Front side	0.297	0.180	0.151	0.058	0.477	0.448	0.355
Ant0	Back side	0.368	0.273	0.340	0.092	0.641	0.708	0.460
LTE Band2	Front side	0.189	0.180	0.151	0.058	0.369	0.340	0.247
Ant1	Back side	0.460	0.273	0.340	0.092	0.733	0.800	0.552
LTE Band4	Front side	0.332	0.180	0.151	0.058	0.512	0.483	0.390
Ant1	Back side	0.712	0.273	0.340	0.092	0.985	1.052	0.804
LTE Band5	Front side	0.174	0.180	0.151	0.058	0.354	0.325	0.232
Ant0	Back side	0.218	0.273	0.340	0.092	0.491	0.558	0.310
LTE Band7	Front side	0.113	0.180	0.151	0.058	0.293	0.264	0.171
Ant1	Back side	0.339	0.273	0.340	0.092	0.612	0.679	0.431
LTE Band13	Front side	0.137	0.180	0.151	0.058	0.317	0.288	0.195
Ant0	Back side	0.162	0.273	0.340	0.092	0.435	0.502	0.254
LTE Band26	Front side	0.160	0.180	0.151	0.058	0.340	0.311	0.218
Ant0	Back side	0.210	0.273	0.340	0.092	0.483	0.550	0.302
LTE Band38	Front side	0.094	0.180	0.151	0.058	0.274	0.245	0.152
Ant1	Back side	0.337	0.273	0.340	0.092	0.610	0.677	0.429
LTE Band66	Front side	0.381	0.180	0.151	0.058	0.561	0.532	0.439
Ant1	Back side	0.857	0.273	0.340	0.092	1.130	1.197	0.949

			SARmax	(W/kg)					
Test po	osition	UP Ant	WiFi 2.4G Ant6(chain0)	WiFi 5G Ant6(chain0)	ВТ	;	Summed SAR		
		1	2	3	4	1+2 1+3		1+4	
GSM850 Ant3	Front side	0.130	0.180	0.151	0.058	0.310	0.281	0.188	
GSW650 AIRS	Back side	0.229	0.273	0.340	0.092	0.502	0.569	0.321	
GSM1900	Front side	0.189	0.180	0.151	0.058	0.369	0.340	0.247	
Ant3	Back side	0.358	0.273	0.340	0.092	0.631	0.698	0.450	
WCDMA II	Front side	0.284	0.180	0.151	0.058	0.464	0.435	0.342	
Ant3	Back side	0.580	0.273	0.340	0.092	0.853	0.920	0.672	
WCDMA IV	Front side	0.171	0.180	0.151	0.058	0.351	0.322	0.229	
Ant3	Back side	0.338	0.273	0.340	0.092	0.611	0.678	0.430	
WCDMA V	Front side	0.188	0.180	0.151	0.058	0.368	0.339	0.246	
Ant3	Back side	0.309	0.273	0.340	0.092	0.582	0.649	0.401	
LTE Band2	Front side	0.170	0.180	0.151	0.058	0.350	0.321	0.228	
Ant3	Back side	0.307	0.273	0.340	0.092	0.580	0.647	0.399	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions.aspx and, for electronic Documents at http://www.sgs.gom/en/Terme-and-Conditions/Terme-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clients instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing fungection report & certificities, please contact us at technology.

South of No. 6 Plant, No. 1, Runsherg Road, Suzhou Industria Park, Suzhou Area, China (Jangsu) Pikot Free Trade Zone 215000 中国 - 苏州 - 中国(江苏)自由医易试验区苏州 H区苏州工业园区湖走路1号的6号厂房南部 廊場: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 162 of 169

LTE Band4	Front side	0.146	0.180	0.151	0.058	0.326	0.297	0.204
Ant3	Back side	0.296	0.273	0.340	0.092	0.569	0.636	0.388
LTE Band5	Front side	0.105	0.180	0.151	0.058	0.285	0.256	0.163
Ant3	Back side	0.214	0.273	0.340	0.092	0.487	0.554	0.306
LTE Band7	Front side	0.257	0.180	0.151	0.058	0.437	0.408	0.315
Ant3	Back side	0.424	0.273	0.340	0.092	0.697	0.764	0.516
LTE Band13	Front side	0.133	0.180	0.151	0.058	0.313	0.284	0.191
Ant3	Back side	0.237	0.273	0.340	0.092	0.510	0.577	0.329
LTE Band26	Front side	0.088	0.180	0.151	0.058	0.268	0.239	0.146
Ant3	Back side	0.158	0.273	0.340	0.092	0.431	0.498	0.250
LTE Band38	Front side	0.114	0.180	0.151	0.058	0.294	0.265	0.172
Ant3	Back side	0.289	0.273	0.340	0.092	0.562	0.629	0.381
LTE Band66	Front side	0.202	0.180	0.151	0.058	0.382	0.353	0.260
Ant3	Back side	0.382	0.273	0.340	0.092	0.655	0.722	0.474

Simultaneous Transmission SAR Summation Scenario for WLAN Hotspot:

			SARmax (W/k					
Test p	osition	Main Ant	WiFi 2.4G Ant6(chain0)	WiFi 5G Ant6(chain0)	ВТ	Summed SAR		
		1	2	3	4	1+2	1+3	1+4
	Front side	0.442	0.337	0.236	0.122	0.779	0.678	0.564
	Back side	0.578	0.361	0.470	0.188	0.939	1.048	0.766
GSM850	Left side	0.220				0.220	0.220	0.220
Ant0	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side			0.292			0.292	
	Bottom side	0.008				0.008	0.008	0.008
	Front side	0.420	0.337	0.236	0.122	0.757	0.656	0.542
	Back side	1.081	0.361	0.470	0.188	1.442	1.551	1.269
GSM1900	Left side							
Ant1	Right side	0.122	0.404	0.723	0.162	0.526	0.845	0.284
	Top side			0.292			0.292	
	Bottom side	0.649				0.649	0.649	0.649
	Front side	0.284	0.337	0.236	0.122	0.621	0.520	0.406
	Back side	0.870	0.361	0.470	0.188	1.231	1.340	1.058
WCDMA II	Left side							
Ant1	Right side	0.216	0.404	0.723	0.162	0.620	0.939	0.378
	Top side			0.292			0.292	
	Bottom side	0.739				0.739	0.739	0.739
	Front side	0.386	0.337	0.236	0.122	0.723	0.622	0.508
	Back side	1.029	0.361	0.470	0.188	1.390	1.499	1.217
WCDMA IV	Left side							
Ant1	Right side	0.246	0.404	0.723	0.162	0.650	0.969	0.408
	Top side			0.292			0.292	
	Bottom side	0.922				0.922	0.922	0.922
	Front side	0.417	0.337	0.236	0.122	0.754	0.653	0.539
MODMAN	Back side	0.655	0.361	0.470	0.188	1.016	1.125	0.843
WCDMA V Ant0	Left side	0.419				0.419	0.419	0.419
Aito	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side			0.292			0.292	

South of No. 8 Piett, No. 1, Runshere, Road, Scarbou Industrial Park, Starhou Area, China (Jangsu) Pict Free Tisede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景定翰区苏州丘安周区满世路(号数6号厂房南部 雌嶺: 215000

t (86-512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 163 of 169

				Page:	10	3 01 109	-	
	Bottom side	0.016				0.016	0.016	0.016
	Front side	0.325	0.337	0.236	0.122	0.662	0.561	0.447
	Back side	0.926	0.361	0.470	0.188	1.287	1.396	1.114
LTE Band2	Left side							
Ant1	Right side	0.223	0.404	0.723	0.162	0.627	0.946	0.385
	Top side			0.292			0.292	
	Bottom side	0.796				0.796	0.796	0.796
	Front side	0.411	0.337	0.236	0.122	0.748	0.647	0.533
	Back side	1.071	0.361	0.470	0.188	1.432	1.541	1.259
LTE Band4	Left side							
Ant1	Right side	0.229	0.404	0.723	0.162	0.633	0.952	0.391
	Top side			0.292			0.292	
	Bottom side	1.029				1.029	1.029	1.029
	Front side	0.305	0.337	0.236	0.122	0.642	0.541	0.427
	Back side	0.376	0.361	0.470	0.188	0.737	0.846	0.564
LTF Band5	Left side	0.134				0.134	0.134	0.134
	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side			0.292			0.292	
	Bottom side	0.165				0.165	0.165	0.165
	Front side	0.224	0.337	0.236	0.122	0.561	0.460	0.346
	Back side	0.729	0.361	0.470	0.188	1.090	1.199	0.917
LTF Band7	Left side	0.041				0.041	0.041	0.041
	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side		5.151	0.292	002	0.101	0.292	002
	Bottom side	0.618		0.202		0.618	0.618	0.618
	Front side	0.208	0.337	0.236	0.122	0.545	0.444	0.330
	Back side	0.276	0.361	0.470	0.188	0.637	0.746	0.464
I TE Band12	Left side	0.123	0.001	0.170	0.100	0.123	0.123	0.123
	Right side	0.120	0.404	0.723	0.162	0.404	0.723	0.162
	Top side		0.404	0.292	0.102	0.404	0.292	0.102
	Bottom side	0.107		0.232		0.107	0.107	0.107
	Front side	0.298	0.337	0.236	0.122	0.635	0.534	0.420
	Back side	0.355	0.361	0.470	0.122	0.716	0.825	0.543
LTE Dandoe	Left side	0.113	0.501	0.470	0.100	0.113	0.023	0.113
	Right side	0.115	0.404	0.723	0.162	0.404	0.723	0.113
70	Top side		0.404	0.292	0.102	0.404	0.723	0.102
	Bottom side	0.152		0.232		0.152	0.152	0.152
	Front side	0.188	0.337	0.236	0.122	0.132	0.132	0.132
	Back side	0.665	0.361	0.470	0.122	1.026	1.135	0.853
LTC Danieloo	Left side	0.003	0.301	0.470	0.100	1.020	1.133	0.000
	Right side	0.276	0.404	0.723	0.162	0.680	0.999	0.438
7.11.1	_	0.270	0.404		0.102	0.000		0.430
	Top side Bottom side	0.616		0.292		0.616	0.292 0.616	0.616
			0.227	0.226	0.422	0.616		0.616
	Front side	0.483	0.337	0.236	0.122	0.820	0.719	0.605
1.TE D 105	Back side	1.078	0.361	0.470	0.188	1.439	1.548	1.266
	Left side	0.007	0.404	0.700	0.400	0.674	0.000	0.400
AIILI	Right side	0.267	0.404	0.723	0.162	0.671	0.990	0.429
	Top side	0.010		0.292		0.040	0.292	0.010
	Bottom side	0.912				0.912	0.912	0.912

South of No. 8 Piert, No. 1, Runshere; Road, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86-512) 62992980

sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 164 of 169

Test position	Test position		SARmax (W/kg)							
Front side					I BI		Summed SAR			
Back side			1	2	3	4	1+2	1+3	1+4	
Carrier Carr		Front side	0.184	0.337	0.236	0.122	0.521	0.420	0.306	
An13 An13 Right side O_257 O_404 O_723 O_162 O_6681 O_980 O_419 O_252 O_100 O_392 O_100 O_528 O_419 O_528 O_414 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_241 O_372 O_162 O_404 O_723 O_162 O_404 O_723 O_162 O_404 O_723 O_162 O_404 O_723 O_162 O_404 O_723 O_408 O_808 O_		Back side	0.325	0.361	0.470	0.188	0.686	0.795	0.513	
Top side	GSM850	Left side								
Bottom side	Ant3	Right side	0.257	0.404	0.723	0.162	0.661	0.980	0.419	
Front side		Top side	0.100		0.292		0.100	0.392	0.100	
Back side		Bottom side								
GSM1900 Ant3 Left side 0.241 0.242 0.754 0.062 0.752 0.754 0.754 0.754 0.083 0.072 0.083 0.072 0.083 0.372 0.286 0.122 0.587 0.486 0.372 0.083		Front side	0.292	0.337	0.236	0.122	0.629	0.528	0.414	
Ant3 Right side O.754 O.764 O.793 O.162 O.764 O.794 O.793 O.162 O.764 O.794 O.793 O.162 O.764 O.764 O.764 O.764 O.764 O.764 O.765 O.764 O.765 O.764 O.764 O.764 O.764 O.764 O.765 O.764 O.764 O.765 O.764 O.765 O.765 O.767 O.768 O.767 O.768 O.		Back side	0.646	0.361	0.470	0.188	1.007	1.116	0.834	
Top side 0.754 0.292 0.754 1.046 0.754 0.755 Bottom side	GSM1900	Left side	0.241				0.241	0.241	0.241	
MCDMA II	Ant3	Right side		0.404	0.723	0.162	0.404	0.723	0.162	
Front side		Top side	0.754		0.292		0.754	1.046	0.754	
MCDMA II		Bottom side								
MCDMA II		Front side	0.250	0.337	0.236	0.122	0.587	0.486	0.372	
Right side		Back side	0.539	0.361	0.470	0.188	0.900	1.009	0.727	
Top side	WCDMA II	Left side	0.083				0.083	0.083	0.083	
Bottom side Front side D.235 D.337 D.236 D.122 D.572 D.471 D.357	Ant3	Right side		0.404	0.723	0.162	0.404	0.723	0.162	
WCDMA IV Ant3 Back side 0.235 0.337 0.236 0.122 0.572 0.471 0.357		Top side	0.568		0.292		0.568	0.860	0.568	
MCDMA IV		Bottom side								
WCDMA IV Ant3 Left side 0.144 0.142 0.404 0.723 0.162 0.551 0.843 0.551 Bottom side Back side 0.341 0.337 0.236 0.122 0.678 0.577 0.463 Back side 0.576 0.361 0.470 0.188 0.937 1.046 0.764 Left side 0.425 Colspan="6">Co		Front side	0.235	0.337	0.236	0.122	0.572	0.471	0.357	
Ant3 Right side		Back side	0.565	0.361	0.470	0.188	0.926	1.035	0.753	
Top side	WCDMA IV	Left side	0.144				0.144	0.144	0.144	
Bottom side	Ant3	Right side		0.404	0.723	0.162	0.404	0.723	0.162	
WCDMA V Ant3 Front side 0.341 0.337 0.236 0.122 0.678 0.577 0.463 Back side 0.576 0.361 0.470 0.188 0.937 1.046 0.764 Left side 0.425 0.404 0.723 0.162 0.404 0.723 0.162 Right side 0.003 0.292 0.003 0.295 0.003 Bottom side 0.279 0.337 0.236 0.122 0.616 0.515 0.401 Back side 0.638 0.361 0.470 0.188 0.999 1.108 0.826 Left side 0.129 0.404 0.723 0.162 0.404 0.723 0.162 Right side 0.404 0.723 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.614 0.513 0.399 0.000<		Top side	0.551		0.292		0.551	0.843	0.551	
WCDMA V Ant3 Back side 0.576 0.361 0.470 0.188 0.937 1.046 0.764 Left side 0.425 0.404 0.723 0.162 0.404 0.723 0.162 Right side 0.003 0.292 0.003 0.295 0.003 Bottom side 0.279 0.337 0.236 0.122 0.616 0.515 0.401 Left side 0.638 0.361 0.470 0.188 0.999 1.108 0.826 Left side 0.129 0.404 0.723 0.162 0.404 0.723 0.129 Right side 0.545 0.404 0.723 0.162 0.404 0.723 0.162 Top side 0.545 0.292 0.545 0.837 0.545 Bottom side 0.027 0.337 0.236 0.122 0.614 0.513 0.399 LTE Band4 Ant3 Front side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 <td></td> <td>Bottom side</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Bottom side								
WCDMA V Ant3 Left side 0.425 0.162 0.404 0.723 0.162 0.404 0.723 0.122 0.616 0.515 0.401 Back side 0.638 0.361 0.470 0.188 0.999 1.108 0.826 Left side 0.129 0.404 0.723 0.162 0.404 0.723 0.162 Right side 0.545 0.292 0.545 0.837 0.545 Bottom side 0.292 0.545 0.837 0.545 LTE Band4 Ant3 Ant3 0.521 0.337 0.236 0.122 0.614 0.513 0.399 LTE Band5 Front side 0.521 0.404		Front side	0.341	0.337	0.236	0.122	0.678	0.577	0.463	
Ant3 Right side 0.003 0.292 0.003 0.295 0.295 0.		Back side	0.576	0.361	0.470	0.188	0.937	1.046	0.764	
Ant3 Right side 0.404 0.723 0.162 0.404 0.723 0.162 Top side 0.003 0.292 0.003 0.295 0.003 Bottom side 0.279 0.337 0.236 0.122 0.616 0.515 0.401 Back side 0.638 0.361 0.470 0.188 0.999 1.108 0.826 Left side 0.129 0.404 0.723 0.162 0.404 0.723 0.162 Right side 0.545 0.292 0.545 0.837 0.545 Bottom side 0.292 0.545 0.837 0.545 Back side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 Left side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 Left side 0.142 0.404 0.723 0.162 0.404 0.723 0.162 Left side 0.142 0.404 0.723 0.162	WCDMA V	Left side	0.425				0.425	0.425	0.425	
Bottom side Front side 0.279 0.337 0.236 0.122 0.616 0.515 0.401		Right side		0.404	0.723	0.162	0.404	0.723	0.162	
Front side 0.279 0.337 0.236 0.122 0.616 0.515 0.401 Back side 0.638 0.361 0.470 0.188 0.999 1.108 0.826 Left side 0.129 0.129 0.129 0.129 Right side 0.545 0.292 0.545 0.837 0.545 Bottom side Front side 0.277 0.337 0.236 0.122 0.614 0.513 0.399 Back side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 Left side 0.142 0.142 0.142 0.142 0.142 Right side 0.521 0.404 0.723 0.162 0.404 0.723 0.162 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307 LTE Band5		Top side	0.003		0.292		0.003	0.295	0.003	
LTE Band2 Ant3 Back side 0.638 0.361 0.470 0.188 0.999 1.108 0.826 Left side 0.129 0.129 0.129 0.129 0.129 0.129 Right side 0.545 0.404 0.723 0.162 0.404 0.723 0.162 Bottom side 0.292 0.545 0.837 0.545 0.545 0.837 0.545 Bottom side 0.292 0.614 0.513 0.399 0.399 0.545 0.399 0.545 0.399 0.545 0.399 0.513 0.399 0.523 0.614 0.513 0.399 0.723 0.162 0.614 0.513 0.399 0.723 0.162 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.521 0.813 0.521 0.521 0.52		Bottom side								
LTE Band2 Ant3 Back side 0.638 0.361 0.470 0.188 0.999 1.108 0.826 Left side 0.129 0.129 0.129 0.129 0.129 0.129 Right side 0.545 0.404 0.723 0.162 0.404 0.723 0.162 Bottom side 0.292 0.545 0.837 0.545 0.545 0.837 0.545 Bottom side 0.292 0.614 0.513 0.399 0.399 0.545 0.399 0.545 0.399 0.545 0.399 0.513 0.399 0.523 0.614 0.513 0.399 0.723 0.162 0.614 0.513 0.399 0.723 0.162 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.404 0.723 0.162 0.521 0.813 0.521 0.521 0.52		Front side	0.279	0.337	0.236	0.122	0.616	0.515	0.401	
Ant3 Right side 0.404 0.723 0.162 0.404 0.723 0.162 Top side 0.545 0.292 0.545 0.837 0.545 Bottom side 0.277 0.337 0.236 0.122 0.614 0.513 0.399 Back side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 Left side 0.142 0.404 0.723 0.162 0.404 0.723 0.162 Right side 0.521 0.404 0.723 0.162 0.404 0.723 0.162 Top side 0.521 0.292 0.521 0.813 0.521 Bottom side 0.185 0.337 0.236 0.122 0.522 0.421 0.307		Back side	0.638	0.361	0.470	0.188	0.999	1.108	0.826	
Ant3 Right side 0.404 0.723 0.162 0.404 0.723 0.162 Top side 0.545 0.292 0.545 0.837 0.545 Bottom side 0.277 0.337 0.236 0.122 0.614 0.513 0.399 Back side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 Left side 0.142 0.404 0.723 0.162 0.404 0.723 0.162 Right side 0.521 0.292 0.521 0.813 0.521 Bottom side 0.185 0.337 0.236 0.122 0.522 0.421 0.307	LTE Band2	Left side					0.129	0.129	0.129	
Top side		Right side		0.404	0.723	0.162	0.404	0.723	0.162	
LTE Band4 Ant3 Front side 0.277 0.337 0.236 0.122 0.614 0.513 0.399 Left side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 Left side 0.142 0.142 0.142 0.142 0.142 0.142 Right side 0.404 0.723 0.162 0.404 0.723 0.162 Top side 0.521 0.292 0.521 0.813 0.521 Bottom side 0.185 0.337 0.236 0.122 0.522 0.421 0.307		Top side	0.545				0.545		0.545	
LTE Band4 Ant3 Back side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 Left side 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.162 <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		· ·								
LTE Band4 Ant3 Back side 0.535 0.361 0.470 0.188 0.896 1.005 0.723 Left side 0.142 0.142 0.142 0.142 0.142 0.142 Right side 0.404 0.723 0.162 0.404 0.723 0.162 Top side 0.521 0.292 0.521 0.813 0.521 Bottom side 0.185 0.337 0.236 0.122 0.522 0.421 0.307			0.277	0.337	0.236	0.122	0.614	0.513	0.399	
LTE Band4 Ant3 Left side 0.142 0.162 <td rowspan="2">LTE Band4</td> <td>Back side</td> <td>0.535</td> <td>0.361</td> <td>0.470</td> <td>0.188</td> <td>0.896</td> <td>1.005</td> <td>0.723</td>	LTE Band4	Back side	0.535	0.361	0.470	0.188	0.896	1.005	0.723	
Ant3 Right side 0.404 0.723 0.162 0.404 0.723 0.162 Top side 0.521 0.292 0.521 0.813 0.521 Bottom side 0.185 0.337 0.236 0.122 0.522 0.421 0.307		Left side					0.142	0.142	0.142	
Top side 0.521 0.292 0.521 0.813 0.521 Bottom side 0.337 0.236 0.122 0.522 0.421 0.307				0.404	0.723	0.162	0.404	0.723	0.162	
Bottom side			0.521							
LTE Band5 Front side 0.185 0.337 0.236 0.122 0.522 0.421 0.307		· ·								
	LTE Band5	Front side	0.185	0.337	0.236	0.122	0.522	0.421	0.307	
	_			0.361				1		

South of No. 8 Piert, No. 1, Runshere; Road, Sachou Industrial Park, Suchou Avea, Chine (Jangsu) Pikt Pree Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景龙翁区苏州片区苏州工业园区湾胜路(号的6号厂房南部 鄉鄉: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 165 of 169

				Page:	103	9 01 109		-
	Left side	0.300				0.300	0.300	0.300
	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side	0.133		0.292		0.133	0.425	0.133
	Bottom side							
	Front side	0.209	0.337	0.236	0.122	0.546	0.445	0.331
	Back side	0.739	0.361	0.470	0.188	1.100	1.209	0.927
LTE Band7	Left side	0.330				0.330	0.330	0.330
Ant3	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side	1.031		0.292		1.031	1.323	1.031
	Bottom side							
	Front side	0.191	0.337	0.236	0.122	0.528	0.427	0.313
	Back side	0.399	0.361	0.470	0.188	0.760	0.869	0.587
LTE Band13	Left side	0.358				0.358	0.358	0.358
Ant3	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side	0.173		0.292		0.173	0.465	0.173
	Bottom side							
	Front side	0.152	0.337	0.236	0.122	0.489	0.388	0.274
	Back side	0.293	0.361	0.470	0.188	0.654	0.763	0.481
LTE Band26	Left side	0.259				0.259	0.259	0.259
Ant3	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side	0.112		0.292		0.112	0.404	0.112
	Bottom side							
	Front side	0.148	0.337	0.236	0.122	0.485	0.384	0.270
	Back side	0.323	0.361	0.470	0.188	0.684	0.793	0.511
LTE Band38	Left side	0.125				0.125	0.125	0.125
Ant3	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side	0.444		0.292		0.444	0.736	0.444
	Bottom side							
	Front side	0.339	0.337	0.236	0.122	0.676	0.575	0.461
	Back side	0.785	0.361	0.470	0.188	1.146	1.255	0.973
LTE Band66	Left side	0.187				0.187	0.187	0.187
Ant3	Right side		0.404	0.723	0.162	0.404	0.723	0.162
	Top side	0.718		0.292		0.718	1.010	0.718
	Bottom side							

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp. and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alterations for progress of assistance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Plot Free Teade Zone 215000 中国・苏州・中国(江苏)自由贸易式製区券州片区茶州工业国区海走路1号的6号厂房南部 単編: 215000

t (86–512) 62992980 t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 166 of 169

Simultaneous Transmission SAR Summation Scenario for WLAN Product specific 10g SAR:

Test position		SARmax (W/kg)						
		WWAN	WiFi 2.4G Ant6(chain0)	WiFi 5G Ant6(chain0)	ВТ	T Summed SAI		
		1	2	3	4	1+2	1+3	1+4
	Front side			0.363			0.363	
	Back side			0.818			0.818	
GSM1900	Left side							
Ant3	Right side			1.176			1.176	
	Top side	1.652		0.239			1.891	
	Bottom side							
	Front side			0.363			0.363	
	Back side	2.894		0.818		2.894	3.712	2.894
WCDMA IV	Left side							
Ant1	Right side			1.176			1.176	
	Top side			0.239			0.239	
	Bottom side	2.628				2.628	2.628	2.628
	Front side			0.363			0.363	
	Back side	1.992		0.818		1.992	2.810	1.992
LTE Band 2	Left side							
Ant3	Right side			1.176			1.176	
	Top side			0.239			0.239	
	Bottom side							
	Front side			0.363			0.363	
	Back side	2.662		0.818		2.662	3.480	2.662
LTE Band 4	Left side							
Ant1	Right side			1.176			1.176	
	Top side			0.239			0.239	
	Bottom side	2.579				2.579	2.579	2.579
LTE Band 7	Front side			0.363			0.363	
	Back side			0.818			0.818	
	Left side							
Ant3	Right side			1.176			1.176	
	Top side	2.262		0.239		2.262	2.501	2.262
	Bottom side							

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.pxp and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Documents subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alterations for growing and the content of appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) have retained for 30 days only.

South of No. 6 Plent, No. 1, Runshang Road, Suzhrou Industrial Park, Suzhrou Area, China (Jangsu) Pilot Free Titade Zone 中国 - 苏州 - 中国(江苏)自由因务试验区苏州片区苏州工业团区深胜路1号的4号厂房南部 鄭鴇: 215000

t (86–512) 62992980 www.sgsgroup.com. t (86–512) 62992980 sgs.china@sgs.com

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 167 of 169

9 Equipment list

9	Equipment iii	ວເ									
	Test Platform	SPEAG DASY Professional									
	Description	SAR Test System									
	Software Reference DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)										
	Hardware Reference										
	Equipment	Manufacturer	lanufacturer Model Serial Numb		Calibration Date	Due date of calibration					
\boxtimes	Twin Phantom	SPEAG	SAM2	1563	NCR	NCR					
\boxtimes	Twin Phantom	SPEAG	SAM3	1770	NCR	NCR					
\boxtimes	Twin Phantom	SPEAG	SAM5	1481	NCR	NCR					
\boxtimes	Twin Phantom	SPEAG	SAM6	1824	NCR	NCR					
\boxtimes	DAE	SPEAG	DAE4	1327	2021-11-05	2022-11-04					
\boxtimes	DAE	SPEAG	DAE4	1324	2021-06-22	2022-06-21					
\boxtimes	DAE	SPEAG	DAE4	1374	2021-11-05	2022-11-04					
\boxtimes	DAE	SPEAG	DAE4	1428	2021-04-09	2022-04-08					
	E-Field Probe	SPEAG	EX3DV4	3962	2021-04-26	2022-04-25					
	E-Field Probe	SPEAG	EX3DV4	7620	2021-08-24	2022-08-23					
\boxtimes	E-Field Probe	SPEAG	EX3DV4	3982	2021-12-29	2022-12-28					
\boxtimes	E-Field Probe	SPEAG	EX3DV4	3789	2021-08-12	2022-08-11					
\boxtimes	Validation Kits	SPEAG	D750V3	1210	2021-09-08	2024-09-07					
\boxtimes	Validation Kits	SPEAG	D835V2	4d256	2020-04-15	2023-04-14					
	Validation Kits	SPEAG	D1750V2	1105	2020-08-29	2023-08-28					
	Validation Kits	SPEAG	D1900V2	5d114	2020-08-27	2023-08-26					
	Validation Kits	SPEAG	D2450V2	1038	2020-04-08	2023-04-07					
	Validation Kits	SPEAG	D2600V2	1180	2021-05-12	2024-05-11					
\boxtimes	Validation Kits	SPEAG	D5GHzV2	1165	2019-12-20	2022-12-19					
\boxtimes	Dielectric parameter probes	SPEAG	DAKS-3.5	0005	2021-07-15	2022-07-14					
\boxtimes	Vector Network Analyzer and Vector Reflectometer	SPEAG	DAKS_VNA R140	0140913	2021-07-22	2022-07-21					
\boxtimes	Universal Radio Communication Tester	R&S	CMW500	111637	2021-09-29	2022-09-28					
\boxtimes	Radio Communication Analyzer	Anritsu	MT8820C	6201010267	2021-04-01	2022-03-31					
\boxtimes	RF Bi-Directional	Agilent	86205-60001	MY31400031	NCR	NCR					

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.gom/en/Terms-and-Conditions.aspx.and, for electronic Documents at http://www.sgs.gom/en/Terms-and-Conditions/Terms-e-Document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clienta instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction forcement cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:To check the authenticity of testing fungection report & certificities, please contact us at telephone (86-755) 3307 1443.

South of No. 5 Piert, No. 1, Runshere; Road, Suchou Industrial Park, Suchou Area, China (Jangsu) Pilot Free Tiede Zone 215000 中国 - 苏州 - 中国(江苏)自由吴景文教区苏州片区苏州工业园区湾走路1号的6号厂房南部 鄉編: 215000

t (86–512) 62992980

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 168 of 169

	Coupler			r ago.		
	Cianal Constan	Dec	CMD400A	400000	2021-02-20	2022-02-19
	Signal Generator	R&S	SMB100A	182393	2022-02-15	2023-02-14
\boxtimes	Preamplifier	Qiji	YX28980933	202104001	NCR	NCR
\boxtimes	Power Meter	Aglient	E4419B	6843318103	2021-06-08	2022-06-07
\boxtimes	Power Sensor	Aglient	E9301A	MY41496508	2021-09-09	2022-09-08
\boxtimes	Power Sensor	Aglient	E9301H	MY41495605	2021-06-08	2022-06-07
\boxtimes	Attenuator	SHX	TS2-3dB	30704	NCR	NCR
\boxtimes	Coaxial low pass filter	Mini-Circuits	VLF-2500(+)	NA	NCR	NCR
\boxtimes	Coaxial low pass filter	Microlab Fxr	LA-F13	NA	NCR	NCR
\boxtimes	DC POWER SUPPLY	SAKO	SK1730SL5A	NA	NCR	NCR
\boxtimes	Speed reading thermometer	LKM	DTM3000	SUW201-30-01	2021-10-09	2022-10-08
\boxtimes	Humidity and Temperature Indicator	MingGao	MingGao	NA	2021-06-16	2022-06-15

Note: All the equipments are within the valid period when the tests are performed.

10 Calibration certificate

Please see the Appendix C

11 Photographs

Please see the Appendix D

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document aspx Attention is drawn to the limitation of liability, indemnitication and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client in the contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client and this document. The company's allowed the contained the co

South of No. 6 Plant, No. 1, Runsharg Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Teole Zone 215000 中国 · 苏州 · 中国(江苏)自由贸易试验区苏州片区苏州工业国区湖走路1号的6号厂房南部 邮第:215000

t (86–512) 62992980 www.sgsgi t (86–512) 62992980 sgs.china@

Report No.: SUHR/2022/1001007

Rev.: 01

Page: 169 of 169

Appendix A: Detailed System Check Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

Appendix E: DUT Antenna Locations

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printe overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Document-aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its Intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduce except in full, without prior written approval of the Company, Any unauthorized alteration for progrey or fastification of the content of appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.