

CFR 47 FCC PART 15 SUBPART C(DSS)

TEST REPORT

For

Husky Bluetooth Hunting Electronic Earmuffs

MODEL NUMBER: 91565

REPORT NUMBER: E04A25020287F00601

ISSUE DATE: April 25, 2025

FCC ID: 2AMI2-91565

Prepared for

Hangzhou Great Star Industrial Co., Ltd. No.35, Jiuhuan Road, Jianggan District, Hangzhou, 310019, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	April 25, 2025	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC Part 15.247 (b)(1)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC Part 15.247 (a)(1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC Part 15.247 (a)(1)	Pass
	ANSI C63.10-2013 Clause 7.8.3	FCC Part 15.247 (b)(1)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	FCC Part 15.247 (a)(1)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC Part 15.205/15.209	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DSS)> when <Accuracy Method> decision rule is applied.

CONTENTS

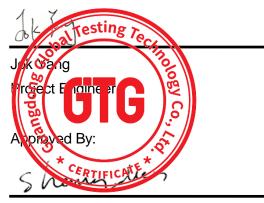
1.	ATTES	TATION OF TEST RESULTS	.5
2.	TEST N	IETHODOLOGY	.6
3.	FACILI	TIES AND ACCREDITATION	.6
4.	CALIBI	RATION AND UNCERTAINTY	.7
4	.1.	MEASURING INSTRUMENT CALIBRATION	.7
4	.2.	MEASUREMENT UNCERTAINTY	.7
5.	EQUIP	MENT UNDER TEST	.8
5	5.1.	DESCRIPTION OF EUT	.8
5	.2.	CHANNEL LIST	.8
5	i.3.	MAXIMUM PEAK OUTPUT POWER	.9
5	.4.	TEST CHANNEL CONFIGURATION	.9
5	.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5	.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5	.7.	SUPPORT UNITS FOR SYSTEM TEST	10
5	.8.	SETUP DIAGRAM	11
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED1	12
7.	ANTEN	INA PORT TEST RESULTS1	14
7	.1.	Conducted Output Power	14
7	.2.	20 dB Bandwidth and 99% Occupied Bandwidth	15
7	.3.	Carrier Hopping Channel Separation	16
7	.4.	Number of Hopping Frequency	18
7	.5.	Time of Occupancy (Dwell Time)	19
7	.6.	Conducted Bandedge and Spurious Emission2	21
8.	RADIA	TED TEST RESULTS	23
8	8.1.	Radiated Band edge and Spurious Emission2	29
9.	ANTEN	INA REQUIREMENT	11
10.		AC POWER LINE CONDUCTED EMISSION	12
11.		TEST DATA - Appendix A	15

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Hangzhou Great Star Industrial Co., Ltd.
Address:	No.35, Jiuhuan Road, Jianggan District, Hangzhou, 310019, China

Manufacturer Information


Company Name:	Hangzhou Great Star Industrial Co., Ltd.
Address:	No.35, Jiuhuan Road, Jianggan District, Hangzhou, 310019, China

EUT Information

Product Description:	Husky Bluetooth Hunting Electronic Earmuffs
Model:	91565
Brand:	/
Sample Received Date:	February 14, 2025
Sample Status:	Normal
Sample ID:	A25020287 001
Date of Tested:	February 14, 2025 to February 21, 2025

APPLICABLE STANDARDS STANDARD TEST RESULTS CFR 47 FCC PART 15 SUBPART C(DSS) Pass

Prepared By:

Checked By:

San Le

Alan He Laboratory Leader

Shawn Wen Laboratory Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DSS)

3. FACILITIES AND ACCREDITATION

Guangdong Global Testing Technology Co., Ltd. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd.
FCC (FCC Designation No.: CN1343)
Guangdong Global Testing Technology Co., Ltd.
has been recognized to perform compliance testing on equipment
Accreditation Certificate subject to Supplier's Declaration of Conformity (SDoC) and
Certification rules
ISED (Company No.: 30714)
Guangdong Global Testing Technology Co., Ltd.
has been registered and fully described in a report filed with ISED.
The Company Number is 30714 and the test lab Conformity
Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty			
DTS Bandwidth	1.96	±9.2 PPM			
20dB Emission Bandwidth	1.96	±9.2 PPM			
Carrier Frequency Separation	1.96	±9.2 PPM			
Time of Occupancy	1.96	±0.57%			
Conducted Output Power	1.96	±1.5 dB			
Power Spectral Density Level	1.96	±1.9 dB			
Conducted Spurious Emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the					
95% confidence level using a coverage factor of k=1.96.					

Test Item	Measurement Frequency Range	К	U(dB)		
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37		
Radiated emissions	9 kHz ~ 30 MHz	2	4.16		
Radiated emissions	30 MHz ~ 1 GHz	2	3.79		
Radiated emissions	1 GHz ~ 18 GHz	2	5.62		
Radiated emissions	18 GHz ~ 40 GHz	2	5.54		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.					

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Husky Bluetooth Hunting Electronic Earmuffs		
Model		91565		
Hardware Version		V1.0		
Software Version		V1.0		
Ratings		DC 5V / Battery 3.7V		
Battery Ratings		3.7V 750mAh 2.775Wh		
Power Supply	DC	5V		
	Battery	3.7V		

Frequency Band:	2400 MHz to 2483.5 MHz			
Frequency Range:	2402 MHz to 2480 MHz			
Bluetooth Version:	5.4			
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)			
Type of Modulation:	GFSK, π/4-DQPSK, 8DPSK			
Number of Channels:	79			
Channel Separation:	1 MHz			
Maximum Peak Power:	3.04 dBm			
Antenna Type:	Internal antenna			
Antenna Gain:	3.5 dBi			
EUT Test software:	FCC_assist1.0.2			
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.			

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476

TRF No.: 04-E001-0B

15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)
GFSK	2402 ~ 2480	0-78[79]	1.78
π /4-DQPSK	2402 ~ 2480	0-78[79]	2.56
8DPSK	2402 ~ 2480	0-78[79]	3.04

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
π /4-DQPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz

Note: The hop is hopping mode.

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2-DH1	54
π /4-DQPSK	2-DH3	367
	2-DH5	679
	3-DH1	83
8DPSK	3-DH3	552
	3-DH5	1021

5.5. THE WORSE CASE POWER SETTING PARAMETER

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	π /4-DQPSK	2Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

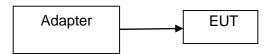
WORST-CASE CONFIGURATIONS

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

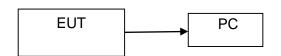
The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Se	oftware	FCC_assist1.0.2				
Modulation Type	Transmit Antenna	Test Software setting value				
	Number	CH 00	CH 39	CH 78		
GFSK	1	10	10	10		
π /4-DQPSK	1	10	10	10		
8DPSK	1	10	10	10		

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

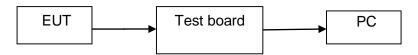
Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	Internal antenna	3.5


Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
π /4-DQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.7. SUPPORT UNITS FOR SYSTEM TEST


No.	Equipment	Manufacturer	Model No.	Serial No.
1	PC	Lenovo	T14	/
2	Test board	/	/	/
3	Adapter	UGREEN	CD170	/

5.8. SETUP DIAGRAM


AC conducted emission :

Radiated Emission:

RF conducted:

6. MEASURING EQUIPMENT	AND SOFTWARE USED
------------------------	-------------------

Test Equipment of Conducted RF							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2024/09/14	2025/09/13		
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2024/09/14	2025/09/13		
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2024/09/14	2025/09/13		
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2024/09/14	2025/09/13		
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2024/09/14	2025/09/13		
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2024/09/14	2025/09/13		
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2024/09/14	2025/09/13		
temperature humidity chamber	Espec	SH-241	SH-241-2014	2024/09/14	2025/09/13		
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A		

Test Equipment of Radiated emissions below 1GHz							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29		
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2024/09/14	2025/09/13		
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13		
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2024/09/14	2025/09/13		
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09		
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22		
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29		
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A		

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2024/09/14	2025/09/13
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2024/09/14	2025/09/13

TRF No.: 04-E001-0B

Global Testing , Great Quality.

Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2024/09/14	2025/09/13
LISN/AMN	Rohde & Schwarz	ENV216	102843	2024/09/14	2025/09/13
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2024/09/14	2025/09/13
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

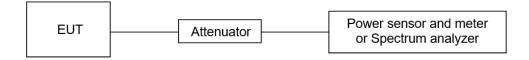
7. ANTENNA PORT TEST RESULTS 7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.5.


Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	>20 dB bandwidth of the emission being measured
VBW	≥RBW
Span	Approximately five times the 20 dB bandwidth, centered on a hopping channel.
Trace	Max hold
Sweep time	Auto

Allow trace to stabilize.

Use the marker-to-peak function to set the marker to the peak of the emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
IBBW/	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

	CFR 47 FCC Part15 (15.247),			
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TRF No.: 04-E001-0B

Global Testing, Great Quality.

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.4. NUMBER OF HOPPING FREQUENCY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C		
Section Test Item Limit		
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.5. TIME OF OCCUPANCY (DWELL TIME)

<u>LIMITS</u>

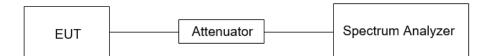
CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel


Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel): DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strer (dBuV/m Quasi-) at 3 m
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)		
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TRF No.: 04-E001-0B

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

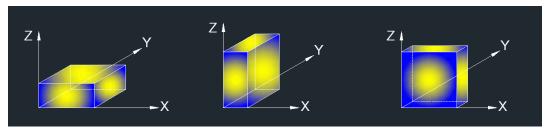
Above 1 GHz

RBW	MHz		
NBW	PEAK: 3 MHz AVG: see note 6		
Sweep	Auto		
Detector	Peak		
Trace	Max hold		

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

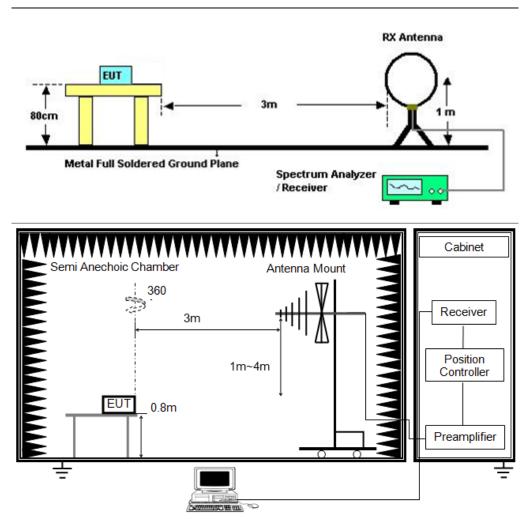
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

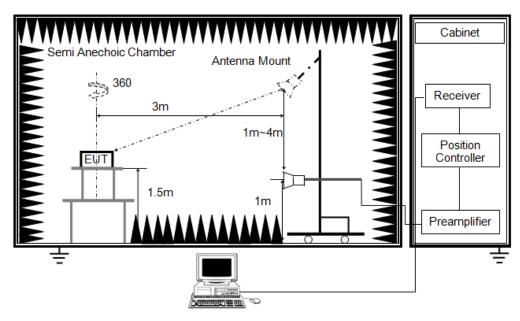

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

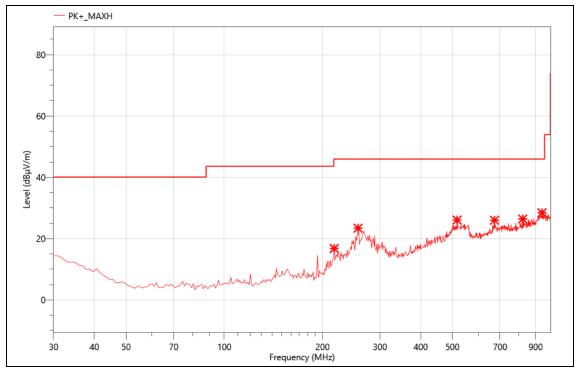

X axis, Y axis, Z axis positions:



Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

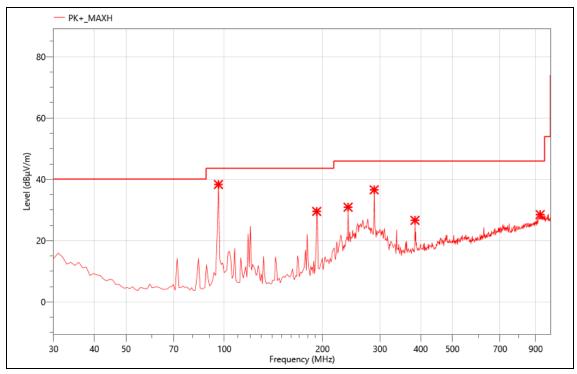
Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST SETUP

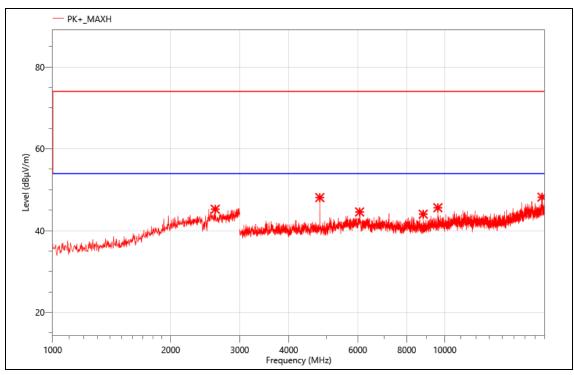

TEST ENVIRONMENT

Temperature	22.9 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

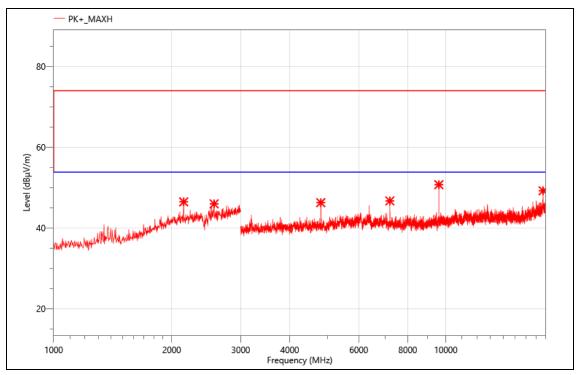
TEST RESULTS


Mode:	3-DH5-2402
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa

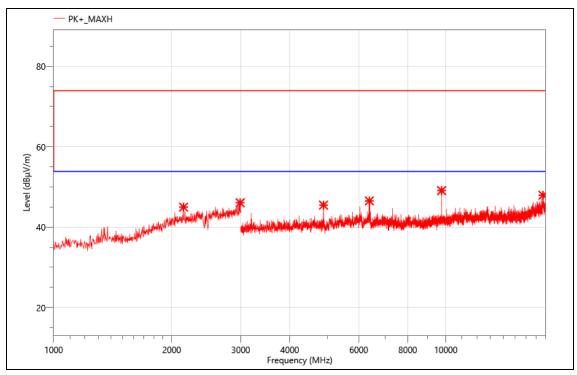
8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	217.210	37.47	-20.67	16.80	46.00	29.20	PK+	V
2	256.980	41.86	-18.46	23.40	46.00	22.60	PK+	V
3	516.940	37.09	-11.04	26.05	46.00	19.95	PK+	V
4	673.110	33.34	-7.35	25.99	46.00	20.01	PK+	V
5	821.520	31.84	-5.44	26.40	46.00	19.60	PK+	V
6	940.830	30.62	-2.17	28.45	46.00	17.55	PK+	V

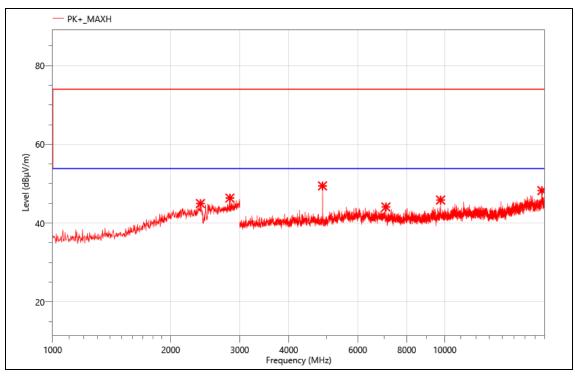
Mode:	3-DH5-2402
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	95.960	62.84	-24.54	38.30	43.50	5.20	PK+	Н
2	191.990	52.12	-22.59	29.53	43.50	13.97	PK+	Н
3	239.520	50.16	-19.26	30.90	46.00	15.10	PK+	Н
4	288.020	55.97	-19.4	36.57	46.00	9.43	PK+	Н
5	384.050	41.03	-14.41	26.62	46.00	19.38	PK+	Н
6	929.190	30.63	-2.14	28.49	46.00	17.51	PK+	Н

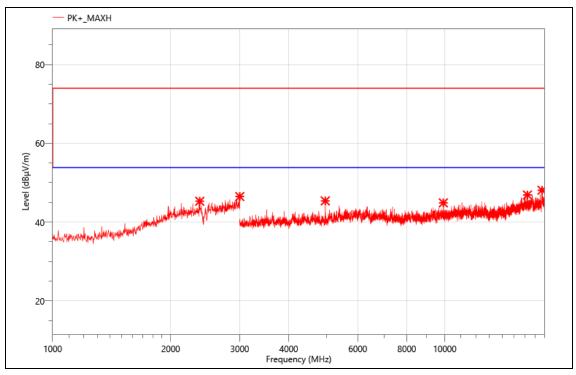
Mode:	3-DH5-2402
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2598.000	53.38	-8.14	45.24	74.00	28.76	PK+	Н
2	4801.500	59.40	-11.33	48.07	74.00	25.93	PK+	Н
3	6064.500	52.55	-7.99	44.56	74.00	29.44	PK+	Н
4	8811.000	51.79	-7.78	44.01	74.00	29.99	PK+	Н
5	9601.500	52.51	-6.92	45.59	74.00	28.41	PK+	Н
6	17692.500	47.96	0.22	48.18	74.00	25.82	PK+	Н

Mode:	3-DH5-2402
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2146.000	55.53	-9.05	46.48	74.00	27.52	PK+	V
2	2566.000	54.04	-8.04	46.00	74.00	28.00	PK+	V
3	4800.000	57.61	-11.32	46.29	74.00	27.71	PK+	V
4	7200.000	54.78	-8.06	46.72	74.00	27.28	PK+	V
5	9601.500	57.66	-6.92	50.74	74.00	23.26	PK+	V
6	17709.000	49.25	-0.02	49.23	74.00	24.77	PK+	V

Mode:	3-DH5-2441
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa

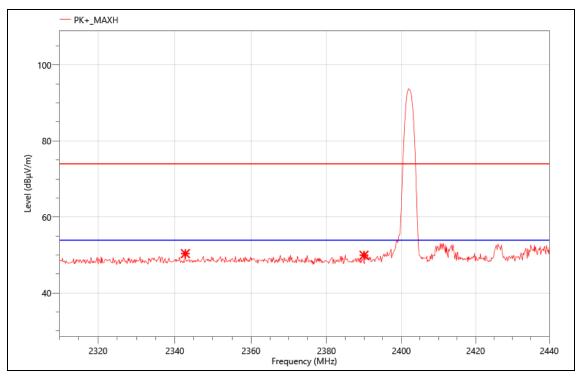

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2144.000	54.03	-9.05	44.98	74.00	29.02	PK+	V
2	2990.000	53.05	-6.98	46.07	74.00	27.93	PK+	V
3	4878.000	56.62	-11.14	45.48	74.00	28.52	PK+	V
4	6384.000	54.42	-7.89	46.53	74.00	27.47	PK+	V
5	9757.500	55.92	-6.83	49.09	74.00	24.91	PK+	V
6	17691.000	47.71	0.23	47.94	74.00	26.06	PK+	V

Mode:	3-DH5-2441
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa

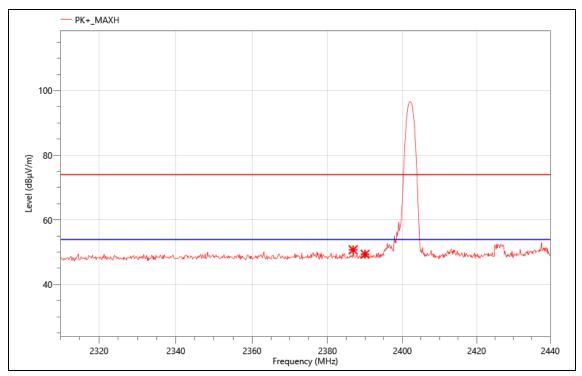
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2382.000	53.49	-8.53	44.96	74.00	29.04	PK+	Н
2	2832.000	54.08	-7.73	46.35	74.00	27.65	PK+	Н
3	4878.000	60.57	-11.14	49.43	74.00	24.57	PK+	Н
4	7075.500	52.18	-8.09	44.09	74.00	29.91	PK+	Н
5	9757.500	52.68	-6.83	45.85	74.00	28.15	PK+	Н
6	17689.500	48.01	0.24	48.25	74.00	25.75	PK+	Н

Mode:	3-DH5-2480
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa

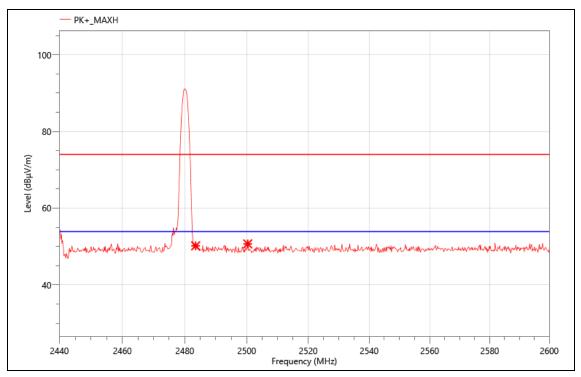
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2372.000	53.76	-8.47	45.29	74.00	28.71	PK+	Н
2	3000.000	53.50	-7.01	46.49	74.00	27.51	PK+	Н
3	4957.500	56.74	-11.36	45.38	74.00	28.62	PK+	Н
4	9915.000	51.24	-6.36	44.88	74.00	29.12	PK+	Н
5	16245.000	47.45	-0.57	46.88	74.00	27.12	PK+	Н
6	17692.500	47.86	0.22	48.08	74.00	25.92	PK+	Н


Mode:	3-DH5-2480
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa

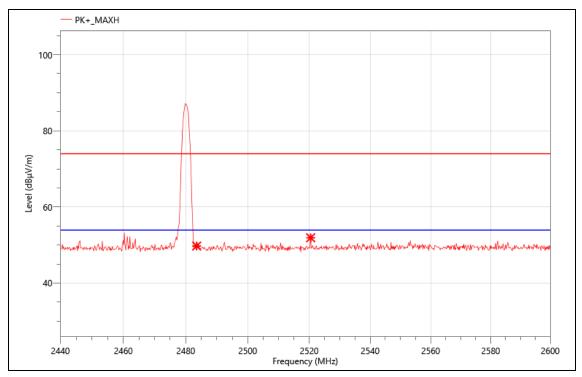
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2398.000	53.74	-8.53	45.21	74.00	28.79	PK+	V
2	2904.000	53.56	-7.77	45.79	74.00	28.21	PK+	V
3	4956.000	55.89	-11.37	44.52	74.00	29.48	PK+	V
4	9915.000	53.89	-6.36	47.53	74.00	26.47	PK+	V
5	12768.000	51.48	-4.39	47.09	74.00	26.91	PK+	V
6	17695.500	48.17	0.21	48.38	74.00	25.62	PK+	V


For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

Mode:	3-DH5-2402
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2342.760	27.69	22.67	50.36	74.00	23.64	PK+	V
2	2390.000	27.22	22.72	49.94	74.00	24.06	PK+	V

Mode:	3-DH5-2402
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2386.830	28.04	22.66	50.70	74.00	23.30	PK+	Н
2	2390.000	26.64	22.72	49.36	74.00	24.64	PK+	Н

Mode:	3-DH5-2480
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.500	27.03	23.15	50.18	74.00	23.82	PK+	V
2	2500.320	27.57	23.11	50.68	74.00	23.32	PK+	V

Mode:	3-DH5-2480
Power:	Battery 3.7V
TE:	Berny
Date	2025/02/18
T/A/P	22.9°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.500	26.59	23.15	49.74	74.00	24.26	PK+	Н
2	2520.480	28.78	23.14	51.92	74.00	22.08	PK+	Н

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

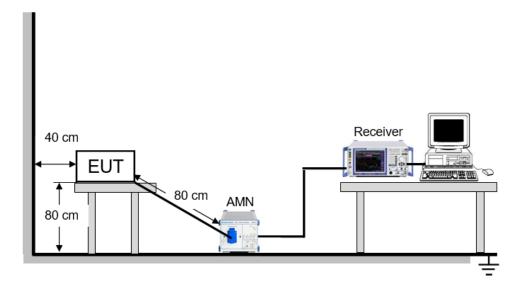
Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

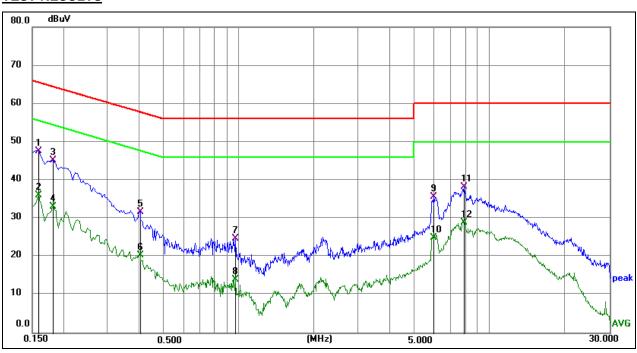
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

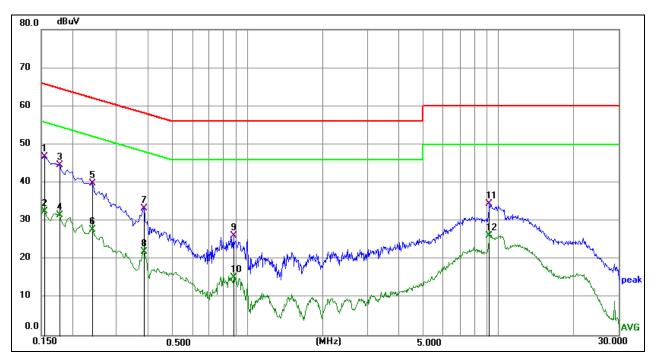
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver is used to test the emissions from the AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.2℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		



TEST RESULTS

Phase: L1		

Mode: 3-DH5 2402MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1590	37.87	9.77	47.64	65.52	-17.88	QP
2	0.1590	26.18	9.77	35.95	55.52	-19.57	AVG
3	0.1815	35.45	9.77	45.22	64.42	-19.20	QP
4	0.1815	23.32	9.77	33.09	54.42	-21.33	AVG
5	0.4020	21.90	9.79	31.69	57.81	-26.12	QP
6	0.4020	10.54	9.79	20.33	47.81	-27.48	AVG
7	0.9735	14.97	9.81	24.78	56.00	-31.22	QP
8	0.9735	4.19	9.81	14.00	46.00	-32.00	AVG
9	5.9820	25.63	9.91	35.54	60.00	-24.46	QP
10	5.9820	14.95	9.91	24.86	50.00	-25.14	AVG
11	7.8945	28.23	9.99	38.22	60.00	-21.78	QP
12	7.8945	18.89	9.99	28.88	50.00	-21.12	AVG

Phase: N	Mode: 3-DH5 2402MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1545	37.03	9.67	46.70	65.75	-19.05	QP
2	0.1545	22.70	9.67	32.37	55.75	-23.38	AVG
3	0.1770	34.89	9.67	44.56	64.63	-20.07	QP
4	0.1770	21.76	9.67	31.43	54.63	-23.20	AVG
5	0.2400	30.17	9.68	39.85	62.10	-22.25	QP
6	0.2400	17.97	9.68	27.65	52.10	-24.45	AVG
7	0.3840	23.60	9.69	33.29	58.19	-24.90	QP
8	0.3840	12.29	9.69	21.98	48.19	-26.21	AVG
9	0.8790	16.45	9.71	26.16	56.00	-29.84	QP
10	0.8790	5.55	9.71	15.26	46.00	-30.74	AVG
11	9.1995	24.31	10.05	34.36	60.00	-25.64	QP
12	9.1995	16.11	10.05	26.16	50.00	-23.84	AVG

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

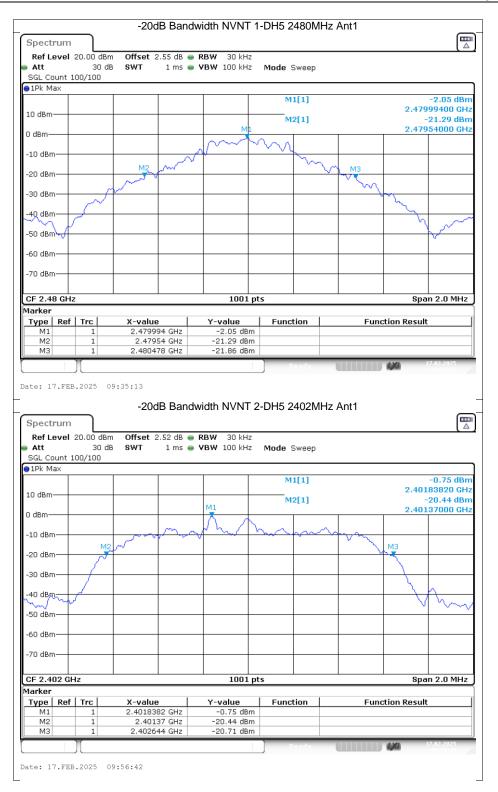
4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

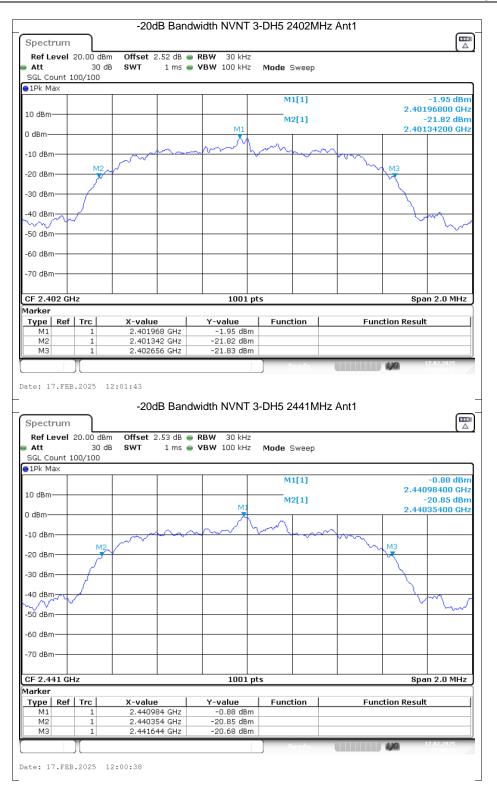
11. TEST DATA - Appendix A

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	1.78	21	Pass
NVNT	1-DH5	2441	Ant1	1.65	21	Pass
NVNT	1-DH5	2480	Ant1	0.99	21	Pass
NVNT	2-DH5	2402	Ant1	2.56	21	Pass
NVNT	2-DH5	2441	Ant1	2.42	21	Pass
NVNT	2-DH5	2480	Ant1	1.75	21	Pass
NVNT	3-DH5	2402	Ant1	3.04	21	Pass
NVNT	3-DH5	2441	Ant1	2.9	21	Pass
NVNT	3-DH5	2480	Ant1	2.27	21	Pass

Maximum Conducted Output Power

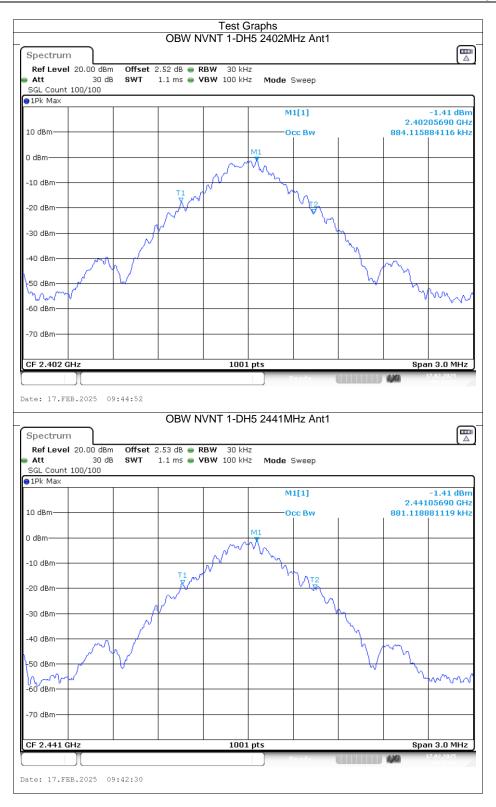
		Power NV	'NT 1-DH!	5 2402MHz Ant1		
Spectrum				0 2 102101 12 7 414		
Ref Level 20.00 dBr	n Offset	2.52 dB 👄 RB	W 3 MHz			
Att 30 d		10.1 ms 🖷 VB		Mode Sweep		
SGL Count 100/100 1Pk Max						
				M1[1]		1.78 dBr
					2.4017	98000 GH
10 dBm			М1			
) dBm						
-10 dBm						
-20 dBra						
A COLORING COLORING						
-30 dBm						
-40 dBm						
-40 dBm						
-50 dBm						<u> </u>
-60 dBm						
-70 dBm						
					Snan	10.0 MHz
	9:44:47	Power NV	10001 /NT 1-DH	pts Ready 5 2441MHz Ant1	ij/li	17.02.2025
CF 2.402 GHz			/NT 1-DH	Ready		17.02.2025
Spectrum Ref Level 20.00 dBi	m Offset	2.53 dB 👄 RB	/NT 1-DH w з мнz	Bendy 5 2441MHz Ant1		17.02.2025
Spectrum	m Offset		/NT 1-DH w з мнz	Bendy 5 2441MHz Ant1		17.02.2025
Ate: 17.FEB.2025 (Spectrum Ref Level 20.00 dBi Att 30 d	m Offset	2.53 dB 👄 RB	/NT 1-DH w з мнz	5 2441MHz Ant1 Mode Sweep		17.02.2025
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100	m Offset	2.53 dB 👄 RB	/NT 1-DH w з мнz	Bendy 5 2441MHz Ant1		17.02.2025
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100	m Offset	2.53 dB 👄 RB	/NT 1-DH w з мнz	5 2441MHz Ant1 Mode Sweep		17.02.2025
Spectrum Ref Level 20.00 dB/ Att 30 d SGL Count 100/100 PIPK Max 10 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 1Pk Max	m Offset	2.53 dB 👄 RB	(NT 1-DH W 3 MHz W 10 MHz	5 2441MHz Ant1 Mode Sweep		17.02.2025
Spectrum Ref Level 20.00 dB/ Att 30 d SGL Count 100/100 PIPk Max 10 dBm 0 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Spectrum Ref Level 20.00 dBr Att 30 d SGL Count 100/100 1Pk Max 10 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Spectrum Ref Level 20.00 dB/ Att 30 d SGL Count 100/100 PIPk Max 10 dBm 0 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum Ref Level 20.00 dBr Att 30 d SGL Count 100/100 91Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum Ref Level 20.00 dBa Att 30 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum Ref Level 20.00 dBr Att 30 d SGL Count 100/100 91Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum Ref Level 20.00 dBa Att 30 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum Sector Ref Level 20.00 dBn Att 30 d SGL Count 100/100 PIPK Max 10 dBm 10 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum Sector Ref Level 20.00 dBn Att 30 d SGL Count 100/100 PIPK Max 10 dBm 10 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum Ref Level 20.00 dBr Att 30 d SGL Count 100/100 PK Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep		17.02.2025
Ate: 17.FEB.2025 Spectrum Ref Level 20.00 dBr Att 30 d SGL Count 100/100 PK Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m Offset	2.53 dB 👄 RB	/NT 1-DH w 3 мнz w 10 мнz м1	5 2441MHz Ant1 Mode Sweep M1[1]	2.4408	1.65 dBr 220000 GH




Condition Mode Frequency (MHz) Limit -20 dB Bandwidth (MHz) Antenna -20 dB Bandwidth (MHz) Verdict NVNT 1-DH5 2402 Ant1 0.94 N/A N/A NVNT 1-DH5 2441 Ant1 0.94 N/A N/A NVNT 1-DH5 2480 0.94 N/A N/A Ant1 NVNT 2-DH5 2402 Ant1 1.27 N/A N/A 2-DH5 2441 N/A N/A NVNT Ant1 1.27 NVNT 2-DH5 2480 1.31 N/A N/A Ant1 NVNT 3-DH5 2402 Ant1 1.31 N/A N/A N/A NVNT 2441 3-DH5 Ant1 1.29 N/A NVNT 3-DH5 2480 Ant1 1.3 N/A N/A

-20dB Bandwidth

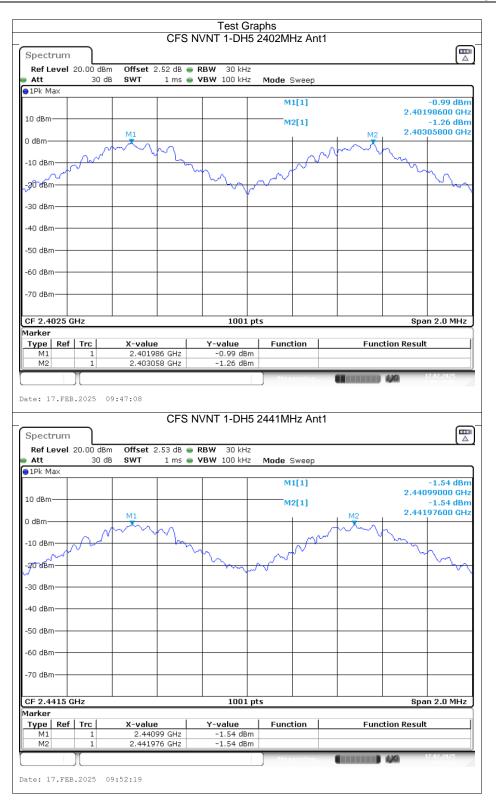
		-200	B Band	Test Gr width NVNT	apns 1-DH5 2402	MH7 A	nt1		
Spectrum		200	B Bana						
Ref Level	20.00 dBr	n Offset 2	2.52 dB 👄	RBW 30 kHz					
Att	30 di	B SWT	1 ms 😑	VBW 100 kHz	Mode Swee	p			
SGL Count 1 1Pk Max	00/100								
					M1[1]				-1.26 dBr
10 dBm									205590 GH
					M2[1]				-20.76 dBr L53800 GH
) dBm					\sim				
-10 dBm		-	$\vdash \mathcal{A}$	24C	<u> </u>	~~			
20 dBm		M2	m			N.	МЗ		
		and and					" m		
-30 dBm	~						\.	man and a second se	
40 dBm	<u></u>							<u> </u>	
-50 dBm								<u> </u>	
SO UDIN V									
60 dBm									
.70 dBm									
CF 2.402 GH	Iz			1001 p	its			Spa	n 2.0 MHz
larker	1 7 1	X-value			I constinue		F		
Type Ref M1	1	2.40205		<u>Y-value</u> -1.26 dBm	Function	_	Func	tion Result	C
M2	1	2.40153		-20.76 dBm					
M3	1	2.40248		-21.02 dBm					
te: 17.FEB	.2025 0	9:44:58			Ready		nt1	4,43	17.02.2025
te: 17.FEB		9:44:58 -20d	B Band	width NVNT	Ready	MHz A	nt1	4,961	17.02.2025
Spectrum Ref Level 3 Att	20.00 dBr 30 dl	9:44:58 -20d n Offset 2	IB Bandv 2.53 dB •	width NVNT	Ready		nt1	4,451	17.02.2025
Spectrum Ref Level : Att SGL Count 1	20.00 dBr 30 dl	9:44:58 -20d n Offset 2	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz	Ready 1-DH5 2441		nt1		17.02.2025
Spectrum Ref Level : Att SGL Count 1	20.00 dBr 30 dl	9:44:58 -20d n Offset 2	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz	Ready 1-DH5 2441		nt1		-0.97 dBr
Spectrum Ref Level : Att SGL Count 1)1Pk Max	20.00 dBr 30 dl	9:44:58 -20d n Offset 2	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz	1-DH5 2441 Mode Swee M1[1]		nt1		-0.97 dBi)98600 GH
Spectrum Ref Level : Att SGL Count 1)1Pk Max	20.00 dBr 30 dl	9:44:58 -20d n Offset 2	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz	Pends 1-DH5 2441 Mode Swee		nt1		-0.97 dBi)98600 GH -20.19 dBi
Spectrum Ref Level : Att SGL Count 1 1Pk Max 10 dBm	20.00 dBr 30 dl	9:44:58 -20d n Offset 2	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]		nt1		-0.97 dBi)98600 GH -20.19 dBi
Spectrum Ref Level : Att SGL Count 1 1Pk Max 10 dBm	20.00 dBr 30 dl	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]				-0.97 dBi)98600 GH -20.19 dBi
Spectrum Ref Level : Att SGL Count 1 DIPk Max 0 dBm 10 dBm 10 dBm	20.00 dBr 30 dl	9:44:58 -20d n Offset 2	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]		nt1		-0.97 dBi)98600 GH -20.19 dBi
Spectrum Ref Level 3 Att SGL Count 1 11Pk Max 0 dBm 10 dBm 20 dBm	20.00 dBr 30 dl	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]				-0.97 dBi)98600 GH -20.19 dBi
Spectrum Ref Level 3 Att SGL Count 1 11Pk Max 0 dBm 10 dBm 20 dBm	20.00 dBr 30 dl	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]				-0.97 dBi)98600 GH -20.19 dBi
Spectrum Ref Level : Att SGL Count 1 D1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm	20.00 dBr 30 dl	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]				-0.97 dBi)98600 GH -20.19 dBi
Spectrum Ref Level : Att SGL Count 1 PPK Max O dBm O d	20.00 dBr 30 dl	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]				-0.97 dBi)98600 GH -20.19 dBi
Spectrum Ref Level : Att SGL Count 1)1Pk Max 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	20.00 dBr 30 dl	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]				-0.97 dBr)98600 GH -20.19 dBr
Spectrum Ref Level :	20.00 dBr 30 dl	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]				-0.97 dBr)98600 GH -20.19 dBr
Spectrum Ref Level : Att SGL Count 1 1PK Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 60 dBm 60 dBm	20.00 dBr 30 dl	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	1-DH5 2441 Mode Swee M1[1]				-0.97 dBr)98600 GH -20.19 dBr
Spectrum Ref Level : Att SGL Count 1 1PK Max 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 40 dBm 50 dBm 50 dBm 70 dBm	20.00 dBr 30 dl 00/100	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	Product 1-DH5 2441 Mode Sweet M1[1] M2[1]			2.446	-0.97 dBr 198600 GH -20.19 dBr 153800 GH
Spectrum Ref Level : Att SGL Count 1 1PK Max 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 70 dBm 70 dBm CF 2.441 GH	20.00 dBr 30 dl 00/100	9:44:58 -20d n Offset 2 3 SWT	IB Bandv 2.53 dB •	width NVNT RBW 30 kHz VBW 100 kHz	Product 1-DH5 2441 Mode Sweet M1[1] M2[1]			2.446	-0.97 dBr 198600 GH -20.19 dBr 153800 GH
Spectrum Ref Level : Att SGL Count 1 IPK Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	20.00 dBr 30 dl 00/100	-20d	IB Bandu 2.53 dB • 1 ms •	width NVNT RBW 30 kHz VBW 100 kHz M3 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	Prode 1-DH5 2441 Mode Swee M1[1] M2[1] M2[1] M2[1] M2[1]		M3	2.440	-0.97 dBr 198600 GH -20.19 dBr 153800 GH
Spectrum Ref Level : Att SGL Count 1 1PK Max 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm 60 dBm 70 dBm FE 2.441 GH Tarker Type Ref	20.00 dBr 30 dl 00/100	9:44:58 -20d a SWT M2 M2 M2 M2 M2 CA4090	18 Bandu 1 ms • 1 ms • 1 ms •	width NVNT RBW 30 kHz VBW 100 kHz M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	Product 1-DH5 2441 Mode Sweet M1[1] M2[1] M2[1]		M3	2.446	-0.97 dBr -0.97 dBr -20.19 dBr -20.19 dBr 053800 GH
Spectrum Ref Level Att SGL Count 1)IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm CF 2.441 GH Iarker Type Ref M1	20.00 dBr 30 dl 00/100	-20d	IB Bandu 2.53 dB • 1 ms • 1 ms • 4 66 GHz 36 GHz 36 GHz	width NVNT RBW 30 kHz VBW 100 kHz M3 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	1-DH5 2441 Mode Swee M1[1] M2[1] M2[1] M2[1] M2[1] M2[1]		M3	2.440	-0.97 dBr 198600 GH -20.19 dBr 153800 GH
Spectrum Ref Level : Att SGL Count 1 1PK Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm	20.00 dBr 30 dl 00/100	-20d	18 Bandu 1 ms • 1 ms • 1 ms •	width NVNT RBW 30 kHz VBW 100 kHz M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	1-DH5 2441 Mode Swee M1[1] M2[1] M2[1] M2[1] M2[1] M2[1]		M3	2.440	-0.97 dBi 198600 GH -20.19 dBi 153800 GH

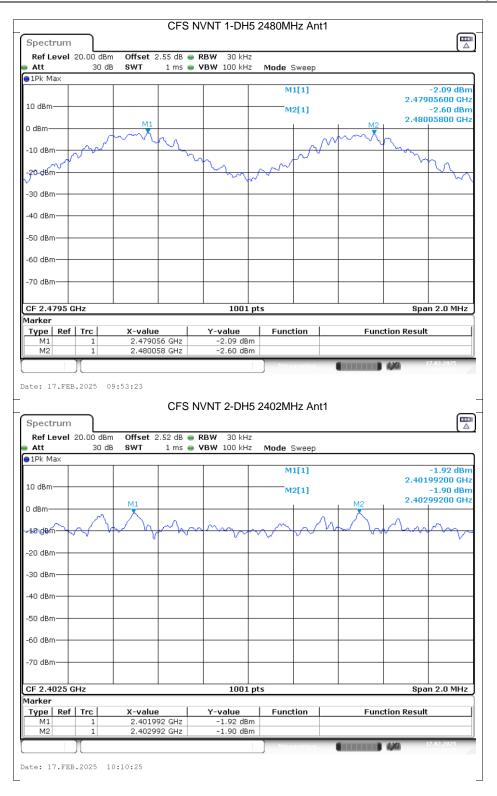

	2000 1	Bandwidth NVN	1 2-0113 244			Ē
Spectrum						
Ref Level 20.00 d						
Att 30 SGL Count 100/100	dB SWT 1	ms 👄 VBW 100 k	Hz Mode Swe	eep		
1Pk Max						
			M1[1	1		-0.98 dBn
10 dBm					2.4	4083420 GH
			M2[1	1		-20.60 dBn
D dBm		M1			2.4	4037200 GH
		$\sim \Lambda \Lambda$	1 - m			
-10 dBm		And way	$ \downarrow \sim \sim \downarrow \sim$		\sim	
20 dBm	M2 ~~~				M3	
20 UBIII					~	
30 dBm					\rightarrow	
40 dBm					ر بر	1 2 00
50 dBm						v ~~~
60 dBm						
70 dBm	+ +		+ +			
CF 2.441 GHz		100	1 pts		s	pan 2.0 MHz
larker				1		
Type Ref Trc	X-value	Y-value	Function	n	Function Res	ult
M1 1 M2 1	2.4408342 G 2.440372 G					
M3 1	2.441642 G					
1					4.969	17.02.2025
		3andwidth NVN	T 2-DH5 248	0MHz Ant1		Ē
Spectrum Ref Level 20.00 d	-20dB E Bm Offset 2.55	dB 👄 RBW 30 k	Hz			
Spectrum Ref Level 20.00 d Att 30	-20dB E Bm Offset 2.55		Hz			⊞ ⊿
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100	-20dB E Bm Offset 2.55	dB 👄 RBW 30 k	Hz			
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100	-20dB E Bm Offset 2.55	dB 👄 RBW 30 k	Hz	еер		
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 11Pk Max	-20dB E Bm Offset 2.55	dB 👄 RBW 30 k	Hz Hz Mode Swe M1[1	еер]	2.4	-2.21 dBr -7999200 GH
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max	-20dB E Bm Offset 2.55	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]		-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 0 dBm	-20dB E Bm Offset 2.55	dB 👄 RBW 30 k	Hz Hz Mode Swe M1[1 M2[1	еер]		-2.21 dBr 7999200 GH -22.17 dBr
Spectrum	-20dB E Bm Offset 2.55	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]		-2.21 dBr 7999200 GH -22.17 dBr
Spectrum	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1PK Max 0 dBm 10 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]		-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1PK Max 0 dBm 1 dBm 10 dBm 20 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1PK Max 0 dBm 1 dBm 10 dBm 20 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 HR Max 0 dBm 10 dBm 20 dBm 30 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 HR Max 0 dBm 10 dBm 20 dBm 30 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 11Pk Max 0 dBm 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 DIPk Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBn 7999200 GH -22.17 dBn -7934000 GH
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 HM AX 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 0 dBm 1 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm	-20dB E	dB ● RBW 30 k ms ● VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4	-2.21 dBr 7999200 GH -22.17 dBr
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 11Pk Max 0 dBm 0 10 dBm 0 10 dBm 0 10 dBm M2 20 dBm M2 30 dBm M2 40 dBm 60 dBm 70 dBm 70 dBm	-20dB E	dB • RBW 30 k ms • VBW 100 k	Hz Hz Mode Swe M1[1 M2[1	еер]	2.4 M3	-2.21 dBr -7999200 GH -22.17 dBr -7934000 GH
Att 30 SGL Count 100/100 100/100 11Pk Max 10 10 dBm 10 10 dBm 10 20 dBm M2 30 dBm M2 30 dBm M2 50 dBm 60 70 dBm 10 70 dBm 10 70 dBm 10 30 dBm 10 40 dBm 10 50 dBm 10 60 dBm 10 70 dBm 10 30 dBm 10	-20dB E	dB • RBW 30 k ms • VBW 100 k	Hz Hz Mode Swe M1[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2] M2[1 M2] M2] M2] M2] M2] M2] M2] M2] M2] M2]		2.4 M3	-2.21 dBn -7999200 GH -22.17 dBn -7934000 GH
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 HM AX 100/100 10 dBm 0 dBm 10 dBm 0 dBm 20 dBm M2 30 dBm 40 dBm 50 dBm 70 dBm 60 dBm 70 dBm 70 dBm 51 F 2.48 GHz Tarker Type	-20dB E	dB • RBW 30 k ms • VBW 100 k	Hz Hz Mode Swe M1[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1		2.4 M3	-2.21 dBn -7999200 GH -22.17 dBn -7934000 GH
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1PK Max 10 10 dBm 10 10 dBm 10 20 dBm M2 30 dBm 40 40 dBm 50 dBm 60 dBm 70 dBm 70 dBm 57 2.48 GHz Tarker Type Ref Trc M1 1	-20dB B	dB • RBW 30 k ms • VBW 100 k	Hz Hz Mode Swe M1[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1		2.4 M3	-2.21 dBn -7999200 GH -22.17 dBn -7934000 GH
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 HM AX 100/100 10 dBm 0 10 dBm 0 20 dBm M2 30 dBm M2 40 dBm 50 dBm 50 dBm 60 dBm 70 dBm SF 2.48 GHz aarker Type	-20dB E	dB • RBW 30 k ms • VBW 100 k	Hz Hz Mode Swe M1[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1		2.4 M3	-2.21 dBn -7999200 GH -22.17 dBn -7934000 GH
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 HM AX 0 10 dBm 0 0 10 dBm 0 0 10 dBm M2 0 20 dBm M2 0 30 dBm M2 0 50 dBm 60 dBm 0 70 dBm SF 2.48 GHz 0 Iarker Type Ref Trc M1 1 1 1 M2 1 1 1	-20dB E	dB • RBW 30 k ms • VBW 100 k	Hz Hz Mode Swe M1[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1	eep .] .] 	2.4 M3	-2.21 dBr -7999200 GH -22.17 dBr 7994000 GH

Spectrum					
Ref Level 20.00 dB	m 🛛 Offset 2.55 dB 🥃	RBW 30 kHz			
Att 30 c	iB SWT 1 ms 👄	VBW 100 kHz	Mode Sweep		
SGL Count 100/100					
1Pk Max					
			M1[1]		-2.58 dB
0.40					2.47999600 GF
l0 dBm			M2[1]		-22.39 dB
) dBm		M1			2.47935200 GF
		A N			
10 dBm		\sim	ma	<u></u>	
		- V	~~~~	m	
20 dBm 🛛 💆				~	МЗ
م ر ا					×
30 dBm /					
40 dBm					1000
$\sim \sim \sim \sim$					VP'V
50 dBm					V^
60 dBm					
70 dBm					
CF 2.48 GHz		1001 p	ts		Span 2.0 MH
arker					
Type Ref Trc	X-value	Y-value	Function	Fund	tion Result
M1 1	2.479996 GHz	-2.58 dBm			
M2 1	2.479352 GHz	-22.39 dBm			
M3 1	2.480654 GHz	-22.53 dBm			
			Deady		17.02.2025

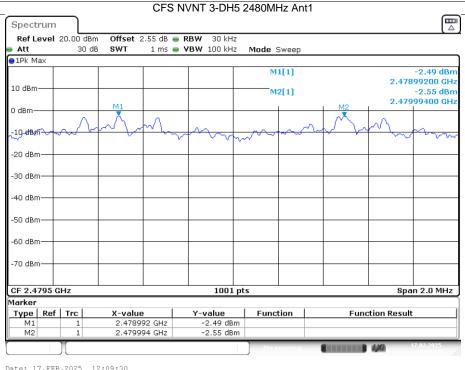
Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.884
NVNT	1-DH5	2441	Ant1	0.881
NVNT	1-DH5	2480	Ant1	0.884
NVNT	2-DH5	2402	Ant1	1.187
NVNT	2-DH5	2441	Ant1	1.208
NVNT	2-DH5	2480	Ant1	1.184
NVNT	3-DH5	2402	Ant1	1.196
NVNT	3-DH5	2441	Ant1	1.202
NVNT	3-DH5	2480	Ant1	1.175






Carrier Frequencies Separation


Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.986	2403.058	1.072	0.627	Pass
NVNT	1-DH5	Ant1	2440.99	2441.976	0.986	0.627	Pass
NVNT	1-DH5	Ant1	2479.056	2480.058	1.002	0.627	Pass
NVNT	2-DH5	Ant1	2401.992	2402.992	1	0.847	Pass
NVNT	2-DH5	Ant1	2440.838	2441.838	1	0.847	Pass
NVNT	2-DH5	Ant1	2478.93	2479.998	1.068	0.873	Pass
NVNT	3-DH5	Ant1	2401.986	2402.986	1	0.873	Pass
NVNT	3-DH5	Ant1	2440.99	2441.994	1.004	0.86	Pass
NVNT	3-DH5	Ant1	2478.992	2479.994	1.002	0.867	Pass

Cro a atre una	C	FS NVNT 2-DH5	5 2441MHz An	t1		Ē
Spectrum Ref Level 20.00 d Att 30		dB ● RBW 30 kHz ns ● VBW 100 kHz	Mada Sween			(A
9 1Pk Max	ub awı 11	IS - YBW 100 KH2	Mode Sweep			
			M1[1]		-0.	88 dBn
10 dBm					2.440838	
MI			M2[1]	M2	-0.1 2.441838	88 dBn 100 GH:
0 dBm				ž 🔍		
~10,d8m	m/ mp	m m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h h	man	
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.4415 GHz		1001	pts		Span 2.	0 MHz
Marker						
Type Ref Trc M1 1	<u>X-value</u> 2.440838 GF	Y-value Iz -0.88 dBm	Function	Fund	tion Result	
M2 1	2.441838 GF					
ate: 17.FEB.2025						
Spectrum	C	FS NVNT 2-DH5	5 2480MHz An	t1		
	C Bm Offset 2.55 c		5 2480MHz An Mode Sweep	t1		
Spectrum Ref Level 20.00 d Att 30	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz	Mode Sweep	t1		[
Spectrum Ref Level 20.00 d Att 30	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz		t1		03 dBr
Spectrum Ref Level 20.00 d Att 30 9 1Pk Max 10 dBm	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz	Mode Sweep	t1	2.478930	03 dBi 100 GH 197 dBi
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 dBm	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz	Mode Sweep M1[1]	t1	2.478930 -60.9	03 dBr 100 GH 97 dBr
Spectrum	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz	Mode Sweep M1[1]	t1	2.478930 -60.9	03 dBr 100 GH 97 dBr
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 dBm -10 dBm	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz	Mode Sweep M1[1]	t1	2.478930 -60.9	03 dBi 100 GH 197 dBi
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz	Mode Sweep M1[1]	t1	2.478930 -60.9	03 dBr 100 GH 97 dBr
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 dBm 0 dBm	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz	Mode Sweep M1[1]	t1	2.478930 -60.9	03 dBr 100 GH 97 dBr
Spectrum Ref Level 20.00 d Att 30 IPk Max 10 dBm 0 dBm	C	dB 🖷 RBW 30 kHz	Mode Sweep M1[1]		2.478930 -60.9	03 dBr 100 GH 97 dBr
Spectrum Ref Level 20.00 d Att 30 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	C Bm Offset 2.55 c	dB 🖷 RBW 30 kHz	Mode Sweep M1[1]	t1	2.478930 -60.9	03 dBr 100 GH 97 dBr
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 dBm 10 dBm -0 dBm -10 dBm	C	dB 🖷 RBW 30 kHz	Mode Sweep M1[1]		2.478930 -60.9	03 dBr 100 GH 97 dBr
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 dBm 10 dBm -0 dBm -10 dBm	C	dB • RBW 30 kHz • VBW 100 kHz	Mode Sweep M1[1] M2[1] M2[1]		2.478930 -60. 2.479998	03 dBr 100 GH 97 dBr 100 GH
Att 30 1Pk Max 10 dBm 10 dBm -0 dBm -10 dBm -0 dBm -20 dBm -0 dBm -30 dBm -0 dBm -70 dBm -0 dBm -70 dBm -0 dBm -70 dBm -0 dBm	C	dB 🖷 RBW 30 kHz	Mode Sweep M1[1] M2[1] M2[1]		2.478930 -60.9	(Δ
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 10 dBm - -0 dBm - -20 dBm - -20 dBm - -30 dBm - -70 dBm -	Classical Control Classical Classica	B • RBW 30 kHz s • VBW 100 kHz 100 kHz 1001	Mode Sweep M1[1] M2[1		2.478930 -60. 2.479998	97 dBn
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm -	Cl Bm Offset 2.55 c dB SWT 1 m	IB • RBW 30 kHz s • VBW 100 kHz 100 k	Mode Sweep M1[1] M2[1] M2[1] M2[1]		2.478930 -60. 2.479998	03 dBr 100 GH 97 dBr 100 GH
Spectrum Ref Level 20.00 d Att 30 1Pk Max 10 10 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm - -60 dBm - -70 dBm -	Classical Control Classical Classica	IB • RBW 30 kHz s • VBW 100 kHz 100 kHz	Mode Sweep M1[1] M2[1] M2[1] M2[1]		2.478930 -60.1 2.479998	03 dBr 100 GH 97 dBr 100 GH

Date: 17.FEB.2025 12:09:30

Number of Hopping Channel

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

		Н	opping	Test G No. NVNT 1-		MHz An	t1		
Spectrun									
Ref Level	l 20.00 dBn 30 dB			 RBW 100 kHz VBW 300 kHz 		veep			
●1Pk Max			1						
					M1	1]		2.40	1.34 dBm 20040 GHz
10 dBm					M2	[1]		0.40	0.04 dBm
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	nnnnnn		<mark>nannannann</mark>	IA A A A A A A A A A A A A A A A A A A		Innanan In	2.48 888888	802435//GHz
	IANANANA'	WWWW	UUUUU	YUYUMANUNI	UUUUUU	տտա	MANANA	UUNMAAU	mmun -
╶╁┥₿₿₩₩₩	h A A A A A A A A A A A A A A A A A A A	48404040	<u>ALANAN</u>	ah han na ka ka	<u> 1111111111</u>	<u> </u>		<u>haaahhaa</u>	<u> </u>
-20 dBm—									
-30 dBm									
oo abiii									
-40 dBm									
ሻ -50 dBm									L L
									100
-60 dBm									
-70 dBm									
Start 2.4 G	GHz			1001	pts			Stop 2	.4835 GHz
Marker	(-				1		-		
Type Re M1	f Trc 1	2.4020		<u>Y-value</u> 1.34 dBr	Function	on	Fund	tion Result	1
M2	1	2.48024		0.04 dBr	n				
)[]				Meas	uring		4/4	17.02.2025
Spectrum				No. NVNT 2		2MHz An	t1		
Ref Level	n I 20.00 dBn 30 dB	n Offset 2	2.52 dB	No. NVNT 2 RBW 100 kHz VBW 300 kHz	2		t1		
Ref Leve	l 20.00 dBn	n Offset 2	2.52 dB	RBW 100 kHz	2	veep	t1		1.32 dBm
Ref Level Att 1Pk Max	l 20.00 dBn	n Offset 2	2.52 dB	RBW 100 kHz	: : Mode Sv M1)	veep	t1	2.40	1.32 dBm)18370 GHz
Ref Level Att 1Pk Max 0 dBm- M1	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]			[∆ 1.32 dBm
Ref Leve Att 1Pk Max 10 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 0 dBm- M1	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]			1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 10 dBm M1 0 dBm -10 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att IPk Max	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 10 dBm M1 0 dBm -10 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 10 dBm M1 0 dBm -10 dBm -20 dBm -30 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 10 dBm M1 0 dBm -10 dBm -20 dBm -30 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 10 dBm M1 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm 40 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 112k Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 11Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	1 20.00 dBn 30 dB	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	2 2 Mode Sv M1 	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 20.00 dBn 30 df	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz	Mode Sv	veep [1] [1]		2.48	1.32 dBm)18370 GHz -0.13 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Marker	1 20.00 dBn 30 df	n Offset 2 3 SWT	2.52 dB (1 ms (RBW 100 kHz VBW 300 kHz WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Mode Sv M1 M2	veep [1] [1] [1]		2.48	1.32 dBm 118370 GHz -0.13 dBm 02433/GHz
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm	1 20.00 dBn 30 db 30 db	Offset 2 SWT	2.52 dB (1 ms (RBW 100 kHz VBW 300 kHz WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Mode Sv M1 M2 M2 M2 	veep [1] [1] [1]		2.48	1.32 dBm 118370 GHz -0.13 dBm 02433/GHz
Ref Level Att • 1Pk Max 10 dBm • 1Pk Max • 1Pk Max • 10 dBm • 10 dBm • 20 dBm • 40 dBm • 50 dBm • 60 dBm • 70 dBm • 70 dBm • 70 dBm • 70 dBm	f Trc	x-value	2.52 dB (1 ms (RBW 100 kHz VBW 300 kHz WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Mode Sv M1 M2 M2 M2 	veep [1] [1] [1] [1] [1] [1] [1] [1]	Func	2.48	1.32 dBm 118370 GHz -0.13 dBm 02433/GHz
Ref Level Att 1Pk Max 10 dBm M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm M1	1 20.00 dBn 30 db 30 db	Offset 2 SWT	2.52 dB (1 ms (RBW 100 kHz VBW 300 kHz WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Mode Sv M1 M2 M2 M2 	veep [1] [1] [1] [1] [1] [1] [1] [1]	Func	2.48	1.32 dBm 118370 GHz -0.13 dBm 02433/GHz