Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 C S Client Sporton - SZ (Auden) Certificate No: DAE4-1338 Nov16 ## CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1338 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 22, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)"C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 09-Sep-16 (No:19065) | Sep-17 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 05-Jan-16 (in house check) | In house check: Jan-17 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 05-Jan-16 (in house check) | In house check: Jan-17 | Calibrated by: Name **Function** Signature Approved by: Adrian Gehring Technician Deputy Technical Manager Fin Bomholt Issued: November 22, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienat Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | | | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.674 ± 0.02% (k=2) | 404.250 ± 0.02% (k=2) | 404.207 ± 0.02% (k=2) | | Low Range | 3.97238 ± 1.50% (k=2) | 3.97905 ± 1.50% (k=2) | 3.97471 ± 1.50% (k=2) | ### **Connector Angle** | nnector Angle to be used in DASY system | 1 60 0 0 1 4 0 1 | |---|------------------| | Aniesto: Wildle to be asea ill DVO L Systelli | 1 0/01-41- | | | 04.0 1 | | | | # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199996.77 | 0.71 | 0.00 | | Channel X | + Input | 20002.26 | 0.91 | 0.00 | | Channel X | - Input | -20000.38 | 0.70 | -0.00 | | Channel Y | + Input | 199996.98 | 1.32 | 0.00 | | Channel Y | + Input | 19999.89 | -1.32 | -0.01 | | Channel Y | - Input | -20003.36 | -2.29 | 0.01 | | Channel Z | + Input | 199997.81 | 1.86 | 0.00 | | Channel Z | + Input | 20001.76 | 0.52 | 0.00 | | Channel Z | - Input | -20002.73 | -1.59 | 0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.72 | 0.37 | 0.02 | | Channel X | + Input | 201.83 | 0.23 | 0.11 | | Channel X | - Input | -197.67 | 0.66 | -0.33 | | Channel Y | + Input | 2001.35 | -0.07 | -0.00 | | Channel Y | + Input | 200.56 | -1.07 | -0.53 | | Channel Y | - Input | -199.76 | -1.41 | 0.71 | | Channel Z | + Input | 2001.21 | -0.12 | -0.01 | | Channel Z | + Input | 200.89 | -0.61 | -0.30 | | Channel Z | - Input | -199.38 | -0.88 | 0.44 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 7.57 | 6.75 | | | - 200 | -5.52 | -6.95 | | Channel Y | 200 | -21.81 | -21.79 | | | - 200 | 20.05 | 19.45 | | Channel Z | 200 | -2.35 | -2.47 | | | - 200 | 0.80 | 0.82 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 2.79 | -3.02 | | Channel Y | 200 | 8.38 | <u>.</u> | 5.71 | | Channel Z | 200 | 9.27 | 5.72 | - | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measurin | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16201 | 15043 | | Channel Y | 16281 | 15799 | | Channel Z | 16108 | 15449 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 1.34 | 0.13 | 2.66 | 0.51 | | Channel Y | -0.17 | -1.21 | 1.45 | 0.49 | | Channel Z | -0.51 | -1.57 | 0.55 | 0.45 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com 1303 #### IMPORTANT NOTICE #### USAGE OF THE DAE 4 The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures. Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for
measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton - SZ (Auden) Accreditation No.: SCS 0108 Certificate No: DAE4-1303 Nov16 #### CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1303 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 22, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID II | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 09-Sep-16 (No:19065) | Sep-17 | | Secondary Standards | 10 # | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 05-Jan-16 (in house check) | In house check: Jan-17 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 05-Jan-16 (in house check) | In house check: Jan-17 | Name Function Signature Adrian Gehring Technician A Gelov Approved by: Fin Bomhott Deputy Technical Manager Issued: November 22, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Calibrated by: #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughauestrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1303_Nov16 Page 2 of 5 ## **DC Voltage Measurement** Low Range: A/D - Converter Resolution nominal High Range: 1I 1LSB = 1LSB = $6.1 \mu V$, 61 nV , full range = -1 full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | | 2 | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.606 ± 0.02% (k=2) | 403.476 ± 0.02% (k=2) | 404.919 ± 0.02% (k=2) | | Low Range | 3.96607 ± 1.50% (k=2) | 3.99309 ± 1.50% (k=2) | 4.01584 ± 1.50% (k=2) | ### **Connector Angle** | 1 | | | |----|--|----------| | | Connector Angle to be used in DASY system | 35.5°±1° | | ٠, | in the second of | | Certificate No: DAE4-1303_Nov16 ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 200033.27 | -3.37 | -0.00 | | Channel X | + Input | 20005.30 | -0.07 | -0.00 | | Channel X | - Input | -20004.41 | 0.82 | -0.00 | | Channel Y | + Input | 200032.45 | -3.99 | -0.00 | | Channel Y | + Input | 20004.24 | -0.94 | -0.00 | | Channel Y | - Input | -20006.06 | -0.71 | 0.00 | | Channel Z | + Input | 200036.33 | -0.22 | -0.00 | | Channel Z | + Input | 20003.18 | -2.03 | -0.01 | | Channel Z | - Input | -20006.39 | -1.04 | 0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.51 | -0.05 | -0.00 | | Channel X | + Input | 201.95 | 0.53 | 0.26 | | Channel X | - Input | -197.81 | 0.55 | -0.28 | | Channel Y | + Input | 2000.90 | -0.50 | -0.03 | | Channel Y | + Input | 200.67 | -0.72 | -0.36 | | Channel Y | - Input | -199.08 | -0.50 | 0.25 | | Channel Z | + Input | 2002.13 | 0.75 | 0.04 | | Channel Z | + Input | 201.06 | -0.23 | -0.11 | | Channel Z | - Input | -200.21 | -1.59 | 0.80 | #### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 17.00 | 15.49 | | | - 200 | -3.45 | -5.04 | | Channel Y | 200 | 6.40 | 5.76 | | - | - 200
| -7.38 | -7.65 | | Channel Z | 200 | -2.14 | -1.80 | | ``` | - 200 | -2.12 | -1.86 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.16 | -4.78 | | Channel Y | 200 | 7.83 | <u>.</u> | 1.39 | | Channel Z | 200 | 9.43 | 5.25 | - | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | , | | | |-----------|------------------|-----------------|--| | | High Range (LSB) | Low Range (LSB) | | | Channel X | 15919 | 16679 | | | Channel Y | 15630 | 16907 | | | Channel Z | 16103 | 14029 | | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.32 | -0.90 | 1.62 | 0.50 | | Channel Y | -0.88 | -2.56 | 0.01 | 0.41 | | Channel Z | -1.07 | -2.44 | 0.01 | 0.50 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218 Http://www.chinattl.cn E-mail: cttl@chinattl.com Sporton International INC Client: Certificate No: Z17-97154 ## ANDERVANION (CERTIFIC CATE Object DAE4 - SN: 1437 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: September 15, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 27-Jun-17 (CTTL, No.J17X05859) | June-18 | | | | | | Name **Function** Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Certificate No: Z17-97154 Qi Dianyuan SAR Project Leader Issued: September 18, 2017 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: Certificate No: Z17-97154 DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Page 2 of 3 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, 61nV, full range = -100...+300 mV 1LSB = full range = -1.....+3mV Low Range: DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | | |---------------------|-----------------------|-----------------------|-----------------------|--| | High Range | 403.992 ± 0.15% (k=2) | 403.520 ± 0.15% (k=2) | 403.933 ± 0.15% (k=2) | | | Low Range | 3.95088 ± 0.7% (k=2) | 3.93780 ± 0.7% (k=2) | 3.90364 ± 0.7% (k=2) | | ### **Connector Angle** | Connector Angle to be used in DASY system | 63.5° ± 1 ° | |---|-------------| | Connector / mg/c to to | | Page 3 of 3 Certificate No: Z17-97154 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Ac C Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-SZ (Auden) Certificate No: EX3-3958 Dec16 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3958 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: December 12, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID: | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | D6-Apr-16 (No. 217-D2288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 05-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 05-Apr-16 (No. 217-02293) | Apr-17 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | 10 | Check Date (in house) | Scheduled Check | | Power meter E44198 | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | | | | | | Name Function Signature Calibrated by: Lelf Klysner Lisboratory Technician Serf III Approved by: Katja Pokovic Technical Manager Issued: December 12, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeoghausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Glossary: TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point DCP CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software
versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). EX3DV4 - SN:3958 December 12, 2016 # Probe EX3DV4 SN:3958 Manufactured: August 6, 2013 Calibrated: December 12, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) December 12, 2016 EX3DV4-SN:3958 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3958 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.50 | 0.45 | 0.53 | ± 10.1 % | | DCP (mV) ^B | 100.5 | 99.9 | 98.9 | | #### Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [⊏]
(k=2) | |---|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW 1 | Х | 0.0 | 0.0 | 1.0 | 0.00 | 159.7 | ±2.5 % | | 31 | | Υ | 0.0 | 0.0 | 1.0 | | 150.0 | | | 1 | | Z | 0.0 | 0.0 | 1.0 | | 156.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3958 December 12, 2016 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3958 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^ć | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.85 | 10.85 | 10.85 | 0.59 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.62 | 10.62 | 10.62 | 0.49 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.33 | 10.33 | 10.33 | 0.27 | 1.19 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.21 | 9.21 | 9.21 | 0.36 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.82 | 8.82 | 8.82 | 0.42 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.58 | 8.58 | 8.58 | 0.44 | 0.80 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.53 | 8.53 | 8.53 | 0.39 | 0.80 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.15 | 8.15 | 8.15 | 0.44 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.84 | 7.84 | 7.84 | 0.38 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.69 | 7.69 | 7.69 | 0.38 | 0.93 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.30 | 7.30 | 7.30 | 0.35 | 1.10 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.72 | 5.72 | 5.72 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.94 | 4.94 | 4.94 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 5.11 | 5.11 | 5.11 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Page 5 of 11 December 12, 2016 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3958 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.29 | 10.29 | 10.29 | 0.49 | 0.82 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.34 | 10.34 | 10.34 | 0.43 | 0.85 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.58 | 8.58 | 8.58 | 0.38 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.18 | 8.18 | 8.18 | 0.32 | 0.94 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 8.02 | 8.02 | 8.02 | 0.37 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.72 | 7.72 | 7.72 | 0.42 | 0.80 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.62 | 7.62 | 7.62 | 0.36 | 0.80 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.03 | 7.03 | 7.03 | 0.30 | 1.20 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 4.79 | 4.79 | 4.79 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.91 | 3.91 | 3.91 | 0.55 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 4.16 | 4.16 | 4.16 | 0.55 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (φ), 9 = 0° f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (\$\phi\$, \$9\$), f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3958 ## **Other Probe Parameters** | Sensor Arrangement | | |---|------------| | | Triangular | | Connector Angle (°) | 41.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client Sporton International INC CALIBRATION **CNAS L0570** **Certificate No:** Z17-97151 Object
EX3DV4 - SN:3642 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 25, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | <u>ID #</u> | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|---|--| | Power Meter NRP2 | 101919 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Power sensor NRP-Z91 | 101547 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Power sensor NRP-Z91 | 101548 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Reference10dBAttenuator | 18N50W-10dB | 13-Mar-16(CTTL,No.J16X01547) | Mar-18 | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-16(CTTL, No.J16X01548) | Mar-18 | | Reference Probe EX3DV4 | SN 7433 | 26-Sep-16(SPEAG,No.EX3-7433_Sep16) | Sep-17 | | DAE4 | SN 549 | 13-Dec-16(SPEAG, No.DAE4-549_Dec16) | Dec -17 | | | | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-17 (CTTL, No.J17X05858) | Jun-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan -18 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | Ata | | | | (1985년 1980년 1984년 1981년 1984년 1985년 1984년 1984년
1984년 - 1984년 | | | Reviewed by: | Zhao Jing | SAR Test Engineer | The state of s | | | | | | | Approved by: | Qi Dianyuan | SAR Project Leader | | | | | rander al Andre Control (Language et al Proposition Maria Maria (Miller) et al control et al control et al est
Participat | | Issued: September 27, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z17-97151 Page 2 of 11 # Probe EX3DV4 SN: 3642 Calibrated: September 25, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3642 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) ^A | 0.31 | 0.34 | 0.36 | ±10.0% | | DCP(mV) ^B | 98.8 | 100.9 | 103.4 | | #### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 . | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 135.1 | ±2.3% | | | | Y | 0.0 | 0.0 | 1.0 | | 142.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 152.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3642 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.20 | 9.20 | 9.20 | 0.32 | 0.80 | ±12.1% | | 835 | 41.5 | 0.90 | 9.04 | 9.04 | 9.04 | 0.29 | 0.93 | ±12.1% | | 900 | 41.5 | 0.97 | 9.00 | 9.00 | 9.00 | 0.18 | 1.23 | ±12.1% | | 1750 | 40.1 | 1.37 | 7.75 | 7.75 | 7.75 | 0.20 | 1.17 |
±12.1% | | 1900 | 40.0 | 1.40 | 7.59 | 7.59 | 7.59 | 0.21 | 1.17 | ±12.1% | | 2000 | 40.0 | 1.40 | 7.40 | 7.40 | 7.40 | 0.15 | 1.48 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.35 | 7.35 | 7.35 | 0.46 | 0.77 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.25 | 7.25 | 7.25 | 0.49 | 0.76 | ±12.1% | | 2600 | 39.0 | 1.96 | 6.90 | 6.90 | 6.90 | 0.60 | 0.70 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3642 ### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.35 | 9.35 | 9.35 | 0.40 | 0.85 | ±12.1% | | 835 | 55.2 | 0.97 | 9.06 | 9.06 | 9.06 | 0.23 | 1.18 | ±12.1% | | 1750 | 53.4 | 1.49 | 7.55 | 7.55 | 7.55 | 0.22 | 1.16 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.58 | 7.58 | 7.58 | 0.16 | 1.00 | ±12.1% | | 2300 | 52.9 | 1.81 | 7.19 | 7.19 | 7.19 | 0.51 | 0.81 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.09 | 7.09 | 7.09 | 0.38 | 1.02 | ±12.1% | | 2600 | 52.5 | 2.16 | 6.80 | 6.80 | 6.80 | 0.46 | 0.82 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97151 Page 6 of 11 ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) # Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) not compensated <u>→ compensated</u> Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z17-97151 Page 9 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # **Conversion Factor Assessment** ## f=835 MHz, WGLS R9(H_convF) ## f=1750 MHz, WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3642 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | | | |---|------------|--|--| | Connector Angle (°) | 110 | | | | Mechanical Surface Detection Mode | enabled | | | | Optical Surface Detection Mode | disable | | | | Probe Overall Length | 337mm | | | | Probe Body Diameter | 10mm | | | | Tip Length | 9mm | | | | Tip Diameter | 2.5mm | | | | Probe Tip to Sensor X Calibration Point | 1mm | | | | Probe Tip to Sensor Y Calibration Point | 1mm | | | | Probe Tip to Sensor Z Calibration Point | 1mm | | | | Recommended Measurement Distance from Surface | 1.4mm | | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation Certificate No: EX3-3819 Nov16 Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-SZ (Auden) ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3819 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: November 28, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID (II) | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|------------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-291 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 05-Apr-16 (No. 217-02293) | Apr-17 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | 1D | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In bouse check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 08-Apr-18 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Juri-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | Calibrated by: Name Leif Klysner Function Signature Approved by: Katja Pokovic Technical Manager Laboratory Technician Issued: November 28, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z.* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3819_Nov16 Page 2 of 11 # Probe EX3DV4 SN:3819 Manufactured: September 2, 2011 Calibrated: November 28, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.46 | 0.40 | 0.45 | ± 10.1 % | | DCP (mV) ^B | 96.6 | 98.3 | 104.7 | | #### **Modulation Calibration Parameters** | UID | Communication | System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------|-------------|---|---------|------------|-----|---------|----------|---| | 0 | CW | | X | 0.0 | 0.0 | 1.0 | 0.00 | 130.8 | ±3.5 % | | | | | Υ | 0.0 | 0.0 | 1.0 | | 142.8 | 2.34.34.6.6 | | | 1 111 | | Z | 0.0 | 0.0 | 1.0 | 71.1 % | 133.4 | *************************************** | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. $^{^{\}rm A}$ The uncertainties of Norm X,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3819 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.11 | 10.11 | 10.11 | 0.30 | 1.13 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.76 | 9.76 | 9.76 | 0.41 | 0.90 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.65 | 9.65 | 9.65 | 0.38 | 0.92 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.71 | 8.71 | 8.71 | 0.32 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.56 | 8.56 | 8.56 | 0.36 | 0.84 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.17 | 8.17 | 8.17 | 0.37 | 0.80 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.10 | 8.10 | 8.10 | 0.18 | 1.15 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.57 | 7.57 | 7.57 | 0.29 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.24 | 7.24 | 7.24 | 0.31 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.03 | 7.03 | 7.03 | 0.44 | 0.80 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.98 | 6.98 | 6.98 | 0.27 | 1.25 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.17 | 5.17 | 5.17 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.55 | 4.55 | 4.55 | 0.45 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.70 | 4.70 | 4.70 | 0.45 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 9.86 | 9.86 | 9.86 | 0.36 | 0.92 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.53 | 9.53 | 9.53 | 0.36 | 1.00 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.08 | 8.08 | 8.08 | 0.41 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.77 | 7.77 | 7.77 | 0.28 | 0.99 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.54 | 7.54 | 7.54 | 0.43 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.34 | 7.34 | 7.34 | 0.36 | 0.80 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.11 | 7.11 | 7.11 | 0.38 | 0.80 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.69 | 6.69 | 6.69 | 0.30 | 1.25 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 4.50 | 4.50 | 4.50 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.95 | 3.95 | 3.95 | 0.50 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 4.13 | 4.13 | 4.13 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3819 November 28, 2016 ### Conversion Factor Assessment Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz EX3DV4-SN:3819 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|---| | Connector Angle (°) | 115.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | #### Calibration Laboratory of Schmid &
Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-XA (Auden) Certificate No: EX3-3935 Nov16 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3935 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: November 28, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 05-Apr-16 (No. 217-02293) | Apr-17 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | Calibrated by: Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 28, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3935_Nov16 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe EX3DV4 SN:3935 Manufactured: July 24, 2013 Calibrated: November 28, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3935 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.48 | 0.52 | 0.47 | ± 10.1 % | | DCP (mV) ^B | 103.3 | 100.8 | 106.1 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 134.4 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 144.8 | | | | | Z | 0.0 | 0.0 | 1.0 | | 133.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3935 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.92 | 10.92 | 10.92 | 0.41 | 1.07 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.61 | 10.61 | 10.61 | 0.24 | 1.49 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.52 | 10.52 | 10.52 | 0.23 | 1.56 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 9.03 | 9.03 | 9.03 | 0.38 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.64 | 8.64 | 8.64 | 0.38 | 0.80 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.48 | 8.48 | 8.48 | 0.37 | 0.80 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.18 | 8.18 | 8.18 | 0.38 | 0.81 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.81 | 7.81 | 7.81 | 0.28 | 1.00 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.60 | 7.60 | 7.60 | 0.36 | 0.80 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.37 | 7.37 | 7.37 | 0.26 | 1.20 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.32 | 5.32 | 5.32 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.84 | 4.84 | 4.84 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.78 | 4.78 | 4.78 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (
ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3935 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3935 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.68 | 10.68 | 10.68 | 0.44 | 0.85 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.48 | 10.48 | 10.48 | 0.41 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.46 | 8.46 | 8.46 | 0.45 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.18 | 8.18 | 8.18 | 0.45 | 0.80 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.99 | 7.99 | 7.99 | 0.41 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.89 | 7.89 | 7.89 | 0.39 | 0.80 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.67 | 7.67 | 7.67 | 0.36 | 0.80 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.13 | 7.13 | 7.13 | 0.26 | 1.20 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 4.84 | 4.84 | 4.84 | 0.35 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.00 | 4.00 | 4.00 | 0.50 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 4.23 | 4.23 | 4.23 | 0.50 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3935 November 28, 2016 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3935 November 28, 2016 ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz EX3DV4-- SN:3935 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3935 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 43.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm |