

TEST REPORT

Report No.: 8231EU010803W

Applicant: Shenzhen Rango Innovation Technology Co., Ltd.

Address: 3/F, block A, Coolpad building, Gaoxin North 1st Road,

Nanshan District, Shenzhen, Guangdong, China

Product Name: USB Wireless Transmitter

Model No.: GH02P2

Trademark: N/A

FCC ID: 2AYJI-GH02P2

Test Standard(s): 47 CFR Part 15 Subpart C

Date of Receipt: Jul. 08, 2024

Test Date: Jul. 08, 2024 – Jul. 19, 2024

Date of Issue: Sep. 13, 2024

ISSUED BY:

SHENZHEN EU TESTING LABORATORY LIMITE

Prepared by:

Reviewed and Approved by:

APPROVED

Mikey Zhu/ Engineer

Sally Zhang/ Manager

Page 2 of 33 Report No.: 8231EU010803W

Revision Record

Report Version Issued Date		Description	Status	
V0 Sep. 13, 2024		Original	Valid	

Table of Contents

1	COVE	ER PAGE	. 1
2	GENE	RAL INFORMATION	5
	2.2	APPLICANT INFORMATION	5 5
3	TEST	SUMMARY	7
	3.2	TEST STANDARDTEST VERDICTTEST LABORATORY	7
4	TEST	CONFIGURATION	8
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	TEST ENVIRONMENT TEST EQUIPMENT DESCRIPTION OF SUPPORT UNIT TEST MODE DESCRIPTION OF CALCULATION MEASUREMENT UNCERTAINTY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITION	9 9 9
5	TEST	ITEMS	11
		ANTENNA REQUIREMENT	11 11 11
		CONDUCTED EMISSION AT AC POWER LINE	
		5.2.1 Test Requirement 5.2.2 Test Setup Diagram 5.2.3 Test Procedure 5.2.4 Test Data	12 12
	5.3	DTS BANDWIDTH	15
		5.3.1 Test Requirement 5.3.2 Test Setup Diagram 5.3.3 Test Procedure 5.3.4 Test Data	15 15
	5.4	MAXIMUM CONDUCTED OUTPUT POWER	
		5.4.1 Test Requirement 5.4.2 Test Setup Diagram 5.4.3 Test Procedure 5.4.4 Test Data	16 17
	5.5	POWER SPECTRAL DENSITY	
		5.5.1 Test Requirement 5.5.2 Test Setup Diagram 5.5.3 Test Procedure 5.5.4 Test Data	18 18
	5.6	EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS (CONDUCTED)	
		5.6.1 Test Requirement 5.6.2 Test Setup Diagram 5.6.3 Test Procedure 5.6.4 Test Data	19 20

Report No.: 8231EU010803W

Page 4 of 33 Report No.: 8231EU010803W

5.7	BAND I	EDGE EMISSIONS (RESTRICTED FREQUENCY BANDS)	21
	5.7.1	Test Requirement	21
	5.7.2	Test Setup Diagram	
	5.7.3	Test Procedure	22
	5.7.4	Test Data	
5.8	RADIA	TED SPURIOUS EMISSION	24
	5.8.1	Test Requirement	24
	5.8.2	Test Setup Diagram	25
	5.8.3	Test Procedure	26
	5.8.4	Test Data	
NNEY A	TEST S	SETUP PHOTOS	32
		RNAL PHOTOS	
		NAL PHOTOS	
NNEYD			22

Page 5 of 33 Report No.: 8231EU010803W

2 General Information

2.1 Applicant Information

Applicant	Shenzhen Rango Innovation Technology Co., Ltd.
Address	3/F, block A, Coolpad building, Gaoxin North 1st Road, Nanshan District, Shenzhen, Guangdong, China

2.2 Manufacturer Information

Manufacturer Shenzhen Rango Innovation Technology Co., Ltd.	
Address	3/F, block A, Coolpad building, Gaoxin North 1st Road, Nanshan District, Shenzhen, Guangdong, China

2.3 Factory Information

Factory	Guangdong Kotion Electroacoustic Technology Co., Ltd
Address	Room 101, Block 1, No.18, 2nd Road, Sanjiang Industrial Zone, Hengli Town, Dongguan City, Guangdong Province, China

2.4 General Description of E.U.T.

Product Name	USB Wireless Transmitter			
Model No. Under Test	GH02P2			
List Model No.	N/A			
Description of Model differentiation	N/A			
Rating(s)	Input: 5.0VDC			
Product Type	☐ Mobile ☐ Portable			
,,	☐ Fix Location			
Test Sample No.	-1/1(Normal Sample)			
Hardware Version	N/A			
Software Version	N/A			
	1) The above information are declared by the applicant, EU-LAB is not responsible			
Remark	for the information accuracy provided by the applicant.			
	2) For a more detailed features description, please refer to the manufacturer's			
	specifications or the User's Manual.			

Page 6 of 33 Report No.: 8231EU010803W

2.5 Technical Information of E.U.T.

Technology Used	2.4G ISM Band (GFSK modulation)
roomiology cood	2.40 ISM Dana (GI SK Modulation)

The requirement for the following technical information of the EUT was tested in this report:

Technology	2.4G ISM Band (GFSK modulation)
Modulation Type	GFSK
Operating Frequency	2402-2480MHz
Number of Channel	40
Antenna Type	Ceramic Antenna
Antenna Gain(Peak)	1.5 dBi
Remark	The above information are declared by the applicant, EU-LAB is not responsible for the information accuracy provided by the applicant.

All channel was listed on the following table:

Channel	Freq. (MHz)								
00	2402	08	2418	16	2434	24	2450	32	2466
01	2404	09	2420	17	2436	25	2452	33	2468
02	2406	10	2422	18	2438	26	2454	34	2470
03	2408	11	2424	19	2440	27	2456	35	2472
04	2410	12	2426	20	2442	28	2458	36	2474
05	2412	13	2428	21	2444	29	2460	37	2476
06	2414	14	2430	22	2446	30	2462	38	2478
07	2416	15	2432	23	2448	31	2464	39	2480

Page 7 of 33 Report No.: 8231EU010803W

3 Test Summary

3.1 Test Standard

The tests were performed according to following standards:

No.	Identity	Document Title		
1	47 CFR Part 15, Subpart C	Intentional radiators of radio frequency equipment		
2	ANSI C63.10-2020	American National Standard for Testing Unlicensed Wireless Devices		
3	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules		

Remark:

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the emission/immunity should be checked to ensure compliance has been maintained.

3.2 Test Verdict

No.	Description	FCC Part No.	Channel	Verdict	Remark
1	Antenna Requirement	15.203	N/A	Pass	Note 1
2	Conducted Emission at AC Power Line	15.207	Low/Middle/High	Pass	
3	Occupied Bandwidth	15.247(a)(2)	Low/Middle/High	Pass	
4	Maximum Conducted Output Power	15.247(b)(3)	Low/Middle/High	Pass	
5	Power spectral density (PSD)	15.247(e)	Low/Middle/High	Pass	
6	Emissions in Non-restricted Frequency Bands (Conducted)	15.247(d)	Low/Middle/High	Pass	
7	Band Edge Emissions (Restricted frequency bands)	15.209 15.247(d)	Low/High	Pass	
8	Radiated Spurious Emission	15.209 15.247(d)	Low/Middle/High	Pass	

Note 1: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

3.3 Test Laboratory

Test Laboratory	Shenzhen EU Testing Laboratory Limited
Address	101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China
Designation Number	CN1368
Test Firm Registration Number	952583

Page 8 of 33 Report No.: 8231EU010803W

4 Test Configuration

4.1 Test Environment

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	30% to 60%	
Atmospheric Pressure	86 kPa to 106 kPa	
Temperature	NT (Normal Temperature)	+15°C to +35°C
Working Voltage of the EUT	NV (Normal Voltage)	5VDC for USB Port

4.2 Test Equipment

Conducted Emission at AC power line					
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	EE-004	2024/01/09	2025/01/08
EMI Test Receiver	Rohde & Schwarz	ESCI	EE-005	2024/01/09	2025/01/08
Test Software	Farad	EZ-EMC	EE-014	N.C.R	N.C.R

Radiated Emission and RF Test					
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
EMI Test Receiver	ROHDE & SCHWARZ	ESPI	EE-006	2024/01/09	2025/01/08
Bilog Broadband Antenna	SCHWARZBECK	VULB 9163	EE-007	2023/01/14	2026/01/13
Double Ridged Horn Antenna	A-INFOMW	LB-10180-NF	EE-008	2023/01/12	2026/01/11
Pre-amplifier	Agilent	8447D	EE-009	2024/01/09	2025/01/08
Pre-amplifier	Agilent	8449B	EE-010	2024/01/09	2025/01/08
MXA Signal Analyzer	Agilent	N9020A	EE-011	2024/01/09	2025/01/08
MXG RF Vector Signal Generator	Agilent	N5182A	EE-012	2024/01/09	2025/01/08
Test Software	Farad	EZ-EMC	EE-015	N.C.R	N.C.R
MIMO Power Measurement Module	TSTPASS	TSPS 2023R	EE-016	2024/01/09	2025/01/08
RF Test Software	TSTPASS	TS32893 V2.0	EE-017	N.C.R	N.C.R
Wideband Radio Communication Tester	ROHDE & SCHWARZ	CMW500	EE-402	2024/02/15	2025/02/14
Loop Antenna	TESEQ	HLA6121	EE-403	2024/02/15	2025/02/14
MXG RF Analog Signal Generator	Agilent	N5181A	EE-406	2024/02/15	2025/02/14
DRG Horn Antenna	SCHWARZBECK	BBHA 9170	EE-410	2024/02/15	2025/02/14
Pre-amplifier	SKET	LNPA-1840-50	EE-411	2024/02/15	2025/02/14
Constant Temperature Humidity Chamber	Guangxin	GXP-401	ES-002	2023/07/31	2024/07/30
Power Sensor	ROHDE&SCHWAR ZN	NRP18S	ES-052	2024/02/15	2025/02/14

Page 9 of 33 Report No.: 8231EU010803W

4.3 Description of Support Unit

No.	Title	Manufacturer	Model No.	Serial No.
1	Notebook	LENOVO	Xiaoxin	

4.4 Test Mode

No.	Test Modes	Description
TM1	TX-GFSK	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

4.5 Description of Calculation

4.5.1. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

4.5.2. Disturbance Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

Page 10 of 33 Report No.: 8231EU010803W

4.6 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test Item	Measurement Uncertainty
Conducted Emission	2.64 dB
Occupied Channel Bandwidth	2.8 %
RF output power, conducted	0.68 dB
Power Spectral Density, conducted	1.37 dB
Unwanted Emissions, conducted	1.84 dB
Radiated Emission (30MHz- 1GHz)	Ur = 2.70 dB (Horizontal)
	Ur = 2.70 dB (Vertical)
Radiated Emission	Ur = 3.50 dB (Horizontal)
(1GHz- 18GHz)	Ur = 3.50 dB (Vertical)
Radiated Emission	Ur = 5.15 dB (Horizontal)
(18GHz- 40GHz)	Ur = 5.24 dB (Vertical)
Temperature	0.8°C
Humidity	4%

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Condition

None.

Page 11 of 33 Report No.: 8231EU010803W

5 Test Items

5.1 Antenna requirement

5.1.1 Test Requirement

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Test Requirement

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

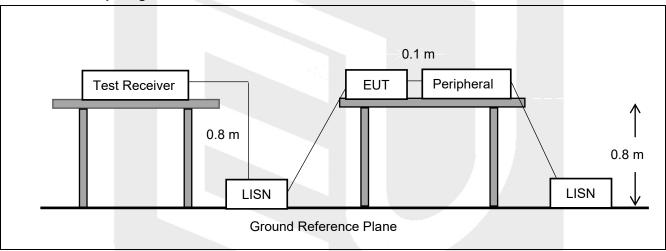
The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	An embedded-in antenna design is used.

Reference Documents	Item
Photo	Please refer to the EUT Photo documents.

5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.


Page 12 of 33 Report No.: 8231EU010803W

5.2 Conducted Emission at AC Power Line

5.2.1 Test Requirement

Test Requirement	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN).			
	Frequency of emission (MHz)	Conducted limit (dBµV)		
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
Test Limit	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of the	e frequency.		
Test Method	ANSI C63.10-2020 section 6.2			

5.2.2 Test Setup Diagram

5.2.3 Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipment. Both sides of AC line are investigated to find out the maximum conducted emission according to the test standard regulations during conducted emission measurement.

The bandwidth of the field strength meter (R&S Test Receiver ESCI) is set at 9kHz in 150kHz~30MHz.

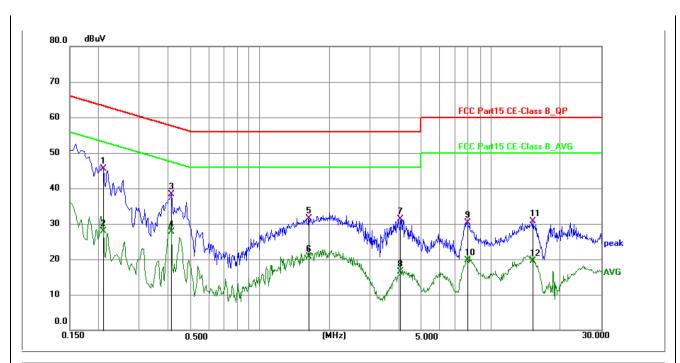
The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.2.4 Test Data

PASS.

Only the worst case data was showed in the report, please to see the following pages.



Page 13 of 33 Report No.: 8231EU010803W

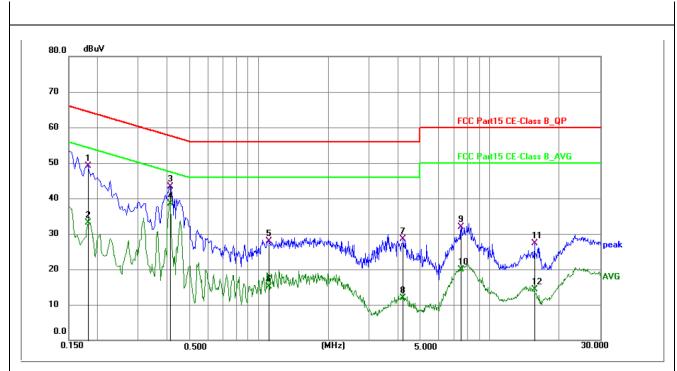
Conducted Emission Test Data

Test Site: Shielded Room #1
Test Mode: TM1/ CH Middle

Comments: Live Line

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1 *	0.2085	35.62	9.97	45.59	63.26	-17.67	QP	Р	
2	0.2085	17.99	9.97	27.96	53.26	-25.30	AVG	Р	
3	0.4110	28.27	10.02	38.29	57.63	-19.34	QP	Ы	
4	0.4110	17.66	10.02	27.68	47.63	-19.95	AVG	Р	
5	1.6350	21.57	10.03	31.60	56.00	-24.40	QP	J	
6	1.6350	10.77	10.03	20.80	46.00	-25.20	AVG	Р	
7	4.0739	21.25	10.04	31.29	56.00	-24.71	QP	J	
8	4.0739	6.48	10.04	16.52	46.00	-29.48	AVG	П	
9	7.8945	20.31	10.00	30.31	60.00	-29.69	QP	Р	
10	7.8945	9.65	10.00	19.65	50.00	-30.35	AVG	П	
11	15.1620	20.75	9.97	30.72	60.00	-29.28	QP	Р	
12	15.1620	9.47	9.97	19.44	50.00	-30.56	AVG	Р	

Note: Level = Reading + Factor Margin = Level - Limit



Page 14 of 33 Report No.: 8231EU010803W

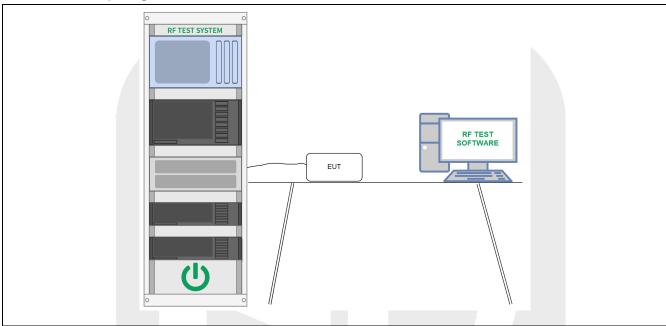
Conducted Emission Test Data

Test Site: Shielded Room #1
Test Mode: TM1/ CH Middle

Comments: Neutral Line

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1815	39.21	9.99	49.20	64.42	-15.22	QP	Р	
2	0.1815	23.14	9.99	33.13	54.42	-21.29	AVG	Р	
3	0.4110	33.36	10.04	43.40	57.63	-14.23	QP	Р	
4 *	0.4110	28.42	10.04	38.46	47.63	-9.17	AVG	Ъ	
5	1.1040	17.91	10.06	27.97	56.00	-28.03	QP	Р	
6	1.1040	4.99	10.06	15.05	46.00	-30.95	AVG	П	
7	4.2090	18.46	10.05	28.51	56.00	-27.49	QP	Р	
8	4.2090	1.89	10.05	11.94	46.00	-34.06	AVG	П	
9	7.4985	21.79	10.03	31.82	60.00	-28.18	QP	Р	
10	7.4985	9.80	10.03	19.83	50.00	-30.17	AVG	Р	
11	15.5535	17.35	10.00	27.35	60.00	-32.65	QP	Р	
12	15.5535	4.24	10.00	14.24	50.00	-35.76	AVG	Р	

Note: Level = Reading + Factor Margin = Level - Limit


Page 15 of 33 Report No.: 8231EU010803W

5.3 DTS Bandwidth

5.3.1 Test Requirement

Test Requirement	Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method	ANSI C63.10-2020 section 11.8

5.3.2 Test Setup Diagram

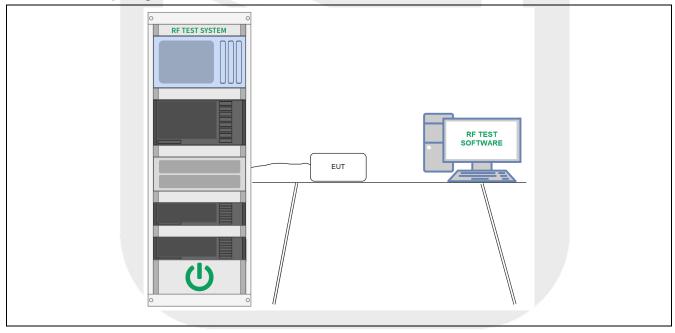
5.3.3 Test Procedure

- a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
- b) Set the VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.4 Test Data

PASS.

Please refer to Annex D for details.


Page 16 of 33 Report No.: 8231EU010803W

5.4 Maximum Conducted Output Power

5.4.1 Test Requirement

Test Requirement	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method	ANSI C63.10-2020 section 11.9

5.4.2 Test Setup Diagram

Page 17 of 33 Report No.: 8231EU010803W

5.4.3 Test Procedure

a) Maximum peak conducted output power

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

Set the RBW ≥ DTS bandwidth.

Set VBW \geq 3 x RBW.

Set span ≥ 3 x RBW

Sweep time = auto couple.

Detector = peak.

Trace mode = max hold.

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level.

b) Measurements of duty cycle

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission.

Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.

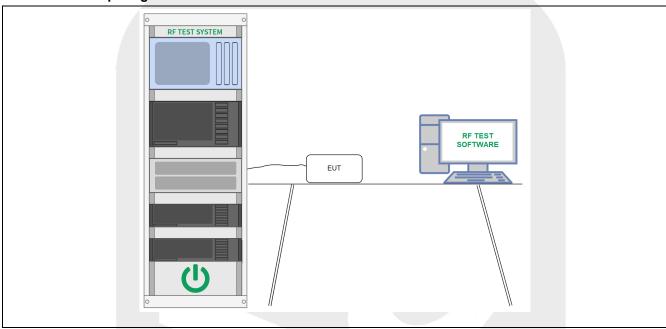
Set VBW ≥ RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

5.4.4 Test Data

PASS.

Please refer to Annex D for details.


Page 18 of 33 Report No.: 8231EU010803W

5.5 Power Spectral Density

5.5.1 Test Requirement

Test Requirement	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method	ANSI C63.10-2020 section 11.10

5.5.2 Test Setup Diagram

5.5.3 Test Procedure

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.

Set the VBW \geq 3 RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

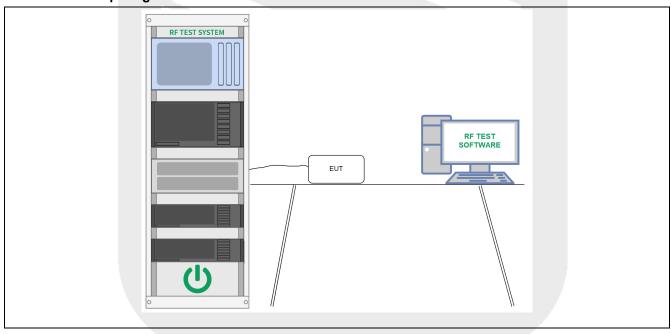
Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.5.4 Test Data

PASS.

Please refer to Annex D for details.


Page 19 of 33 Report No.: 8231EU010803W

5.6 Emissions in Non-restricted Frequency Bands (Conducted)

5.6.1 Test Requirement

Test Requirement	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method	ANSI C63.10-2020 section 11.11

5.6.2 Test Setup Diagram

Page 20 of 33 Report No.: 8231EU010803W

5.6.3 Test Procedure

The following procedures may be used to determine the peak or average field strength or power of an unwanted emission that is within 2 MHz of the authorized band edge. If a peak detector is utilized, use the procedure described in 13.2.1. Use the procedure described in 13.2.2 when using an average detector and the EUT can be configured to transmit continuously (i.e., duty cycle \geq 98%). Use the procedure described in 13.2.3 when using an average detector and the EUT cannot be configured to transmit continuously but the duty cycle is constant (i.e., duty cycle variations are less than \pm 2 percent). Use the procedure described in 13.2.4 when using an average detector for those cases where the EUT cannot be configured to transmit continuously and the duty cycle is not constant (duty cycle variations equal or exceed 2 percent).

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used.

Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

Set span to 2 MHz

RBW = 100 kHz.

VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweep to continue until the trace stabilizes (required measurement time may increase for low duty cycle applications)

Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency (femission) \pm 0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by femission \pm 0.5 MHz.

Standard method(The 99% OBW of the fundamental emission is without 2 MHz of the authorized band):

Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.

Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

Attenuation: Auto (at least 10 dB preferred).

Sweep time: Coupled.

Resolution bandwidth: 100 kHz. Video bandwidth: 300 kHz.

Detector: Peak. Trace: Max hold.

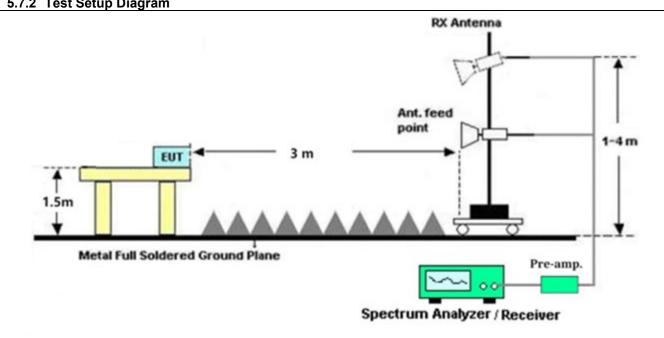
5.6.4 Test Data

PASS.

Please refer to Annex D for details.

Page 21 of 33 Report No.: 8231EU010803W

5.7 Band Edge Emissions (Restricted frequency bands)


5.7.1 Test Requirement

5.7.1 Test Requirem		-ii		-f						
	The state of the s	nissions which fall in the		•						
Test Requirement	* *	15.205(a), must also comply with the radiated emission limits specified in §								
	. , , , ,	15.209(a)(see § 15.205(c)).								
	Frequency (MHz)	Field strength		Measurement						
		(microvolts/mete	r)	distance						
				(meters)						
	0.009-0.490	2400/F(kHz)		300						
	0.490-1.705	24000/F(kHz)		30						
	1.705-30.0	30		30						
	30-88	100 **		3						
	88-216	150 **		3						
	216-960	200 **		3						
	Above 960	500		3						
		n paragraph (g), fundam								
	radiators operating und	ler this section shall not	be located in th	e frequency bands						
	54-72 MHz, 76-88 MHz	z, 174-216 MHz or 470-8	306 MHz. Howe	ver, operation within						
	these frequency bands	is permitted under othe	r sections of this	s part, e.g.,						
	§§ 15.231 and 15.241.	•		, , ,						
	33 10.20 1 0.12 1 1.1									
	Restricted frequency b	Destricted from your over hearder								
	MHz	MHz	MHz	GHz						
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
	0.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
Test Limit	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
	6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
	6.31175-6.31225	123-138	2200-2300	14.47-14.5						
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
	8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
	0.27625.0.20675	156 7 156 0	2600 2000	22.04.22.42						
	8.37625-8.38675 8.41425-8.41475	156.7-156.9 162.0125-167.17	2690-2900 3260-3267	22.01-23.12 23.6-24.0						
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
	12.57675-12.57725	322-335.4	3600-4400	33.13 33.3						
	13.36-13.41									
	Note:									
	1) Field Strength (dB μ V/m) = 20*log[Field Strength (μ V/m)].									
	2) In the emission tables above, the tighter limit applies at the band edges.									
	,	3) For Above 1000 MHz, the emission limit in this paragraph is based on								
	,	measurement instrumentation employing an average detector, measurement using								
		, , , ,								
		instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.								
		_	ormonics:							
		z, limit field strength of h								
	= ; /	ind 74dBuV/m@3m (PK).							
Test Method	ANSI C63.10-2020 sec	ANSI C63.10-2020 section 6.6.4								

Tel: (86)-755-2357-9714 Email: Service@eu-test.com

Page 22 of 33 Report No.: 8231EU010803W

5.7.2 Test Setup Diagram

5.7.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold.

5.7.4 Test Data

PASS.

Please refer to the following pages.

Page 23 of 33 Report No.: 8231EU010803W

Band Edge Emissions (Restricted frequency bands):

Test M	lode: TX-GFS	SK		CH Low: 2402 MHz				
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
Н	2310.00	45.63	-2.81	42.82	74.00	-31.18	PK	PASS
Н	2390.00	47.68	-2.69	44.99	74.00	-29.01	PK	PASS
Н	**2400.00	61.40	-2.68	58.72	74.00	-15.28	PK	PASS
V	2310.00	45.34	-2.81	42.53	74.00	-31.47	PK	PASS
V	2390.00	48.86	-2.69	46.17	74.00	-27.83	PK	PASS
V	**2400.00	65.02	-2.68	62.34	74.00	-11.66	PK	PASS
Н	2310.00	34.39	-2.81	31.58	54.00	-22.42	AV	PASS
Н	2390.00	38.63	-2.69	35.94	54.00	-18.06	AV	PASS
Н	**2400.00	46.28	-2.68	43.60	54.00	-10.40	AV	PASS
V	2310.00	31.67	-2.81	28.86	54.00	-25.14	AV	PASS
V	2390.00	35.52	-2.69	32.83	54.00	-21.17	AV	PASS
V	**2400.00	49.31	-2.68	46.63	54.00	-7.37	AV	PASS

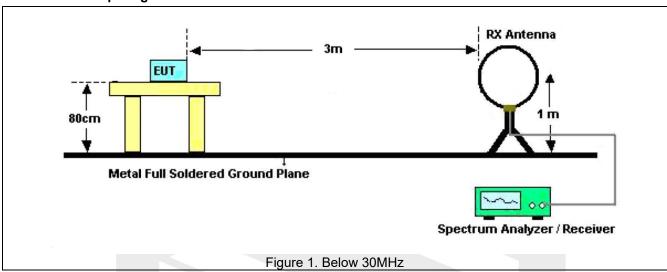
Test N	/lode: TX-GFS	SK		CH High: 2480 MHz				
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
Н	**2483.50	47.59	-2.56	45.03	74.00	-28.97	PK	PASS
Н	2500.00	48.79	-2.54	46.25	74.00	-27.75	PK	PASS
V	**2483.50	47.97	-2.56	45.41	74.00	-28.59	PK	PASS
V	2500.00	49.16	-2.54	46.62	74.00	-27.38	PK	PASS
Н	**2483.50	40.07	-2.56	37.51	54.00	-16.49	AV	PASS
Н	2500.00	38.95	-2.54	36.41	54.00	-17.59	AV	PASS
V	**2483.50	39.80	-2.56	37.24	54.00	-16.76	AV	PASS
V	2500.00	41.28	-2.54	38.74	54.00	-15.26	AV	PASS

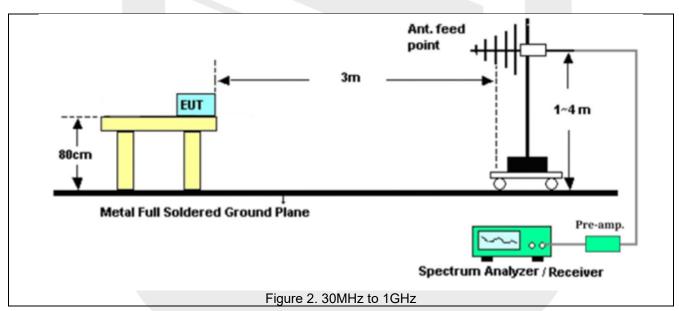
Remark

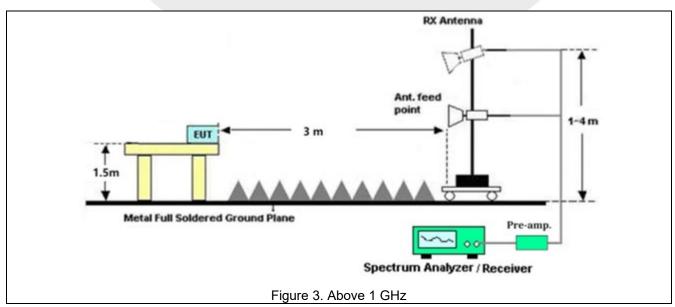
1. Emission Level = Reading + Factor, Margin= Emission Level – Limit.

Page 24 of 33 Report No.: 8231EU010803W

5.8 Radiated Spurious Emission


5.8.1 Test Requirement


	In addition, radiated emi	ssions which fall in the restricted	d bands, as defined in §							
Test Requirement	15.205(a), must also cor	nply with the radiated emission	limits specified in §							
	15.209(a)(see § 15.205(c)).									
	Frequency (MHz)	Field strength	Measurement							
		(microvolts/meter)	distance							
			(meters)							
	0.009-0.490	2400/F(kHz)	300							
	0.490-1.705	24000/F(kHz)	30							
	1.705-30.0	30	30							
	30-88	100 **	3							
	88-216	150 **	3							
	216-960	200 **	3							
	Above 960	500	3							
Test Limit	54-72 MHz, 76-88 MHz, these frequency bands is §§ 15.231 and 15.241. Note: 1) Field Strength (dBμV/2) In the emission tables 3) For Above 1000 MHz measurement instrumen instrumentation with a permaximum permitted aver	r this section shall not be located 174-216 MHz or 470-806 MHz. In permitted under other sections (μV/) a above, the tighter limit applies the emission limit in this parage tation employing an average details detector function, corresportage limit. I limit field strength of harmonics	However, operation within s of this part, e.g., m)]. at the band edges. raph is based on etector, measurement using a high street of the control of the con							
	54dBuV/m@3m (AV) an									
Test Method	ANSI C63.10-2020 secti	on 6.6.4								



5.8.2 Test Setup Diagram

SHENZHEN EU TESTING LABORATORY LIMITED

Report No.: 8231EU010803W

Page 26 of 33 Report No.: 8231EU010803W

5.8.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power.

Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

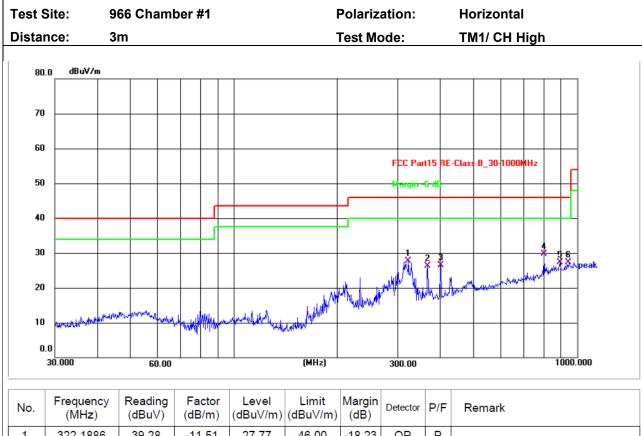
RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

5.8.4 Test Data

PASS.

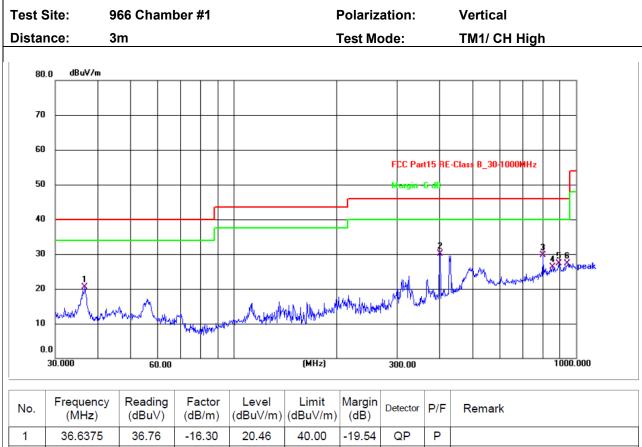

Please to see the following pages.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

For test of 30MHz-1GHz, during the test, pre-scan all modes, only the worst case is recorded in the report. For test of 1GHz- 25GHz, during the test, pre-scan all test modes, only the worst case is recorded in the report.

Page 27 of 33 Report No.: 8231EU010803W

Radiated Emission Test Data (30-1000MHz)



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	322.1886	39.28	-11.51	27.77	46.00	-18.23	QP	Р	
2	366.8231	36.93	-10.57	26.36	46.00	-19.64	QP	Ъ	
3	400.4319	36.44	-9.91	26.53	46.00	-19.47	QP	Р	
4 *	801.7863	33.62	-3.94	29.68	46.00	-16.32	QP	Р	
5	890.7278	29.63	-2.27	27.36	46.00	-18.64	QP	Դ	
6	945.4399	28.65	-1.36	27.29	46.00	-18.71	QP	Ъ	

Note: Level = Reading + Factor Margin = Level - Limit

Page 28 of 33 Report No.: 8231EU010803W

Radiated Emission Test Data (30-1000MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	36.6375	36.76	-16.30	20.46	40.00	-19.54	QP	Р	
2 *	400.4319	39.94	-9.91	30.03	46.00	-15.97	QP	J	
3	801.7863	33.62	-3.94	29.68	46.00	-16.32	QP	J	
4	854.0247	29.34	-3.10	26.24	46.00	-19.76	QP	Р	
5	890.7278	29.87	-2.51	27.36	46.00	-18.64	QP	Р	
6	945.4399	28.87	-1.58	27.29	46.00	-18.71	QP	Р	

Note: Level = Reading + Factor Margin = Level - Limit

Page 29 of 33 Report No.: 8231EU010803W

Radiated Spurious Emission (1GHz-25GHz)

Test Mode: TX-GFSK					CH Low: 2402 MHz				
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result	
V	4804.79	42.59	4.68	47.27	74.00	-26.73	PK	PASS	
V	7206.32	33.02	9.84	42.86	74.00	-31.14	PK	PASS	
V	9608.89	29.97	13.17	43.14	74.00	-30.86	PK	PASS	
V	12010.58	*	*	*	74.00	*	PK	PASS	
V	14412.22	*	*	*	74.00	*	PK	PASS	
V	16814.79	*	*	*	74.00	*	PK	PASS	
Н	4804.28	41.81	4.68	46.49	74.00	-27.52	PK	PASS	
Н	7206.40	35.73	9.84	45.57	74.00	-28.44	PK	PASS	
Н	9608.87	28.48	13.17	41.65	74.00	-32.35	PK	PASS	
Н	12010.99	*	*	*	74.00	*	PK	PASS	
Н	14412.65	*	*	*	74.00	*	PK	PASS	
Н	16814.97	*	*	*	74.00	*	PK	PASS	
V	4804.15	31.50	4.68	36.18	54.00	-17.83	AV	PASS	
V	7206.82	22.47	9.84	32.31	54.00	-21.69	AV	PASS	
V	9608.64	18.49	13.17	31.66	54.00	-22.34	AV	PASS	
V	12010.82	*	*	*	54.00	*	AV	PASS	
V	14412.41	*	*	*	54.00	*	AV	PASS	
V	16814.12	*	*	*	54.00	*	AV	PASS	
Н	4804.11	31.76	4.68	36.44	54.00	-17.56	AV	PASS	
Н	7206.40	22.37	9.84	32.21	54.00	-21.79	AV	PASS	
Н	9608.87	18.55	13.17	31.72	54.00	-22.29	AV	PASS	
Н	12010.99	*	*	*	54.00	*	AV	PASS	
Н	14412.65	*	*	*	54.00	*	AV	PASS	
Н	16814.97	*	*	*	54.00	*	AV	PASS	

Remark:

^{1.} Emission Level = Reading + Factor, Margin= Emission Level – Limit.

^{2.} "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Page 30 of 33 Report No.: 8231EU010803W

Radiated Spurious Emission (1GHz-25GHz)

Test Mode: TX-GFSK					CH Middle: 2440 MHz			
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
V	4880.62	42.82	4.92	47.74	74.00	-26.26	PK	PASS
V	7320.09	33.88	9.83	43.71	74.00	-30.30	PK	PASS
V	9760.30	28.42	13.22	41.64	74.00	-32.36	PK	PASS
V	12200.84	*	*	*	74.00	*	PK	PASS
V	14640.58	*	*	*	74.00	*	PK	PASS
V	17080.93	*	*	*	74.00	*	PK	PASS
Н	4880.93	41.15	4.92	46.07	74.00	-27.93	PK	PASS
Н	7320.00	35.71	9.83	45.54	74.00	-28.46	PK	PASS
Н	9760.22	29.28	13.22	42.50	74.00	-31.51	PK	PASS
Н	12200.50	*	*	*	74.00	*	PK	PASS
Н	14640.90	*	*	*	74.00	*	PK	PASS
Н	17080.05	*	*	*	74.00	*	PK	PASS
V	4880.69	31.97	4.92	36.89	54.00	-17.12	AV	PASS
V	7320.12	24.69	9.83	34.52	54.00	-19.48	AV	PASS
V	9760.37	17.51	13.22	30.73	54.00	-23.28	AV	PASS
V	12200.73	*	*	*	54.00	*	AV	PASS
V	14640.80	*	*	*	54.00	*	AV	PASS
V	17080.51	*	*	*	54.00	*	AV	PASS
Н	4880.93	32.56	4.92	37.48	54.00	-16.53	AV	PASS
Н	7320.00	22.15	9.83	31.98	54.00	-22.02	AV	PASS
Н	9760.22	19.77	13.22	32.99	54.00	-21.01	AV	PASS
Н	12200.50	*	*	*	54.00	*	AV	PASS
Н	14640.90	*	*	*	54.00	*	AV	PASS
Н	17080.05	*	*	*	54.00	*	AV	PASS

Remark:

Tel: (86)-755-2357-9714 Email: Service@eu-test.com

^{1.} Emission Level = Reading + Factor, Margin= Emission Level – Limit.

^{2. &}quot;*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Page 31 of 33 Report No.: 8231EU010803W

Radiated Spurious Emission (1GHz-25GHz)

Test Mode: TX-GFSK					CH High: 2480 MHz				
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result	
V	4960.65	42.57	5.17	47.74	74.00	-26.26	PK	PASS	
V	7440.13	33.84	9.83	43.67	74.00	-30.34	PK	PASS	
V	9920.51	30.36	13.27	43.63	74.00	-30.38	PK	PASS	
V	12400.45	*	*	*	74.00	*	PK	PASS	
V	14880.33	*	*	*	74.00	*	PK	PASS	
V	17360.11	*	*	*	74.00	*	PK	PASS	
Н	4960.66	40.54	5.17	45.71	74.00	-28.30	PK	PASS	
Н	7440.11	34.34	9.83	44.17	74.00	-29.84	PK	PASS	
Н	9920.03	29.53	13.27	42.80	74.00	-31.21	PK	PASS	
Н	12400.81	*	*	*	74.00	*	PK	PASS	
Н	14880.41	*	*	*	74.00	*	PK	PASS	
Н	17360.49	*	*	*	74.00	*	PK	PASS	
V	4960.18	30.20	5.17	35.37	54.00	-18.63	AV	PASS	
V	7440.35	22.82	9.83	32.65	54.00	-21.35	AV	PASS	
V	9920.82	18.94	13.27	32.21	54.00	-21.80	AV	PASS	
V	12400.71	*	*	*	54.00	*	AV	PASS	
V	14880.84	*	*	*	54.00	*	AV	PASS	
V	17360.10	*	*	*	54.00	*	AV	PASS	
Н	4960.66	31.06	5.17	36.23	54.00	-17.77	AV	PASS	
Н	7440.11	23.97	9.83	33.80	54.00	-20.20	AV	PASS	
Н	9920.03	19.48	13.27	32.75	54.00	-21.25	AV	PASS	
Н	12400.81	*	*	*	54.00	*	AV	PASS	
Н	14880.41	*	*	*	54.00	*	AV	PASS	
Н	17360.49	*	*	*	54.00	*	AV	PASS	

Remark:

^{1.} Emission Level = Reading + Factor, Margin= Emission Level – Limit.

^{2. &}quot;*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Page 32 of 33 Report No.: 8231EU010803W

ANNEX A TEST SETUP PHOTOS

Please refer to the document "8231EU010803W-AA.PDF"

ANNEX B EXTERNAL PHOTOS

Please refer to the document "8231EU010803W-AB.PDF"

ANNEX C INTERNAL PHOTOS

Please refer to the document "8231EU010803W-AC.PDF"

ANNEX D TEST DATA

Please refer to the document "8231EU010803W-AD.PDF"

Page 33 of 33 Report No.: 8231EU010803W

STATEMENT

- 1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
- 2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
- 3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
- 4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
- 5. The test data and results are only valid for the tested samples provided by the customer.
- 6. This report shall not be partially reproduced without the written permission of the laboratory.
- 7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--- End of Report ---