

RF Test Report

Applicant Name: DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD Address:

WANCHAI HK CHINA

EUT Name: Tablet PC **Brand Name:** oscal Model Number: Pad18

Issued By

BTF Testing Lab (Shenzhen) Co., Ltd. **Company Name:**

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Tantou Community, Songgang Street, Bao'an District, Shenzhen, Address:

China

Report Number: BTF231008R00704 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2A7DX-PAD18

Test Date: 2023-10-09 to 2023-10-30

Date of Issue: 2023-11-08

Prepared By:

Chris Liu / Project Engine


2023-11-08 Date:

Approved By:

Ryan.CJ / EMC Manager

2023-11-08 Date:

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-11-08	Original	
Note: Once the	revision has been made, then prev	vious versions reports are invalid	

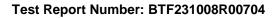
Table of Contents

1	INTF	NTRODUCTION5				
	1.1	Identif	ication of Testing Laboratory	5		
	1.2		ication of the Responsible Testing Location			
	1.3	Annou	ıncement	5		
2	PRO	DUCT II	NFORMATION	6		
	2.1	Applic	eation Information	6		
	2.2		acturer Information			
	2.3	Factor	ry Information	6		
	2.4		al Description of Equipment under Test (EUT)			
	2.5		ical Information			
3	SUM		OF TEST RESULTS			
	3.1		tandards			
	3.2		tainty of Test			
	3.3		nary of Test Result			
4			IGURATION			
	4.1	Test E	quipment List	8		
	4.2 4.3		uxiliary Equipmentlodes			
_						
5			N RESULTS (EVALUATION)			
	5.1		na requirement			
6	RAD		CTRUM MATTER TEST RESULTS (RF)			
	6.1	Condu	ucted Emission at AC power line			
		6.1.1	E.U.T. Operation:			
		6.1.2	Test Setup Diagram:			
	6.2	6.1.3	Test Data: Cycle			
	6.2	6.2.1	E.U.T. Operation:			
		6.2.1	Test Data:			
	6.3	-	num conducted output power			
	0.0	6.3.1	E.U.T. Operation:			
		6.3.2	Test Data:			
	6.4	Power	· spectral density	21		
		6.4.1				
		6.4.2	Test Data:	22		
	6.5	Emiss	ion bandwidth and occupied bandwidth	23		
		6.5.1	E.U.T. Operation:			
		6.5.2	Test Data:			
	6.6		edge emissions (Radiated)			
		6.6.1	E.U.T. Operation:			
		6.6.2 6.6.3	Test Setup Diagram:			
	6.7	0.0.0	Test Data: sirable emission limits (below 1GHz)			
	0.7	6.7.1	E.U.T. Operation:			
		6.7.1	Test Setup Diagram:			
		6.7.3	Test Data:			
	6.8		sirable emission limits (above 1GHz)			
		6.8.1	E.U.T. Operation:			

	6.8.2	Test Data:	36
7	TEST SETUI	P PHOTOS	38
		RUCTIONAL DETAILS (EUT PHOTOS)	
		,	

1 Introduction

1.1 Identification of Testing Laboratory


Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130
Fax Number: +86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	DOKE COMMUNICATION (HK) LIMITED
Address:	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

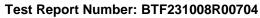
2.2 Manufacturer Information

Company Name:	Shenzhen DOKE Electronic Co., Ltd
Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.

2.3 Factory Information

Company Name:	Shenzhen DOKE Electronic Co., Ltd
Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.

2.4 General Description of Equipment under Test (EUT)


EUT Name:	Tablet PC
Test Model Number:	Pad18
Hardware Version:	T30-T616-V2.0
Software Version:	Pad18_NEU_T30_V1.0

2.5 Technical Information

Power Supply:	DC 3.8V form battery
Operation Frequency	
Range	U-NII Band 1: 5.18~5.24 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz
	802.11a: 20 MHz
Channel Bandwidth	802.11n: 20 MHz, 40 MHz
	802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	PIFA Antenna
Antenna Gain:	-4.52 dBi

Note

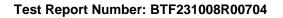
^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices


3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

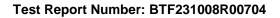
Test Configuration

Test Equipment List

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Duty Cycle							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	/	/		
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

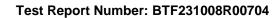
Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		



Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Emission bandwidth and occupied bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Availability Check Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	1	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		

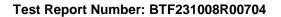


MXA Signal Analyzer KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23
------------------------------	--------	------------	------------	------------

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			



WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

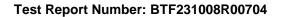
DFS Detection Thresholds								
Equipment	Manufacturer Model No Inventory No			Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission limits (below 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21			
EZ_EMC	Frad	FA-03A2 RE+	/	/	/			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/			
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27			

Undesirable emission	limits (above 1GF	lz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	POSITIONAL SKET		1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

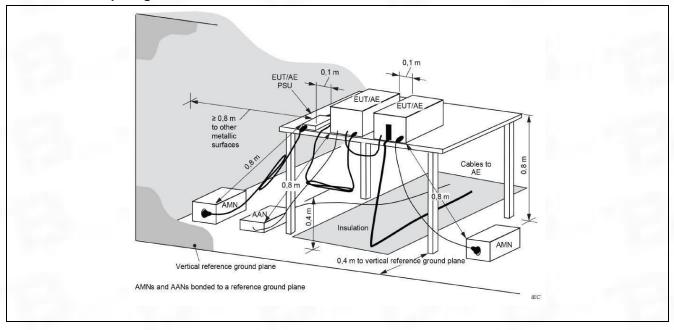
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

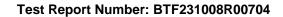
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	--

6 Radio Spectrum Matter Test Results (RF)

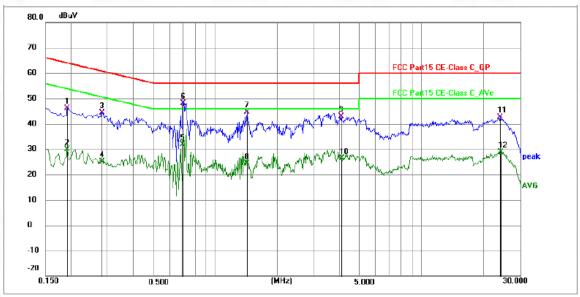

6.1 Conducted Emission at AC power line

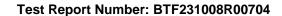

Test Requirement:	47 CFR Part 15.207(a)						
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
	Frequency of emission (MHz)	Conducted limit (de	BμV)				
		Quasi-peak	Average				
Toot Limit:	0.15-0.5	66 to 56*	56 to 46*				
Test Limit:	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						

6.1.1 E.U.T. Operation:

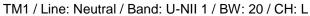
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

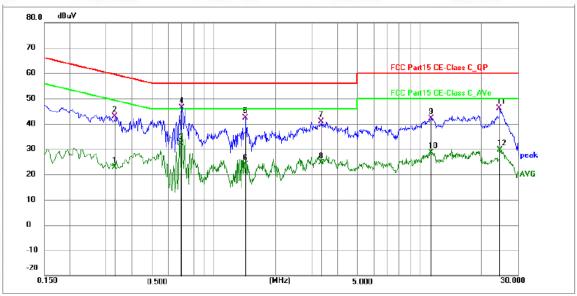
6.1.2 Test Setup Diagram:



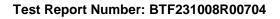


6.1.3 Test Data:


TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L

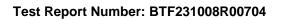


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1905	35.43	10.58	46.01	64.01	-18.00	QP	Р	
2	0.1905	19.25	10.58	29.83	54.01	-24.18	AVG	Р	
3	0.2805	33.89	10.60	44.49	60.80	-16.31	QP	Р	
4	0.2805	14.45	10.60	25.05	50.80	-25.75	AVG	Р	
5	0.6945	21.22	10.73	31.95	46.00	-14.05	AVG	Р	
6 *	0.6990	37.37	10.73	48.10	56.00	-7.90	QP	Р	
7	1.4190	33.77	10.74	44.51	56.00	-11.49	QP	Р	
8	1.4325	13.73	10.74	24.47	46.00	-21.53	AVG	Р	
9	4.0785	32.18	10.74	42.92	56.00	-13.08	QP	Р	
10	4.0964	15.64	10.74	26.38	46.00	-19.62	AVG	Р	
11	24.0900	31.63	11.04	42.67	60.00	-17.33	QP	Р	
12	24.2610	17.95	11.04	28.99	50.00	-21.01	AVG	Р	



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.3285	12.30	10.60	22.90	49.49	-26.59	AVG	Р	
2	0.3300	32.40	10.60	43.00	59.45	-16.45	QP	Р	
3	0.6945	21.33	10.73	32.06	46.00	-13.94	AVG	Р	
4 *	0.6990	35.77	10.73	46.50	56.00	-9.50	QP	Р	
5	1.4280	31.54	10.74	42.28	56.00	-13.72	QP	Р	
6	1.4280	13.04	10.74	23.78	46.00	-22.22	AVG	Р	
7	3.3450	30.04	10.72	40.76	56.00	-15.24	QP	Р	
8	3.3450	13.82	10.72	24.54	46.00	-21.46	AVG	Р	
9	11.3772	31.19	10.94	42.13	60.00	-17.87	QP	Р	
10	11.3772	17.65	10.94	28.59	50.00	-21.41	AVG	Р	
11	24.4095	35.02	11.04	46.06	60.00	-13.94	QP	Р	
12	24.6250	18.54	11.05	29.59	50.00	-20.41	AVG	Р	

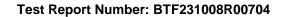
6.2 Duty Cycle


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

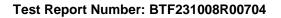
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:


Please Refer to Appendix for Details.

Maximum conducted output power

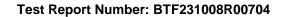
6.3 Maximum cond	ucted output power
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
Took Modified.	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


	For the band 5.725-5.850 GHz, the maximum conducted output power over the
	frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations. Method SA-1
	 a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz. c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so
	that narrowband signals are not lost between frequency bins.) e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode. i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%
	OBW of the spectrum.

6.3.1 E.U.T. Operation:

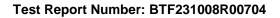
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.3.2 Test Data:


Please Refer to Appendix for Details.

Power spectral density

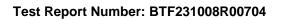
6.4 Power spectral	density
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
·	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
Tool Mounicu.	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
Test Limit:	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter


	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by
	following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2,
	SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled,
	"Compute
	power" (This procedure is required even if the maximum conducted output
	power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,
	add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging
1 locedule.	and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution
	bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
	authorities.This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided
	that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and
	integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	 2) Set VBW >= [3 x RBW]. 3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

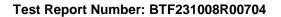
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.4.2 Test Data:


Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

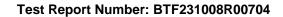
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times
	the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from
Procedure:	exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude
	data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%


power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth: a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured
in the fundamental emission.

6.5.1 E.U.T. Operation:

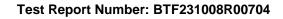
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

6.6 Band edge en	nissions (Radiated)	(4)			
	47 CFR Part 15.407(b)				
Test Requirement:	47 CFR Part 15.407(b)(2)				
,	47 CFR Part 15.407(b)				
	47 CFR Part 15.407(b)(10)				
Test Method:		ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6			
	5.15-5.35 GHz band sl For transmitters operat	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.			
	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.				
	MHz	MHz	MHz	GHz	
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
	10.495-0.505	16.69475-16.69525		5.35-5.46	
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
	4.125-4.128	25.5-25.67	1300-1427		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5	
			5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
To ad I incite	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4	
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5	
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4	
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
	12.57675 12.52025 12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(²)	
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.				
	² Above 38.6				
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.				
	Except as provided els	ewhere in this subpart,	the emissions fr	rom an intentional	

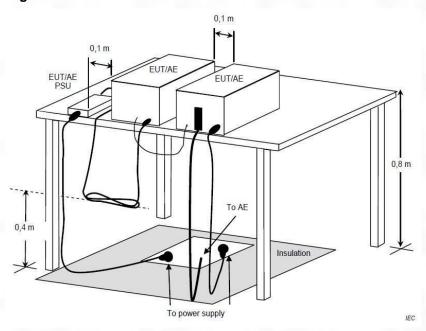

	radiator shall not exceed the field strength levels specified in the following table:			
	Frequency (MHz)	Field strength	Measurement	
	. , , ,	(microvolts/meter)	distance	
		,	(meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
	Above 1GHz:	300	3	
Procedure:	above the ground at a 3 m degrees to determine the b. The EUT was set 3 met was mounted on the top of c. The antenna height is widetermine the maximum widetermine the maximum widetermine the maximum widetermine the maximum widetermine the antenna was turned to of below 30MHz, the antenwas turned from 0 degrees e. The test-receiver syster Bandwidth with Maximum f. If the emission level of the specified, then testing coureported. Otherwise the erre-tested one by one using in a data sheet. g. Test the EUT in the lown. The radiation measured Transmitting mode, and for i. Repeat above procedure Remark: 1. Level= Read Level+ Ca 2. Scan from 18GHz to 40 points marked on above presting, so only above pointed missions from the radiation need not be reported. 3. As shown in this section are based on average limit not exceed the maximum of than the average limit, only	neter fully-anechoic chamber position of the highest radial ers away from the interfere of a variable-height antennal aried from one meter to found alue of the field strength. Be a are set to make the meal ission, the EUT was arrang heights from 1 meter to 4 means was tuned to heights 1 sto 360 degrees to find the means was to Peak Detect Found Mode. The EUT in peak mode was all be stopped and the peak missions that did not have a great channel, the middle channels are performed in X, Yound the X axis positioning was until all frequencies means until all frequencies means are the highest emissions had been displayed. The or which are attenuated moon, for frequencies above 1G ts. However, the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field permitted average limits specifically and the second of the peak field peak	Ince-receiving antenna, which tower. If meters above the ground to oth horizontal and vertical surement. Iged to its worst case and then neters (for the test frequency meter) and the rotatable table maximum reading. If unction and Specified 10dB lower than the limit of values of the EUT would be as specified and then reported annel, the Highest channel. If Z axis positioning for which it is the worst case. sured was complete. Preamp Factor If 18GHz was very low. The one could be found when the amplitude of spurious re than 20dB below the limit of the strength of any emission shall ecified above by more than 20 ons whose peak level is lower is shown in the report.	

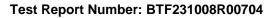
6.6.1 E.U.T. Operation:

Operating Environment:	Operating Environment:			
Temperature: 25.5 °C				
Humidity:	50.6 %			

highest point could be found when testing, so only the above harmonics had been

displayed.





Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11a are in the report

UNII-1 20M_5180MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Dotoctor	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5071.370	82.88	-31.87	51.01	68.20	-17.19	peak	Р
2	5150.000	83.48	-31.83	51.65	68.20	-16.55	peak	Р

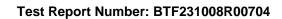
UNII-1 20M_5180MHz_Vertical


No	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5084.675	83.99	-32.05	51.94	68.20	-16.26	peak	Р
2	5150.000	84.59	-32.01	52.58	68.20	-15.62	peak	Р

UNII-1 20M_5320MHz_Horizontal

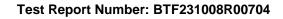
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5350.000	85.34	-31.99	53.35	68.20	-14.85	peak	Р
2	5393.265	83.71	-31.95	51.76	68.20	-16.44	peak	Р

UNII-1 20M_5320MHz_Vertical

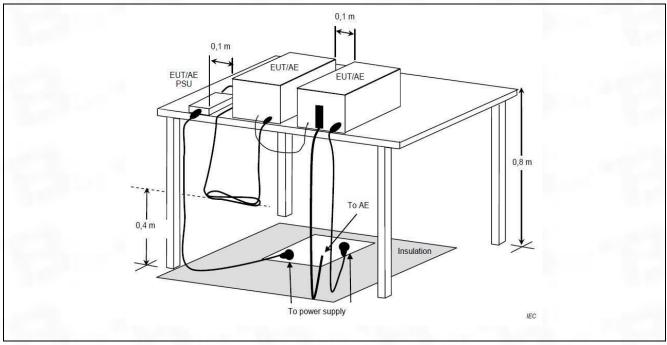

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	85.17	-31.87	53.30	68.20	-14.90	peak	Р
2	5399.362	83.54	-31.83	51.71	68.20	-16.49	peak	Р

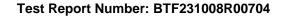
6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)					
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
	limits set forth in § 15.20	low 1 GHz must comply with to 19. where in this subpart, the emise				
Test Limit:		d the field strength levels spec Field strength (microvolts/meter)				
TOST EITHIL.	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Procedure:	above the ground at a 3 degrees to determine the b. The EUT was set 3 o which was mounted on c. The antenna height is determine the maximum polarizations of the antend. For each suspected of the antenna was tuned of below 30MHz, the an was turned from 0 degree. The test-receiver syst Bandwidth with Maximum f. If the emission level of specified, then testing conceptred. Otherwise the re-tested one by one us data sheet. In g. Test the EUT in the long. The radiation measure Transmitting mode, and in Repeat above procedures. In Level = Read Level + Concept of the points marked on above testing, so only above premissions from the radiation mead not be reported. The disturbance beloose the concept of the points marked on above testing, so only above premissions from the radiation of the reported.	EUT was placed on the top of meter semi-anechoic chamber e position of the highest radiater 10 meters away from the interest to the top of a variable-height and a varied from one meter to four a value of the field strength. Because of the field strength are set to make the measurements are set to make the measurements are set to make the measurements are to 4 meters to 360 degrees to find the sem was set to Peak Detect Furn Hold Mode. If the EUT in peak mode was 1 could be stopped and the peak emissions that did not have 10 sing quasi-peak method as specially as a positioning was until all frequencies measures until all frequencies measures until all frequencies measures until all frequencies measures are the highest emission oints had been displayed. The ator which are attenuated more was 1 GHz was very low and the en testing, so only the above in the strength of the strength of the above in the strength of the above in the strength of the strength of the above in the strength of the above in the strength of the strength	er. The table was rotated 360 tion. erference-receiving antenna, tenna tower. meters above the ground to oth horizontal and vertical surement. ed to its worst case and thereters (for the test frequency meter) and the rotatable table maximum reading. unction and Specified OdB lower than the limit values of the EUT would be odB margin would be ecified and then reported in a manel, the Highest channel. Z axis positioning for which it is the worst case. Sured was complete. Preamp Factor SOMHz was very low. The ne could be found when a amplitude of spurious than 20dB below the limit harmonics were the highest			

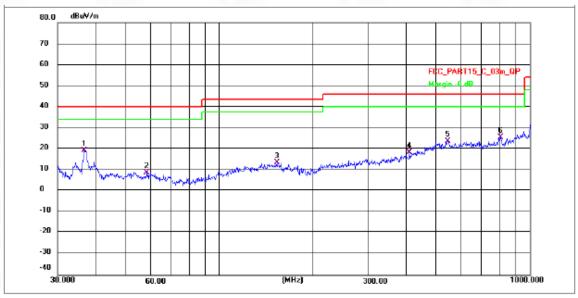


- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- Repeat above procedures until all frequencies measured was complete.
 Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

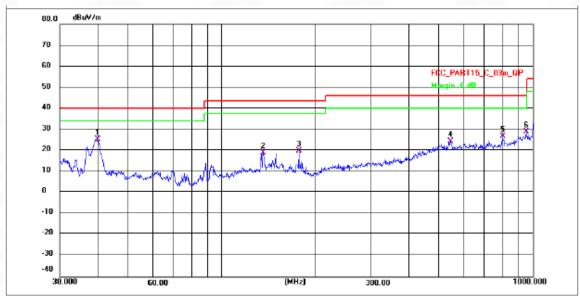

6.7.1 E.U.T. Operation:

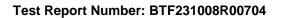

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

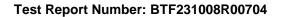
6.7.2 Test Setup Diagram:



6.7.3 Test Data:


Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	36.7661	37.65	-18.44	19.21	40.00	-20.79	QP	Р
2	58.3051	26.95	-18.20	8.75	40.00	-31.25	QP	Р
3	152.9320	41.32	-27.75	13.57	43.50	-29.93	QP	Р
4	410.3824	42.41	-24.14	18.27	46.00	-27.73	QP	Р
5	543.2742	45.21	-21.59	23.62	46.00	-22.38	QP	Р
6 *	807.4290	49.17	-23.60	25.57	46.00	-20.43	QP	Р


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	39.9942	45.73	-20.53	25.20	40.00	-14.80	QP	Р
2	135.7440	46.87	-27.91	18.96	43.50	-24.54	QP	Р
3	177.5092	47.24	-27.53	19.71	43.50	-23.79	QP	Р
4	545.1826	46.00	-21.61	24.39	46.00	-21.61	QP	Р
5	798.9797	50.61	-23.72	26.89	46.00	-19.11	QP	Р
6	955.4381	50.57	-21.74	28.83	46.00	-17.17	QP	P

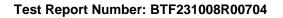
6.8 Undesirable emission limits (above 1GHz)

	oda) emini noicenna	•						
	47 CFR Part 15.407(b)							
Test Requirement:	47 CFR Part 15.407(b)							
rest requirement.	47 CFR Part 15.407(b)							
	47 CFR Part 15.407(b))(10)						
Test Method:		ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6						
	For transmitters opera	ting in the 5.15-5.25 GH	Hz band: All emis	ssions outside of the				
		hall not exceed an e.i.r.						
		ting in the 5.25-5.35 GH						
	5.15-5.35 GHz band sl	hall not exceed an e.i.r.	p. of −27 dBm/N	1Hz.				
		ting solely in the 5.725-						
		limited to a level of −27						
		e increasing linearly to						
		and from 25 MHz above						
		.6 dBm/MHz at 5 MHz						
		pelow the band edge in	creasing linearly	to a level of 27				
	dBm/MHz at the band		N 41 1	011				
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
	4.17725-4.17775 4.20725-4.20775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4				
	0.20113-0.20023	100-121.94	2	13.23-13.4				
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4				
	0.002 0.000	25	2 100.0 2000	17.7 21.1				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025		3345.8-3358	36.43-36.5				
	12.57675-12.57725	322-335.4	3600-4400	(²)				
	13.36-13.41			()				
	¹ Until February 1, 1999	9, this restricted band s	hall be 0.490-0.5	510 MHz.				
	² Above 38.6							
		missions appearing with						
		n in § 15.209. At freque						
	MHz, compliance with the limits in § 15.209shall be demonstrated using							
	measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated							
		value of the measured	emissions. The	provisions in §				
	15.35apply to these m	easurements.						
	Except as provided als	cowhere in this subsert	the emissions for	rom an intentional				
		sewhere in this subpart, ed the field strength lev						
	Frequency (MHz)	Field strength	•	Measurement				
	i requericy (ivii iz)	i ieid strengtti		INICASUIGITIGIII				

		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:		
	a. For above 1GHz, t	he EUT was placed on the top of	a rotating table 1.5 meters
	above the ground at	a 3 meter fully-anechoic chamber	r. The table was rotated 360
	degrees to determine	the position of the highest radiat	tion.
		3 meters away from the interferer	
		top of a variable-height antenna t	
		t is varied from one meter to four	
		um value of the field strength. Bo	
	polarizations of the a	ntenna are set to make the meas	urement.
	d. For each suspecte	d emission, the EUT was arrange	ed to its worst case and then
	the antenna was tune	ed to heights from 1 meter to 4 m	eters (for the test frequency
	of below 30MHz, the	antenna was tuned to heights 1 r	neter) and the rotatable table
	was turned from 0 de	grees to 360 degrees to find the	maximum reading.
		ystem was set to Peak Detect Fu	
	Bandwidth with Maxis	mum Hold Mode.	
	f. If the emission leve	of the EUT in peak mode was 1	0dB lower than the limit
	specified, then testing	g could be stopped and the peak	values of the EUT would be
	reported. Otherwise t	he emissions that did not have 1	0dB margin would be
		using peak or average method as	
Procedure:	in a data sheet.		
	g. Test the EUT in the	e lowest channel, the middle char	nnel, the Highest channel.
		surements are performed in X, Y,	
		nd found the X axis positioning w	
		edures until all frequencies meas	
	Remark:		
	1. Level= Read Leve	I+ Cable Loss+ Antenna Factor- I	Preamp Factor
		to 40GHz, the disturbance above	
		ove plots are the highest emission	
		e points had been displayed. The	
		adiator which are attenuated more	
	naad nat ha ranautad		

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar


3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower

than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been

need not be reported.

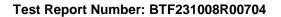
displayed.

6.8.2 Test Data:

Not:All of the mode had be tested, only the worse mode of 802.11a are show in the report: UNII-1_20M_5180MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1414.817	68.84	-30.33	38.51	74.00	-35.49	peak	Р
2	3555.937	80.20	-28.87	51.33	74.00	-22.67	peak	Р
3	5766.606	77.99	-26.25	51.74	74.00	-22.26	peak	Р
4	7772.002	80.84	-24.77	56.07	74.00	-17.93	peak	Р
5	9667.539	77.37	-23.05	54.32	74.00	-19.68	peak	Р
6	13852.785	78.36	-20.78	57.58	74.00	-16.42	peak	Р

UNII-1_20M_5180MHz_Vertical

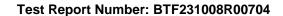

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		1 //
1	1380.854	69.85	-30.23	39.62	74.00	-34.38	peak	Р
2	3521.974	81.21	-28.77	52.44	74.00	-21.56	peak	Р
3	5732.643	79.00	-26.15	52.85	74.00	-21.15	peak	Р
4	7738.039	81.85	-24.67	57.18	74.00	-16.82	peak	Р
5	9633.576	78.38	-22.95	55.43	74.00	-18.57	peak	Р
6	13818.822	79.37	-20.68	58.69	74.00	-15.31	peak	Р

UNII-1_20M_5200MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		F/F
1	1505.854	69.95	-30.15	39.80	74.00	-34.20	peak	Р
2	3646.974	81.31	-28.69	52.62	74.00	-21.38	peak	Р
3	5857.643	79.10	-26.07	53.03	74.00	-20.97	peak	Р
4	7863.039	81.95	-24.59	57.36	74.00	-16.64	peak	Р
5	9758.576	78.48	-22.87	55.61	74.00	-18.39	peak	Р
6	13943.822	79.47	-20.60	58.87	74.00	-15.13	peak	Р

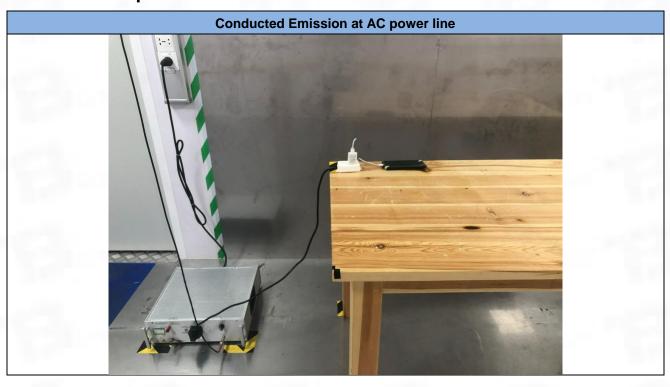
UNII-1_20M_5200MHz_Vertical

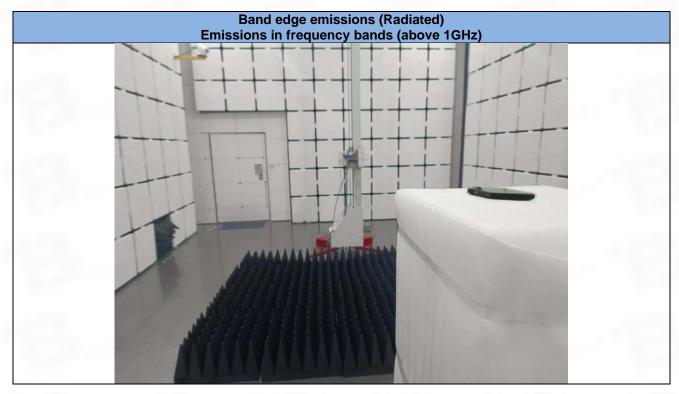
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1643.854	70.37	-30.15	40.22	74.00	-33.78	peak	Р
2	3784.974	81.73	-28.69	53.04	74.00	-20.96	peak	Р
3	5995.643	79.52	-26.07	53.45	74.00	-20.55	peak	Р
4	8001.039	82.37	-24.59	57.78	74.00	-16.22	peak	Р
5	9896.576	78.90	-22.87	56.03	74.00	-17.97	peak	Р
6	14081.822	79.89	-20.60	59.29	74.00	-14.71	peak	Р

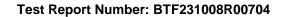


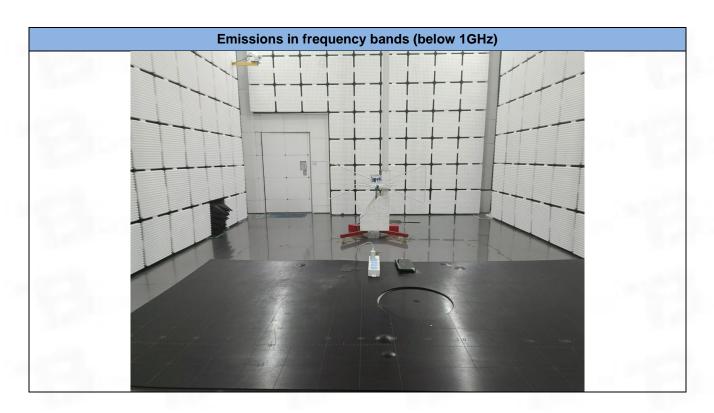
UNII-1_20M_5240MHz_Horizontal

			. –	. —				
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV) (dB/m)		(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	1513.817	70.04	-30.19	39.85	74.00	-34.15	peak	Р
2	3654.937	81.40	-28.73	52.67	74.00	-21.33	peak	Р
3	5865.606	79.19	-26.11	53.08	74.00	-20.92	peak	Р
4	7871.002	82.04	-24.63	57.41	74.00	-16.59	peak	Р
5	9766.539	78.57	-22.91	55.66	74.00	-18.34	peak	Р
6	13951.785	79.56	-20.64	58.92	74.00	-15.08	peak	Р

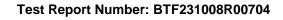

UNII-1_20M_5240MHz_Vertical


- 1				_	_				
	No.	Frequency	Reading	Factor	Level	Limit	Margin Detector	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	171	
	1	1714.854	71.04	-30.16	40.88	74.00	-33.12	peak	Р
	2	3855.974	82.40	-28.70	53.70	74.00	-20.30	peak	Р
	3	6066.643	80.19	-26.08	54.11	74.00	-19.89	peak	Р
	4	8072.039	83.04	-24.60	58.44	74.00	-15.56	peak	Р
	5	9967.576	79.57	-22.88	56.69	74.00	-17.31	peak	Р
	6	14152.822	80.56	-20.61	59.95	74.00	-14.05	peak	Р




Test Setup Photos

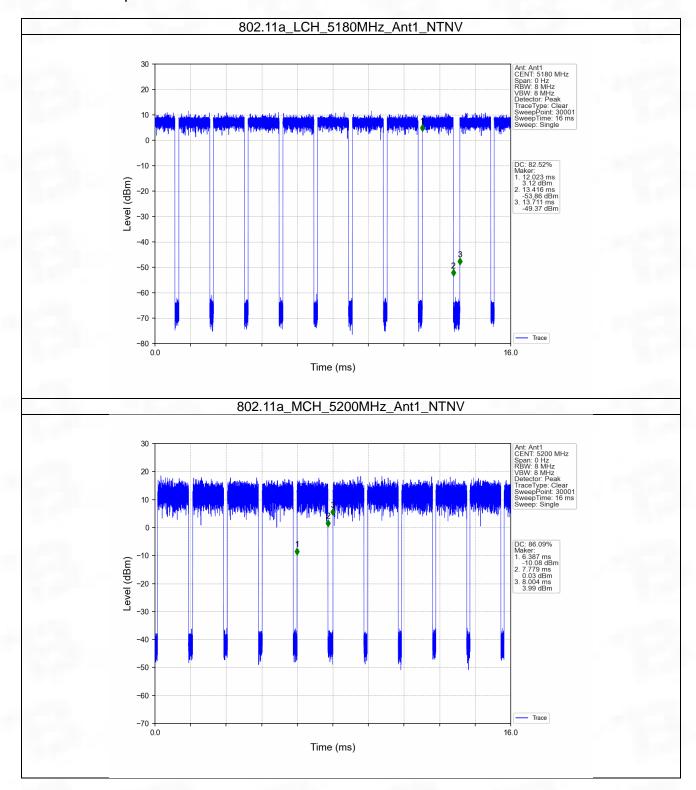



8 EUT Constructional Details (EUT Photos)

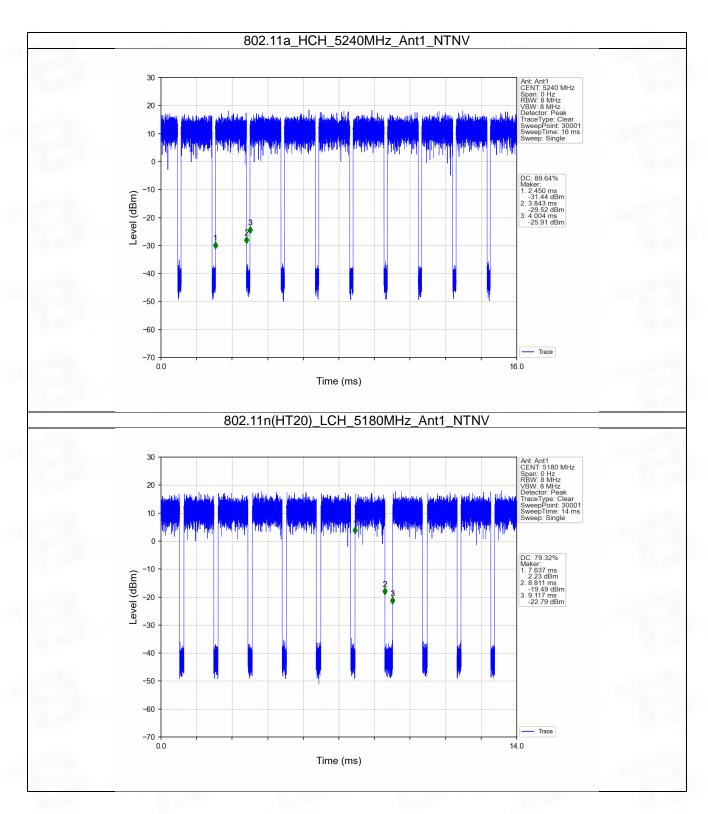
Please refer to the test report No. BTF231008R00701

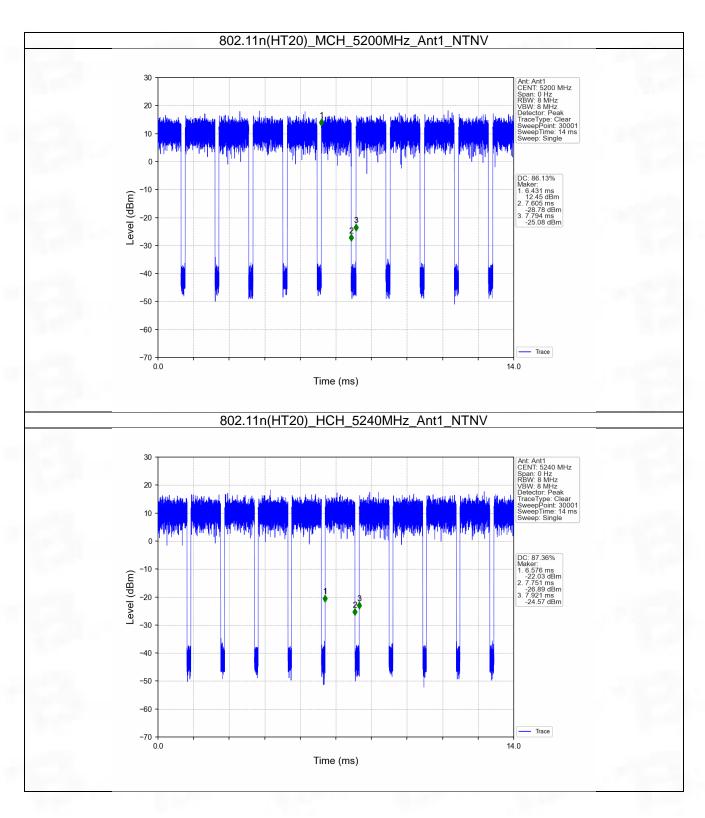
Appendix

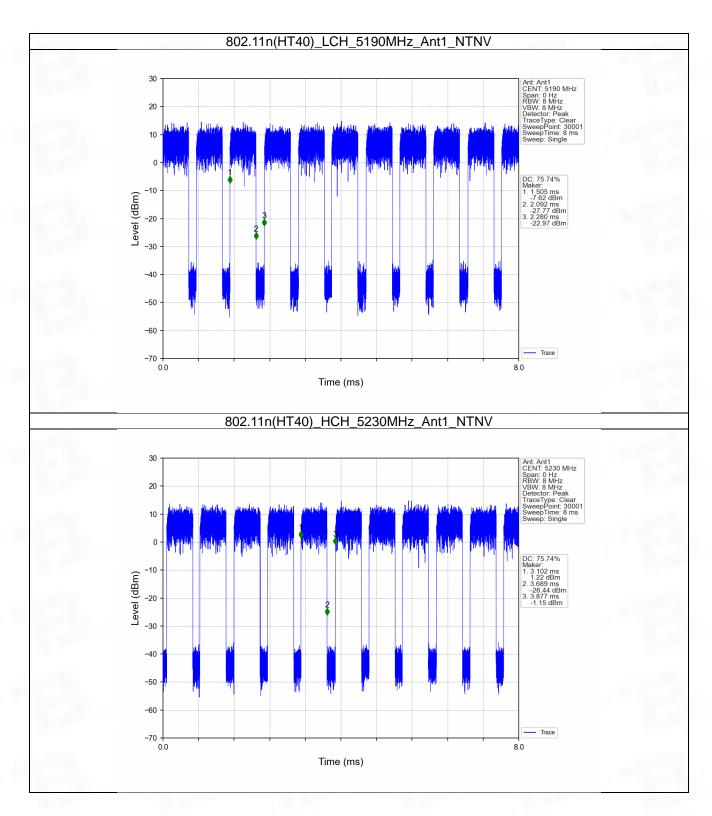
1. Duty Cycle

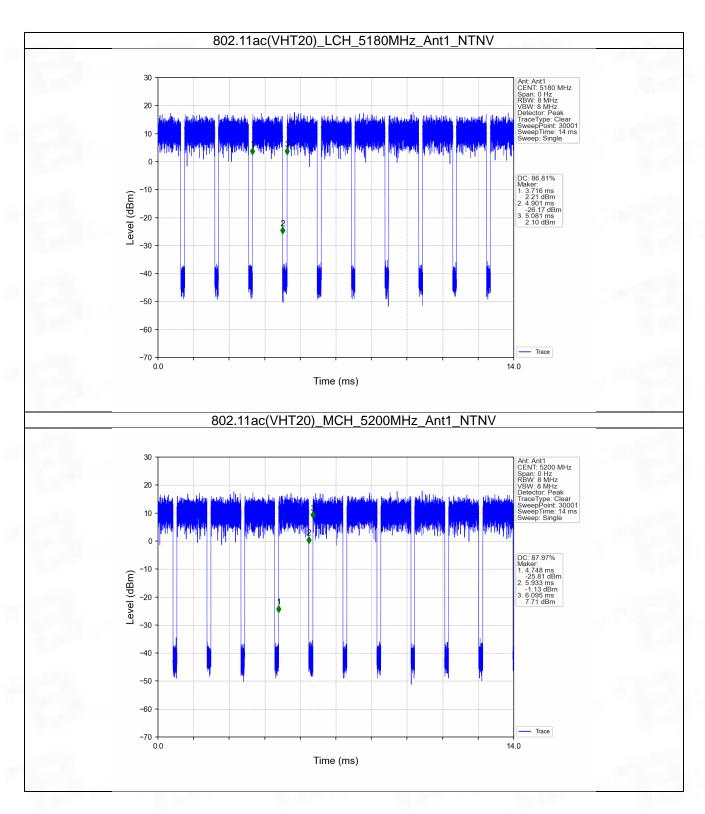

1.1 Ant1

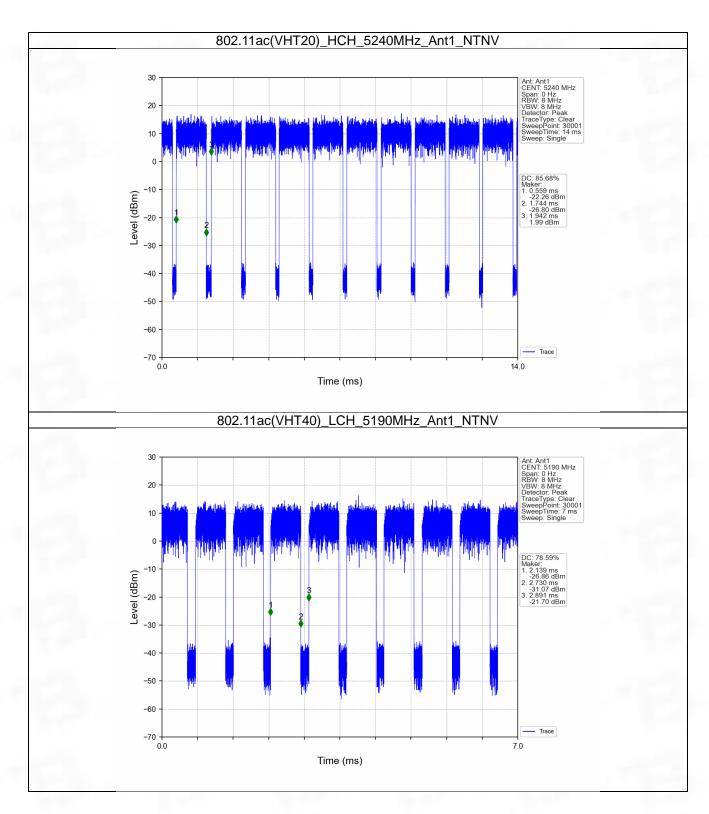
1.1.1 Test Result

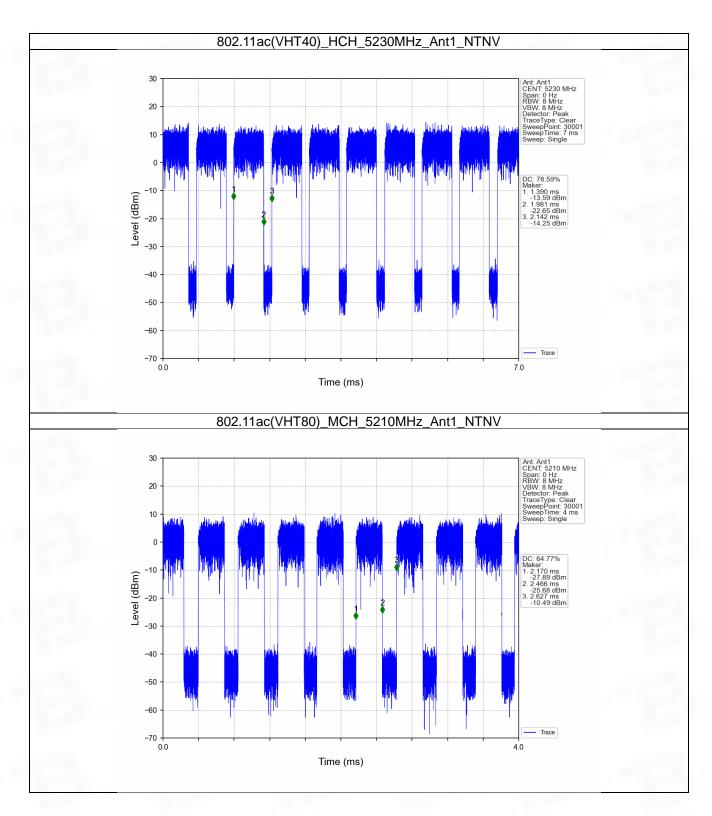

					Ant1		
NA l .	TX	Frequency	T on	Period	Duty Cycle	Duty Cycle	Max. DC
Mode	Туре	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	1.393	1.688	82.52	0.83	7.70
802.11a	SISO	5200	1.392	1.617	86.09	0.65	4.55
		5240	1.393	1.554	89.64	0.47	1.03
000 115		5180	1.174	1.480	79.32	1.01	9.16
802.11n (HT20)	SISO	5200	1.174	1.363	86.13	0.65	2.33
(11120)		5240	1.175	1.345	87.36	0.59	1.76
802.11n	SISO	5190	0.587	0.775	75.74	1.21	2.73
(HT40)		5230	0.587	0.775	75.74	1.21	2.77
002 1100	515(1)	5180	1.185	1.365	86.81	0.61	2.98
802.11ac (VHT20)		5200	1.185	1.347	87.97	0.56	1.21
(11120)		5240	1.185	1.383	85.68	0.67	4.09
802.11ac	SISO	5190	0.591	0.752	78.59	1.05	1.93
(VHT40)		5230	0.591	0.752	78.59	1.05	1.96
802.11ac (VHT80)	SISO	5210	0.296	0.457	64.77	1.89	2.66

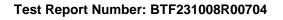

1.1.2 Test Graph

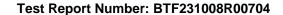






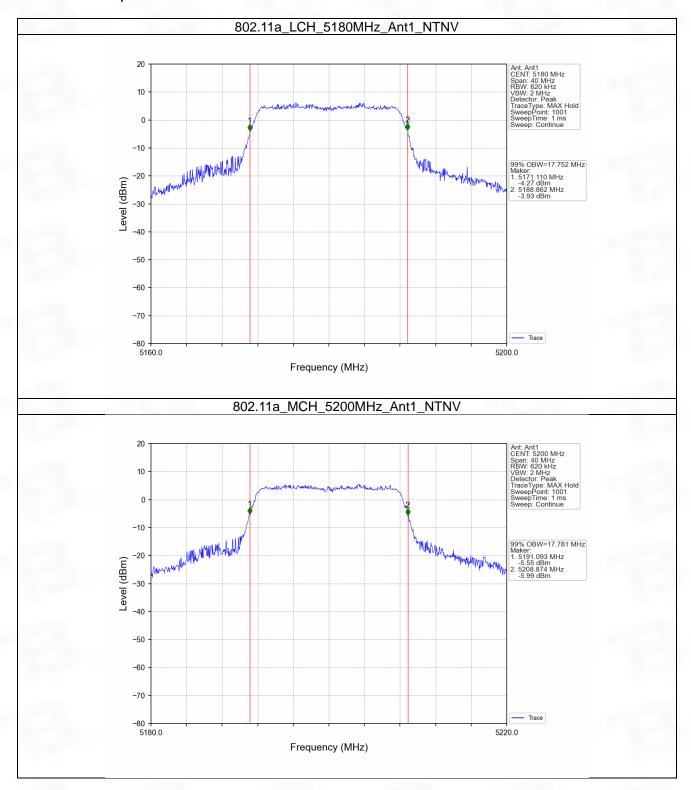


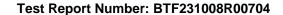


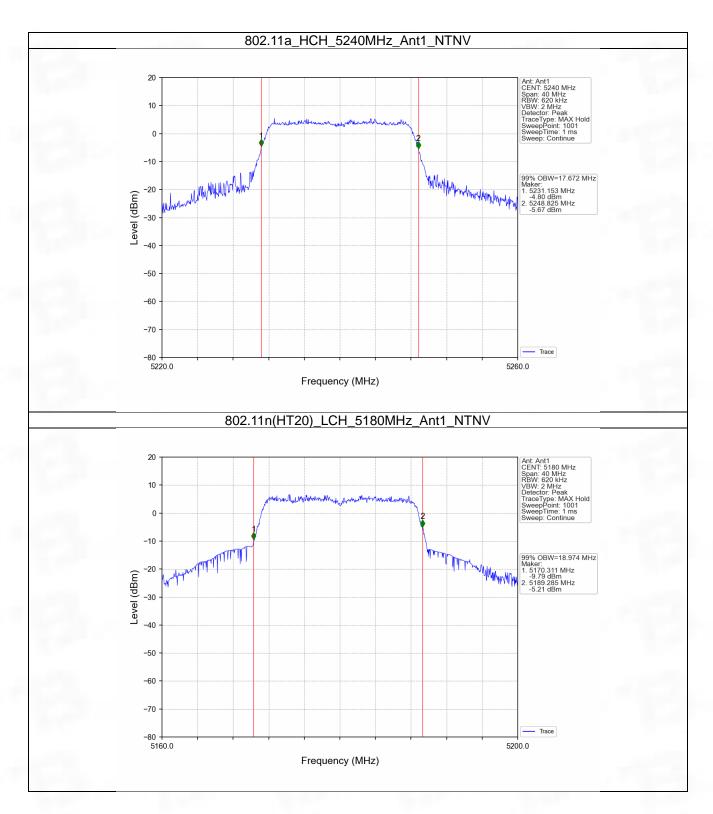


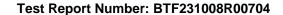
2. Bandwidth

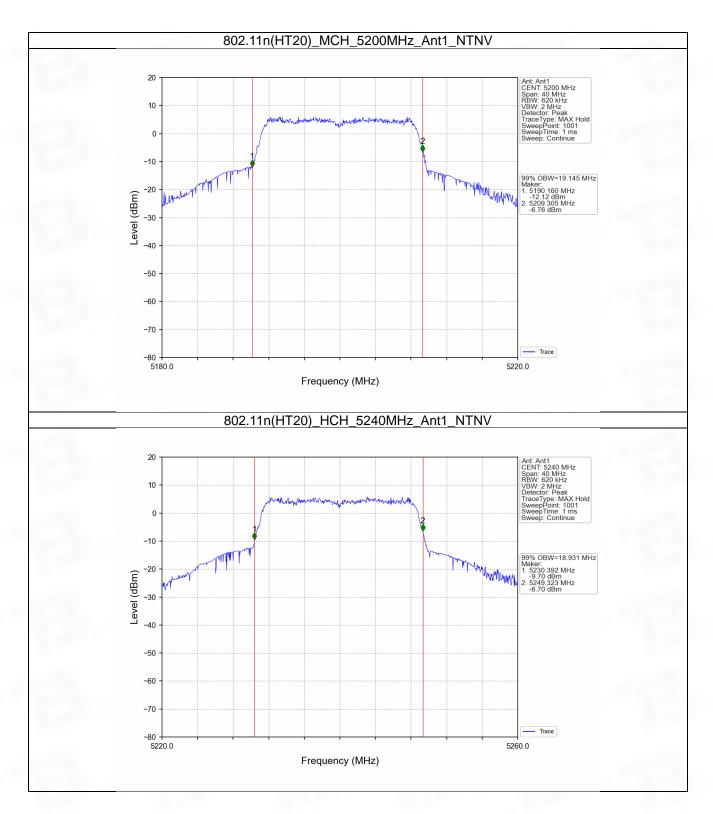
2.1 OBW

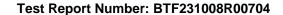

2.1.1 Test Result

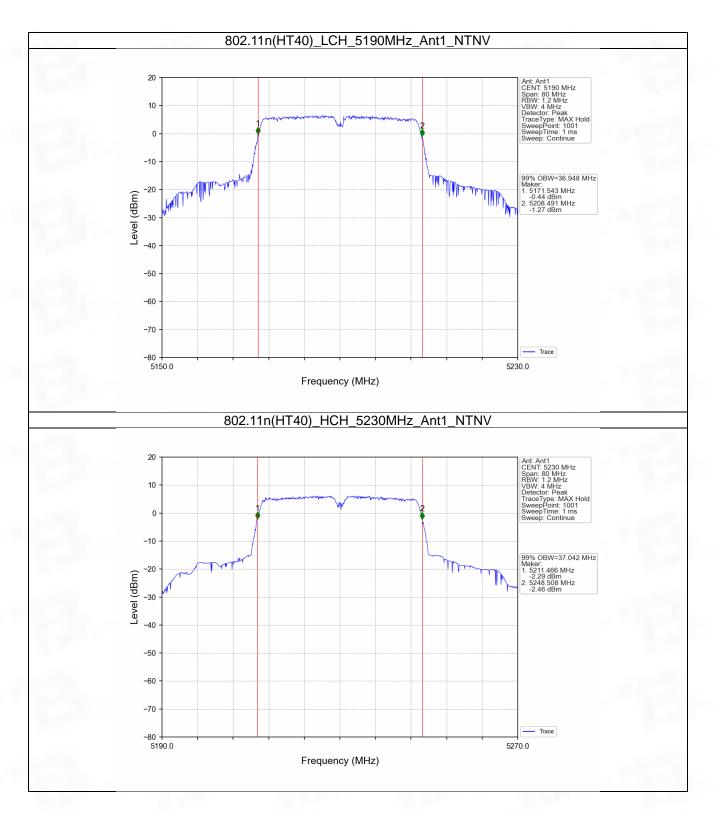

Mode	TX	Frequency	ANT	99% Occupied B	andwidth (MHz)	Verdict
Mode	Туре	(MHz)	ANI	Result	Limit	
		5180	1	17.752	/	Pass
802.11a	SISO	5200	1	17.781	/	Pass
		5240	1	17.672	/	Pass
802.11n		5180	1	18.974	/	Pass
(HT20)	SISO	5200	1	19.145	/	Pass
(П120)		5240	1	18.931	/	Pass
802.11n	SISO	5190	1	36.948	/	Pass
(HT40)		5230	1	37.042	/	Pass
000 1100	SISO	5180	1	18.256	/	Pass
802.11ac		5200	1	18.242	/	Pass
(VHT20)		5240	1	18.218	/	Pass
802.11ac	ac cico	5190	1	36.841	/	Pass
(VHT40)	SISO	5230	1	36.844	/	Pass
802.11ac (VHT80)	SISO	5210	1	76.337	1	Pass

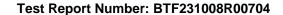


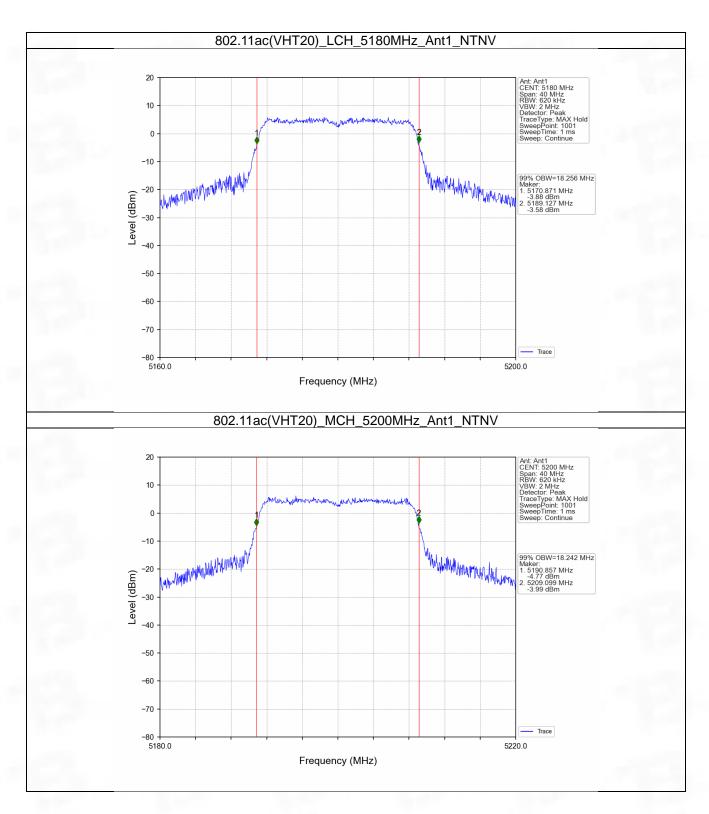

2.1.2 Test Graph

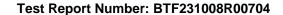


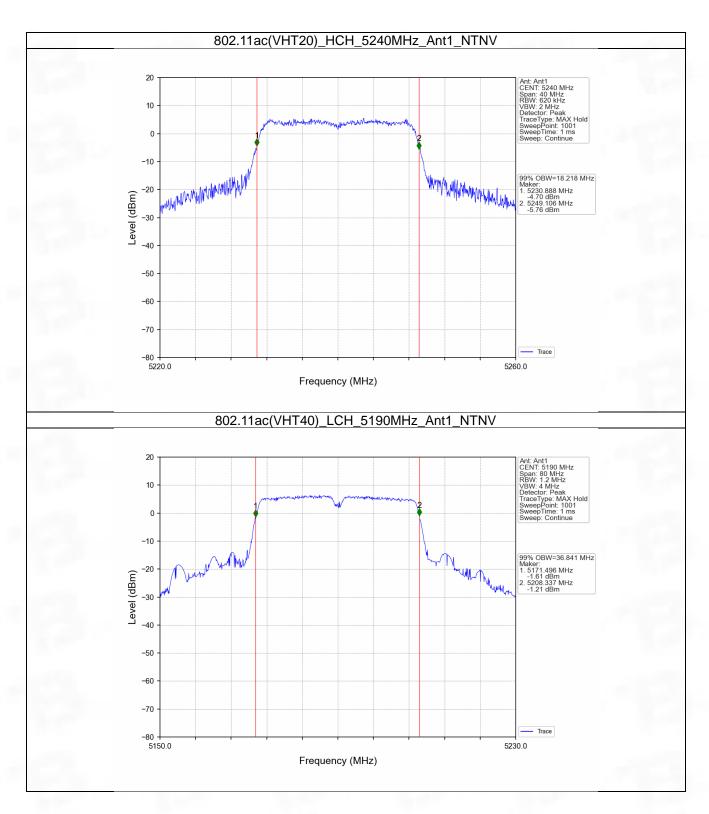


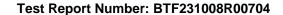


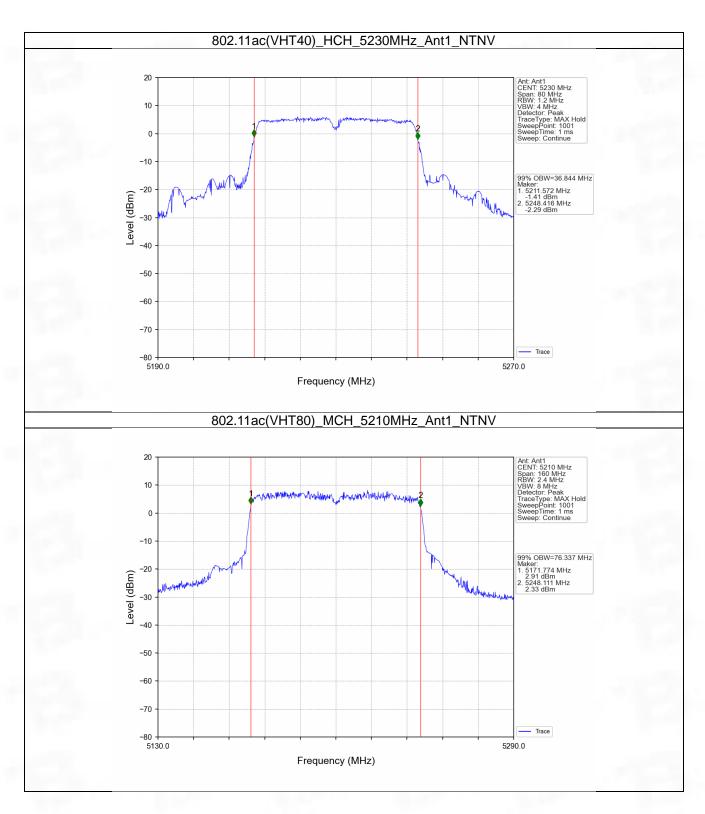


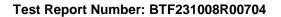


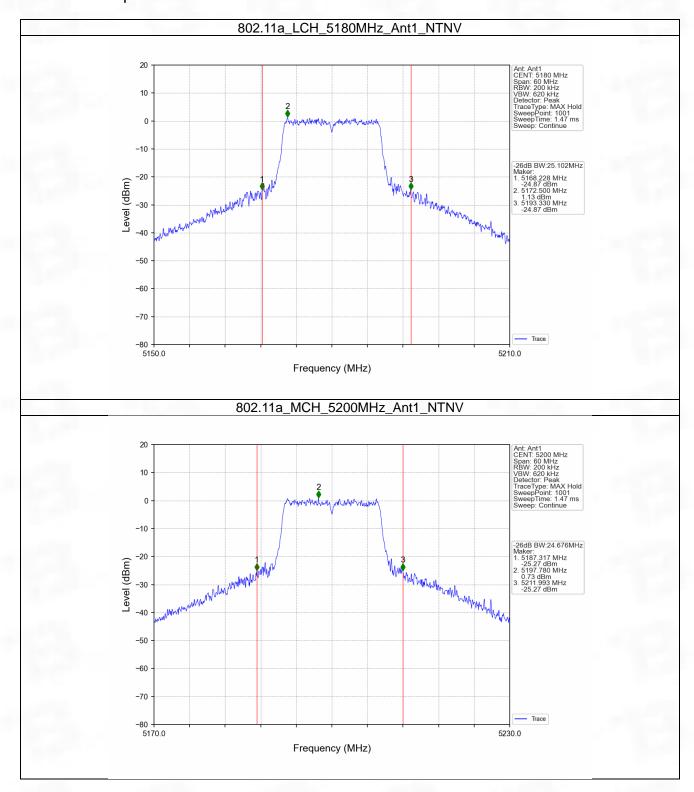


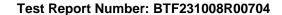




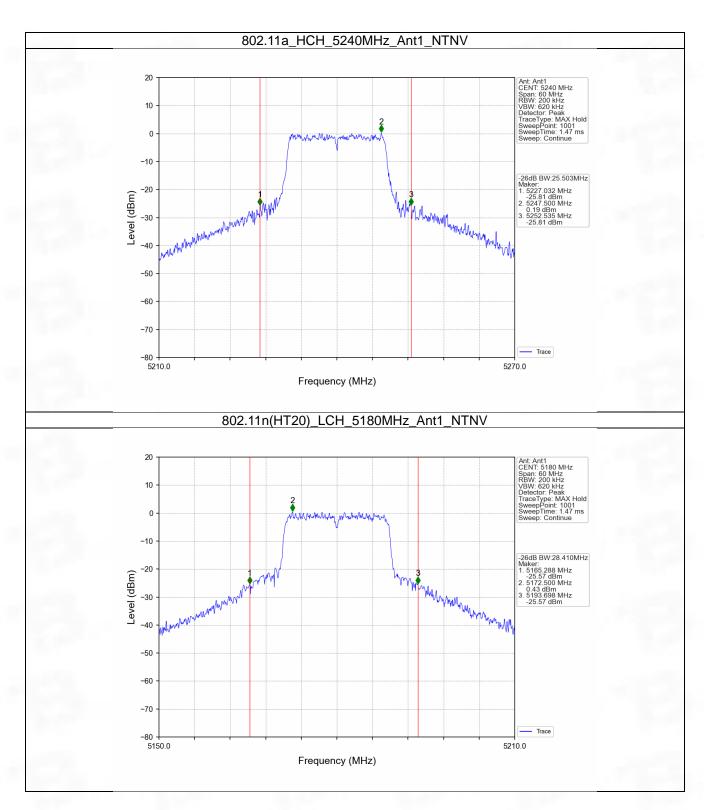


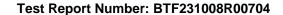


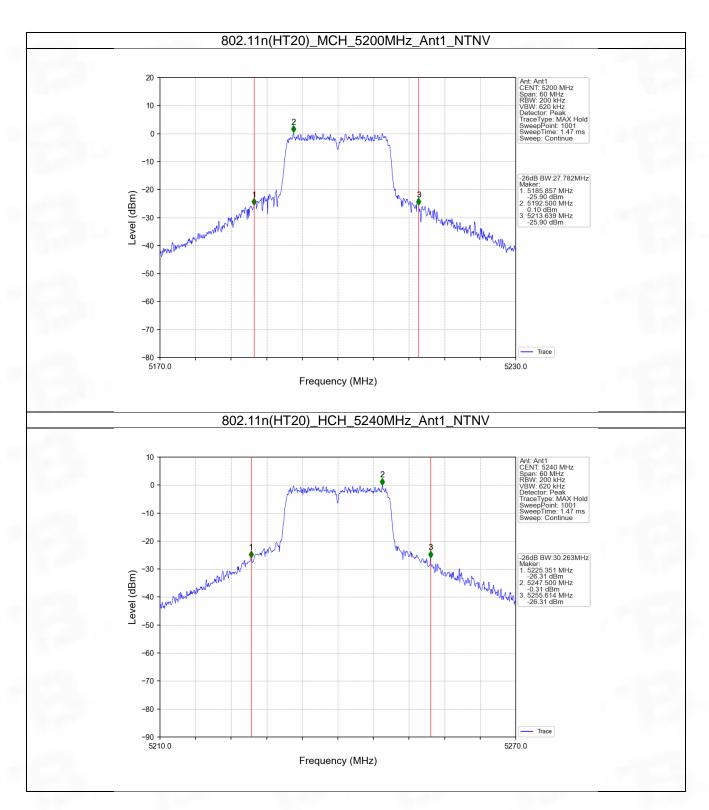

2.2 26dB BW

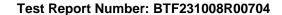

2.2.1 Test Result

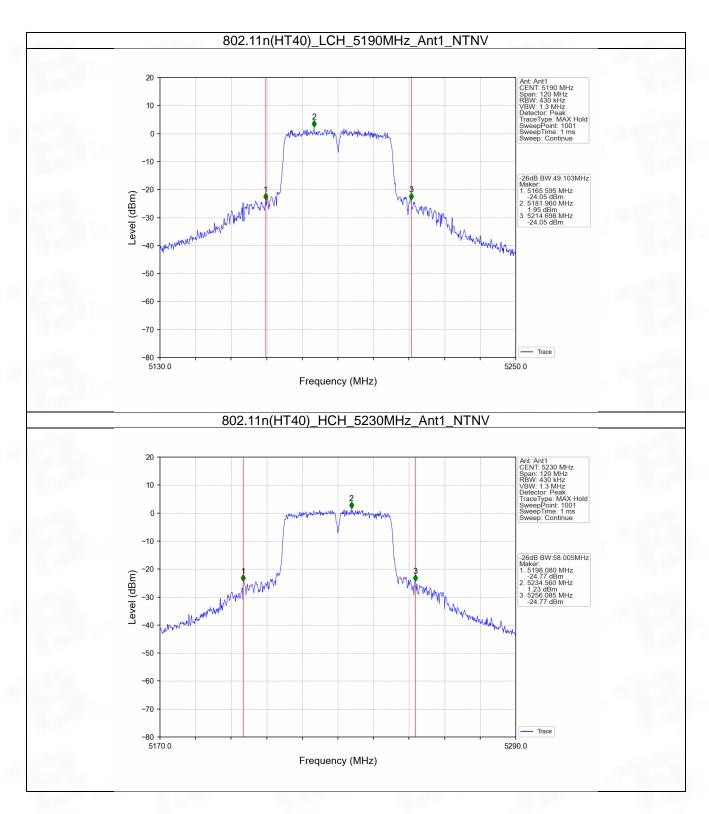
Mada	TX	Frequency (MHz) ANT	ANIT	26dB Bandv		\/oveliet
Mode	Type		ANI	Result	Limit	Verdict
		5180	1	25.102	/	Pass
802.11a	SISO	5200	1	24.676	/	Pass
		5240	1	25.503	/	Pass
000 44 =		5180	1	28.410	/	Pass
802.11n (HT20)	SISO	5200	1	27.782	/	Pass
(П120)		5240	1	30.263	/	Pass
802.11n	SISO	5190	1	49.103	/	Pass
(HT40)		5230	1	58.005	/	Pass
000 1100	SISO	5180	1	29.778	/	Pass
802.11ac		5200	1	27.380	/	Pass
(VHT20)		5240	1	26.663	/	Pass
802.11ac	SISO	5190	1	53.813	/	Pass
(VHT40)		5230	1	54.158	/	Pass
802.11ac (VHT80)	SISO	5210	1	88.664	/	Pass

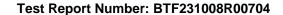


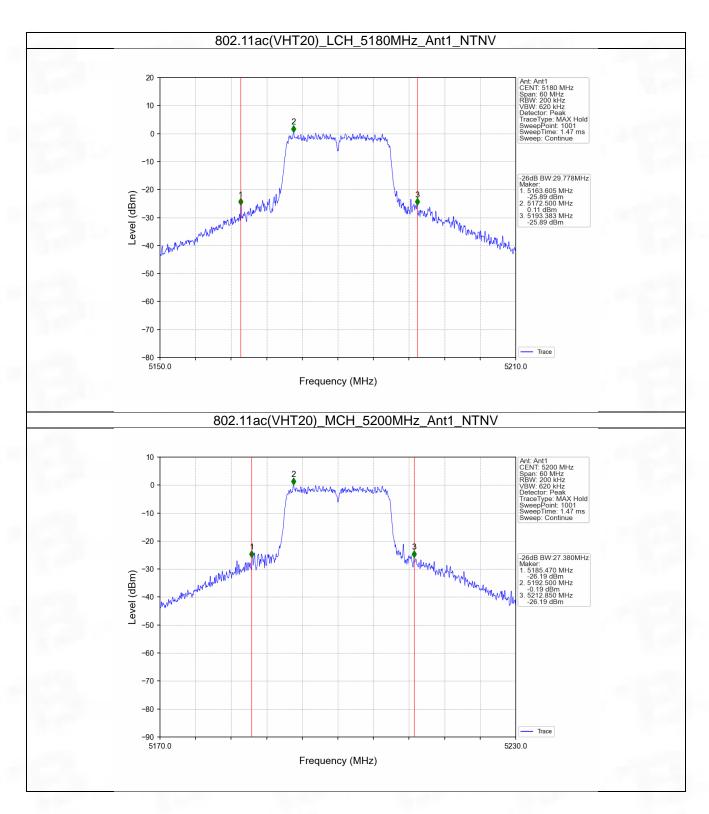

2.2.2 Test Graph

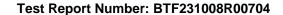


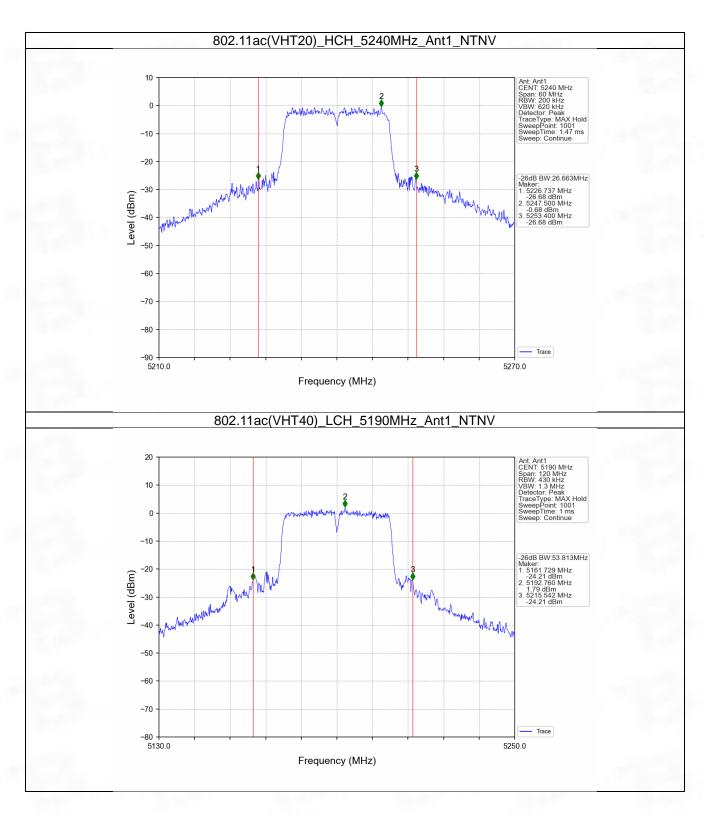


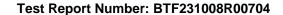


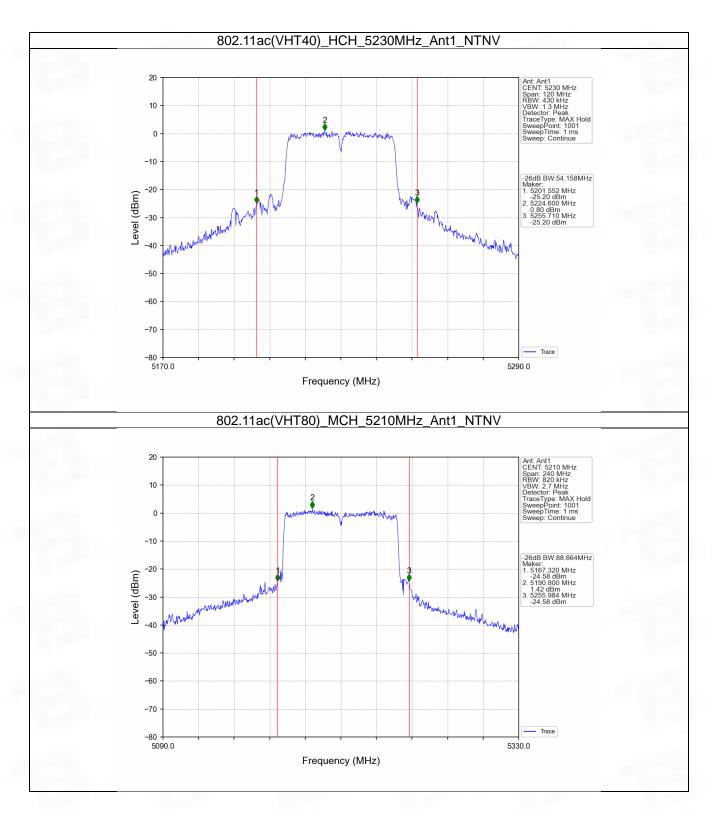


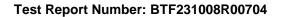


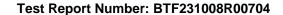






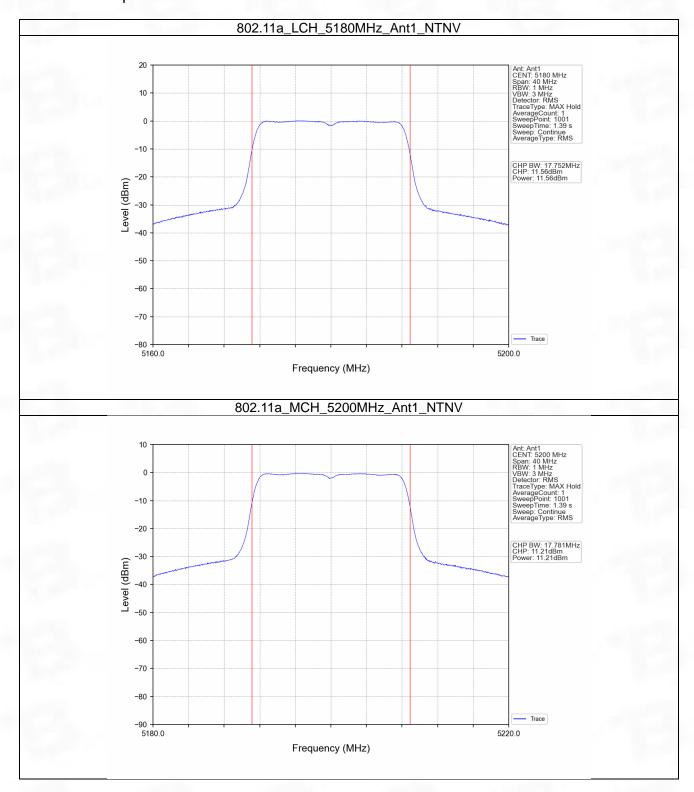


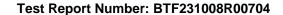


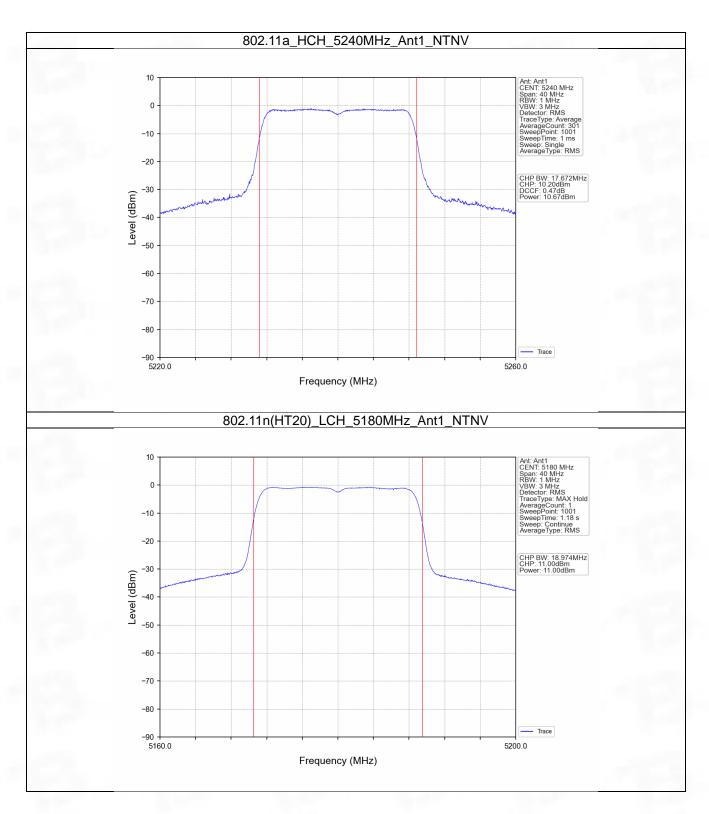


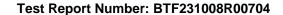
3. Maximum Conducted Output Power

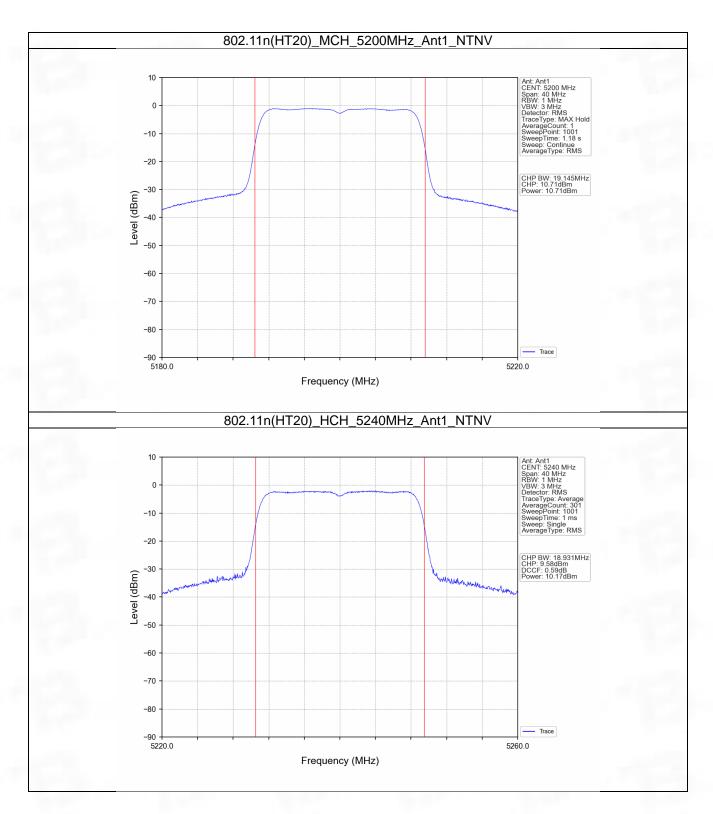
3.1 Power

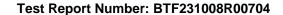

3.1.1 Test Result

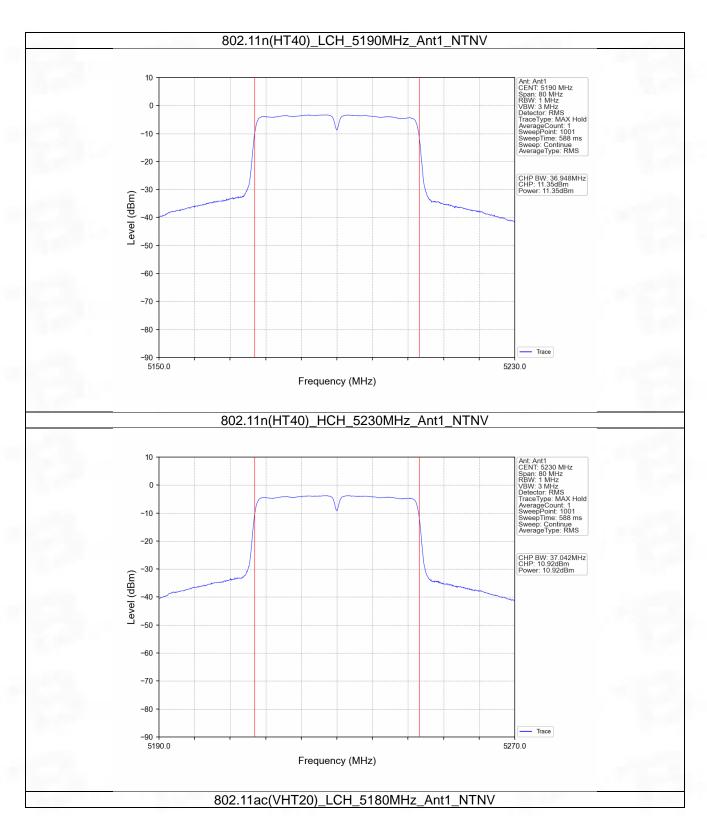

Mode	TX	Frequency	Frequency Maximum Average Conducted Output Power (dBm)			
Mode	Type	(MHz)	ANT1	Limit	Verdict	
		5180	11.56	<=23.98	Pass	
802.11a	SISO	5200	11.21	<=23.98	Pass	
		5240	10.67	<=23.98	Pass	
000 44 =		5180	11.00	<=23.98	Pass	
802.11n (HT20)	SISO	5200	10.71	<=23.98	Pass	
(П120)		5240	10.17	<=23.98	Pass	
802.11n	SISO	5190	11.35	<=23.98	Pass	
(HT40)		5230	10.92	<=23.98	Pass	
000 1100	SISO	5180	10.68	<=23.98	Pass	
802.11ac (VHT20)		5200	10.23	<=23.98	Pass	
(VH120)		5240	9.99	<=23.98	Pass	
802.11ac	CISO	5190	10.92	<=23.98	Pass	
(VHT40)	(10) SISO	5230	10.51	<=23.98	Pass	
802.11ac (VHT80)	SISO	5210	10.93	<=23.98	Pass	
Note1: Antenn	a Gain: Ant1	: -4.52dBi;				

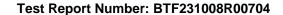


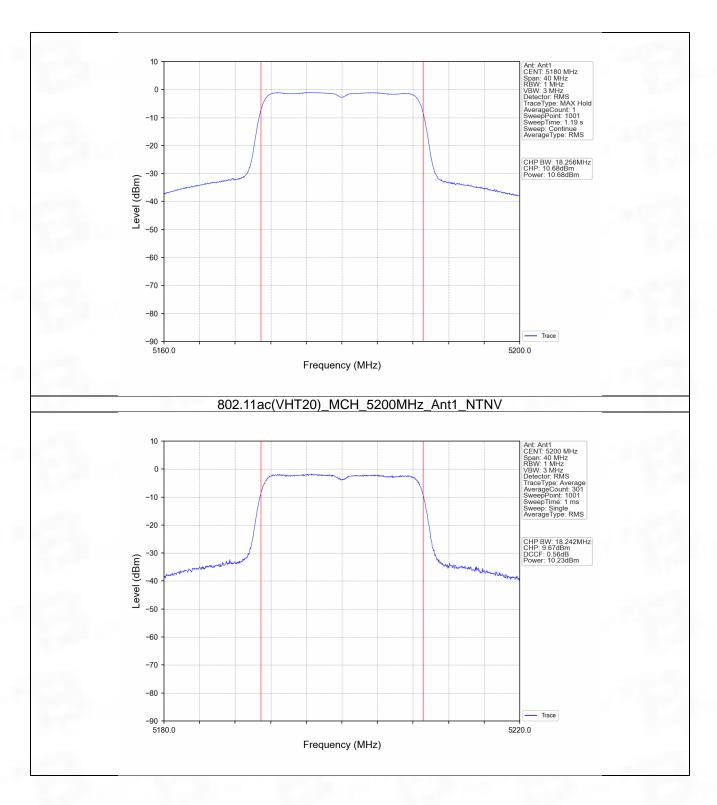

3.1.2 Test Graph

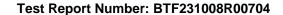


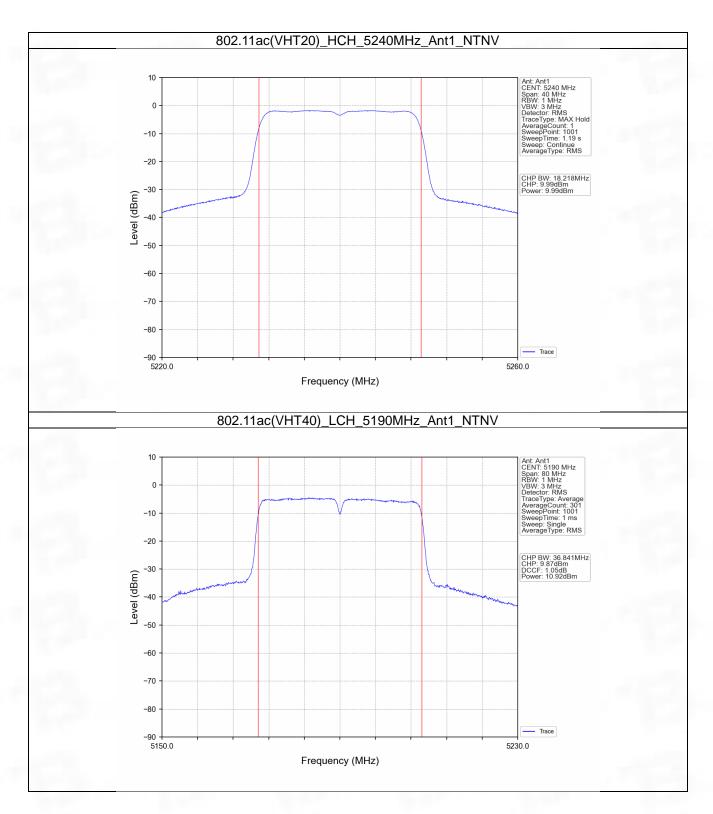


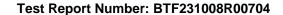


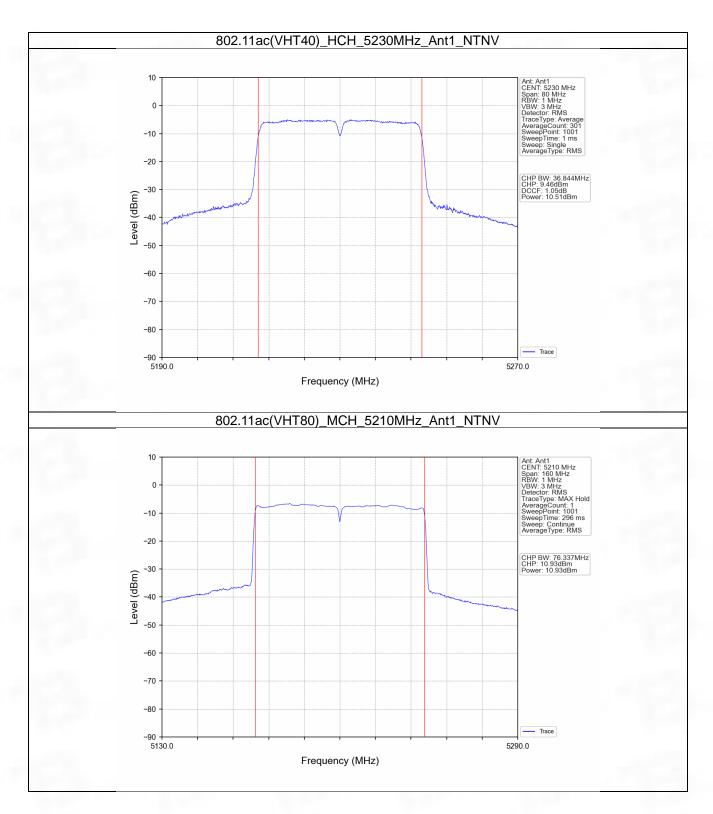


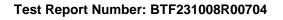




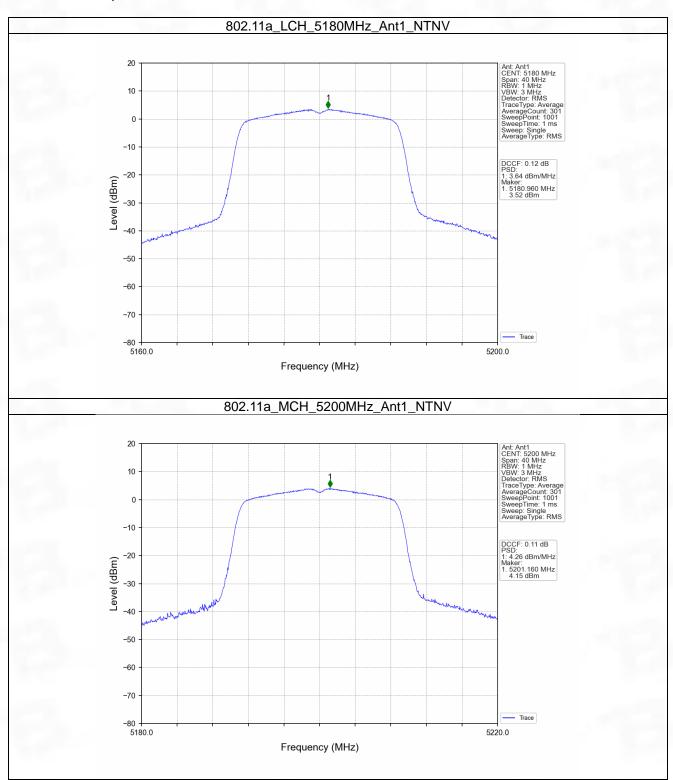




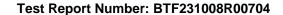


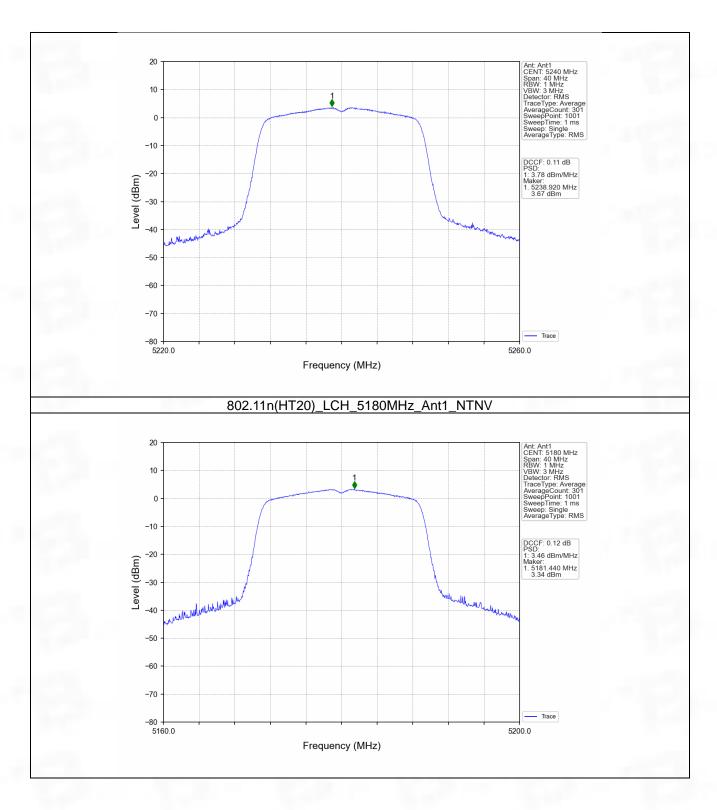


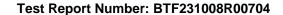
4. Maximum Power Spectral Density


4.1 PSD

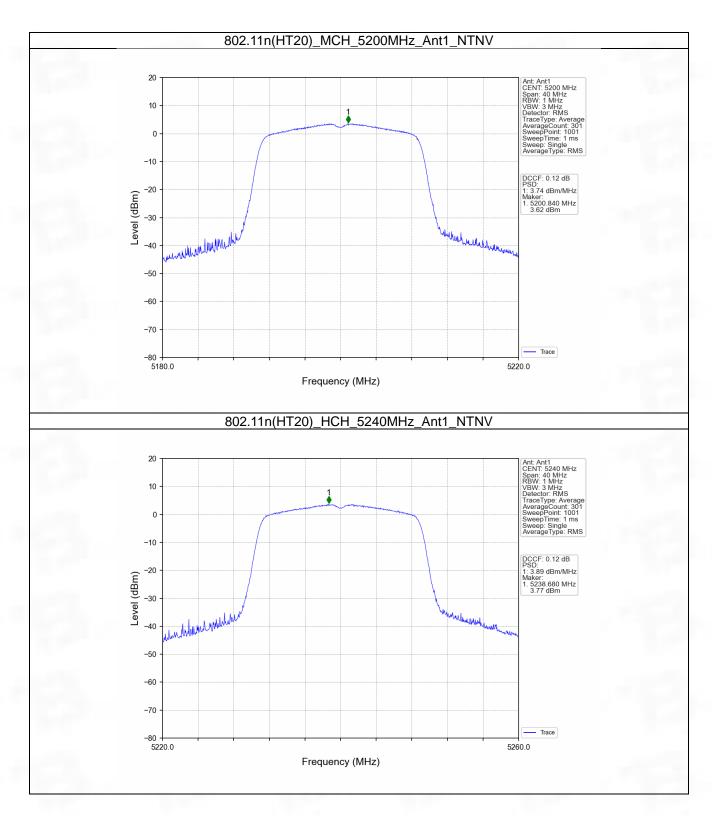
4.1.1 Test Result

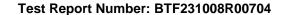

Mode	TX	Frequency	Maximum PS	Vordict	
	Type	(MHz)	ANT1	Limit	Verdict
802.11a		5180	3.64	<=11	Pass
	SISO	5200	4.26	<=11	Pass
		5240	3.78	<=11	Pass
802.11n (HT40)	SISO	5180	3.46	<=11	Pass
		5200	3.74	<=11	Pass
802.11n (HT20)	SISO	5240	3.89	<=11	Pass
		5190	0.99	<=11	Pass
		5230	1.10	<=11	Pass
802.11ac (VHT20)	SISO	5180	3.56	<=11	Pass
		5200	3.73	<=11	Pass
		5240	3.88	<=11	Pass
802.11ac (VHT40)	SISO	5190	1.06	<=11	Pass
		5230	1.03	<=11	Pass
802.11ac (VHT80)	SISO	5210	-0.64	<=11	Pass
Note1: Antenna (Gain: Ant1: -4.5	2dBi;			

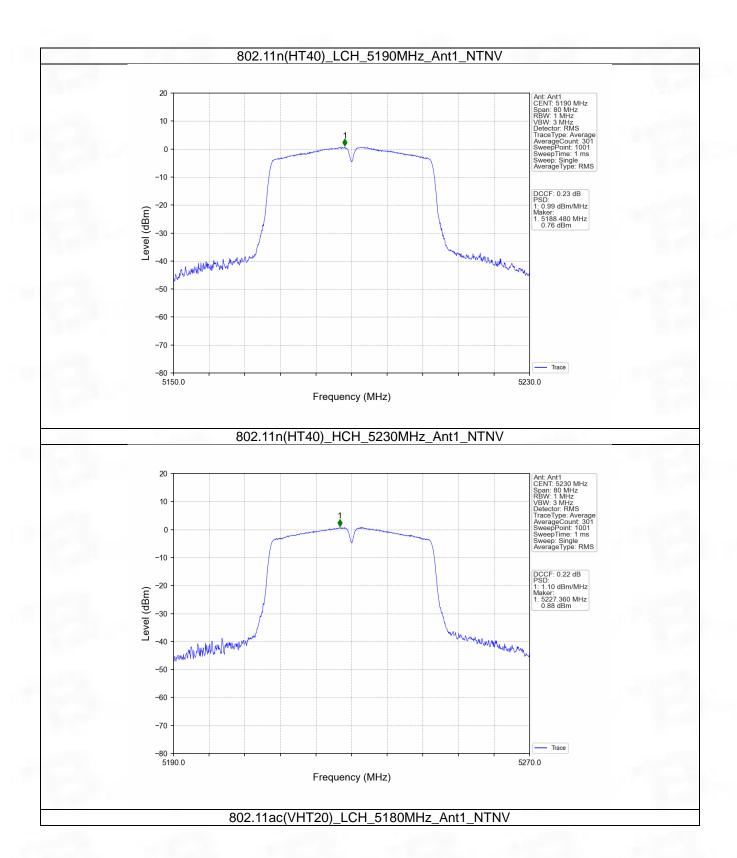

4.1.2 Test Graph

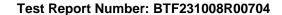


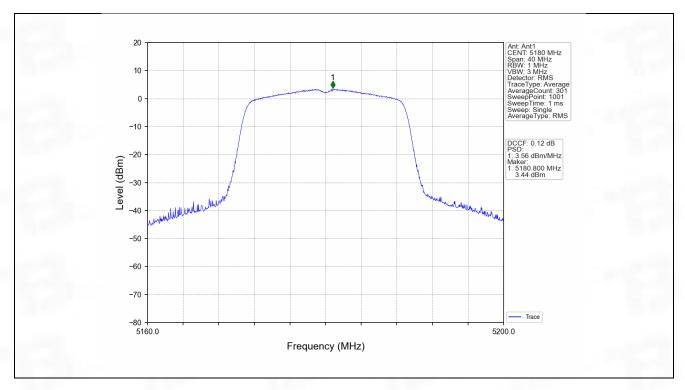
802.11a_HCH_5240MHz_Ant1_NTNV

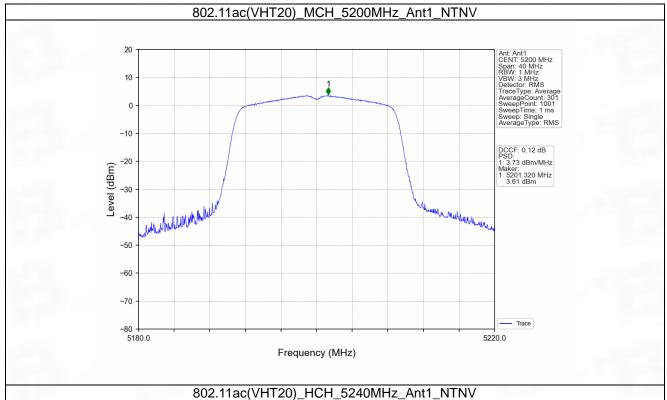


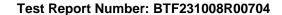


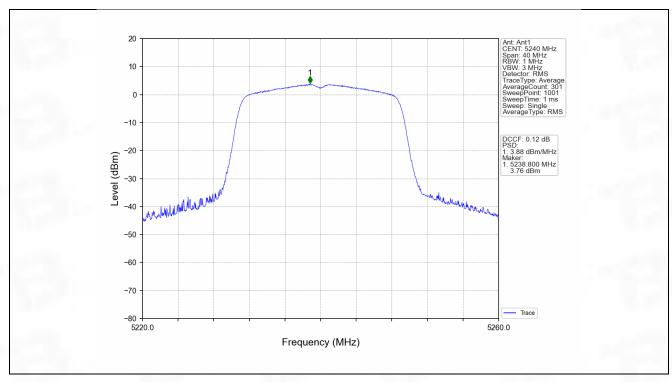


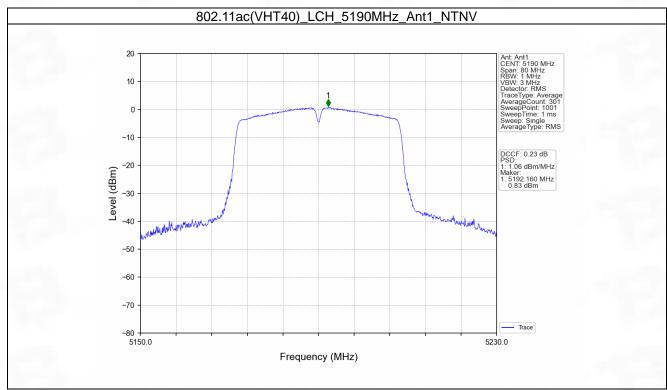


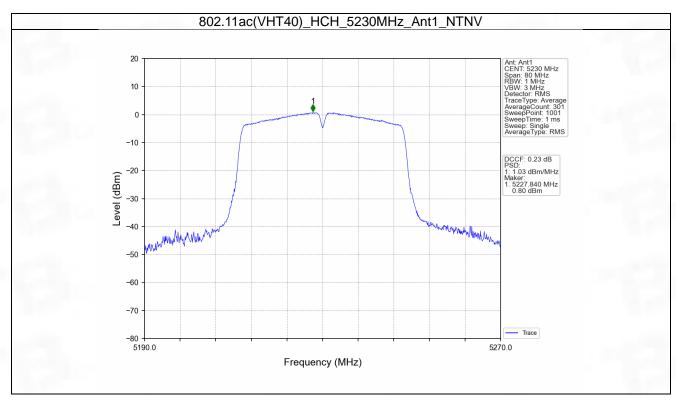


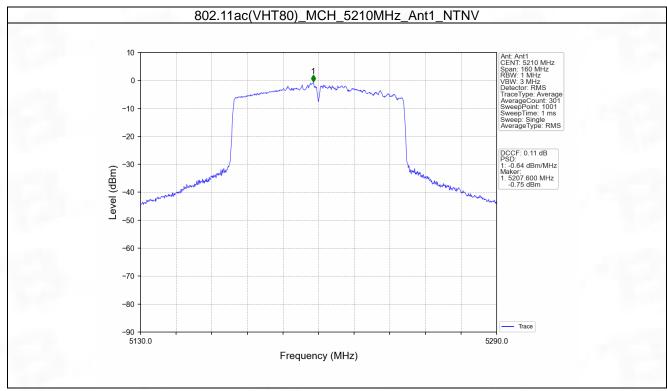




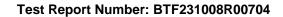








5. Frequency Stability


5.1 Ant1

5.1.1 Test Result

	TX	Frequency	Temperature	Ant1 Voltage	Measured Frequency	Limit	
Mode	Type	(MHz)	(°C)	(VAC)	(MHz)	(MHz)	Verdict
	Турс	(1711 12)	(0)	102	5179.979	5150 to 5250	Pass
		5180	20	120	5179.978	5150 to 5250	Pass
				138	5179.977	5150 to 5250	Pass
			-30	120	5179.977	5150 to 5250	Pass
			-20	120	5179.977	5150 to 5250	Pass
			-10	120	5179.976	5150 to 5250	Pass
			0	120	5179.976	5150 to 5250	Pass
			10	120	5179.976	5150 to 5250	Pass
			30	120	5179.976	5150 to 5250	Pass
			40	120	5179.976	5150 to 5250	Pass
			50	120	5179.975	5150 to 5250	Pass
			50	102	5199.975	5150 to 5250	Pass
			20	120	5199.975	5150 to 5250	Pass
			20	138	5199.974	5150 to 5250	Pass
			-30	120	5199.974	5150 to 5250	Pass
		5240	-20	120	5199.974	5150 to 5250	Pass
			-10	120	5199.974	5150 to 5250	Pass
Carrier Wave	SISO		0	120	5199.974	5150 to 5250	Pass
			10	120	5199.974	5150 to 5250	Pass
			30	120	5199.974	5150 to 5250	Pass
			40	120	5199.974	5150 to 5250	Pass
			50	120	5199.974	5150 to 5250	Pass
			20	102	5239.974	5150 to 5250	Pass
				120	5239.974	5150 to 5250	Pass
				138	5239.973	5150 to 5250	Pass
			-30	120	5239.973	5150 to 5250	Pass
			-20	120	5239.973	5150 to 5250	Pass
			-10	120	5239.973	5150 to 5250	Pass
			0	120	5239.973	5150 to 5250	Pass
			10	120	5239.973	5150 to 5250	Pass
			30	120	5239.973	5150 to 5250	Pass
			40	120	5239.973	5150 to 5250	Pass
			50	120	5239.972	5150 to 5250	Pass
			50	120	5824.970	5725 to 5850	Pass
			20	102	5189.975	5150 to 5250	Pass
				120	5189.975	5150 to 5250	Pass
				138	5189.974	5150 to 5250	Pass
	MIMO	5190	-30	120	5189.974	5150 to 5250	Pass
			-20	120	5189.974	5150 to 5250	Pass
			-10	120	5189.974	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 82 of 8 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 82 of 84


	0	120	5189.974	5150 to 5250	Pass
	10	120	5189.974	5150 to 5250	Pass
	30	120	5189.974	5150 to 5250	Pass
	40	120	5189.974	5150 to 5250	Pass
	50	120	5189.974	5150 to 5250	Pass
		102	5229.974	5150 to 5250	Pass
	20	120	5229.974	5150 to 5250	Pass
		138	5229.974	5150 to 5250	Pass
	-30	120	5229.974	5150 to 5250	Pass
	-20	120	5229.974	5150 to 5250	Pass
5230	-10	120	5229.974	5150 to 5250	Pass
	0	120	5229.974	5150 to 5250	Pass
	10	120	5229.973	5150 to 5250	Pass
	30	120	5229.973	5150 to 5250	Pass
	40	120	5229.973	5150 to 5250	Pass
	50	120	5229.973	5150 to 5250	Pass
		102	5209.974	5150 to 5250	Pass
	20	120	5209.973	5150 to 5250	Pass
		138	5209.974	5150 to 5250	Pass
	-30	120	5209.973	5150 to 5250	Pass
	-20	120	5209.973	5150 to 5250	Pass
5210	-10	120	5209.973	5150 to 5250	Pass
	0	120	5209.973	5150 to 5250	Pass
	10	120	5209.973	5150 to 5250	Pass
	30	120	5209.973	5150 to 5250	Pass
	40	120	5209.973	5150 to 5250	Pass
	50	120	5209.973	5150 to 5250	Pass

6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0143	11.56
5190	5230	0.0136	11.35
5210	5210	0.0123	10.93

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --