

FCC Radio Test Report

FCC ID: 2BH7FTX30UPLUS

This report concerns: Original Grant

Project No.	:	2408G116
Equipment	:	AX1800 Dual Antennas High Gain Wireless USB Adapter
Brand Name	:	tp-link
Test Model	:	Archer TX30U Plus
Series Model	:	N/A
Applicant	:	TP-Link Systems Inc.
Address	:	10 Mauchly, Irvine, CA 92618
Manufacturer	:	TP-Link Systems Inc.
Address	:	10 Mauchly, Irvine, CA 92618
Date of Receipt	:	Aug. 24, 2024
Date of Test	:	Aug. 27, 2024 ~ Nov. 13, 2024
Issued Date	:	Jan. 24, 2025
Report Version	:	R00
Test Sample	:	Engineering Sample No.: DG202408242 for radiated, DG202408243 for conducted.
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by :

Nick Chen

Approved by :

Chay. Cai

Chay Cai

Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone,

Dongguan City, Guangdong, People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. APPLICABLE STANDARDS	7
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
2.3 TEST ENVIRONMENT CONDITIONS	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	12
3.3 PARAMETERS OF TEST SOFTWARE	14
3.4 DUTY CYCLE	15
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	17
3.6 SUPPORT UNITS	17
3.7 CUSTOMER INFORMATION DESCRIPTION	17
4 . AC POWER LINE CONDUCTED EMISSIONS	18
4.1 LIMIT	18
4.2 TEST PROCEDURE	18
4.3 DEVIATION FROM TEST STANDARD	18
4.4 TEST SETUP	19
4.5 EUT OPERATION CONDITIONS	19
4.6 TEST RESULTS	19
5. RADIATED EMISSIONS	20
5.1 LIMIT	20
5.2 TEST PROCEDURE	21
5.3 DEVIATION FROM TEST STANDARD	22
5.4 TEST SETUP	22
5.5 EUT OPERATION CONDITIONS	24
5.6 TEST RESULTS - 9 KHZ TO 30 MHZ	24
5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	24
5.8 TEST RESULTS - ABOVE 1000 MHZ	24
6.BANDWIDTH	25
6.1 LIMIT	25
6.2 TEST PROCEDURE	25

Table of Contents	Page
6.3 DEVIATION FROM STANDARD	25
6.4 TEST SETUP	25
6.5 EUT OPERATION CONDITIONS	25
6.6 TEST RESULTS	25
7 . MAXIMUM OUTPUT POWER	26
7.1 LIMIT	26
7.2 TEST PROCEDURE	26
7.3 DEVIATION FROM STANDARD	26
7.4 TEST SETUP	26
7.5 EUT OPERATION CONDITIONS	26
7.6 TEST RESULTS	26
8. CONDUCTED SPURIOUS EMISSIONS	27
8.1 LIMIT	27
8.2 TEST PROCEDURE	27
8.3 DEVIATION FROM STANDARD	27
8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS	27 27
8.6 TEST RESULTS	27
9. POWER SPECTRAL DENSITY	28
9.1 LIMIT	28
9.2 TEST PROCEDURE	28
9.3 DEVIATION FROM STANDARD	28
9.4 TEST SETUP	28
9.5 EUT OPERATION CONDITIONS	28
9.6 TEST RESULTS	28
10 . MEASUREMENT INSTRUMENTS LIST	29
11 . EUT TEST PHOTO	31
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	37
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	40
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	45
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	48
APPENDIX E - BANDWIDTH	111
APPENDIX F - MAXIMUM OUTPUT POWER	118

Table of Contents	Page
APPENDIX G - CONDUCTED SPURIOUS EMISSIONS	125
APPENDIX H - POWER SPECTRAL DENSITY	138

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2408G116	R00	Original Report.	Jan. 24, 2025	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of A2LA: KDB 558074 D01 15.247 Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C				
Standard(s) Section	Test Item	Test Result	Judgment	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS	
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS	
15.247(a)(2)	Bandwidth	APPENDIX E	PASS	
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS	
15.247(d)	Conducted Spurious Emissions	APPENDIX G	PASS	
15.247(e)	Power Spectral Density	APPENDIX H	PASS	
15.203	Antenna Requirement		PASS	Note(2)

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of 1-2/F, 4/F, Building A, 1-2/F, Building B, 3/F, Building C, No.3, Jinshagang 1st Road, Dalang Town, Dongguan City, Guangdong People's Republic of China.

BTL's Registration Number for FCC: 747969 BTL's Designation Number for FCC: CN1377

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95.45% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.88

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	<i>U</i> ,(dB)
DG-CB03 (3m)	CISPR	30MHz ~ 200MHz	V	4.40
		30MHz ~ 200MHz	Н	3.62
		200MHz ~ 1,000MHz	V	4.58
		200MHz ~ 1,000MHz	Н	3.98

Test Site Method		Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB03		1GHz ~ 6GHz	4.08
(3m)	CISPR	6GHz ~ 18GHz	4.62

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB03 (1m)	CISPR	18 ~ 26.5 GHz	3.36

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	0.90 %
Maximum Output Power	1.3 dB
Conducted Spurious Emission	1.9 dB
Power Spectral Density	1.4 dB
Temperature	0.8 °C
Humidity	2.2 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By	Test Date
AC Power Line Conducted Emissions	25°C	48%	DC 5V	Hayden Chen	Nov. 13, 2024
Radiated Emissions-9 kHz to 30 MHz	25°C	42%	DC 5V	Hayden Chen	Sep. 19, 2024
Radiated Emissions-30 MHz to 1000 MHz	22°C	53%	DC 5V	Calvin Wen	Sep. 09, 2024
Radiated Emissions-Above 1000 MHz	23-24°C	51-54%	DC 5V	Allen Tong	Sep. 06, 2024- Sep. 11, 2024
Bandwidth	22-28°C	51-57%	DC 5V	Arvin Tong	Sep. 18, 2024- Sep. 23, 2024
Maximum Output Power	23°C	48%	DC 5V	Steve Zhou	Sep. 05, 2024- Sep. 23, 2024
Conducted Spurious Emission	22-28°C	51-57%	DC 5V	Arvin Tong	Sep. 18, 2024- Sep. 23, 2024
Power Spectral Density	22-28°C	51-57%	DC 5V	Arvin Tong	Sep. 18, 2024- Sep. 23, 2024

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	AX1800 Dual Antennas High Gain Wireless USB Adapter
Brand Name	tp-link
Test Model	Archer TX30U Plus
Series Model	N/A
Model Difference(s)	N/A
Software Version	V1
Hardware Version	V1
Power Source	DC supply from PC.
Power Rating	DC 5V
Operation Frequency	2412 MHz ~ 2462 MHz
	IEEE 802.11b: DSSS
Modulation Type	IEEE 802.11g: OFDM
	IEEE 802.11n: OFDM
	IEEE 802.11ax: OFDMA
	IEEE 802.11b: 11/5.5/2/1 Mbps
Bit Data of Transmitter	IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps
Bit Rate of Transmitter	IEEE 802.11n: up to 300 Mbps
	IEEE 802.11ax: up to 573.6 Mbps
Maximum Output Power	IEEE 802.11ax(HE40): 23.65 dBm (0.2317 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

CH01 -	CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20), IEEE 802.11ax(HE20) CH03 - CH09 for IEEE 802.11n(HT40), IEEE 802.11ax(HE40)						
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz)						
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Antenna Specification:

1						
	Ant.	Manufacturer	P/N	Antenna Type	Connector	Gain (dBi)
	1	TP-LINK CORPORATION PTE. LTD.	3101507187	Dipole	N/A	1.98
	2	TP-LINK CORPORATION PTE. LTD.	3101507187	Dipole	N/A	2.00

Note:

 This EUT supports CDD, and all antenna gains are not equal, so Directional gain=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})²/N]dBi, that is Directional gain=10log[(10^{1.98/20}+10^{2.00/20})²/2]dBi =5.00.

4. Table for Antenna Configuration:

Operating Mode	2TX
TX Mode	217
IEEE 802.11b	V(Ant. 1 + Ant. 2)
IEEE 802.11g	V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT20)	V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT40)	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE20)	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE40)	V(Ant. 1 + Ant. 2)

3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3	TX N(HT20) Mode Channel 01/06/11
Mode 4	TX N(HT40) Mode Channel 03/06/09
Mode 5	TX AX(HE20) Mode Channel 01/06/11
Mode 6	TX AX(HE40) Mode Channel 03/06/09
Mode 7	TX AX(HE40) Mode Channel 03
Mode 8	TX B Mode Channel 01/02/06/10/11
Mode 9	TX G Mode Channel 01/02/06/10/11
Mode 10	TX N(HT20) Mode Channel 01/02/06/10/11
Mode 11	TX N(HT40) Mode Channel 03/04/06/08/09
Mode 12	TX AX(HE20) Mode Channel 01/02/06/10/11
Mode 13	TX AX(HE40) Mode Channel 03/04/06/08/09

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test			
Final Test Mode Description			
Mode 7	TX AX(HE40) Mode Channel 03		

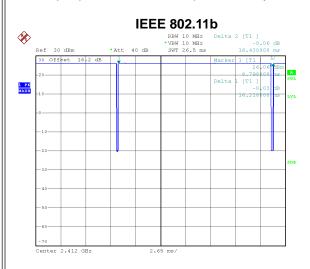
Radiated emissions test - Below 1GHz			
Final Test Mode Description			
Mode 7	TX AX(HE40) Mode Channel 03		

Radiated emissions test- Above 1GHz			
Final Test Mode	Description		
Mode 8	TX B Mode Channel 01/02/06/10/11		
Mode 9	TX G Mode Channel 01/02/06/10/11		
Mode 10	TX N(HT20) Mode Channel 01/02/06/10/11		
Mode 11	TX N(HT40) Mode Channel 03/04/06/08/09		
Mode 12	TX AX(HE20) Mode Channel 01/02/06/10/11		
Mode 13	TX AX(HE40) Mode Channel 03/04/06/08/09		

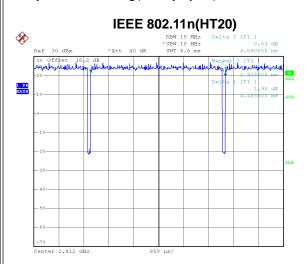
Conducted test			
Final Test Mode	Description		
Mode 1	TX B Mode Channel 01/06/11		
Mode 2	TX G Mode Channel 01/06/11		
Mode 3	TX N(HT20) Mode Channel 01/06/11		
Mode 4	TX N(HT40) Mode Channel 03/06/09		
Mode 5	TX AX(HE20) Mode Channel 01/06/11		
Mode 6	TX AX(HE40) Mode Channel 03/06/09		

NOTE:

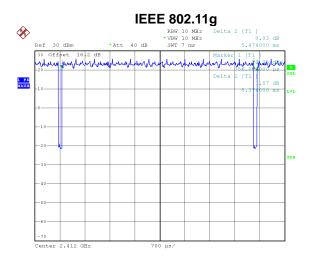
- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For radiated emission below 1 GHz test, the TX AX(HE40) Mode Channel 03 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (4) For radiated emission Harmonic 18-26.5GHz test, only tested the worst case and recorded.
- (5) IEEE 802.11ax mode only supports full RU, so only the full RU is evaluated and measured inside report.


3.3 PARAMETERS OF TEST SOFTWARE

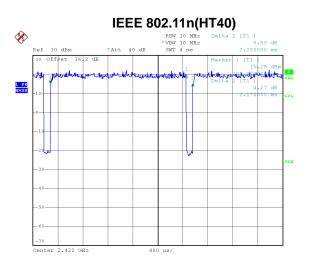
Test Software Version	AX Series MP Toolkit 3.0.24.0				
Frequency (MHz)	2412	2412 2437 2462			
IEEE 802.11b	18.5	18.5	16.5		
IEEE 802.11g	16	20	15.5		
IEEE 802.11n(HT20)	15	19.5	16		
IEEE 802.11ax(HE20)	15	19.5	16		
Frequency (MHz)	2422	2437	2452		
IEEE 802.11n(HT40)	16	17.5	12		
IEEE 802.11ax(HE40)	19.5	14.5	11.5		


3.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.

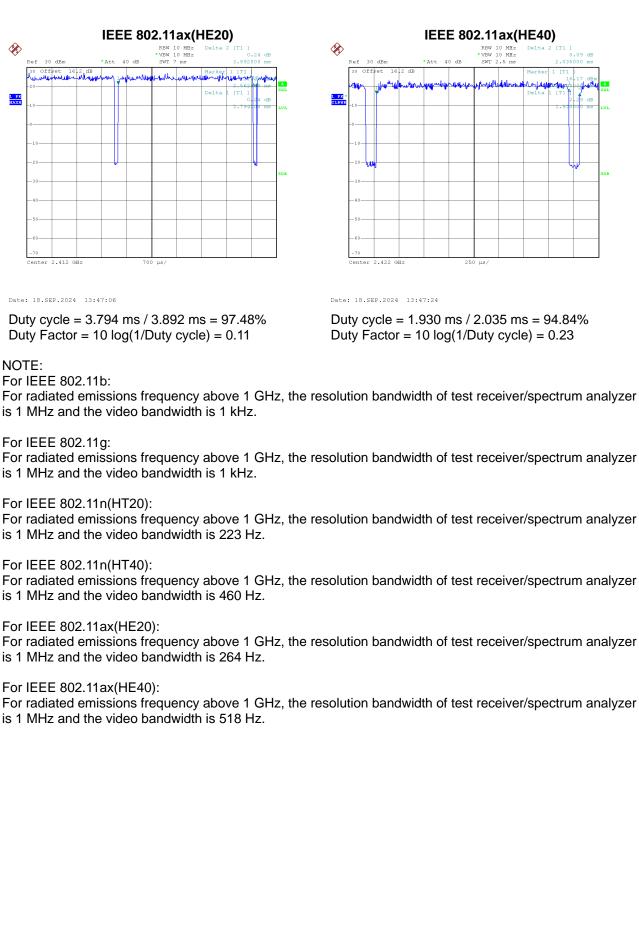

Date: 18.SEP.2024 10:47:03

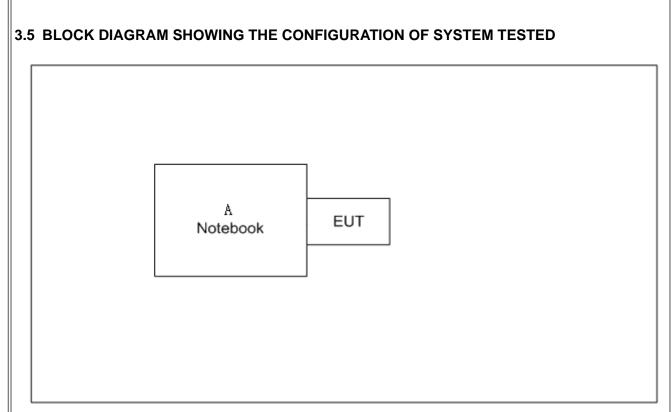
Duty cycle = 16.218 ms / 16.430 ms = 98.71%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$


Date: 18.SEP.2024 11:41:54

Duty cycle = 4.488 ms / 4.590 ms = 97.78%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.10$

Date: 18.SEP.2024 11:12:50


Duty cycle = 5.376 ms / 5.474 ms = 98.21%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$


Date: 18.SEP.2024 13:38:22

Duty cycle = 2.176 ms / 2.280 ms = 95.44%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.20$

3**T**L

3.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
А	Notebook	Honor	NbI-WAQ9HNRP	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
-	-	-	-	-

3.7 CUSTOMER INFORMATION DESCRIPTION

- 1) The antenna gain is provided by the manufacturer.
- 2) Except for radiated emissions, the results of all test items include cable losses. All cable losses are provided by the testing laboratory.

4. AC POWER LINE CONDUCTED EMISSIONS

4.1 LIMIT

Frequency of Emission (MHz)	Limit (dBµV)		
Frequency of Emission (MHZ)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

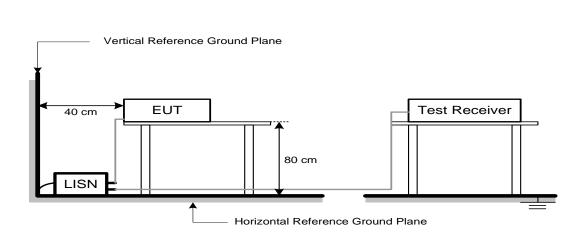
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use) Margin Level = Measurement Value – Limit Value Sample calculations: (Refer to page XX, test result No.X.)

4.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS

Please refer to the APPENDIX A.

5. RADIATED EMISSIONS

5.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Band edge/ at 3m (dB		Harmonic at 1m (dBµV/m)	
	Peak	Average	Peak	Average
Above 1000	74	54	83.5 (Note 5)	63.5 (Note 5)

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

-

1

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4)

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

20log (d_{limit}/d_{measure})=20log (3/1)=9.5 dB. FS_{limit}: Harmonic at 3m Peak and Average limit.

FS_{max}: Harmonic at 1m Peak and Average Maximum value.

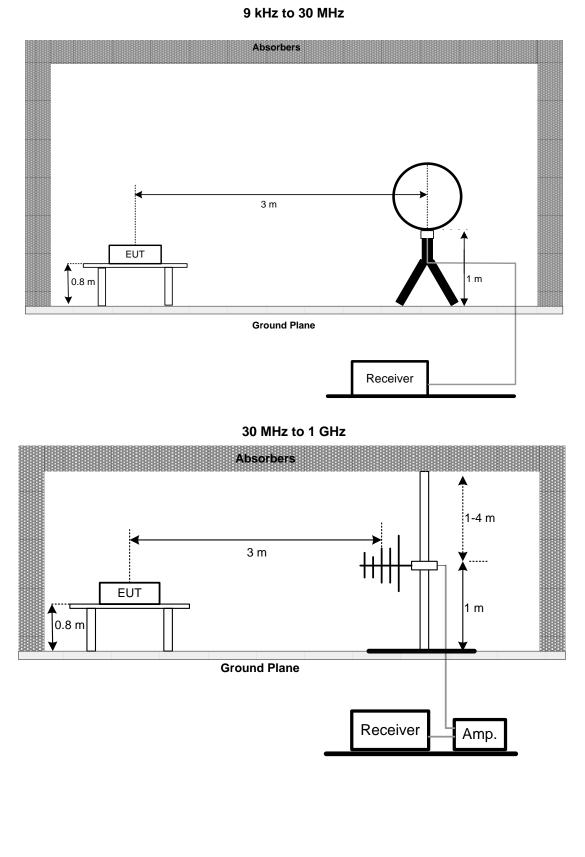
dlimit: Harmonic at 3m test distance.

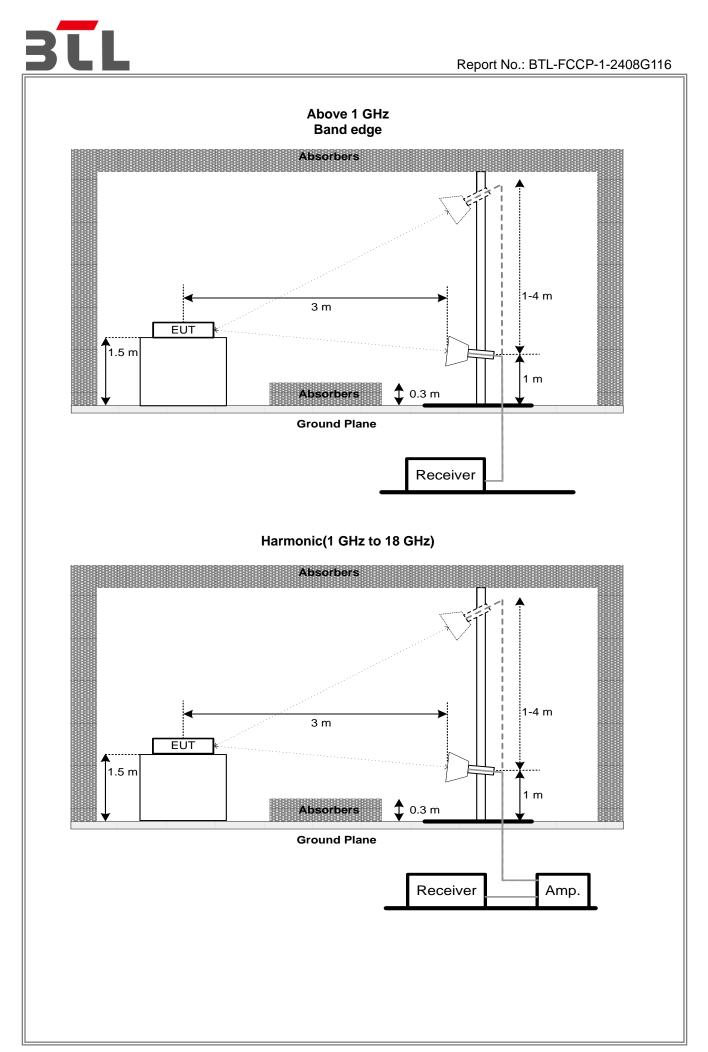
d_{measure}: Harmonic Actual test distance.

5.2 TEST PROCEDURE

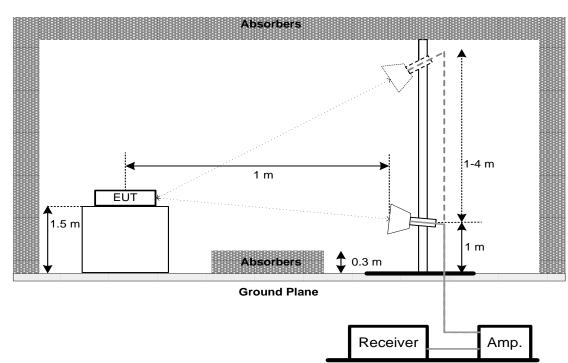
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m or 1m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz
	C atting
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value
Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector



5.3 DEVIATION FROM TEST STANDARD


No deviation.

5.4 TEST SETUP

Harmonic(18 GHz to 26.5 GHz)

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

5.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

6. BANDWIDTH

6.1 LIMIT

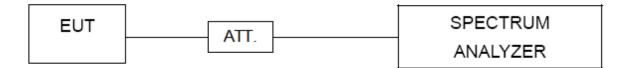
Section Test Item		Limit
FCC 15.247(a)(2)	6 dB Bandwidth	Minimum 500 kHz
	99% Emission Bandwidth	-

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Setting	
> Measurement Bandwidth	
100 kHz	
300 kHz	
Peak	
Max Hold	
Auto	


For 99% Emission Bandwidth:

Spectrum Parameters	Setting	
Span Frequency	Between 1.5 times and 5.0 times the OBW	
RBW	300 kHz For 20MHz 1 MHz For 40MHz	
VBW	1 MHz For 20MHz 3 MHz For 40MHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time Auto		

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

7. MAXIMUM OUTPUT POWER

7.1 LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Output Power	1.0000 Watt or 30.00 dBm


7.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.2.3.1 (for AVG power) of ANSI C63.10-2013 and FCC KDB 662911 D01 v02r01 Multiple Transmitter Output.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. CONDUCTED SPURIOUS EMISSIONS

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9. POWER SPECTRAL DENSITY

9.1 LIMIT

Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

9.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting		
Span Frequency	25 MHz (20 MHz) / 60 MHz (40 MHz)		
RBW	3 kHz		
VBW	10 kHz		
Detector Peak			
Trace	Max Hold		
Sweep Time Auto			

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EMI TEST RECEIVER	R&S	ESCI	100382	Dec. 22, 2024		
2	TWO-LINE V-NETWORK	R&S	ENV216	101447	Dec. 22, 2024		
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
4	Cable	N/A	SFT205-NMNM-9 M-001	9M	Nov. 27, 2024		
5	643 Shield Room	ETS	6*4*3	N/A	N/A		

	Radiated Emissions - 9 kHz to 30 MHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60 B-034	Mar. 30, 2025		
2	MXE EMI Receiver	Keysight	N9038A	MY56400091	Dec. 22, 2024		
3	Cable	N/A	RW2350-3.8A-NMB M-1.5M	N/A	Jun. 09, 2025		
4	Cable	N/A	LMR400-NMNM-8 M	N/A	Sep. 09, 2025		
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
6	966 Chamber room	ETS	9*6*6	N/A	May 16, 2025		

Radiated Emissions - 30 MHz to 1 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	1462	Dec. 13, 2024	
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06009	Dec. 13, 2024	
3	Preamplifier	EMC INSTRUMENT	EMC001330	980998	Nov. 17, 2024	
4	Cable	RegalWay	LMR400-NMNM-12 .5m	N/A	Jun. 06, 2025	
5	Cable	RegalWay	LMR400-NMNM-3 m	N/A	Jun. 06, 2025	
6	Cable	RegalWay	LMR400-NMNM-0. 5m	N/A	Jun. 06, 2025	
7	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024	
8	Positioning Controller	MF	MF-7802	N/A	N/A	
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
10	966 Chamber room	СМ	9*6*6	N/A	May 16, 2025	

	Radiated Emissions - Above 1 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024		
2	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980888	Nov. 17, 2024		
3	Double Ridged Guide Antenna	ETS	3115	75789	Jun. 15, 2025		
4	Cable	RegalWay	RWLP50-4.0A-SMS M-12.5M	N/A	Jul. 03, 2025		
5	Cable	RegalWay	RWLP50-4.0A-NM RASM-2.5M	N/A	Jul. 03, 2025		
6	Cable	RegalWay	RWLP50-4.0A-NM RASMRA-0.8M	N/A	Jul. 03, 2025		
7	966 Chamber room	CM	9*6*6	N/A	May 19, 2025		
8	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A		
9	Filter	STI	STI15-9912	N/A	May 31, 2025		
10	Positioning Controller	MF	MF-7802	N/A	N/A		
11	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
12	EXA Signal Analyzer	Keysight	N9010A	MY56480488	Dec. 22, 2024		
13	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330 -K	619413	Jul. 17, 2025		
14	Cable	RegalWay	RWLP50-2.6A-2.92 M2.92M-1.1M	N/A	Jul. 25, 2025		
15	Cable	Tonscend	HF160-KMKM-3M	N/A	Jul. 25, 2025		
16	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170(3m)	9170-319	Jun. 16, 2025		

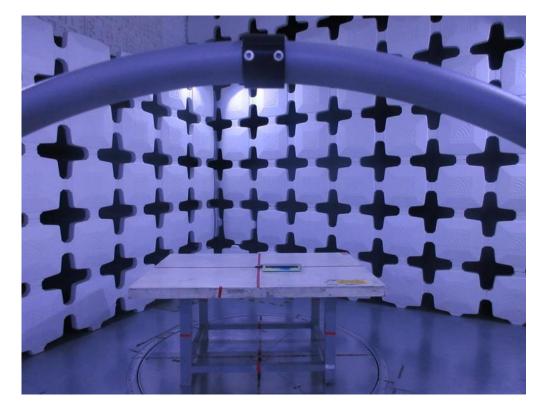
Bandwidth &									
	Conducted Spurious Emissions &								
		Powe	er Spectral Density						
Item	tem Kind of Equipment Manufacturer Type No. Serial No. Calibrated until								
1	Spectrum Analyzer	R&S	FSP40	100185	May 31, 2025				
2	Spectrum Analyzer	R&S	FSP38	100852	May 31, 2025				
3	Measurement Software	BTL	BTL Conducted Test	N/A	N/A				
4	Isolation attenuator	Z-Link	ASMA-16-18-2W	N/A	N/A				
5	EXA Spectrum Analyzer	Keysight	N9010A	MY55150209	Aug. 20, 2025				

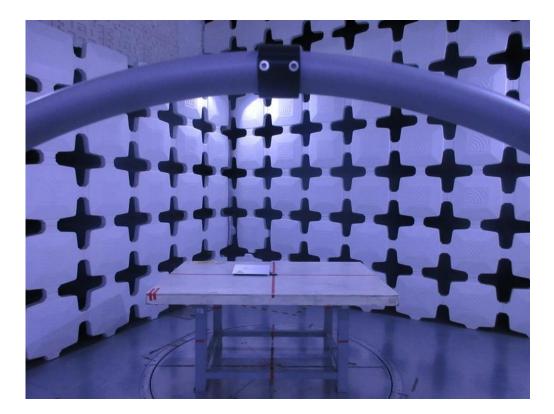
Maximum Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Peak Power Analyzer	Keysight	8990B	MY51000506	May 31, 2025	
2	Wideband power sensor	Keysight	N1923A	MY58310004	May 31, 2025	
3	Isolation attenuator	Z-Link	ASMA-10-18-2W	N/A	N/A	

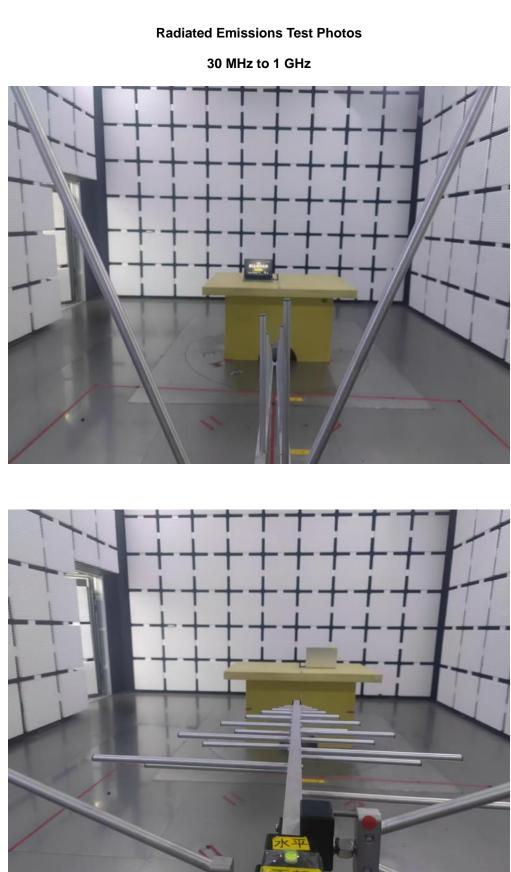
Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

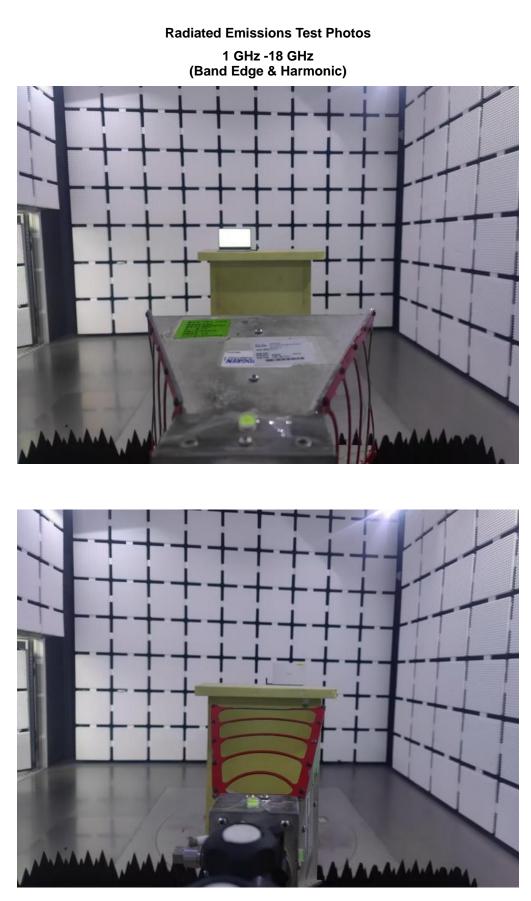
11. EUT TEST PHOTO

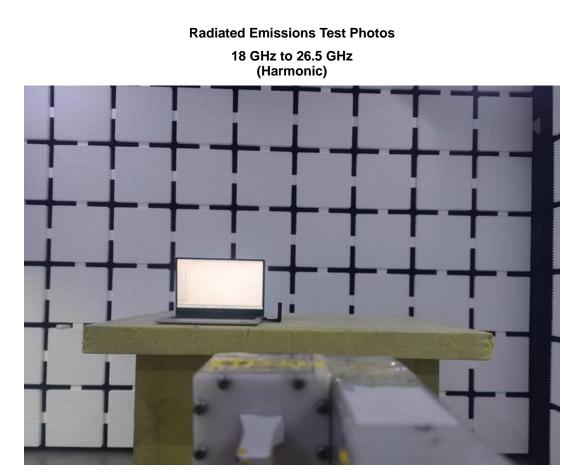

AC Power Line Conducted Emissions Test Photos

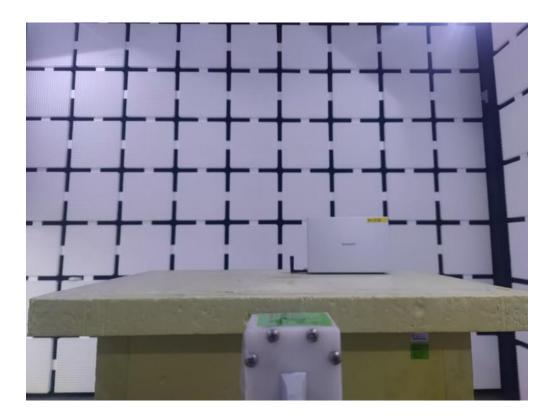


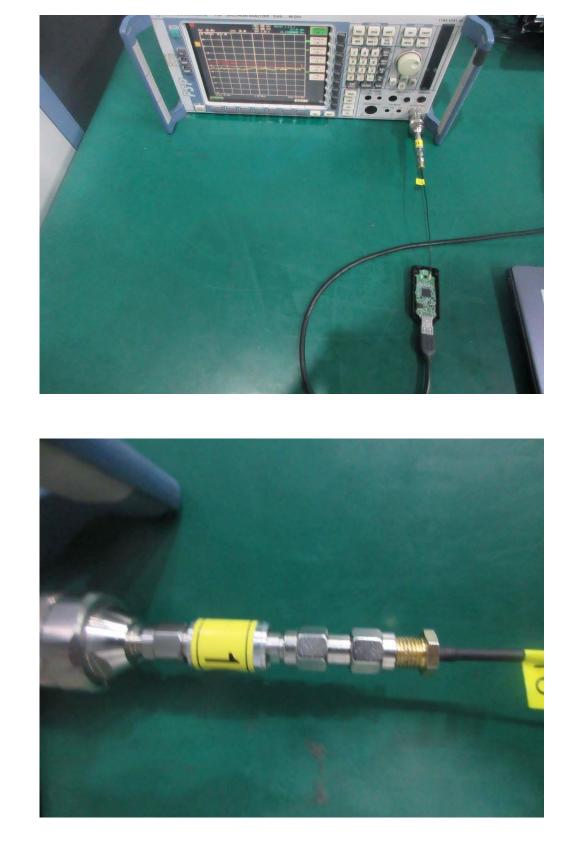

Radiated Emissions Test Photos

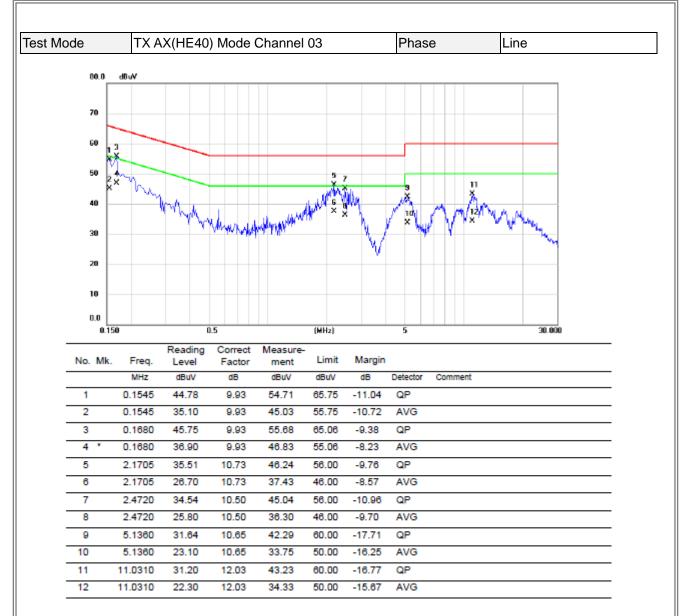
9 kHz to 30 MHz



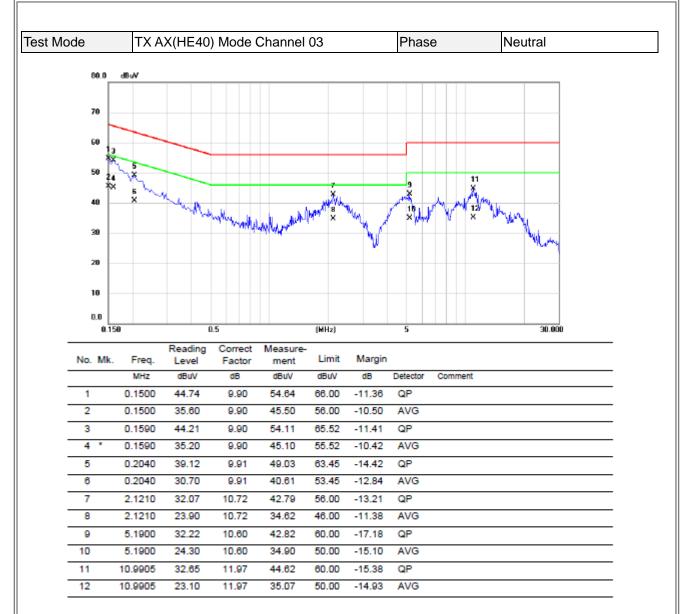




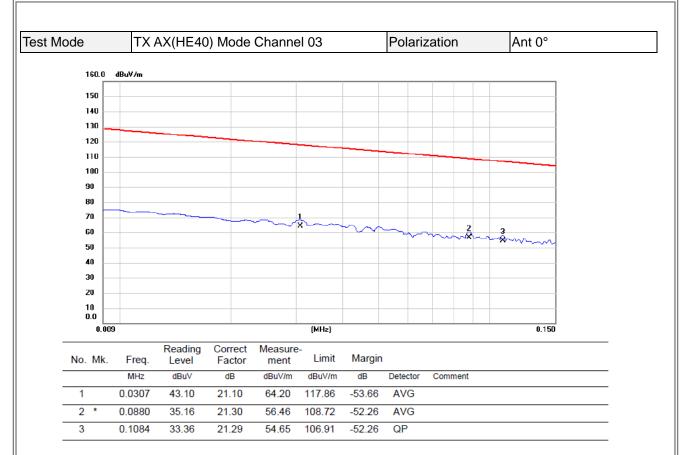




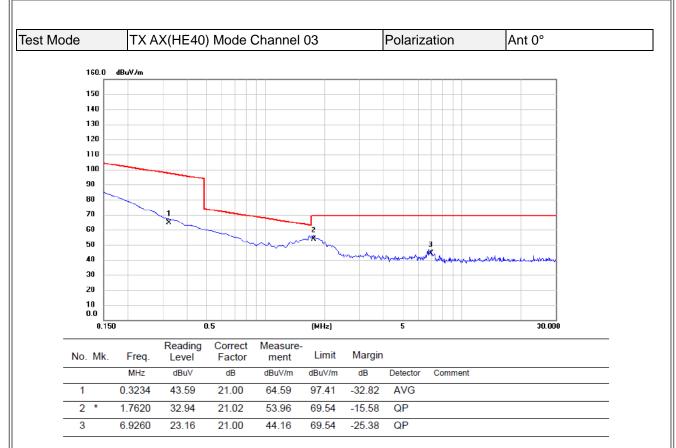
Conducted Test Photos



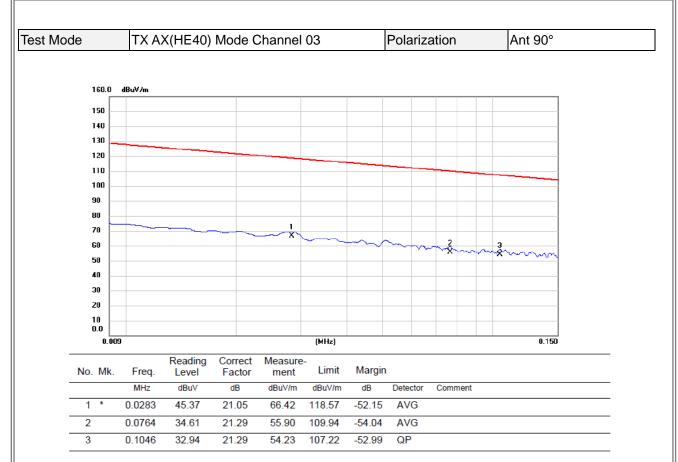
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

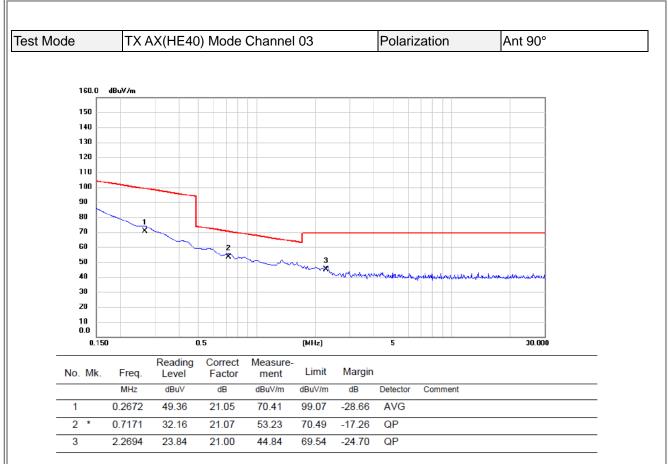

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

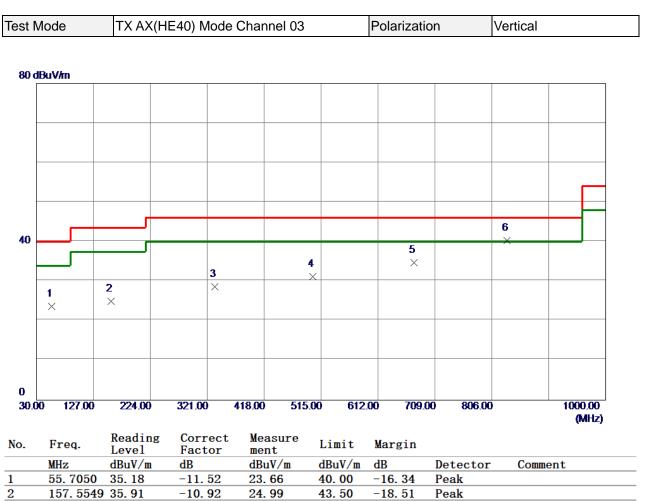


APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

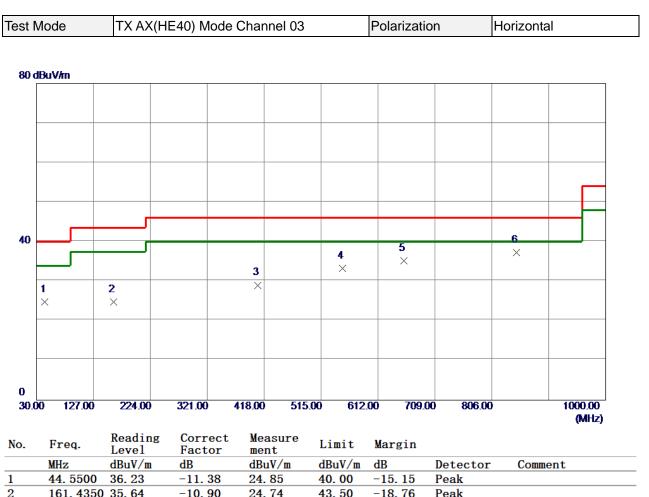


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

-10.92 157. 5549 35. 91 24.99 43. 50 -18. 51 Peak 334.0950 38.18 -9.61 28.57 46.00 -17.43 Peak 501.4200 37.22 -5.99 31.23 46.00 -14.77 Peak 673.1100 37.25 -2.59 34.66 46.00 -11.34 Peak 831. 7050 41. 00 -5.70 -0.70 40.30 46.00 Peak

REMARKS:

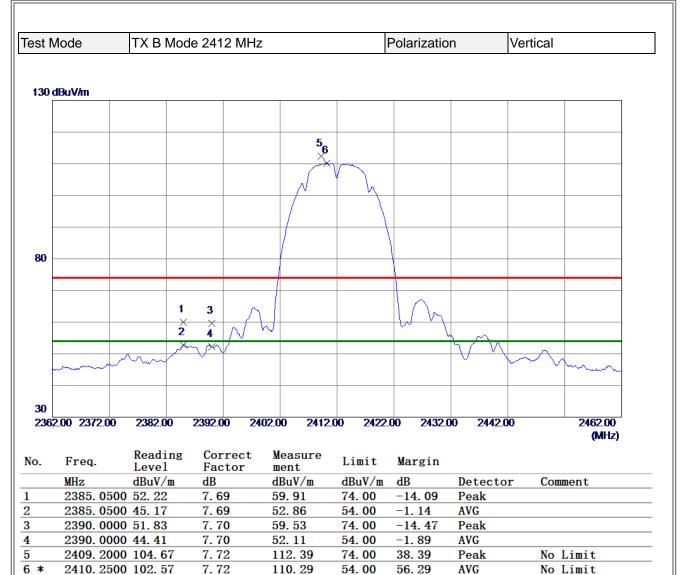

3

4

5

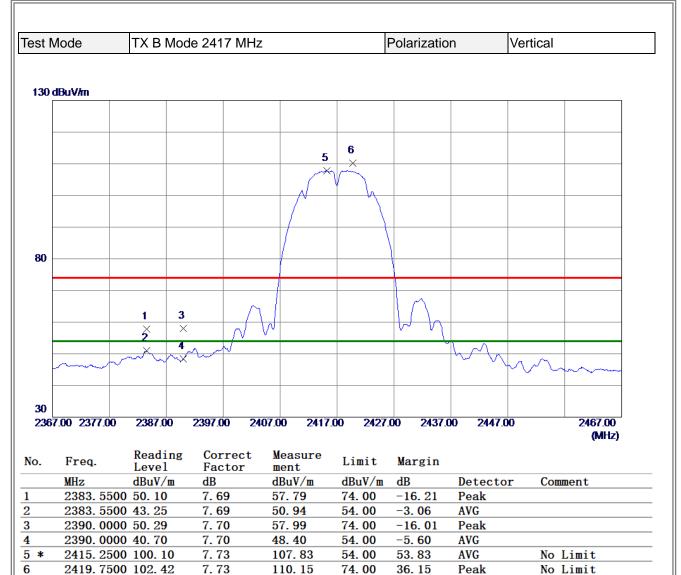
6 *

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



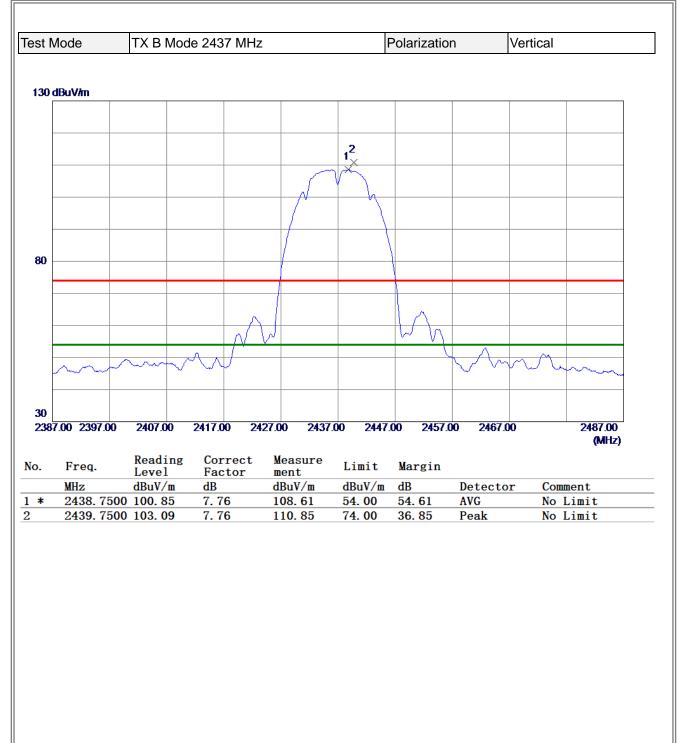
1	H. 0000 00. 20	11.00	24.00	10.00	10.10	Tean	
2	161. 4350 35. 64	-10. 90	24.74	43. 50	-18.76	Peak	
3	406.8450 36.91	-7.87	29.04	46.00	-16.96	Peak	
4	551.8600 38.20	-4.94	33.26	46.00	-12.74	Peak	
5	656. 1350 38. 01	-2.76	35.25	46.00	-10.75	Peak	
6 *	847.7100 37.63	-0.42	37.21	46.00	-8.79	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

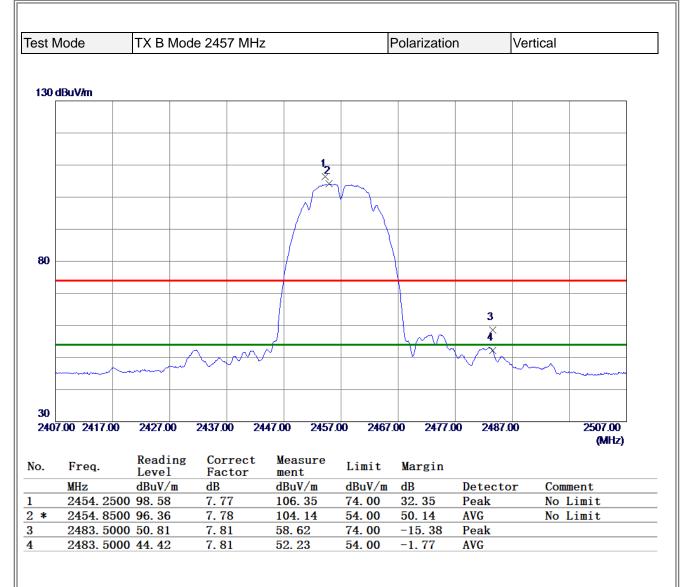
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BTL


_									
Test	Mode	TX B Moo	de 2412 MHz	<u>Z</u>		Polarizatio	n	Vertical	
100	dBuV/m								
		2							
50		X							
0									
	0.00 2700.00	4400.00	6100.00 78	300.00 9500.	00 11200	0.00 12900	.00 14600	.00	18000.00
			_						(MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detecto	or Comm	ent
1 * 2	4823.975		2.84 2.84	50.61 52.10	54.00 74.00	-3. 39 -21. 90	AVG Peak		
	ARKS:								
(1) M (2) M	easurement	Value = Re	eading Level	+ Correct Fa	actor.				
(∠) IVI	argin Level	= weasure	nem value -	Limit Value.					

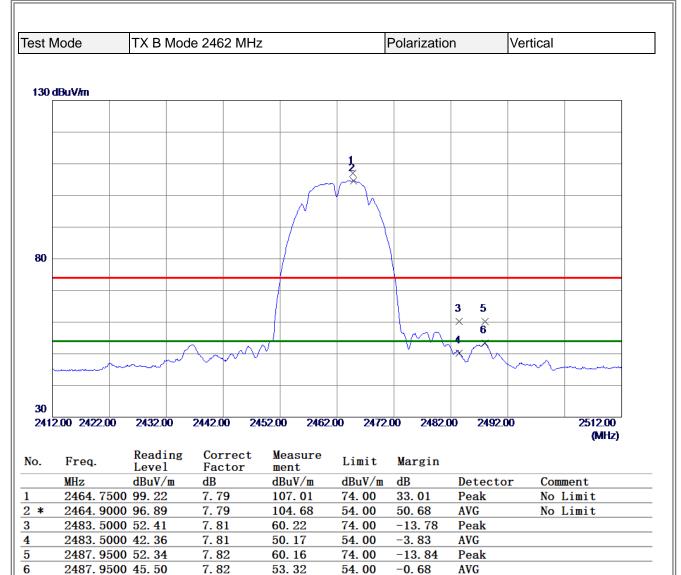
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BL

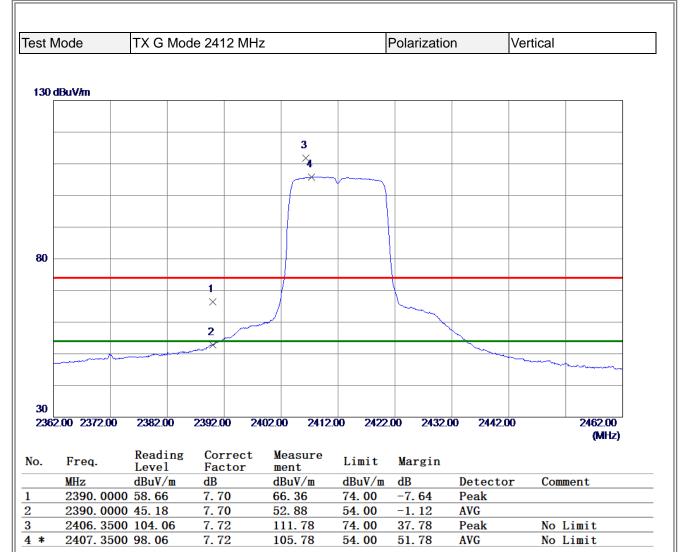

st Mode	TX B Mod	de 2417 M	Hz		Polarizatic	n	Vertical	
	·							
00 dBuV/m								
	<u> </u>							
0	×							
000.00 2700.00	4400.00	6100.00	7800.00 9500	.00 1120	0.00 12900).00 1460 0).00	18000.00
								(MHz)
Freq.	Reading	Correct		Limit	Margin			
i i i cq.	Level	Factor	ment				or Comme	nt
MUg	dDuV/m	dD	dDuV/m	dDuV/m	AD .	Dotooto		
MHz 4833,950	dBuV/m 00 49, 02	dB 2, 86	dBuV/m 51.88	dBuV/m 74,00		Detecto Peak	or comme	
4833.950	dBuV/m 00 49.02 00 47.39	dB 2. 86 2. 86	dBuV/m 51.88 50.25	dBuV/m 74.00 54.00	dB -22. 12 -3. 75	Detecto Peak AVG		
4833. 950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833. 950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833.950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833.950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833. 950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833. 950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833. 950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833. 950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833.950	00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833.95(* 4834.00(00 49. 02	2.86	51.88	74.00	-22.12	Peak		
4833. 95(* 4834. 00(00 49. 02 00 47. 39	2.86 2.86	51.88 50.25	74.00 54.00	-22.12	Peak		
4833. 95(* 4834. 00(* 4834. 00(MARKS: Measuremen	00 49. 02 00 47. 39 nt Value = Re	2. 86 2. 86	51. 88 50. 25	74. 00 54. 00	-22.12	Peak		
4833. 95(* 4834. 00(* 4834. 00(MARKS: Measuremen	00 49. 02 00 47. 39 nt Value = Re	2. 86 2. 86	51.88 50.25	74. 00 54. 00	-22.12	Peak		
4833. 95(* 4834. 00(* 4834. 00(MARKS: Measuremen	00 49. 02 00 47. 39 nt Value = Re	2. 86 2. 86	51. 88 50. 25	74. 00 54. 00	-22.12	Peak		
4833. 95(▲ 4834. 00(▲ 4834	00 49. 02 00 47. 39 nt Value = Re	2. 86 2. 86	51. 88 50. 25	74. 00 54. 00	-22.12	Peak		
4833. 950 4834. 000 MARKS: Measuremen	00 49. 02 00 47. 39 nt Value = Re	2. 86 2. 86	51. 88 50. 25	74. 00 54. 00	-22.12	Peak		

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BL

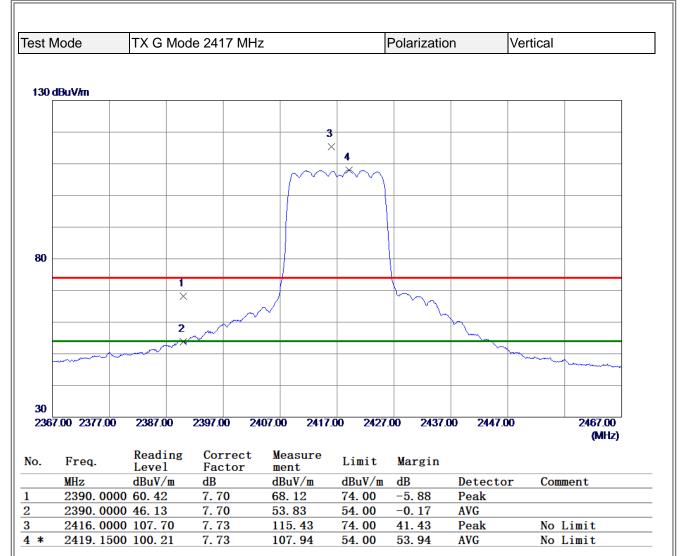

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
50 50 50 50 50 50 50 50 50 50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
50 2 50 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
0	Image: Second state of the second s	. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	000.00 2700.00 4400.00 Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
0	Image: Second state of the second s	. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	000.00 2700.00 4400.00 Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB 74.00 -24.64 Peak	Image: Second state of the second s	. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	000.00 2700.00 4400.00 Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB 74.00 -24.64 Peak	Image: Second state of the second s	. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	000.00 2700.00 4400.00 Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB V/m dB Detector Comment	Image: Second state of the second s	. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	000.00 2700.00 4400.00 Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
0	Image: Second state of the second s	. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	000.00 2700.00 4400.00 Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
0	Image: Second state of the second s	. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	000.00 2700.00 4400.00 Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
0	Image: Second state of the second s	. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	000.00 2700.00 4400.00 Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
1000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz BuV/m B	Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
OOD.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 . Freq. Reading Correct Measure Limit Margin . Freq. Evel Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz BuV/m B	Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
1000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz BuV/m B	Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
1000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz BuV/m B	Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
NHz Buv/m B	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz BuV/m B	Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
NHz Buv/m B	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz BuV/m B	Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
MHz dBuV/m dB dBuV/m dB V/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz BuV/m B	Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
MHz dBuV/m dB dBuV/m dB V/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz BuV/m B	Freq. Reading Level MHz dBuV/m 4873.9500 46.40	Correct FactorMeasur mentdBdBuV/m2.9649.36	^e Limit dBuV/n 74.00	Margin <u>dB</u> -24.64	Detect Peak		(MHz)
Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4873.950046.402.9649.3674.00-24.64Peak	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4873.950046.402.9649.3674.00-24.64Peak	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBDetectorComment4873.950046.402.9649.3674.00-24.64Peak	Hereq. Level MHz dBuV/m 4873.9500 46.40	Factor ment dB dBuV/m 2.96 49.36	dBuV/n 74.00	m dB -24.64	Detect Peak		
MHz BuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	Freq.LevelFactormentLimitMarginMHzdBuV/mdBdBuV/mdBDetectorComment4873.950046.402.9649.3674.00-24.64Peak	Image: Note of the sector Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	Hereq. Level MHz dBuV/m 4873.9500 46.40	Factor ment dB dBuV/m 2.96 49.36	dBuV/n 74.00	m dB -24.64	Detect Peak	or Comment	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9500 46.40 2.96 49.36 74.00 -24.64 Peak	MHz dBuV/m 4873.9500 46.40	dB dBuV/m 2.96 49.36	74.00	-24.64	Peak	or Comment	
+ 1013. 5130 11. 53 2. 50 11. 65 51. 00 0. 11 AVG	4613. 5130 41. 55 2. 50 41. 65 54. 00 0. 11 AVO	+ 1010. 5100 TT. 55 2. 50 TT. 65 5T. 60 C. 11 AND	1013. 3130 11. 33	2.50 11.05	54.00	0.11	AVG		
			MARKS:						
MARKS:	IARKS:	MARKS:	Veasurement Value = Re						
MARKS: Measurement Value = Reading Level + Correct Factor.	leasurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Vargin Level = Measuren	ading Level + Correct	t Factor.				
	leasurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.		ading Level + Correc nent Value - Limit Valu	t Factor. ue.				
Measurement Value = Reading Level + Correct Factor.	leasurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.		ading Level + Correc nent Value - Limit Valu	t Factor. ue.				


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


BTL

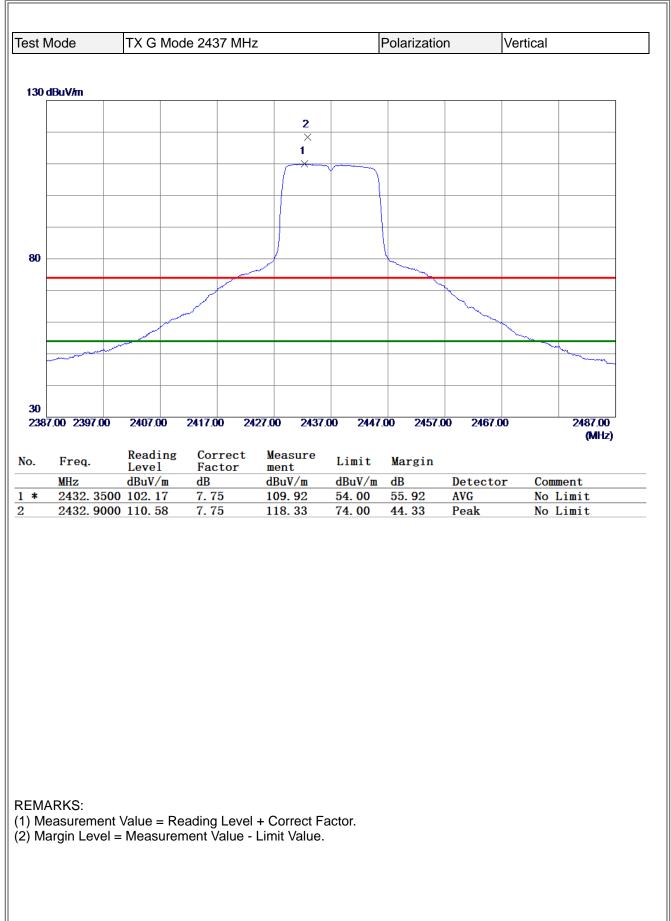
	4 - 1 -	TYPAL				Della della della		1 /	
Test N	lode	I X B Mod	e 2457 MHz	2	1	Polarizatio	n	Vertical	
100 g	dBuV <i>i</i> m						1	1	
-									
50		?							
		X							
-									
-									
-									
0			0400 00 70		00 11200	0.00 12900	.00 14600		18000.00
	00 00000					0.00 12900	.00 14600	100	18000.00
	0.00 2700.00	4400.00	6100.00 78	300.00	00 11200				(MHz)
	0.00 2700.00 Freq.	Reading	Correct	Measure	Limit	Margin			
lo.	Freq. MHz	Reading Level dBuV/m	Correct Factor dB	Measure ment dBuV/m	Limit dBuV/m	Margin dB	Detecto		
o. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
o. *	Freq. MHz	Reading Level dBuV/m) 42.49	Correct Factor dB	Measure ment dBuV/m	Limit dBuV/m	Margin dB	Detecto		(MHz)
o. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
o. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
o. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
o. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
lo. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
lo. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
lo. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
lo. *	Freq. MHz 4913.9450	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
*	Freq. MHz 4913.9450 4914.0050	Reading Level dBuV/m) 42.49	Correct Factor dB 3.05	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00	Margin dB -8.46	Detecto AVG		(MHz)
EMA	Freq. MHz 4913.9450 4914.0050	Reading Level dBuV/m) 42. 49) 44. 95	Correct Factor dB 3.05 3.05	Measure ment dBuV/m 45.54 48.00	Limit dBuV/m 54.00 74.00	Margin dB -8.46	Detecto AVG		(MHz)
No.	Freq. MHz 4913.9450 4914.0050	Reading Level dBuV/m) 42. 49) 44. 95 Value = Re	Correct Factor dB 3.05 3.05 ading Level	Measure ment dBuV/m 45.54	Limit dBuV/m 54.00 74.00 74.00	Margin dB -8.46	Detecto AVG		(MHz)
No.	Freq. MHz 4913.9450 4914.0050	Reading Level dBuV/m) 42. 49) 44. 95 Value = Re	Correct Factor dB 3.05 3.05 ading Level	Measure ment dBuV/m 45.54 48.00	Limit dBuV/m 54.00 74.00 74.00	Margin dB -8.46	Detecto AVG		(MHz)
EMA	Freq. MHz 4913.9450 4914.0050	Reading Level dBuV/m) 42. 49) 44. 95 Value = Re	Correct Factor dB 3.05 3.05 ading Level	Measure ment dBuV/m 45.54 48.00	Limit dBuV/m 54.00 74.00 74.00	Margin dB -8.46	Detecto AVG		(MHz)
EMA	Freq. MHz 4913.9450 4914.0050	Reading Level dBuV/m) 42. 49) 44. 95 Value = Re	Correct Factor dB 3.05 3.05 ading Level	Measure ment dBuV/m 45.54 48.00	Limit dBuV/m 54.00 74.00 74.00	Margin dB -8.46	Detecto AVG		(MHz)
EMA	Freq. MHz 4913.9450 4914.0050	Reading Level dBuV/m) 42. 49) 44. 95 Value = Re	Correct Factor dB 3.05 3.05 ading Level	Measure ment dBuV/m 45.54 48.00	Limit dBuV/m 54.00 74.00	Margin dB -8.46	Detecto AVG		(MHz)

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



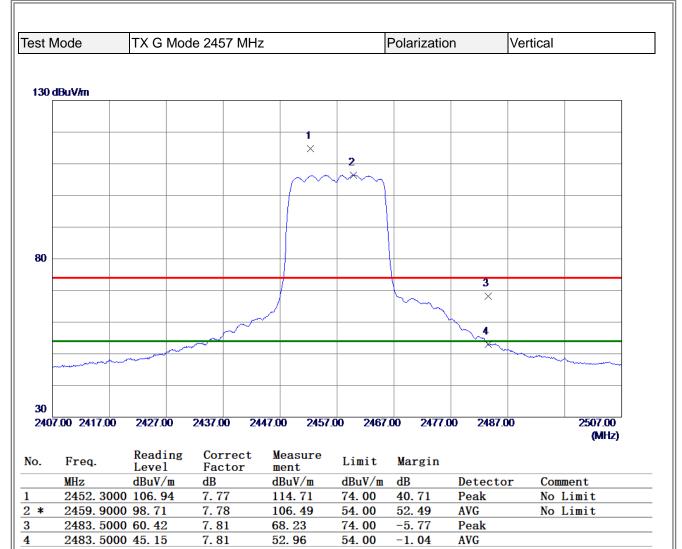
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

0301	Mode	TX G Mo	de 2412 MH	Z		Polarizatio	n	Vertical	
100	dBuV/m								
50		1							
		×							
		2							
0									
100	0.00 2700.00	4400.00	6100.00 78	00.00 9500	.00 1120	0.00 12900	0.00 14600	.00	18000.00 (MHz)
).	Freq.	Reading	Correct	Measure	Limit	Margin			
·-	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detecto	or Co	mment
					74.00	-27.89	Peak		
	4820. 425	60 43.28	2. 83 2. 84	46. 11 36. 78	54.00	-17. 22	AVG		


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

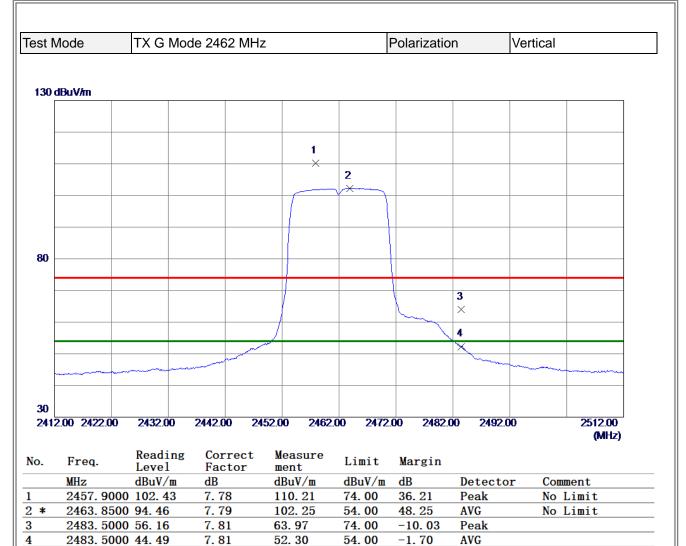
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BL


000	lode	TX G Mo	de 2417 MH	Z	F	Polarizatio	n	Vertical	
100 /	dBuV/m								
[
-									
50		1							
		×							
-									
0	0.00 2700.00	4400.00	6100.00 7	800.00 9500.0	0 11200).00 12900	.00 14600	00	18000.00
1000	1.00 2700.00	4400.00	0100.00	500.00 9500.0		1.00 12900	.00 14000		(MHz)
lo.	Freq.	Reading	Correct	Measure	Limit	Margin			
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m		Detecto	r Com	ment
	4828. 0000		2.85	46. 01	74. 00	-27.99	Peak		
*	4834.0600	33. 26	2.86	36.12	54.00	-17.88	AVG		

3TL

est l	Node	TX G Mo	de 2437 M⊦	łz		Polarizatio	n N	/ertical
100	dBuV <i>I</i> m							
50								
		2						
		×						
0	0.00 0700.00							
100	0.00 2700.00	4400.00	6100.00 7	800.00 9500	0.00 1120	0.00 12900	0.00 14600.0	0 18000.00 (MHz)
o.	Freq.	Reading	Correct		Limit	Margin		
	MHz	Level dBuV/m	Factor dB	 dBuV/m	dBuV/m		Detector	Comment
	4872.154	9 42. 57	2.95	45. 5 2	74.00	-28.48	Peak	
*	4873.930	0 00 51	2.96	35.47	54.00	-18.53	AVG	


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BTL

est Mode	TX (G Mode	e 2457	MHz			F	Polarizati	on	١	/ertical	
100 dBuV/m												
50		2										
		×										
		1										
		×										
0												
1000.00 2700	0.00 4400).00 E	6100.00	7800	.00 9	500.00	11200	.00 1290	0.00 1	4600.0	0	18000.00
	_											(MHz)
lo. Freq.	Rea											
	Lev	ding el	Corre Facto	ect or	Measur ment	e Li	mit	Margin				
MHz	Lev dBu	el //m	Facto dB	or i	ment dBuV/m	dB	uV/m	dB		ector	Соп	ment
MHz * 4915.	Lev	el //m)7	Facto	or i	ment	dB 54			Dete AVG Peak		Сол	ment
MHz * 4915.	Lev dBu 4800 31.	el //m)7	Facto dB 3.05	or i	ment dBuV/m 34.12	dB 54	uV/m . 00	dB -19. 88	AVG		Сов	ment

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BTL

00 dBx//m	st Mode	TX G Mo	de 2462 N	ЛНz			Polarizatio	on		Vertica	al	
50 2												
00 2												
2 × 1 1 1 1 × 1 1 1 1 × 1 × 1 1 1 1 1 × 1 1 1 1 1 1 1 × 1 1 1 1 1 1 1 1 × 1 1 1 1 1 1 1 1 1 × 1 <												
2 × 1 1 × 1 × 1000.00 (MHz <												
2 × 1 1 × 1 × 1 </td <td></td>												
2 × 1 1 × 1 × 1 </td <td></td>												
2 × 1 1 × 1 × 1 </td <td></td>												
2 × 1 1 × 1 × 1 </td <td></td>												
2 × 1 1 × 1 × 1 </td <td></td>												
2 × 1 1 × 1 × 1 </td <td></td>												
2 × 1 1 × 1 × 1 </td <td></td>												
2 × 1 1 × 1 × 1 </td <td>0</td> <td></td>	0											
1 1	-											
× × <												
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4924.1549 31.66 3.07 34.73 54.00 -19.27 AVG												
OOD.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4924.1549 31.66 3.07 34.73 54.00 -19.27 AVG												
OOD.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4924.1549 31.66 3.07 34.73 54.00 -19.27 AVG												
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4924.1549 31.66 3.07 34.73 54.00 -19.27 AVG								_				
OOD.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4924.1549 31.66 3.07 34.73 54.00 -19.27 AVG												
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment ≰ 4924.1549 31.66 3.07 34.73 54.00 -19.27 AVG												
Keading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 4924.1549 31.66 3.07 34.73 54.00 -19.27 AVG				7000 00	0500.00	4400			4 4 0 0 0			
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment* 4924.154931.663.0734.7354.00-19.27AVG	000.00 2700.0	0 4400.00	6100.00	7800.00	9500.00	1120	0.00 1290	0.00	14600.	.00		U.UU
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4924.1549 31.66 3.07 34.73 54.00 -19.27 AVG												
★ 4924. 1549 31. 66 3. 07 34. 73 54. 00 -19. 27 AVG		Roading	Correc	t Moa	SULLA							
	Freq.	Reading Level	Correc Factor	t Mea men		Limit	Margin					
4927. 6800 41. 35 3. 08 44. 43 74. 00 -29. 57 Peak	MHz	Level dBuV/m	Factor dB	r men dBu	t V/m d	lBuV/m	dB			r C		
	MHz • 4924.15	Level dBuV/m 549 31.66	Factor dB 3.07	men dBu 34.	t V/m c 73 5	lBuV/m 54. 00	dB -19. 27	AV	G	r C		
	MHz ≰ 4924.15	Level dBuV/m 549 31.66	Factor dB 3.07	men dBu 34.	t V/m c 73 5	lBuV/m 54. 00	dB -19. 27	AV	G	r C		

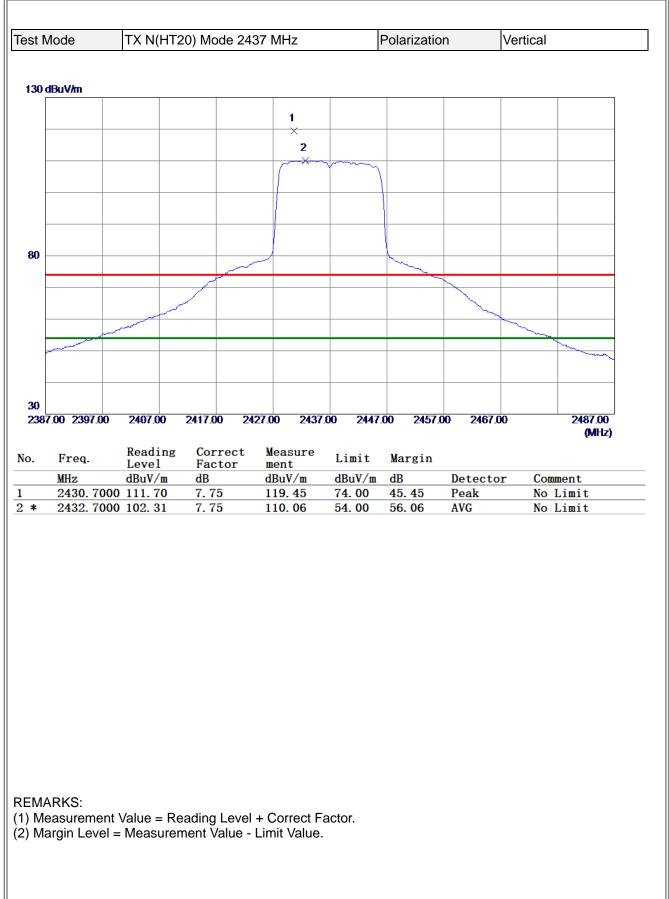
est N	Node	TX N(HT2	20) Mode	2412	MHz	Z		I	Polariz	zatior	١	Vert	ical	
130	dBuV/m													
						_								
						- 3 ×								
						4 X								
					16		Ý .					_		
80														
			1		1									
			×	,	/				han	~				
			2	And a start of the						~~	~			
			~~								- har			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										~~~~		m	
30 236	2.00 2372.00	2382.00	2392.00	2402	00	2412	00	2422	00 2	432.0	0 2442	00		2462.00
200		2002.00	LINENU	2102		21123		2122.						(MHz)
No.	Freq.	Reading	Correc		Meas		14	nit	Marg	in				
NO.		Level	Factor		ment					111	D		-	
1	MHz 2390.000	dBuV/m	dB 7.70		dBuV 64. 2			1V/m 00	<u>dB</u> −9. 7	0	Detecto Peak	or	Сош	nent
1 2	2390.000		7.70		53. 9			00	-9.7		AVG			
3		0 107.41	7.72		115.			00	41.1		Peak		No	Limit
4 *	2407.700		7.72		105.		54.		51.1		AVG			Limit

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

## **3**โL

st IV	lode	TX N(HT2	20) Mode 2	2412 MHz		Polarizatio	n	Vertica	al
00 d	lBuV/m								
Γ									
-									
┝									
-									
ᅡ		<b>2</b> ×							
		1							
		×							
┢									
-									
- 1									40000.00
00	.00 2700.00	4400.00	6100.00	7800.00 9	500.00 1120	0.00 12900	.00 14600	0.00	18000.00
00							00 14600	0.00	18000.00 (MHz)
00	.00 2700.00 Freq.	Reading Level	6100.00 Correc Factor	t Measur ment	e Limit	Margin	00 14600		(MHz)
	Freq. MHz	Reading Level dBuV/m	Correc Factor dB	t Measur ment dBuV/m	e Limit dBuV/m	Margin dB	Detecto		
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz	Reading Level dBuV/m 00 34.28	Correc Factor dB	t Measur ment dBuV/m	e Limit dBuV/m	Margin dB	Detecto		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)
	Freq. MHz 4821.300	Reading Level dBuV/m 00 34.28	Correc Factor dB 2.83	t Measur ment dBuV/m 37.11	e Limit dBuV/m 54.00	Margin dB -16.89	Detecto AVG		(MHz)



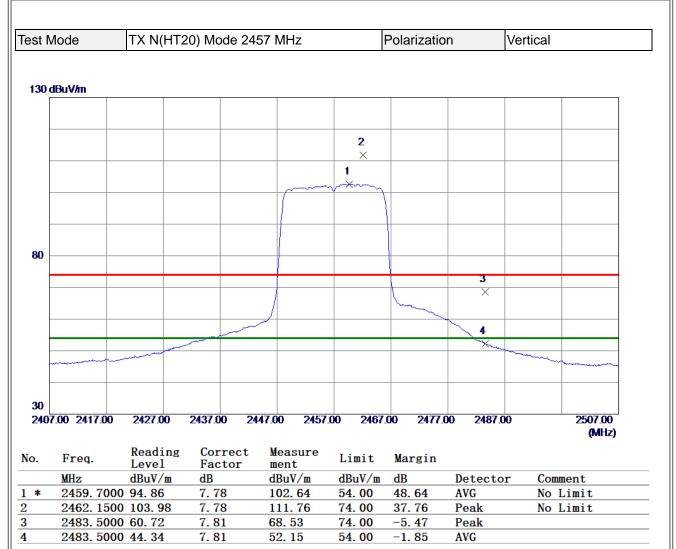

est N	lode	TX N(HT2	0) Mode 2	417 MH	Ηz		Polarizatio	n	Vertical
130 c	lBuV/m								
Γ									
					4 ×				
					_3				
							l		
80									
-									
-		1					ł		
		×					mund		
H		2							
-								- man	
ŀ									
30									
2367	7.00 2377.00	2387.00	2397.00	2407.00	2417.	00 2427.	00 2437.0	0 2447.0	0 2467.0 (MH
lo.	Freq.	Reading Level	Correct Factor	Mea men	sure t	Limit	Margin		
	MHz	dBuV/m	dB	dBu		dBuV/m	dB	Detecto	r Comment
	2390.000		7.70	64.		74.00	-9.64	Peak	
	2390.000		7.70	51.		54.00	-2.21	AVG	No Limit
*	2412.750	0 97.86	7.73 7.73	<u>105</u> 115		54.00 74.00	51.59 41.37	AVG Peak	No Limit No Limit

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

# **B**L

Fest N	/lode	TX N(HT2	20) Mode 24	17 MHz		Polarizatio	n	Vertical	
						oranzaro	••	vortiour	
400 -	1D. d (Im								
1000	dBuV/m								
-									
-									
50		<b>2</b> ×							
		×							
ŀ									
0									
1000	0.00 2700.00	4400.00	6100.00 78	300.00 9500.	00 11200	0.00 12900	00 14600	00.00	18000.00 (MHz)
lo.	Freq.	Reading	Correct Factor	Measure	Limit	Margin			
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detecto	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz	Level dBuV/m 0 32.97	Factor dB	ment dBuV/m	dBuV/m	dB		or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
¥.	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
*	MHz 4831.200 4839.325	Level dBuV/m 0 32.97	Factor dB 2.86	ment dBuV/m 35.83	dBuV/m 54.00	dB -18. 17	AVG	or Com	ment
* EMA	MHz 4831. 200 4839. 325	Level dBuV/m 0 32.97 0 43.35	Factor        dB        2.86        2.88	ment dBuV/m 35.83 46.23	dBuV/m 54.00 74.00	dB -18. 17	AVG	or Com	ment
* EMA	MHz 4831. 200 4839. 325	Leve1 dBuV/m 0 32. 97 0 43. 35	Factor dB 2. 86 2. 88	ment dBuV/m 35.83 46.23 +6.23	dBuV/m 54.00 74.00	dB -18. 17	AVG	or Com	ment
* ====================================	MHz 4831. 200 4839. 325	Leve1 dBuV/m 0 32. 97 0 43. 35	Factor dB 2. 86 2. 88	ment dBuV/m 35.83 46.23	dBuV/m 54.00 74.00	dB -18. 17	AVG	or Com	ment








lest l	Mode	TX N(H	T20) Mode	2437 MH	Ηz		Polarizat	ion	V	ertical	
100	dBuV/m										
50											
50			2 ×								
			^1								
			×								
0											
100	0.00 2700.00	4400.00	6100.00	7800.00	9500.00	1120	0.00 129	00.00	14600.00	1	18000.00 (MHz)
No.	Freq.	Reading Level	g Correc Factor	r men	11	Limit	Margin	L			
1 *	MHz 4875.400	dBuV/m	dB 2.96	dBu 33.		dBuV/m 54. 00	dB -20. 80		etector	Com	lent
2	4881.200		2. 97	43.		74.00	-30.74		eak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.






- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



st Mode	TX N(HT	20) Mode 24	57 MHz		Polarizatio	n	Vertical	
00 dBuV/m								
50								
	2 ×	<						
	1							
	×	<						
D								
1000.00 2700	.00 4400.00	6100.00 7	800.00 9500.	.00 1120	0.00 12900	.00 14600	).00	18000.00
	Reading	Correct	Measure					(MHz)
o. Freq.	Level	Factor	ment	Limit	Margin			
MHz	<u>dBuV/m</u>	dB	dBuV/m	dBuV/m		Detecto	or Com	ment
* 4911.4 4913.3		3.04	33. 78	<u>54.00</u> 74.00	-30. 54	AVG		
• <b>4911.</b> 4		3. 04	33. 78	54.00	-20. 22	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



#### **REMARKS**:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

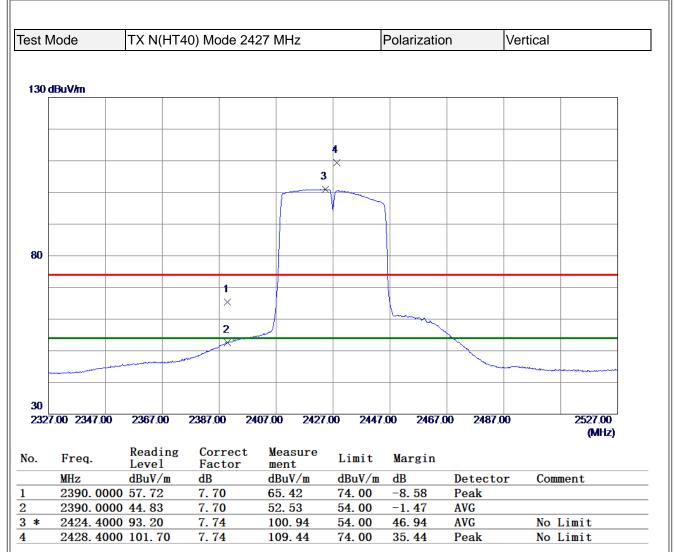


			62 MHz		Polarizatio		/ertical
BuV/m							
	1 ×						
	2						
	X						
.00 2700.00	4400.00	6100.00 7	800.00 9500	.00 1120	0.00 12900	).00 14600.0	0 18000.00 (MHz)
Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
		3.07	43.62	74.00		Peak	
	00 2700.00 Freq. MHz 4923.400	00 2700.00 4400.00 Freq. Reading Level	1      2        2      ×        2      ×        00 2700.00      4400.00      6100.00      7        Freq.      Reading Correct Level Factor      Factor        MHz      dBuV/m      dB        4923.4000      40.55      3.07	1	1	1      1        2      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1        ×      1	Image: Non-State index      Image: Non-State index<

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



est N	lode	TX N(HT4	0) Mode 24	422 MH	z		Polarizatic	on '	Vertical
1 <b>3</b> 0 c	dBuV/m								
					3				
					× 4				
				Γ	X		)		
80									
-			2				hann		
30									
2322	2.00 2342.00	2362.00	2382.00 2	2402.00	2422.0	0 2442	.00 2462.	00 2482.00	0 2522.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	men		Limit	Margin		
	MHz	dBuV/m	dB	dBu		dBuV/m	dB	Detector	c Comment
l	2390.000		7.70	65.2		74.00	-8.72	Peak	
2	2390.000		7.70	52.8		54.00	-1.17	AVG	N- Limit
} { *		0 101.82 0 92.85	7.72 7.73	<u>109.</u> 100.		74.00 54.00	35.54 46.58	Peak AVG	No Limit No Limit


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



	2	t N	/lode	TX N(HT	40) Mode 2	422 MHz		Polarizatio	on Vei	rtical
2    ×    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1	Image: Note of the system o	10 o	dBuV/m							
2    ×    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1	Image: Note of the system o									
2    ×    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1	Image: Note of the system o									
2    ×    1    1      1    ×    1    1      ×    1    1    1      00.00 2700.00    4400.00    6100.00    7800.00    9500.00    11200.00    12900.00    14600.00    18000.00      WHz    Reading    Correct    Measure    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dB    Detector    Comment      4843.8000    31.12    2.89    34.01    54.00    -19.99    AVG	Image: Note of the system o									
2    ×    1    1      1    ×    1    1      ×    1    1    1      00.00 2700.00    4400.00    6100.00    7800.00    9500.00    11200.00    12900.00    14600.00    18000.00      WHz    Reading    Correct    Measure    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dB    Detector    Comment      4843.8000    31.12    2.89    34.01    54.00    -19.99    AVG	Image: Note of the system o									
2      ×      1      1        1      ×      1      1      1        ×      1      1      1      1      1        00.00 2700.00      4400.00      6100.00      7800.00      9500.00      11200.00      12900.00      14600.00      18000.00        WHz      Reading      Correct      Measure      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dB      Detector      Comment        4843.8000      31.12      2.89      34.01      54.00      -19.99      AVG	Image: Note of the system o									
2      ×      1      1        1      ×      1      1      1        ×      1      1      1      1      1        00.00 2700.00      4400.00      6100.00      7800.00      9500.00      11200.00      12900.00      14600.00      18000.00        WHz      Reading      Correct      Measure      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dB      Detector      Comment        4843.8000      31.12      2.89      34.01      54.00      -19.99      AVG	Image: Note of the system o									
X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X    1      X	Image: Note of the system o	,								
×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×	×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×									
MHz      dBuV/m      dB      dBuV/m      dB      dBuV/m      dB      Detector      Comment        4843.8000 31.12      2.89      34.01      54.00      -19.99      AVG      -19.99      AVG	MHz      BuV/m      dB      dBuV/m      dB      MU/m      M									
NO0.00      2700.00      4400.00      6100.00      7800.00      9500.00      11200.00      12900.00      14600.00      18000.0        Keading      Correct      Measure      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        4843.8000      31.12      2.89      34.01      54.00      -19.99      AVG	Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      4843.8000    31.12    2.89    34.01    54.00    -19.99    AVG									
D00.00      2700.00      4400.00      6100.00      7800.00      9500.00      11200.00      12900.00      14600.00      18000.0        Keading      Correct      Measure      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dBuV/m      Comment        4843.8000      31.12      2.89      34.01      54.00      -19.99      AVG	Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      4843.8000    31.12    2.89    34.01    54.00    -19.99    AVG									
NO0.00      2700.00      4400.00      6100.00      7800.00      9500.00      11200.00      12900.00      14600.00      18000.0        Keading      Correct      Measure      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        4843.8000      31.12      2.89      34.01      54.00      -19.99      AVG	Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      4843.8000    31.12    2.89    34.01    54.00    -19.99    AVG									
D00.00      2700.00      4400.00      6100.00      7800.00      9500.00      11200.00      12900.00      14600.00      18000.0        Keading      Correct      Measure      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dBuV/m      Comment        4843.8000      31.12      2.89      34.01      54.00      -19.99      AVG	Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      4843.8000    31.12    2.89    34.01    54.00    -19.99    AVG									
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4843.800031.122.8934.0154.00-19.99AVG	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4843.800031.122.8934.0154.00-19.99AVG		0.00 2700.00	4400.00	6100.00	7800.00 9500	.00 1120	0.00 12900	0.00 14600.00	
Freq.LevelFactormentLimitMarginMHzdBuV/mdBdBuV/mdBDetectorComment4843.8000 31.122.8934.0154.00-19.99AVG	Freq.LevelFactormentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4843.8000 31.122.8934.0154.00-19.99AVG		Ener	Reading	Correct	Measure	Linia	Manaia		(141112)
4843. 8000 31. 12 2. 89 34. 01 54. 00 -19. 99 AVG	4843. 8000 31. 12 2. 89 34. 01 54. 00 -19. 99 AVG			Level	Factor	ment			Detector	Comment
4852. 7000 40. 53 2. 91 43. 44 74. 00 -30. 56 Peak	4852. 7000 40. 53 2. 91 43. 44 74. 00 -30. 56 Peak	:	4843.800	0 31.12	2.89	34.01	54.00	-19. 99	AVG	comment
			4852.700	0 40. 53	2.91	43. 44	74.00	-30. 56	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

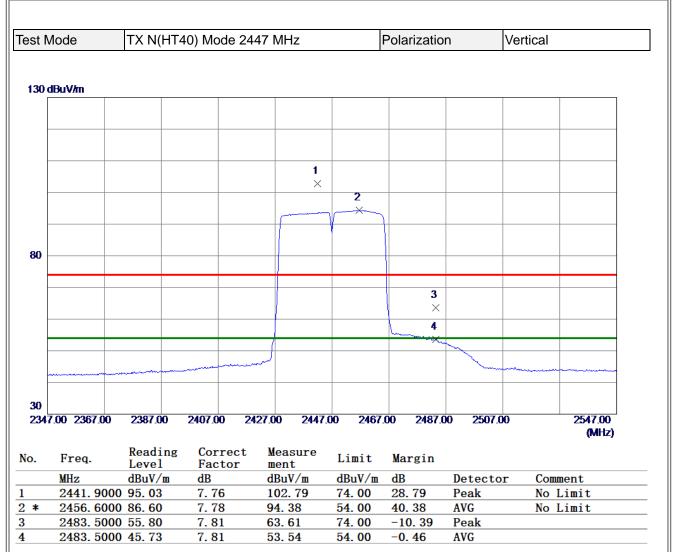


St IV	lode	TX N(HT4	0) Mode 24	27 MHz		Polarizatic	on V	ertical
00 d	BuV/m							
Γ								
, [								
		1 ×						
$\mid$		2						
		×						
$\vdash$								
000	.00 2700.00	4400.00	6100.00 78	300.00 9500	.00 1120	0.00 12900	.00 14600.00	18000.00
								(MHz)
	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	4852.000		2.91	43. 91	74.00	-30. 09	Peak	
	4855.100	0 31.42	2.91	34. 33	<b>54.00</b>	-19.67	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



Test N	Node	TX N(HT	40) Mode	2437 N	ЛНz		Polarizatio	n	Vertical
130 (	dBuV/m								
-					4				
					~×~~	·			
-							┨────		
80									
Ĩ									
-			1						
			× 2						
30									
233	7.00 2357.00	2377.00	2397.00	2417.0	0 2437.	00 2457	.00 2477.	00 2497.0	0 2537.00 (MHz)
No.	Freq.	Reading Level	Correc Factor		easure ent	Limit	Margin		
	MHz	dBuV/m	dB		BuV/m	dBuV/m	dB	Detecto	r Comment
$\frac{1}{2}$	2390.000		7.70 7.70		3. 17 1. 79	74.00	-10.83 -2.21	Peak AVG	
<u> </u>	2390.000		7.74		)1. 31	54.00 54.00	47.31	AVG	No Limit
<u>3</u>	2432.600		7.75		<b>0.</b> 24	74.00	36.24	Peak	No Limit


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



est l	Mode	TX N(HT	40) Mode 2	437 MHz		Polarizatio	on Ve	ertical
100	dBuV/m							
50		2						
		×						
		1 ×						
0 100	0.00 2700.00	4400.00	6100.00	7800.00 9500	.00 1120	0.00 12900	.00 14600.00	
		<b>D</b>						(MHz)
lo.	Freq.	Reading Level	Correct Factor	ment	Limit	Margin		
*	MHz 4873.900	dBuV/m	dB 2.96	dBuV/m 34. 27	dBuV/m 54.00	dB -19.73	Detector AVG	Comment
	4874.000		2.96	44. 39	74.00	-29.61	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



lest l	Node	TX N(HT	40) Mode 24	447 MHz		Polarizatio	n	Vertical	
100	dBuV/m								
50									
		×							
•									
0 100	0.00 2700.00	4400.00	6100.00 7	800.00 9500	.00 1120	0.00 12900	.00 14600.	00	18000.00
									(MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	c Com	ment
L * 2	4893. 900		3.00	35. 55	54.00	-18.45	AVG		
	4894. 300	0 42 85	3.00	45.85	74.00	-28.15	Peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



est N	/lode	TX N(HT	40) Mode	2452 Mł	Ηz		Polarizatio	on	Vertical	
130	dBuV/m									
[										
						1				
						×				
						2				
				f^		¥~~~~				
80										
							3			
							×			
							4			
							- Xem			
30										
235	2.00 2372.00	2392.00	2412.00	2432.00	2452.	00 2472	2.00 2492	.00 2512.	00	2552.00 (MHz)
No.	Freq.	Reading Level	Correc Factor	men		Limit	Margin			
	MHz	dBuV/m	dB	dBu		dBuV/m		Detecto		ment
1 2 *	2455.100 2455.800		7.78 7.78	<u>102</u> 93.		74.00 54.00	28.46 39.35	Peak AVG		Limit Limit
∠ ≁ 3	2455.800		7.81	62.		74.00	-11.15	Peak	NO	
3 4	2483. 500		7.81	52.		54.00	-1. 23	AVG		

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.



st N	lode	TX N(HT4	0) Mode 24	52 MHz		Polarizatio	n Ver	tical
100	dBuV/m				1	1		
50								
		<b>2</b>						
		^						
-								
0								
100	0.00 2700.00	4400.00	6100.00 78	00.00 9500	.00 1120	0.00 12900	.00 14600.00	18000.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	4904. 8000		3. 03	46.08	74.00	-27. 92	Peak	
*	4905.8000	33. 52	3. 03	36. 55	54.00	-17.45	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



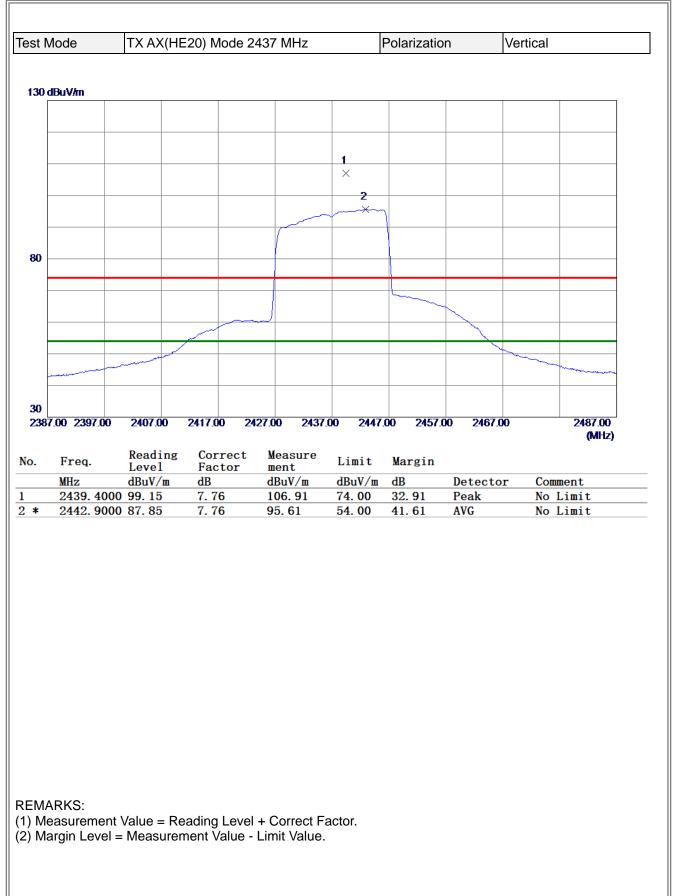
Test N	Node	TX AX	(HE20) N	lode 24	12 MHz		Polarizatio	n	Vertical
130 0	dBuV/m								
[									
-						4 ×			
					3				
							]		
80									
-			<b>1</b> ×						
-			2		]				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-									
30									
2362	2.00 2372.00) 2382.00) 2392.0	0 2402	2.00 2412	.00 2422	2.00 2432.0	00 2442.0	00 2462.00 (MHz)
No.	Freq.	Readin Level	Fac	rect tor	Measure ment	Limit	Margin		
1	MHz	dBuV/I		0	dBuV/m	dBuV/m	dB	Detecto	r Comment
$\frac{1}{2}$		00 59.76 00 45.49	7.7		67.46 53.19	74.00 54.00	-6. 54 -0. 81	Peak AVG	
3 *		00 92.32	7.7		100.04	54.00	46. 04	AVG	No Limit
4		00 104.10			111.83	74.00	37.83	Peak	No Limit

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

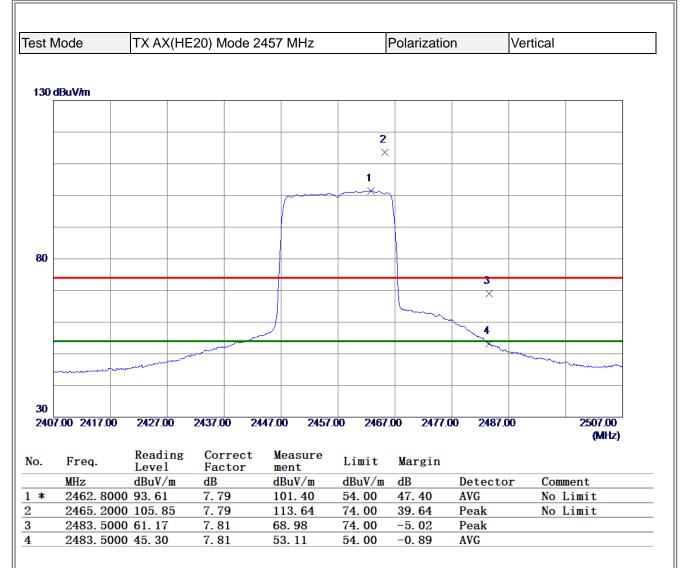
st N	Node	TX AX(HE	20) Mode 24	412 MHz		Polarizatio	on Ve	ertical
00	dBuV/m							
50		1						
		×						
		2 ×						
0								
100	0.00 2700.00	4400.00	6100.00 78	00.00 9500	.00 1120	0.00 12900	0.00 14600.00	18000.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detector	Comment
	4823.100		2.84	45.25	74.00	-28.75	Peak	
*	4824.200	JU 33. ZU	2.84	36.04	54.00	-17.96	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



est N	Vode	TX AX(H	E20) Mode	2417	ИНz		Polarizatio	n	Vertical	
130	dBuV <i>i</i> m									
						4 ×				
					3					
80										
		1	<							
		2								
			×							
30										
236	7.00 2377.00	2387.00	2397.00	2407.00	2417	.00 2427	.00 2437.	00 2447.0	0	2467.00 (MHz)
No.	Freq.	Reading Level	Factor	mei		Limit	Margin			
1	MHz	dBuV/m	<u>dB</u>			dBuV/m	dB	Detecto	r Com	ment
1 2	2390.000		7.70	<u>65.</u> 52.		74.00 54.00	-9.00 -1.25	Peak AVG		
3 *	2411. 450		7.72		. 03	54.00	47.03	AVG	No	Limit
4		0 105.13	7.73		2. 86	74.00	38.86	Peak		Limit

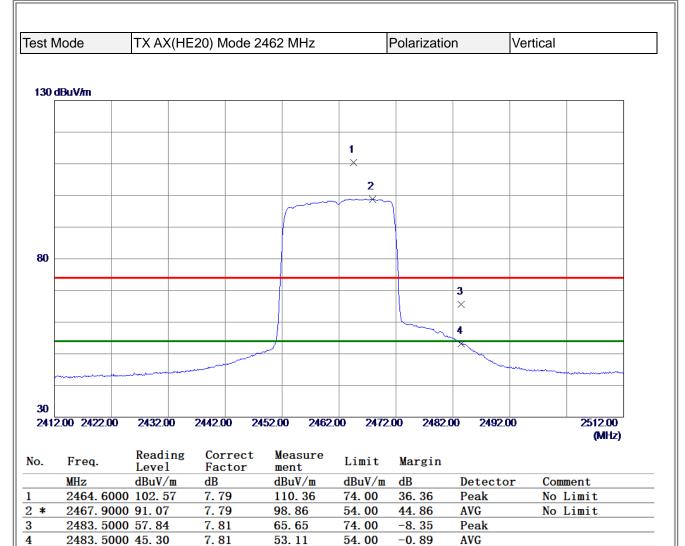
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


est I	Mode	TX AX(H	E20) Mod	e 2417 M	Hz	I	Polarizati	on	Ver	tical
100	dBuV/m									
50										
50		2 ×								
		×								
0										
	0.00 2700.00	4400.00	6100.00	7800.00	9500.00	11200	0.00 1290	0.00 14	\$00.00	18000.00
_	_	Reading	Correc	t Meas	sure					(MHz)
0.	Freq.	Level	Factor	r ment	t L.	imit	Margin			
*	MHz 4833.500	dBuV/m 0 32.81	dB 2.86	dBuV 35.6		BuV/m . 00	dB -18.33	Detec AVG	tor	Comment
	4834.100		2.86	44. 5		. 00	-29.46	Peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

est N	Node	TX AX(HE	20) Mode 2	437 MHz		Polarizatio	n	Vertical	
100	dBuV/m								
-									
50		2							
		×							
		1 ×							
0									
	0.00 2700.00	4400.00	6100.00 78	300.00 9500.	00 1120	0.00 12900	.00 14600	.00	18000.00
									(MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detecto	or Cor	ment
1 *	4874. 3000		2. 96	34. 21	54.00	-19. 79	AVG		
2	1001 0000) 40. 40	2.98	43.38	74.00	-30.62	Peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est N	/lode	TX AX(HE	20) Mode 2	457 MHz		Polarizatio	n Ve	rtical
100	dBuV/m							
50		1						
		×						
		2 ×						
-								
0								
	0.00 2700.00	4400.00	6100.00 78	800.00 950	0.00 1120	0.00 12900	.00 14600.00	18000.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detector	Comment
l 2 *	4910. 2000 4914. 1000		3. 04 3. 05	43.65 34.80	74.00 54.00	-30.35 -19.20	Peak AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

3TL

est l	Mode	TX AX(H	IE20) Moc	le 2462	: MHz		Polarizatio	'n	Vertical	
100	dBuV/m									
50										
			2 ×							
			^ 1							
			×							
0	0.00 2700.00	4400.00	6100.00	7800.0	0 9500.0	00 1120	0.00 12900	0.00 14600	00	18000.00
100	0.00 2100.00	-100.00	0100.00	1000.0	0 0000	00 1120	12500			(MHz)
No.	Freq.	Reading	Corre		easure	Limit	Margin			
	MHz	Level dBuV/m	Facto dB		ent BuV/m	dBuV/m		Detecto	r Co	mment
*	4921.800	0 30.99	3.07	34	4. 06	54.00	-19. 94	AVG		
	4927.100	0 39 80	3.08	4	2.88	74.00	-31.12	Peak		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est N	Node	TX AX(HE	40) Mode	2422 MHz	<u>.</u>	Polarizatio	n	Vertical
130	dBuV/m							
				5				
				×	6			
					-X	~		
80								
			13					
			× 24			han		
			~~~*	~~~				
30								
	2.00 2342.00	2362.00	2382.00	2402.00 2	422.00 244	2.00 2462	00 2482.00	0 2522.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measur ment	re Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	ı dBuV∕π	dB	Detector	r Comment
1	2388. 700		7.70	62.82	74.00	-11. 18	Peak	
2	2388.700		7.70	53.38	54.00	-0.62	AVG	
3	2390.000		7.70	62.43	74.00	-11.57	Peak	
4	2390.000		7.70	52.71	54.00	-1.29	AVG	<b></b>
5	2410.900	0 102.48	7.72	110. 20	74.00	36.20	Peak	No Limit

6 *

2416. 5000 90. 72

(1) Measurement Value = Reading Level + Correct Factor.

7.73

98.45

54.00

44.45

AVG

No Limit

(2) Margin Level = Measurement Value - Limit Value.

est l	Vode	TX AX(HE	40) Mode 2	2422 MHz		Polarizatio	on V	/ertical
100	dBuV/m							
50								
50		1 ×						
		2						
		×						
_								
0 100	0.00 2700.00	4400.00	6100.00 7	800.00 950	0.00 1120	0.00 12900	0.00 14600.00	) 18000.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
*	4841.100		2.88 2.88	44. 13 35. 51	74.00 54.00	-29.87 -18.49	Peak AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

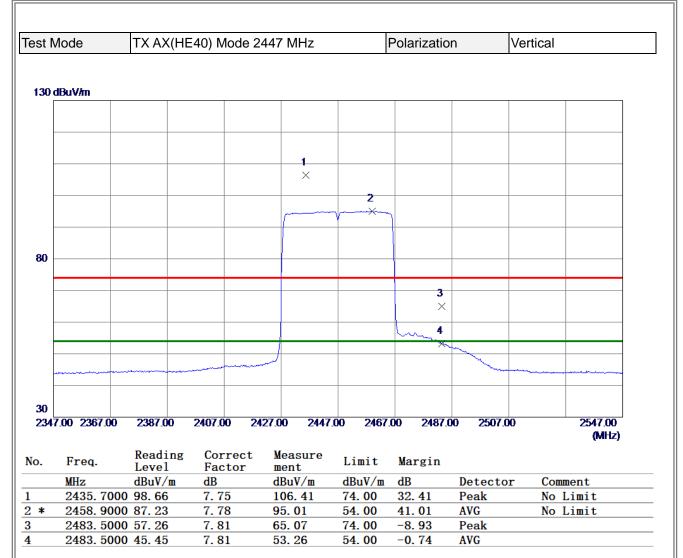


est N	Node	TX AX(HE	E40) Mode 2	2427 MHz		Polarizatio	on \	/ertical
130 a	dBuV <i>i</i> m							
[								
					4			
-					+ 			
				3				
-				<b>3</b>				
ł								
80								
ŀ			4					
			×					
						ha		
			2			·····		
-								
ľ								
30								
232	7.00 2347.00	2367.00	2387.00 2	407.00 242	7.00 2447	.00 2467.	.00 2487.00	2527.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detector	Comment
<u> </u>	2390.000		7.70	65.33	74.00	-8.67	Peak	
2 *	2390.000		7.70	53.46	54.00	-0.54	AVG AVG	No Limit
3 ≭ 1	2415.600 2429.600		7.73	98.39 109.84	54.00 74.00	44. 39 35. 84	Peak	<u>No Limit</u> No Limit

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

est l	Mode	TX AX(HE	40) Mode	2427 M	Hz	F	Polarizatio	n	Verti	cal
100	dBuV/m									
50		1								
		×								
		×								
0										
100	0.00 2700.00	4400.00	6100.00	7800.00	9500.00	11200	0.00 12900	).00 1460	0.00	18000.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	t Mea men	sure L	imit	Margin			
	MHz	dBuV/m	dB	dBu		BuV/m	dB	Detect	or	Comment
1 2 *	4847.9000		2. 90 2. 91	45.		4.00 4.00	-28. 44 -18. 67	Peak AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.




est N	Node	TX AX(HE	E40) Mode 2	2437 MHz		Polarizatio	on	Vertical	
130	dBuV <i>i</i> m								
				2					
				×					
				1					
80									
							3		
							×		
							4		
							- Chan	Amannan _	
30									
233	7.00 2357.00	2377.00	2397.00 24	417.00 243	7.00 2457	.00 2477.	00 2497.0	DO	2537.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
1 4	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detecto		
1 * 2	2425.500	0 90.00	7.74 7.74	97.74 109.79	54.00 74.00	43.74 35.79	AVG Peak	No Li No Li	
3	2483. 500		7.81	65. 28	74.00	-8.72	Peak		
4	2483. 500	0 46.01	7.81	53.82	54.00	-0. 18	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Node	TX AX(HE	E40) Mode 2	2437 MHz		Polarizatio	n	Vertical	
100	dBuV <i>i</i> m								
50		1							
		×							
		2 ×							
~									
0 100	0.00 2700.00	4400.00	6100.00 7	800.00 9500	.00 1120	0.00 12900	.00 14600.		000.00
		Reading	Correct	Measure					(MHz)
lo.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz 4867.800	dBuV/m	dB	dBuV/m	dBuV/m		Detector	r Comment	
	4867.800	0 41.73	2.94 2.97	44. 67 34. 28	74.00 54.00	-29. 33 -19. 72	Peak AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

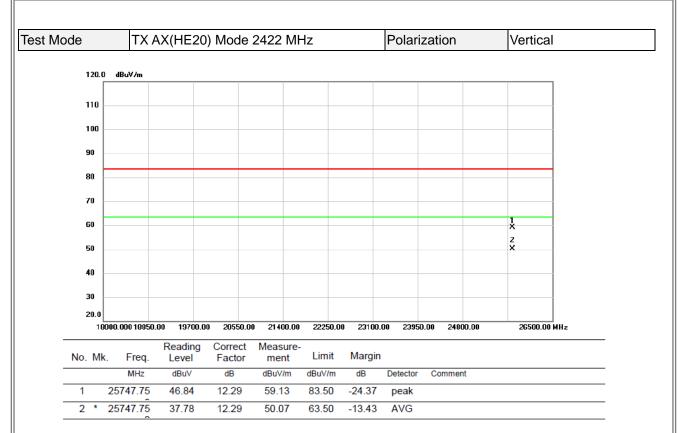


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

# **B**L

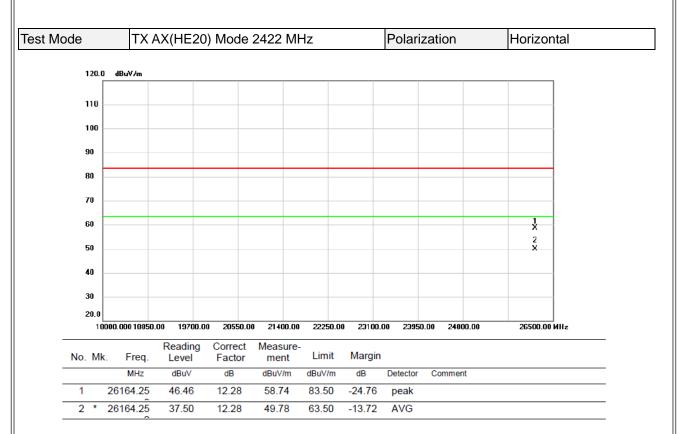
2    ×    1    1      1    ×    1    1      ×    1    1    1      1000.00 2700.00    4400.00    6100.00    7800.00    9500.00    11200.00    12900.00    14600.00    18000.00      1000.00 2700.00    4400.00    6100.00    7800.00    9500.00    11200.00    12900.00    14600.00    18000.00      0    Imit Margin    Imit Margin    Imit Margin    Imit Margin    Imit Margin      MHz    dBuV/m    dB    dBuV/m    dB    Detector    Comment		lode	TX AX(HE	E40) Mode	2447 MHz		Polarizatio	n	Vertical	
0      2										
2    ×    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1    1      1    1    1    1    1    1    1    1      1    1    1    1    1    1    1    1    1      1    1    1    1    1    1    1	00 d	1BuV/m								
2    ×    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1    1      1    1    1    1    1    1    1    1      1    1    1    1    1    1    1    1    1      1    1    1    1    1    1    1										
2    ×    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1    1      1    1    1    1    1    1    1    1      1    1    1    1    1    1    1    1    1      1    1    1    1    1    1    1										
2    ×    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1    1      1    1    1    1    1    1    1    1      1    1    1    1    1    1    1    1    1      1    1    1    1    1    1    1	ŀ									
2    ×    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1    1      1    1    1    1    1    1    1    1      1    1    1    1    1    1    1    1    1      1    1    1    1    1    1    1	-									
2    ×    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1    1      1    1    1    1    1    1    1    1      1    1    1    1    1    1    1    1    1      1    1    1    1    1    1    1										
2    ×    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    ×    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1      1    1    1    1    1    1    1      1    1    1    1    1    1    1    1      1    1    1    1    1    1    1    1    1      1    1    1    1    1    1    1										
1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1	50									
0    Image: Constant of the second s	-									
MHz      Buv/m      B			×							
MHz      Buv/m      B										
MHz      Buv/m      B	$\vdash$									
MHz      Buv/m      B										
MHz    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dB    Detector    Comment      *    4892.6000    31.88    3.00    34.88    54.00    -19.12    AVG	0									
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBDetectorComment*4892.600031.883.0034.8854.00-19.12AVG	1000	0.00 2700.00	4400.00	6100.00 7	800.00 9500	0.00 1120	0.00 12900	0.00 14600	00.	
MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        *      4892.6000 31.88      3.00      34.88      54.00      -19.12      AVG		Free	Reading			Limit	Wargin			ç
* 4892. 6000 31. 88 3. 00 34. 88 54. 00 -19. 12 AVG	0.							Detecto	or Co	mment
4896.0000 41.40 3.01 44.41 /4.00 -29.39 Peak	*	4892.600	0 31.88	3.00	34.88	54.00	-19.12	AVG		
		4090.000	0 41.40	3.01	44.41	74.00	-29.09	геак		
MARKS:			V/-1							
Measurement Value = Reading Level + Correct Factor.	) Me	easurement	Value = Re = Measurer	eading Leve nent Value	el + Correct F - Limit Value	actor.				
	) Me	easurement	Value = Re = Measurer	eading Leve nent Value	el + Correct F - Limit Value	actor.				
Measurement Value = Reading Level + Correct Factor.	) Me	easurement	Value = Re = Measurer	eading Leve nent Value	el + Correct F - Limit Value	actor.				

est N	Node	TX AX(HE	40) Mode 2	2452 MHz		Polarizatio	n	Vertical
130	dBuV/m							
-					<b>2</b>			
					1			
					~~~~	1		
80								
00								
						3		
						× 4		
						the	~	
				and the second s				
30								
235	2.00 2372.00	2392.00	2412.00 2	432.00 245	2.00 2472	2.00 2492.0	00 2512.0	0 2552.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detecto	
1 *	2461.800		7.78	94. 41	54.00	40. 41	AVG	No Limit
2 3	2468.100 2483.500		7. 79 7. 81	105.02 63.43	74.00	<u>31. 02</u> -10. 57	Peak Peak	No Limit
3 4	2483. 500		7.81	53. 43	54.00	-0. 59	AVG	

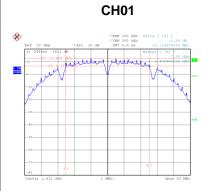

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

SUN	lode	TX AX(HI	E40) Mode 2	2452 MHz		Polarizatio	n Ve	ertical
100 c	1BuV <i>i</i> m							
50		1						
		×						
		2 ×						
ŀ								
-								
0								
1000	0.00 2700.00	4400.00	6100.00 7	800.00 9500.	.00 1120	0.00 12900	00 14600.00	18000.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detector	Comment
	4897.100 4901.600		3. 01 3. 02	44.88 35.16	74.00 54.00	-29. 12 -18. 84	Peak AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

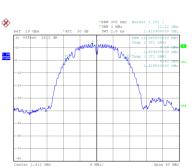
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.




- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX E - BANDWIDTH

Test Mode TX B Mode									
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result				
01	2412	10.140	14.960	0.5	Complies				
06	2437	10.140	14.960	0.5	Complies				
11	2462	10.100	14.960	0.5	Complies				

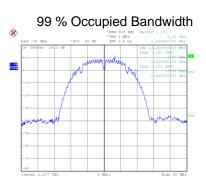


CH11

• REW 100 kHz • VEW 300 kHz SWT 2.5 ms

mule

I ko

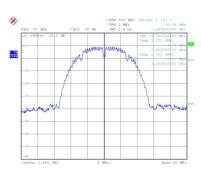


URL 4 (ML)

Date: 18.SEP.2024 11:04:24

Date: 18.SEP.2024 11:04:16

Date: 18.SEP.2024 10:58:45

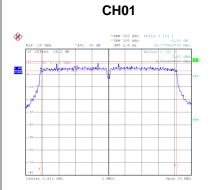


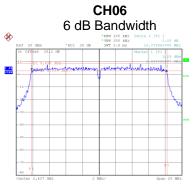
-70 ¥1

Date: 20.5EP.2024 18:23:24

%

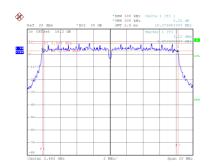
1 28

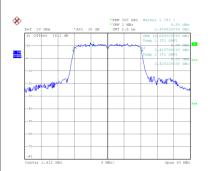



Date: 18.SEP.2024 10:58:53

Date: 18.SEP.2024 11:05:41

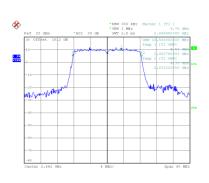
Test Mode TX G Mode									
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result				
01	2412	16.380	16.560	0.5	Complies				
06	2437	16.380	16.560	0.5	Complies				
11	2462	16.380	16.560	0.5	Complies				




Date: 18.SEP.2024 11:15:20

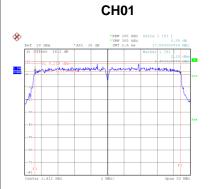
Date: 18.SEP.2024 11:15:27

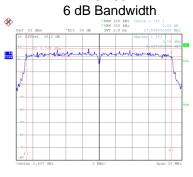
CH11

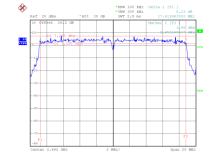


Date: 18.SEP.2024 11:34:31

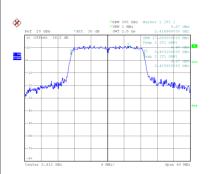
Date: 18.SEP.2024 11:36:23

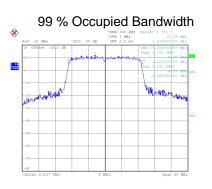



Date: 18.SEP.2024 11:13:41

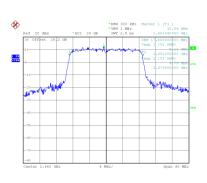

Test Mode TX N(HT20) Mode									
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result				
01	2412	17.580	17.680	0.5	Complies				
06	2437	17.600	17.680	0.5	Complies				
11	2462	17.620	17.680	0.5	Complies				

CH06





CH11


Date: 18.SEP.2024 11:40:28

Date: 18.SEP.2024 11:50:39

Date: 18.SEP.2024 11:50:47

Date: 18.SEP.2024 11:40:36

Date: 18.SEP.2024 11:47:50

Date: 18.SEP.2024 11:47:43