

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: Shenzhen Jiayz photo industrial.,Ltd A16 Building,Intelligent Terminal Industrial Park of Silicon Valley Power,Guanlan Longhua District,Shenzhen, China SZNS211129-61309E-RF-00 2ARN3-MV2000WTX

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Date of Test: Report Date: Microphone SR-MV2000W TX SR-MV2000W(Please refer to DOS for Model difference) N/A 2021/11/29 2021/12/15~2021/12/24 2021/12/29

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Ting Lü EMC Engineer

Approved By:

R6bort li

Robert Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk **. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 42: 2021-11-09

FCC-DTS

Shenzhen Accurate Technology Co., Ltd.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
TEST METHODOLOGY	
Measurement Uncertainty	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
DUTY CYCLE Support Equipment List and Details	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	10
FCC §15.247 (I), §1.1307 (B) (1) & §2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	
Applicable Standard	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH	24
APPLICABLE STANDARD	24
TEST PROCEDURE	
TEST DATA	24
FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

FCC §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(E) - POWER SPECTRAL DENSITY	27
APPLICABLE STANDARD	27
TEST PROCEDURE	27
TEST DATA	27
APPENDIX	
Appendix A: DTS Bandwidth	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	
APPENDIX E: BAND EDGE MEASUREMENTS	
AppendixF: Duty Cycle	

GENERAL INFORMATION

Frequency Range	2406~2474MHz
Maximum Conducted Peak Output Power	5.65dBm
Technique	DTS
Modulation Type	GFSK
Antenna Specification*	2dBi (provided by the applicant)
Voltage Range	DC 3.7V from battery or DC 5V from Type-C Port
Sample serial number	SZNS211129-61309E-RF-S6 for Conducted and Radiation Emissions(below 1G) SZNS211129-61309E-RF-S5 for RF Conducted Test and Radiation Emissions(above 1G) (Assigned by ATC)
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Para	meter	Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	$0.082^{*10^{-7}}$
RF output pov	wer, conducted	0.73dB
Unwanted Emis	ssion, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temperature		1 °C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

Channel list							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2406	6	2426	11	2446	16	2466
2	2410	7	2430	12	2450	17	2470
3	2414	8	2434	13	2454	18	2474
4	2418	9	2438	14	2458	/	/
5	2422	10	2442	15	2462	/	/

Channel 1, 9, 18 was tested.

EUT Exercise Software

EUT was configed to test mode by applicant.

Equipment Modifications

No modification was made to the EUT tested.

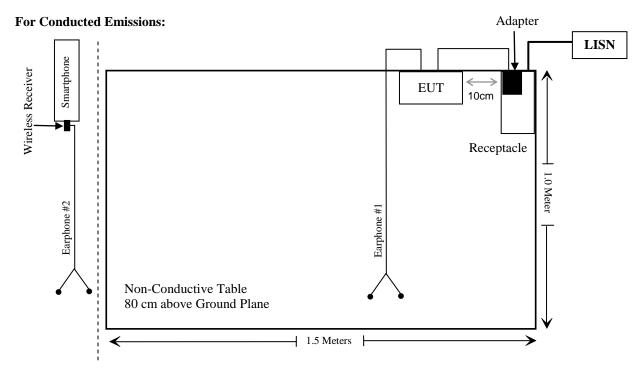
Special Accessories

No special accessory.

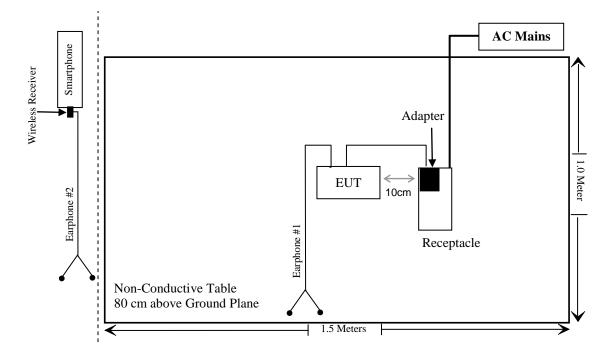
Duty cycle

Please refer to the Appendix.

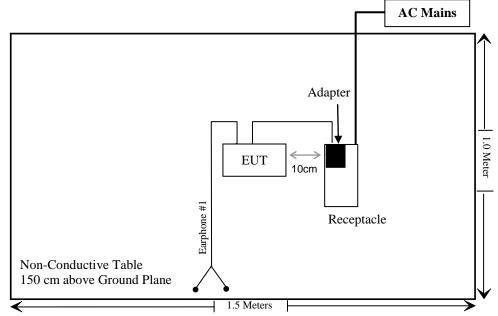
Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
TECNO	Adapter	A8-501000	AH20211028
HUAWEI	Smartphone	Mate 30	FEC0220617000901
Jiayz	Wireless Receiver	SR-MV2000W RX	S9
Qilive	Earphone#1	RF068	891226
Unknown	Earphone#2	Unknown	Earphone#2

Version 42: 2021-11-09


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB-A to Type-C Cable	2.0	EUT	Adapter


Block Diagram of Test Setup

For Radiated Emissions (below 1G):

For Radiated Emissions (above 1G):

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307(b) & §2.1093	RF EXPOSURE	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Con	ducted Emissions Te	st		
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12
Conducted Emission Te	st Software: e3 19821b	(V9)			
	Ra	diated Emission Test	t		
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08
Quinstar	Amplifier	QLW-18405536- J0	15964001002	2021/11/11	2022/11/10
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04
Radiated Emission Test	Software: e3 19821b (V	√9)			
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Wainwright	High Pass Filter	WHKX3.6/18G- 10SS	5	2021/12/14	2022/12/13
		RF Conducted Test			
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/07/06	2022/07/05

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] .

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where 1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2406-2474	6.0	3.98	5	1.3	3.0	Yes

Note: Basically, a 5 mm distance or more between device and head when use for speak

Result: No Standalone SAR test is required

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

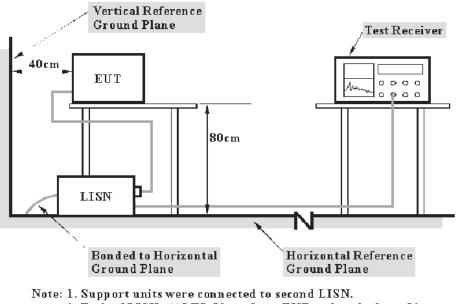
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal antenna which was permanently attached, the antenna gain is 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

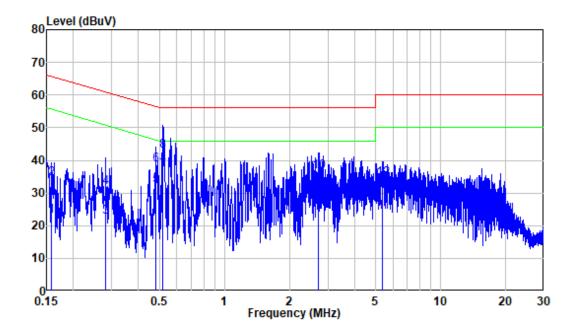
The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

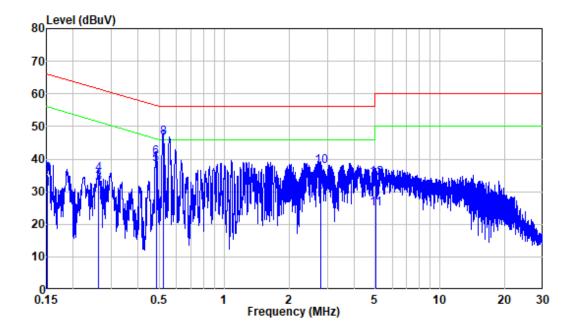
Over Limit = Level – Limit Level = Read Level – Factor

Test Data


Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Bin Duan on 2021-12-23.

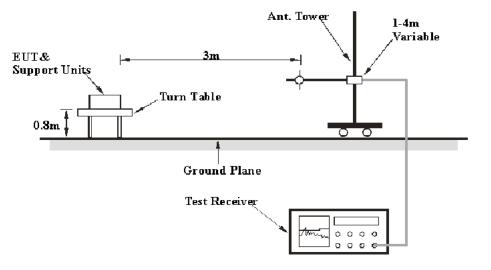

EUT operation mode: Normal link

AC 120V/60 Hz, Line

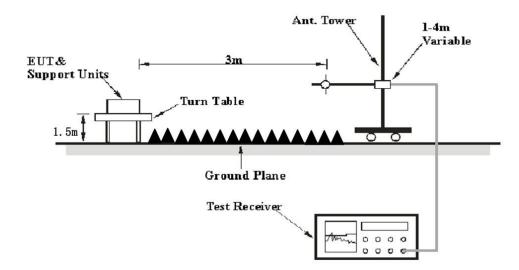
	Ence	Eastan	Read	Level	Limit Line	0ver	Remark
	rreq	Factor	Level	Level	LTHE	LIMIC	Rellidirk
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.159	9.88	13.05	22.93	55.53	-32.60	Average
2	0.159	9.88	24.65	34.53	65.53	-31.00	QP
3	0.282	9.80	12.82	22.62	50.76	-28.14	Average
4	0.282	9.80	21.94	31.74	60.76	-29.02	QP
5	0.482	9.80	22.59	32.39	46.31	-13.92	Average
6	0.482	9.80	28.95	38.75	56.31	-17.56	QP
7	0.517	9.81	26.97	36.78	46.00	-9.22	Average
8	0.517	9.81	32.95	42.76	56.00	-13.24	QP
9	2.712	9.93	18.12	28.05	46.00	-17.95	Average
10	2.712	9.93	26.63	36.56	56.00	-19.44	QP
11	5.390	10.00	14.09	24.09	50.00	-25.91	Average
12	5.390	10.00	24.32	34.32	60.00	-25.68	QP

AC 120V/60 Hz, Neutral

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.152	9.91	20.74	30.65	55.88	-25.23	Average
2	0.152	9.91	25.33	35.24	65.88	-30.64	QP
3	0.260	9.97	22.62	32.59	51.42	-18.83	Average
4	0.260	9.97	25.24	35.21	61.42	-26.21	QP
5	0.483	9.90	28.59	38.49	46.28	-7.79	Average
6	0.483	9.90	30.46	40.36	56.28	-15.92	QP
7	0.522	9.91	35.05	44.96	46.00	-1.04	Average
8	0.522	9.91	36.71	46.62	56.00	-9.38	QP
9	2.794	9.98	19.90	29.88	46.00	-16.12	Average
10	2.794	9.98	27.69	37.67	56.00	-18.33	QP
11	5.031	10.05	14.62	24.67	50.00	-25.33	Average
12	5.031	10.05	23.92	33.97	60.00	-26.03	QP


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	РК
	1MHz	10 Hz Note 1	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

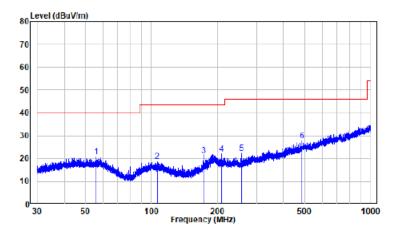
Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit or Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin/over limit of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin/Over Limit = Corrected Amplitude/Level - Limit Corrected Amplitude/Level = Reading - Corrected Factor

Test Data

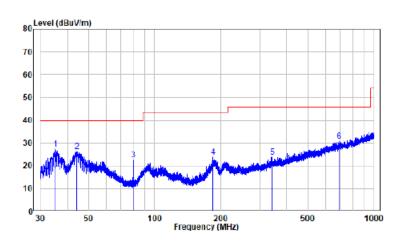
Environmental Conditions


Temperature:	25°C		
Relative Humidity:	64 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Chao Mo on 2021-12-24 for below 1GHz and 2021-12-24 for above 1GHz.

EUT operation mode: Transmitting

30MHz-1GHz: (normal link)


Horizontal:

Site : chamber Condition: 3m HORIZONTAL Job No. : SZNS211129-61309E-RF Test Mode: Charging+Communication

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	56.10	-10.17	30.87	20.70	40.00	-19.30	Peak
2	106.01	-11.92	30.55	18.63	43.50	-24.87	Peak
3	172.37	-13.33	34.86	21.53	43.50	-21.97	Peak
4	208.12	-11.85	34.03	22.18	43.50	-21.32	Peak
5	256.86	-10.60	33.05	22.45	46.00	-23.55	Peak
6	483.49	-4.92	32.76	27.84	46.00	-18.16	Peak

Site : chamber Condition: 3m Vertical Job No. : SZNS211129-61309E-RF Test Mode: Charging+Communication

	Freq	Factor			Limit Line		Remark
	NHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	35.36	-11.42	38.88	27.46	40.00	-12.54	Peak
2	44.16	-9.91	36.26	26.35	40.00	-13.65	Peak
3	79.98	-16.79	39.42	22.63	40.00	-17.37	Peak
4	183.60	-12.34	36.10	23.76	43.50	-19.74	Peak
5	342.73	-7.31	31.31	24.00	46.00	-22.00	Peak
6	688.66	-1.51	32.36	30.85	46.00	-15.15	Peak

Above 1GHz:

_	Receiver			Rx An	itenna	Corrected	Corrected	.	14 1
Frequency (MHz)	Reading (dBµV)	PK/QP/AV	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Ι	Low Chai	nnel				
2310	67.79	РК	328	1.0	Н	-7.24	60.55	74	-13.45
2310	53.52	AV	328	1.0	Н	-7.24	46.28	54	-7.72
2310	68.69	РК	80	2.2	V	-7.24	61.45	74	-12.55
2310	53.41	AV	80	2.2	V	-7.24	46.17	54	-7.83
2390	70.74	РК	258	1.3	Н	-7.22	63.52	74	-10.48
2390	54.37	AV	258	1.3	Н	-7.22	47.15	54	-6.85
2390	70.23	РК	39	1.8	V	-7.22	63.01	74	-10.99
2390	54.26	AV	39	1.8	V	-7.22	47.04	54	-6.96
4812	55.58	РК	107	1.6	Н	-3.52	52.06	54	-1.94
4812	57.80	РК	166	1.7	V	-3.52	54.28	74	-19.72
4812	44.36	AV	166	1.7	V	-3.52	40.84	54	-13.16
			М	iddle Ch	annel				
4876	55.87	РК	297	2.5	Н	-3.40	52.47	54	-1.53
4876	57.99	РК	196	1.0	V	-3.40	54.59	74	-19.41
4876	45.92	AV	196	1.0	V	-3.40	42.52	54	-11.48
			H	ligh Cha	nnel	-	-		
2483.5	69.44	РК	225	2.5	Н	-7.20	62.24	74	-11.76
2483.5	55.22	AV	225	2.5	Н	-7.20	48.02	54	-5.98
2483.5	69.75	РК	288	2.3	V	-7.20	62.55	74	-11.45
2483.5	54.93	AV	288	2.3	V	-7.20	47.73	54	-6.27
2500	68.65	РК	10	1.2	Н	-7.18	61.47	74	-12.53
2500	54.59	AV	10	1.2	Н	-7.18	47.41	54	-6.59
2500	68.42	РК	173	1.9	V	-7.18	61.24	74	-12.76
2500	54.42	AV	173	1.9	V	-7.18	47.24	54	-6.76
4948	55.57	РК	303	1.6	Н	-3.05	52.52	54	-1.48
4948	57.69	РК	7	1.2	V	-3.05	54.64	74	-19.36
4948	44.57	AV	7	1.2	V	-3.05	41.52	54	-12.48

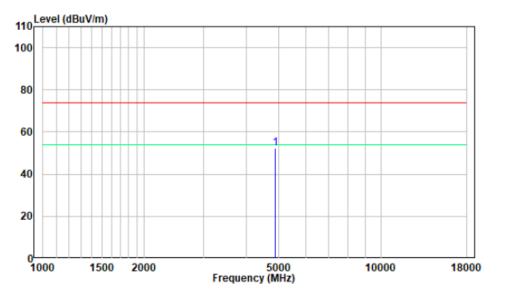
Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

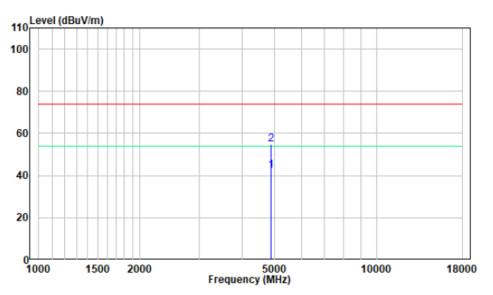
Corrected Amplitude = Corrected Factor + Reading

Margin = Corrected. Amplitude – Limit

The other spurious emission is in the noise floor level was not recorded.

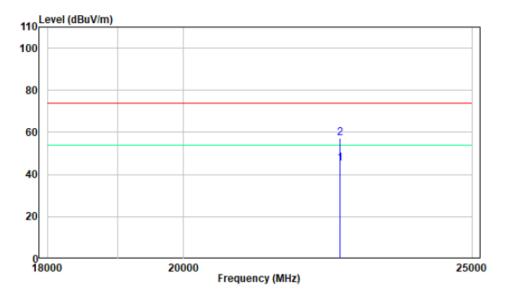

When the test result of peak was less than the limit of average, just peak value were recorded.

1-18GHz


Pre-scan plot

Middle Channel

Horizontal:

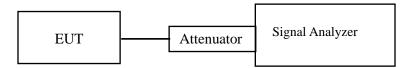

18-25GHz

Pre-scan plot

Horizontal:

Middle Channel

Vertical:


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

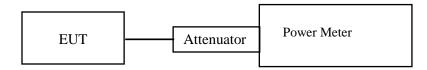
Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	53 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-12-15.

EUT operation mode: Transmitting


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

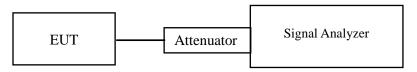
Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	53 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-12-15.

EUT operation mode: Transmitting


FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

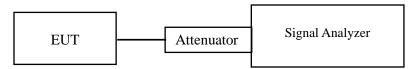
Test Data

Environmental Conditions

Temperature:	26 °C		
Relative Humidity:	53 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Paul Liu on 2021-12-15.

EUT operation mode: Transmitting


FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = power averaging (rms) or sample detector (when rms not available).
- 6. Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}].$
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	53 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-12-15.

EUT operation mode: Transmitting

APPENDIX

Appendix A: DTS Bandwidth Test Result

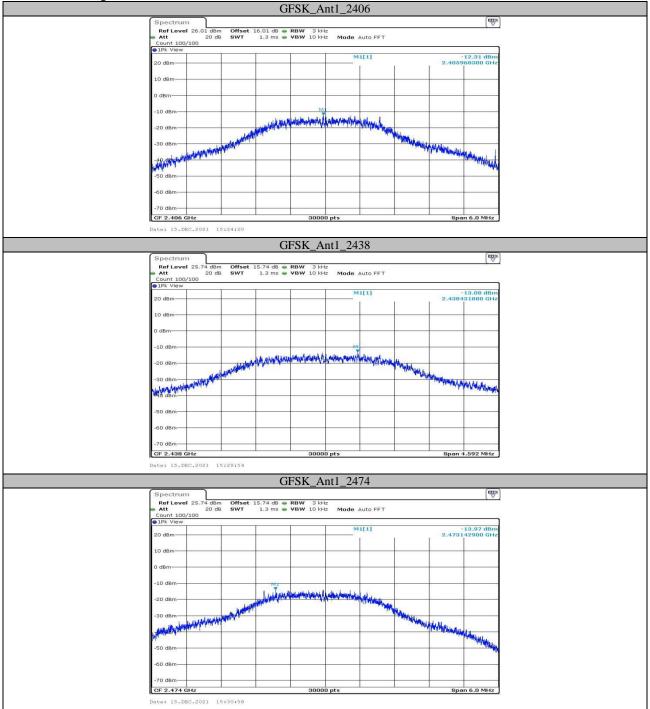
Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
GFSK		2406	2.328	0.5	PASS
	Ant1	2438	2.296	0.5	PASS
		2474	2.168	0.5	PASS

Test Graphs

Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2406	3.812		PASS
GFSK	Ant1	2438	3.812		PASS
		2474	3.812		PASS

Test Graphs


Appendix C: Maximum conducted Peak output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
GFSK	Ant1	2406	5.65	≤30	PASS
		2438	5.24	≤30	PASS
		2474	4.60	≤30	PASS

Appendix D: Maximum power spectral density Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2406	-12.31	≤8	PASS
GFSK	Ant1	2438	-13.08	≤8	PASS
		2474	-13.97	≤8	PASS

Test Graphs

Appendix E: Band edge measurements Test Graphs

GFSK_Ant1_Low_2406	
Spectrum	
Ref Level 20.00 dBm Offset 16.01 dB ● RBW 100 kHz ● Att 20 dB SWT 132.7 μs ● VBW 300 kHz Mode Auto FFT	
Count 300/300	
1Pk View M1[1] 1.19 dBm	
10 dBm	
10 dBm M2[1] -47,80 dBm 2,4000/00 GHz	
-10 dbm	
-zu dam 01 -16.610 dBm	
-30 dBm	
-40 d8m H4 M2	
so dam way way and a second way a man a	
-70 dBm	
Start 2.35 GHz 691 pts Stop 2.41 GHz Marker	
Type Ref Trc X-value Y-value Function Function Result M1 1 2:400049 GHz 1.19 dBm Function Function Function	
M2 1 2.4 GHz -47.80 dBm M3 1 2.39 GHz -55.09 dBm	
M4 1 2.3983478 GHz -47.75 GBm	
Date: 15.DEC.2021 15:24:29	
GFSK_Ant1_High_2474	
Spectrum 🕎	
Spectrum Image: Constraint of the second secon	
Spectrum Rof Level 20.00 dBm Offset 15.74 dB RBW 100 kHz	
Spectrum Image: Spectrum RefLevel 20.00 dBm Offset 15.74 dB RBW 100 kHz Att 20 dB SWT 1.1 ms VBW 300 kHz Count 300/300 Intro VBW 300 kHz Mode Auto Sweep Pik View M1[1] 2 1.10 dBm	
Spectrum Image: Construction of the sector of	
Spectrum Image: Control of the second s	
Spectrum Image: Constraint of the second secon	
Spectrum Image: Constraint of the second secon	
Spectrum Image: Control of the second s	
Spectrum mm Ref Level 20.00 dBm Offset 15.74 dB @ RBW 100 kHz Mode Auto Sweep Att 20 dB SWT 1.1ms @ VBW 300 kHz Mode Auto Sweep Count 300/300 EPK View M1[1] 2.4720100 GHz 10 dBm M2[1] -3.3.04 dBm 0 dBm M2[1] -3.3.04 dBm -10 dBm M2[1] -3.3.04 dBm 0 dBm 0 0 -10 dBm 0 0	
Spectrum Image: Control of the second s	
Spectrum mm Ref Level 20.00 dBm Offset 15.74 dB @ RBW 100 kHz Mode Auto Sweep Att 20 dB SWT 1.1ms @ VBW 300 kHz Mode Auto Sweep Count 300/300 EPK View M1[1] 2.4720100 GHz 10 dBm M2[1] -3.3.04 dBm 0 dBm M2[1] -3.3.04 dBm -10 dBm M2[1] -3.3.04 dBm 0 dBm 0 0 -10 dBm 0 0	
Spectrum Image: Contract Spectrum Ref Level 20.00 dBm Offset 15.74 dB @ RBW 100 kHz Mode Auto Sweep Count 300/300 SWT 1.1 ms VBW 300 kHz PLP View M1[1] 2.472100 GHz 0 dBm M2[1] -53.04 dBm -10 dBm M2[1] 2.493500 GHz -10 dBm M2[1] -33.04 dBm -10 dBm M2[1] -33.04 dBm -10 dBm M2[1] -33.04 dBm -10 dBm M2[1] -03.04 dBm	
Spectrum Image: Control of Swit 15.74 dB = RBW 100 kHz Mode Auto Sweep Att 20 dB SWT 1.1 ms VBW 300 kHz Mode Auto Sweep Count 300/300 ENE View M1[1] 1.10 dBm 10 dBm M2[1] 2.479180 GHz 0 dBm M2[1] 2.439360 GHz -1d dbm M2[1] -33.04 dBm 30 dBm M4 M4 -50 dBm M4 M4	
Spectrum Image: Control of the second s	
Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 15.74 dB @ RBW 100 kHz Made Auto Sweep Count 300/300 SWT 1.1 ms VBW 300 kHz Made Auto Sweep Count 300/300 1.1 ms VBW 300 kHz Made Auto Sweep Made Auto Sweep 1.1 ms 1.10 dBm 10 dBm M1[1] 2.479180 GHz 2.493800 GHz 10 dBm M2[1] 2.479180 GHz 2.4939800 GHz 10 dBm M2[1] 2.4393800 GHz 2.4393800 GHz 10 dBm M1 9.4393800 GHz 2.4393800 GHz 10 dBm M1 9.4393800 GHz 1.1 ms 10 dBm M1 9.4393800 GHz 1.1 ms 10 dBm M1 1.1 ms 1.1 ms 10 dBm	
Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 15.74 dB RBW 100 kHz Mode Auto Sweep Count 300/300 SWT 1.1 ms VBW 300 kHz Mode Auto Sweep Count 300/300 SWT 1.1 ms VBW 300 kHz Mode Auto Sweep Count 300/300 Militia 2.472100 GHz	
Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 15.74 dB @ RBW 100 kHz Made Auto Sweep Count 300/300 SWT 1.1 ms VBW 300 kHz Made Auto Sweep Count 300/300 1.1 ms VBW 300 kHz Made Auto Sweep Made Auto Sweep 1.1 ms 1.10 dBm 10 dBm M1[1] 2.479180 GHz 2.493800 GHz 10 dBm M2[1] 2.479180 GHz 2.4939800 GHz 10 dBm M2[1] 2.4393800 GHz 2.4393800 GHz 10 dBm M1 9.4393800 GHz 2.4393800 GHz 10 dBm M1 9.4393800 GHz 1.1 ms 10 dBm M1 9.4393800 GHz 1.1 ms 10 dBm M1 1.1 ms 1.1 ms 10 dBm	

AppendixF: Duty Cycle Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
GFSK	Ant1	2438	30.00	30.00	100

Test Graphs

Spectrum	GFSK_Ant1_2438	
Ref Level 20.00 dBm Offset 15.74 d	dB 🖷 RBW 10 MHz	
	ns 👄 VBW 10 MHz	
SGL TRG: VID		
• 1Pk Clrw		
10 dBm		
10 0811		
TRG 2.300 dBm		
0 dBm		
-10 dBm		
-20 dBm		
-30 dBm		
-40 dBm		
-50 dBm		
-So dalli		
-60 dBm		
576 257.		
-70 dBm		
CF 2.438 GHz	1001 pts	3.0 ms/
of Error and	1001 pro	

***** END OF REPORT *****