

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No......CTA25031101201

FCC ID.....: 2BNR7-T80

Compiled by

(position+printed name+signature)..: File administrators Joan Wu

Supervised by

(position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Mar. 17, 2025

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name......Shenzhen Baijin Technology Co., Ltd

C203-J2, Bldg C, No.19 Yinzhu Rd, Nanlian Comm, Longgang St,

Longgang Dist, Shenzhen, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Tablet PC

Trade MarkTABWEE

Manufacturer Shenzhen Baijin Technology Co., Ltd

Model/Type reference......T80

Listed Models N/A

ModulationGFSK

Frequency...... From 2402MHz to 2480MHz

Ratings DC 3.8V From battery and DC 5.0V 2A From Adapter

For Adapter

Input: 100-240V~, 50/60Hz, 0.3A

CTA TES

Output: 5V === 2000mA

Result......PASS

Page 2 of 41 Report No.: CTA25031101201

TEST REPORT

Tablet PC Equipment under Test

Model /Type T80

N/A Listed Models

Shenzhen Baijin Technology Co., Ltd **Applicant**

Address C203-J2, Bldg C, No.19 Yinzhu Rd, Nanlian Comm, Longgang St,

Longgang Dist, Shenzhen, China

Shenzhen Baijin Technology Co., Ltd **Manufacturer**

C203-J2, Bldg C, No.19 Yinzhu Rd, Nanlian Comm, Longgang St, Address

	Longgang Dist, Shenzhen,	China
- CIATES	ING	
Test Res	ult: CTATES	PASS
The test report merely con	responds to the test sample.	CTATES

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATESTING laboratory.

Contents

			Contents		
	4- 0	TEST STANDARDS			4
	(215)	1201 OTANDARDO IIIIIII	(E)	_	
		CHAMADY			_
	<u>2</u>	SUMMARY		gi\\\i`	<u> 5</u>
			CTA CTA		
	2.1	General Remarks	Cok C'		5
	2.2	Product Description			5
	2.3	Equipment Under Test			5 C
	2.4	Short description of the Equipment	under Test (EUT)		5
	2.5	EUT configuration			5
	2.6	EUT operation mode			6
	2.7	Block Diagram of Test Setup			6
	2.8	Related Submittal(s) / Grant (s)			6
1.	2.9	Modifications			6
		C.			
	<u>3</u>	TEST ENVIRONMENT	TE		7
	<u> </u>	12012IVINONIMENT IIIII	CV		140
				CTA TEST	
	3.1	Address of the test laboratory		CTA	7
	3.2	Test Facility			7
	3.3	Environmental conditions			7
	3.4	Summary of measurement results			8
	3.5	Statement of the measurement unc	ertainty		8
	3.6	Equipments Used during the Test			9
			C		
	4	TEST CONDITIONS AND R	ESULTS		11
	(2P)		(E2)		
		AO BOOM ON LOT LESS CATA	TES, CTA		4.4
	4.1	AC Power Conducted Emission			11
	4.2	Radiated Emissions and Band Edge	-14	15	14
	4.3	Maximum Peak Output Power	CV		21
	4.4 4.5	Power Spectral Density 6dB Bandwidth			22
	4.5 4.6	Out-of-band Emissions			25 28
	4.0	Antenna Requirement			33
CTATE	TING	Antenna Nequirement			33
	511				
CTAI	<u>5</u>	TEST SETUP PHOTOS OF	THE EUT		34
	<u>6</u>	PHOTOS OF THE EUT	NG		35
	<u> </u>	1110100 01 THE E01 :::::	-6/1/		
			CTA TESTI	CTA TEST	
				CTA	

Report No.: CTA25031101201 Page 4 of 41

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

CTATE

SUMMARY

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample	:	Mar. 11, 2025	-ING
Testing commenced on		Mar. 11, 2025	CTATESTI
Testing concluded on	:	Mar. 17, 2025	

2.2 Product Description

resung commenced on	. War. 11, 2025	
Testing concluded on	: Mar. 17, 2025	
2.2 Product Descrip	tion	
Product Description:	Tablet PC	
Model/Type reference:	T80	
Power supply:	DC 3.8V From battery and DC 5.0V 2A From Adapter	
Adapter information:	Model: KWY10W-0502000US Input: AC 100-240V 50/60Hz 0.3A Output: DC 5V 2A	
Testing sample ID:	CTA250311012-1# (Engineer sample), CTA250311012-2# (Normal sample)	
Hardware version:	W30-T310-V1.0	
Software version:	V1.0	
Bluetooth BLE		
Supported type:	Bluetooth low Energy	
Modulation:	GFSK	
Operation frequency:	2402MHz to 2480MHz	
Channel number:	40	TF
Channel separation:	2 MHz	
Antenna type:	PIFA antenna	
Antenna gain:	3.27 dBi	

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Tower supply system ut			CTAT			
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	TATES
		0	12 V DC	0	24 V DC	CALL
		•	Other (specified in bl	ank below		1

DC 3.8V From battery and DC 5.0V 2A From Adapter

2.4 Short description of the Equipment under Test (EUT)

This is a Tablet PC.

For more details, refer to the user's manual of the EUT.

2.5 **EUT** configuration

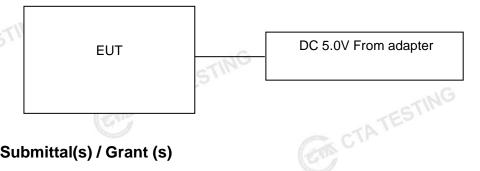
CTATE The following peripheral devices and interface cables were connected during the measurement:

 supplied by the manufacturer TATESTING

Page 6 of 41 Report No.: CTA25031101201

O - supplied by the lab

1G	
-110	


2.6 EUT operation mode

The Applicant provides communication tools software(AT command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

operanen i requency i	
Channel	Frequency (MHz)
00	2402
01	2404
02	2406
ESTING	÷
19	2440
(Ent.)	TESTIN
37	2476
38	2478
39	2480
	Channel 00 01 02 : 19 : 37 38

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

CTA TESTING No modifications were implemented to meet testing criteria.

Report No.: CTA25031101201 Page 7 of 41

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
Humaialitus	45.00
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

to main conducted tooting.	
Temperature:	25 ° C
.NG	
Humidity:	46 %
	-162
Atmospheric pressure:	950-1050mbar

Atmospheric pressure.	300 1030111081	_
Conducted testing:		
Temperature:	25 ° C	TATES
Humidity:	44 %	1
Atmospheric pressure:	950-1050mbar	

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded n Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(b)(1)	Maximum output power	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
1	§15.205	Band edge compliance radiated	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs 2 Mpbs	☐ Lowest☐ Middle☐ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs 2 Mpbs		BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs 2 Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs 2 Mpbs	ING -/-	BLE 1Mpbs	-/-	complies
	2. We tested a	rement uncertainty is all test mode and reco	rded worst ca	n the test result. se in report	CTP	TESTING	

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co. Ltd.:

le best measurement capability for Sherizhen CTA Testing Technology Co., Ltd					
Test	Range	Measurement Uncertainty	Notes		
Radiated Emission	9KHz~30MHz	3.02 dB	(1)		
Radiated Emission	30~1000MHz	4.06 dB	(1)		
Radiated Emission	1~18GHz	5.14 dB	(1)		
Radiated Emission	18-40GHz	5.38 dB	(1)		
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)		
Output Peak power	30MHz~18GHz	0.55 dB	(1)		
Power spectral density	TETINO	0.57 dB	(1)		
Spectrum bandwidth	(E)	1.1%	(1)		
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)		
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)		
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)		

Report No.: CTA25031101201 Page 9 of 41

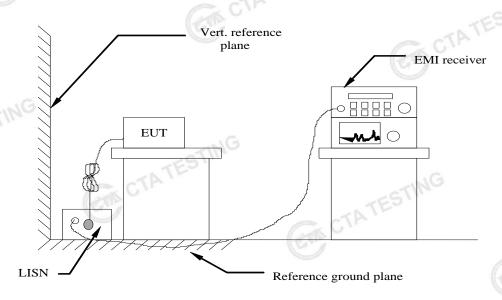
(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

R&S R&S R&S R&S Reiver R&S Reiver R&S Agilent Agilent R&S Agilent R&S CMW500 And Chigo	Model No. ENV216 ENV216 ESPI ESCI N9020A FSU N5182A SML03 R&S	Equipment No. CTA-308 CTA-314 CTA-307 CTA-306 CTA-301 CTA-305 CTA-305 CTA-304 CTA-302	Calibration Date 2024/08/03 2024/08/03 2024/08/03 2024/08/03 2024/08/03 2024/08/03 2024/08/03	Calibration Due Date 2025/08/02 2025/08/02 2025/08/02 2025/08/02 2025/08/02 2025/08/02 2025/08/02
R&S eiver R&S eiver R&S alyzer Agilent alyzer R&S hal Agilent r R&S adio CMW500 and Chica	ENV216 ESPI ESCI N9020A FSU N5182A SML03 R&S	CTA-314 CTA-307 CTA-306 CTA-301 CTA-337 CTA-305 CTA-304	2024/08/03 2024/08/03 2024/08/03 2024/08/03 2024/08/03	2025/08/02 2025/08/02 2025/08/02 2025/08/02 2025/08/02
eiver R&S eiver R&S alyzer Agilent alyzer R&S nal Agilent r Agilent R&S cadio CMW500 and Chica	ESPI ESCI N9020A FSU N5182A SML03 R&S	CTA-307 CTA-306 CTA-301 CTA-337 CTA-305 CTA-304	2024/08/03 2024/08/03 2024/08/03 2024/08/03 2024/08/03	2025/08/02 2025/08/02 2025/08/02 2025/08/02 2025/08/02
eiver R&S Agilent Alyzer R&S Agilent R&S Agilent R&S CMW500 And Chica	ESCI N9020A FSU N5182A SML03 R&S	CTA-306 CTA-301 CTA-337 CTA-305 CTA-304	2024/08/03 2024/08/03 2024/08/03 2024/08/03	2025/08/02 2025/08/02 2025/08/02 2025/08/02
Agilent Alyzer R&S Agilent R&S Agilent R&S CMW500 And Chica	N9020A FSU N5182A SML03 R&S	CTA-301 CTA-337 CTA-305 CTA-304	2024/08/03 2024/08/03 2024/08/03	2025/08/02 2025/08/02 2025/08/02
Alyzer R&S Agilent r nal R&S adio ction CMW500 and Chica	FSU N5182A SML03 R&S	CTA-337 CTA-305 CTA-304	2024/08/03	2025/08/02
nal Agilent r R&S adio tion CMW500 and Chica	N5182A SML03 R&S	CTA-305	2024/08/03	2025/08/02
r Agrient nal R&S adio CMW500 and Chica	SML03 R&S	CTA-304	C C	
adio tion CMW500	R&S		2024/08/03	2025/08/02
and Chigo		CTA-302		_020,00,02
	70 7000		2024/08/03	2025/08/02
eter	ZG-7020	CTA-326	2024/08/03	2025/08/02
oand Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
na Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
nna Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
Horn A-INFOMW	LB-180500H-2.4F	CTA-336	2023/09/13	2026/09/12
Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
oupler NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
ilter XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
ilter XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
ilter Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
sor Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
S	Iter Tonscend For Agilent Schwarzbeck	Iter Tonscend JS0806-F or Agilent U2021XA Schwarzbeck BBV9719	Iter Tonscend JS0806-F CTA-404 For Agilent U2021XA CTA-405 Schwarzbeck BBV9719 CTA-406	Iter Tonscend JS0806-F CTA-404 2024/08/03 sor Agilent U2021XA CTA-405 2024/08/03

Report No.: CTA25031101201 Page 10 of 41

Test Equipment	est Equipment Manufacturer		Version number	Calibration Date	Calibration Due Date	
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	


CTATESTING

Report No.: CTA25031101201 Page 11 of 41

TEST CONDITIONS AND RESULTS

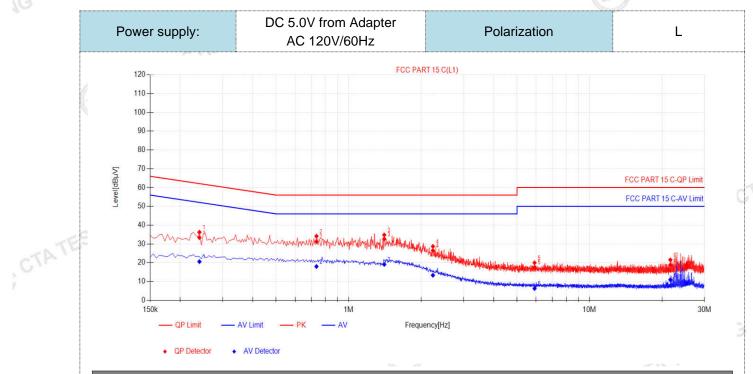
AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

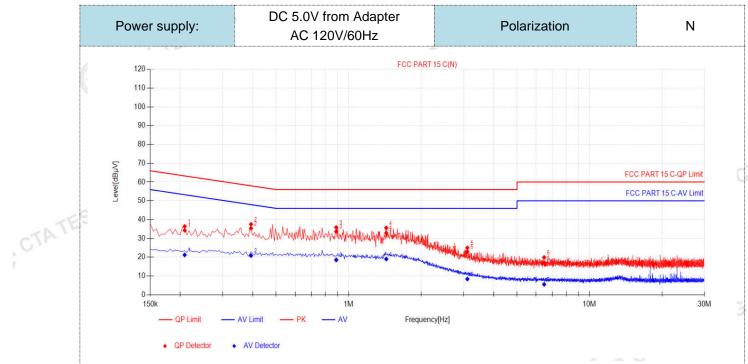

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
* Decreases with the logarithm of t	he frequency.						
TEST RESULTS Remark:	CTATESTIN	STING					

TEST RESULTS

- Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs was reported as below:
- CTATE Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.

Page 12 of 41 Report No.: CTA25031101201



	Final	l Data Lis	st									
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
	1	0.24	9.97	23.41	33.38	62.10	28.72	10.62	20.59	52.10	31.51	PASS
	2	0.735	9.93	21.35	31.28	56.00	24.72	8.07	18.00	46.00	28.00	PASS
ø	3	1.4055	9.90	22.73	32.63	56.00	23.37	9.21	19.11	46.00	26.89	PASS
(-	4	2.238	10.01	16.51	26.52	56.00	29.48	3.33	13.34	46.00	32.66	PASS
8	5	5.9145	10.13	7.47	17.60	60.00	42.40	-3.82	6.31	50.00	43.69	PASS
	6	21.6645	10.45	8.39	18.84	60.00	41.16	0.49	10.94	50.00	39.06	PASS
2	.). Fact	.QP Value tor (dB)=ins	sertion lo	ss of LISI	V (dB) +	Cable los	s (dB)		CTA			
3	8). QPN	//argin(dB)	= QP Lin	nit (dBµV)) - QP Va	lue (dBµ	V)					

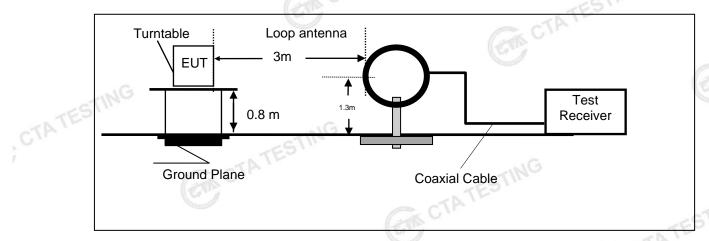
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTI

Page 13 of 41 Report No.: CTA25031101201

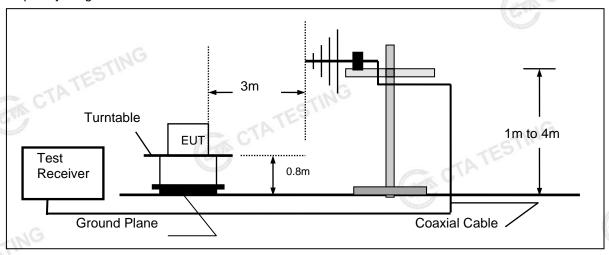
Fina	l Data Lis	t										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
1	0.2085	9.96	24.33	34.29	63.26	28.97	11.28	21.24	53.26	32.02	PASS	
2	0.393	9.93	25.48	35.41	58.00	22.59	10.93	20.86	48.00	27.14	PASS	
3	0.888	10.13	23.60	33.73	56.00	22.27	8.47	18.60	46.00	27.40	PASS	
4	1.4325	10.14	22.78	32.92	56.00	23.08	8.89	19.03	46.00	26.97	PASS	
5	3.111	10.23	12.74	22.97	56.00	33.03	-1.79	8.44	46.00	37.56	PASS	
6	6.4815	10.34	6.62	16.96	60.00	43.04	-4.79	5.55	50.00	44.45	PASS	
2). Fac 3). QPI).QP Value tor (dB)=ins Margin(dB) Margin(dB)	sertion lo	ss of LISN nit (dBµV)	N (dB) + 0 - QP Va	Cable los ılue (dBµ'	s (dB) V)	(E)				GT C	

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTING

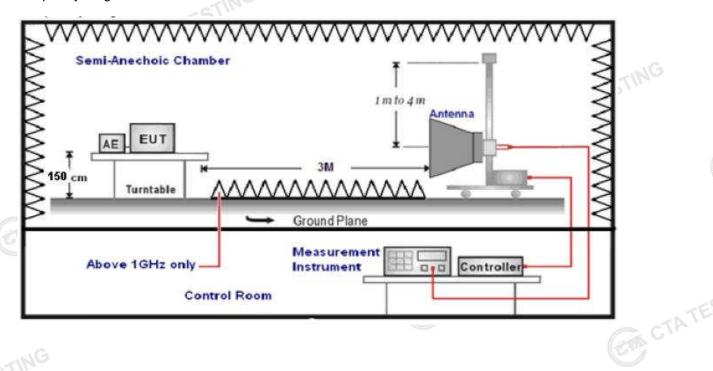
CTATE

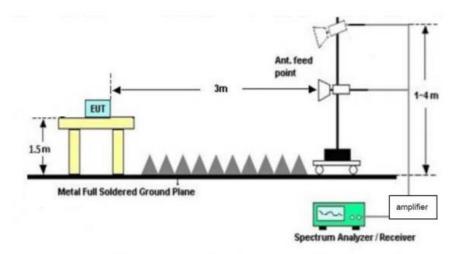


Report No.: CTA25031101201 Page 14 of 41


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	
ansd=AF +CL-AG	TATESTING
ATION LIMIT	Con C.

Transd=AF +CL-AG

RADIATION LIMIT

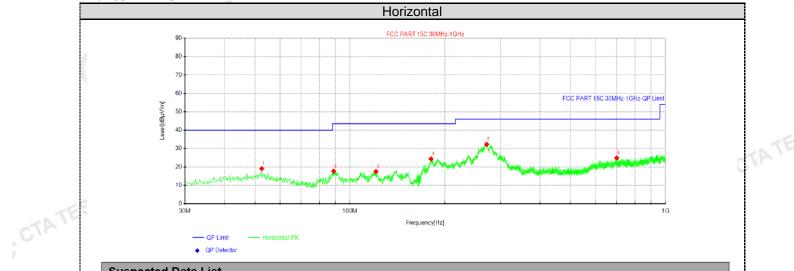
Report No.: CTA25031101201 Page 16 of 41

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	Frequency (MHz) Distance (Meters)		Radiated (dBµV/m)	Radiated (µV/m)	
	0.009-0.49	(weters)	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
	1.705-30	3	20log(30)+ 40log(30/3)	30	
-5	30-88	3	40.0	100	
CIATE	88-216	3	43.5	150	
Cri	216-960 3		46.0	200	
7	Above 960	3	54.0	500	

TEST RESULTS


Remark:

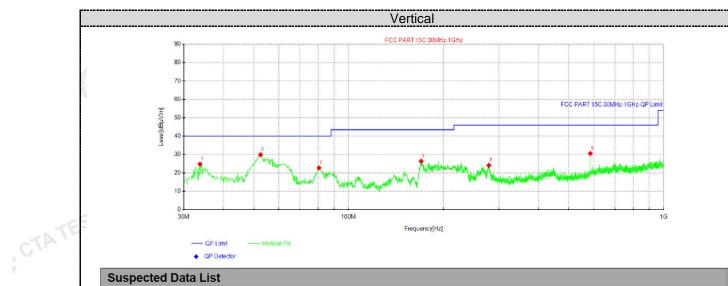
- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. 1. position.
- 2. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at High channel of BLE 1Mpbs.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTIN

Report No.: CTA25031101201 Page 17 of 41

For 30MHz-1GHz

Suspe	Suspected Data List												
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevity				
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1	52.5525	30.41	19.06	-11.35	40.00	20.94	100	293	Horizontal				
2	88.8062	32.61	17.64	-14.97	43.50	25.86	200	166	Horizontal				
3	120.937	31.71	17.47	-14.24	43.50	26.03	100	0	Horizontal				
4	180.713	38.86	24.35	-14.51	43.50	19.15	100	293	Horizontal				
5	271.166	43.91	32.31	-11.60	46.00	13.69	200	0	Horizontal				
6	700.391	30.06	24.85	-5.21	46.00	21.15	100	357	Horizontal				

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)


2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

CTA TESTING

CTATEST!

Report No.: CTA25031101201 Page 18 of 41

Susp	Suspected Data List												
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevity				
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1	33.7588	38.61	24.78	-13.83	40.00	15.22	100	46	Vertical				
2	52.5525	41.22	29.87	-11.35	40.00	10.13	200	277	Vertical				
3	80.5612	39.39	22.72	-16.67	40.00	17.28	100	358	Vertical				
4	170.043	41.33	26.34	-14.99	43.50	17.16	100	301	Vertical				
5	278.805	35.54	24.10	-11.44	46.00	21.90	200	312	Vertical				
6	584.961	37.24	30.57	-6.67	46.00	15.43	100	161	Vertical				

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBμV/m) - Level (dBμV/m)

CTA TESTING

CTA TESTIN

Report No.: CTA25031101201

For 1GHz to 25GHz

GFSK (above 1GHz)

					1							
Freque	ncy(MHz)):	24	02	Pola	arity:	HORIZONTAL					
Frequency (MHz)			Limit (dBuV/m)			Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)			
4804.00	61.90	PK	74	12.10	66.17	32.33	5.12	41.72	-4.27			
4804.00	44.88	AV	54	9.12	49.15	32.33	5.12	41.72	-4.27			
7206.00	54.13	PK	74	19.87	54.65	36.6	6.49	43.61	-0.52			
7206.00	42.99	AV	54	11.01	43.51	36.6	6.49	43.61	-0.52			

	Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
7	Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	4804.00	59.94	PK	74	14.06	64.21	32.33	5.12	41.72	-4.27
	4804.00	43.09	AV	54	10.91	47.36	32.33	5.12	41.72	-4.27
	7206.00	52.19	PK	74	21.81	52.71	36.6	6.49	43.61	-0.52
	7206.00	41.32	AV	54	12.68	41.84	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)):	24	40	Pola	arity:	H	IORIZONTA	۱L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.10	PK	74	12.90	64.98	32.6	5.34	41.82	-3.88
4880.00	44.37	AV	54	9.63	48.25	32.6	5.34	41.82	-3.88
7320.00	53.62	PK	74	20.38	53.73	36.8	6.81	43.72	-0.11
7320.00	42.14	AV	54	11.86	42.25	36.8	6.81	43.72	-0.11

Freque	ncy(MHz)	:	24	40	Pola	arity:		VERTICAL	
Frequency (MHz)	_	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.33	PK	74	14.67	63.21	32.6	5.34	41.82	-3.88
4880.00	42.74	AV	54	11.26	46.62	32.6	5.34	41.82	-3.88
7320.00	51.43	PK	74	22.57	51.54	36.8	6.81	43.72	-0.11
7320.00	40.63	AV	54	13.37	40.74	36.8	6.81	43.72	-0.11

11									
Freque	ency(MHz)):	24	80	Pola	arity:	ŀ	IORIZONTA	AL
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.26	PK	74	13.74	63.34	32.73	5.66	41.47	-3.08
4960.00	43.66	AV	54	10.34	46.74	32.73	5.66	41.47	-3.08
7440.00	52.92	PK	74	21.08	52.47	37.04	7.25	43.84	0.45
7440.00	41.62	AV	54	12.38	41.17	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):		24	80	Pola	Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	58.64	PK	74	15.36	61.72	32.73	5.66	41.47	-3.08		
4960.00	42.05	AV	54	11.95	45.13	32.73	5.66	41.47	-3.08		
7440.00	50.77	PK	74	23.23	50.32	37.04	7.25	43.84	0.45		
7440.00	39.80	AV	54	14.20	39.35	37.04	7.25	43.84	0.45		
7440.00 REMARKS: 1. 2.	Emission	level (dBuV/	m) =Raw Value (d m) = Antenna Fac	BuV)+Correction	Factor (dB/m)	CIP CI	7.25		0.45		

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

Report No.: CTA25031101201 Page 20 of 41

- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs channel Low.

Results of Band Edges Test (Radiated)

GFSK

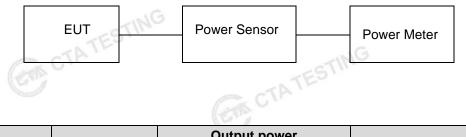
Freque	ncy(MHz)	:	24	02	Pola	rity:	Н	ORIZONTA	\L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.72	PK	74	12.28	72.14	27.42	4.31	42.15	-10.42
2390.00	43.10	AV	54	10.90	53.52	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.76	PK	74	14.24	70.18	27.42	4.31	42.15	-10.42
2390.00	41.58	AV	54	12.42	52.00	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	P ola	arity:	Н	ORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.00	PK	74	13.00	71.11	27.7	4.47	42.28	-10.11
2483.50	42.38	AV	54	11.62	52.49	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.10	PK	74	14.90	69.21	27.7	4.47	42.28	-10.11
2483.50	40.77	AV	54	13.23	50.88	27.7	4.47	42.28	-10.11

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs channel Low.

Page 21 of 41 Report No.: CTA25031101201

Maximum Peak Output Power


Limit CTA

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

CTATESTING Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power	Limit (dBm)	Result
	00	(dBm) -2.28		
GFSK 1Mbps	19	-2.97	30.00	Pass
TATESII	39	-3.48		
N.C.	00	-2.34		
GFSK 2Mbps	19	-2.96	30.00	Pass
	39	-3.53	TATES!	

Page 22 of 41 Report No.: CTA25031101201

Power Spectral Density 4.4

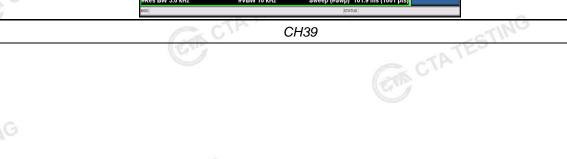
Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

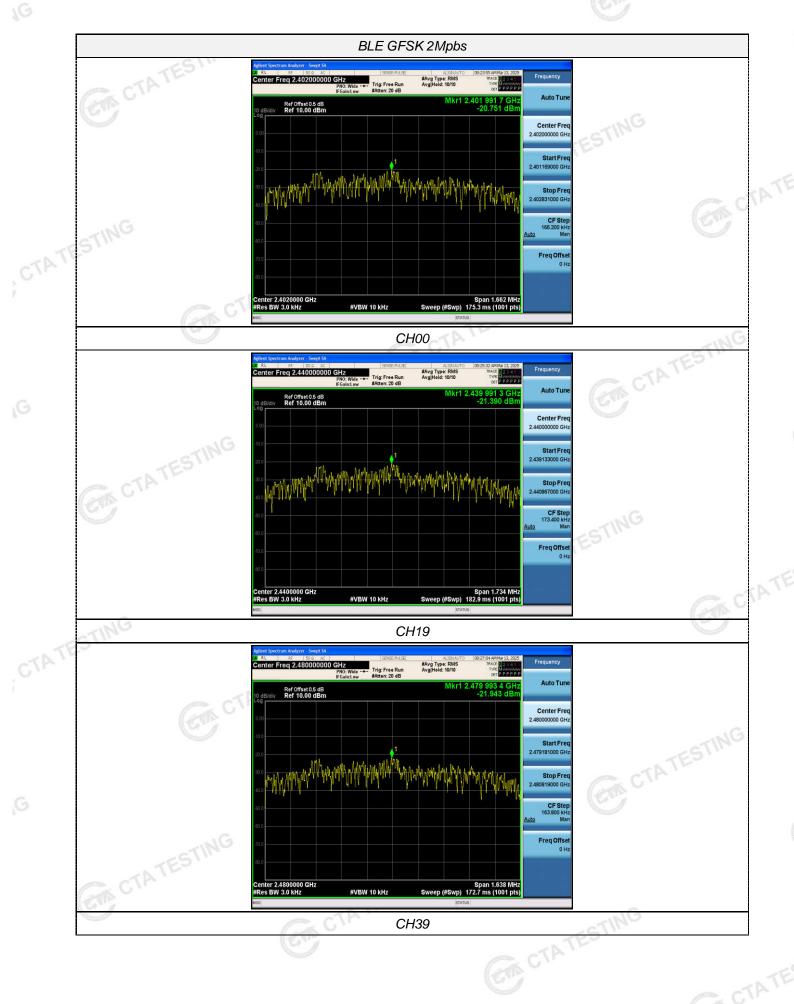
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth. CTA TESTING
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results

		EUT	SPECTR ANALYZ		
	Test Results		(CTA TESTIN	
	Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	-ING	00	-17.94		
TE	GFSK 1Mbps	19	-18.79	8.00	Pass
CTATE		39	-19.68		
		00	-20.75		_
r(GFSK 2Mbps	19	-21.39	8.00	Pass
		39	-21.94	111	
	Test plot as follow	ws:	GWA CTA I		CTATESTING
G					


Report No.: CTA25031101201 Page 23 of 41

CTATES BLE GFSK 1Mpbs nter Freq 2.402000000 GHz #Avg Type: RMS Avg|Hold: 10/10 01 985 3 GH -17.939 dB Ref Offset 0.5 dB Ref 10.00 dBm CTATE CTATESTING **CF Ste** 97.800 ki Freq Offse #VBW 10 kHz CIA TESTING CH00 tter Freq 2.440000000 GHz PN0: Wide → IFGain:Low #Atten: 20 dB Frequency #Avg Type: RMS Avg[Hold: 10/10 9 986 224 GH: -18.787 dBn Ref Offset 0.5 dB Ref 10.00 dBm CTA TESTING Center Fre Stop Fre 2.440492000 GH Freq Offse CTATE Span 984.0 kHz Sweep (#Swp) 103.8 ms (1001 pts) #VBW 10 kHz CTATE CH19 #Avg Type: RMS Avg|Hold: 10/10 960 394 GH -19.682 dBr Ref Offset 0.5 dB Ref 10.00 dBm CTA-TESTING Stop Fre 2.480483000 GH CF Ste 96,600 kF Ma CTATESTING Freq Offse enter 2.4800000 GHz Res BW 3.0 kHz Span 966.0 kHz Sweep (#Swp) 101.9 ms (1001 pts) #VBW 10 kHz

CH39

Report No.: CTA25031101201 Page 24 of 41

Page 25 of 41 Report No.: CTA25031101201

4.5 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	00	0.652		
GFSK 1Mbps	3 19	0.656	≥500	Pass
-ESTI	39	0.644		
CIA	00	1.108		
GFSK 2Mbps	19	1.156	≥500	Pass
	39	1.092	-11	

BLE GFSK 1Mpbs CTATES #Avg Type: RMS Avg|Hold: 100/100 Trig: Free Run Ref Offset 0.5 dB Ref 20.00 dBm CTATE CTATESTING Freq Offse CH00 CTATE #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 0.5 dB Ref 20.00 dBm CTA TESTING Center Free Freq Offse CH19 #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 0.5 dB Ref 20.00 dBm CTA TESTING Stop Free 2.482000000 GH CF Stej 400.000 kH #VBW 300 kHz CTA TESTING Freq Offse

CH39

Report No.: CTA25031101201 Page 28 of 41

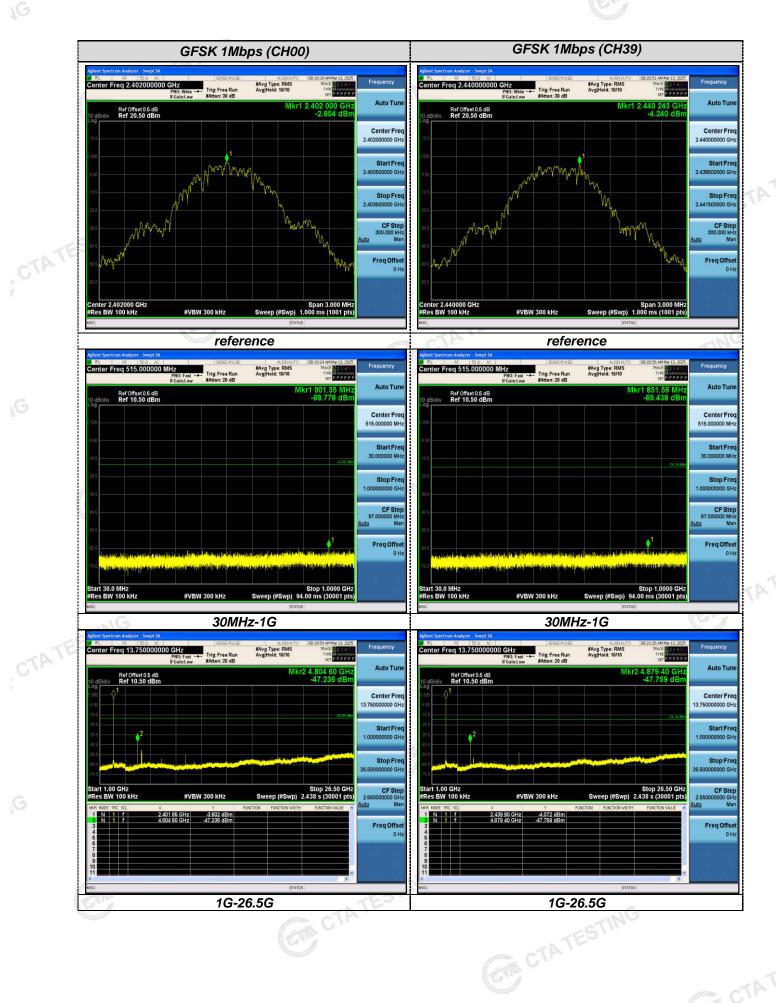
Out-of-band Emissions

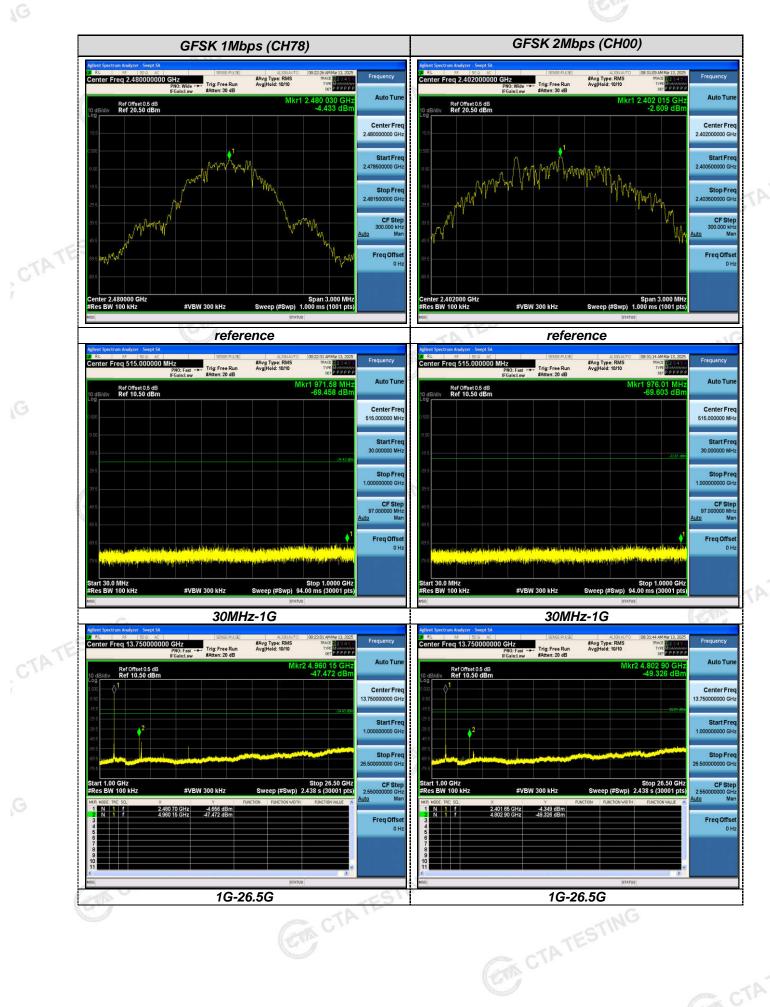
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

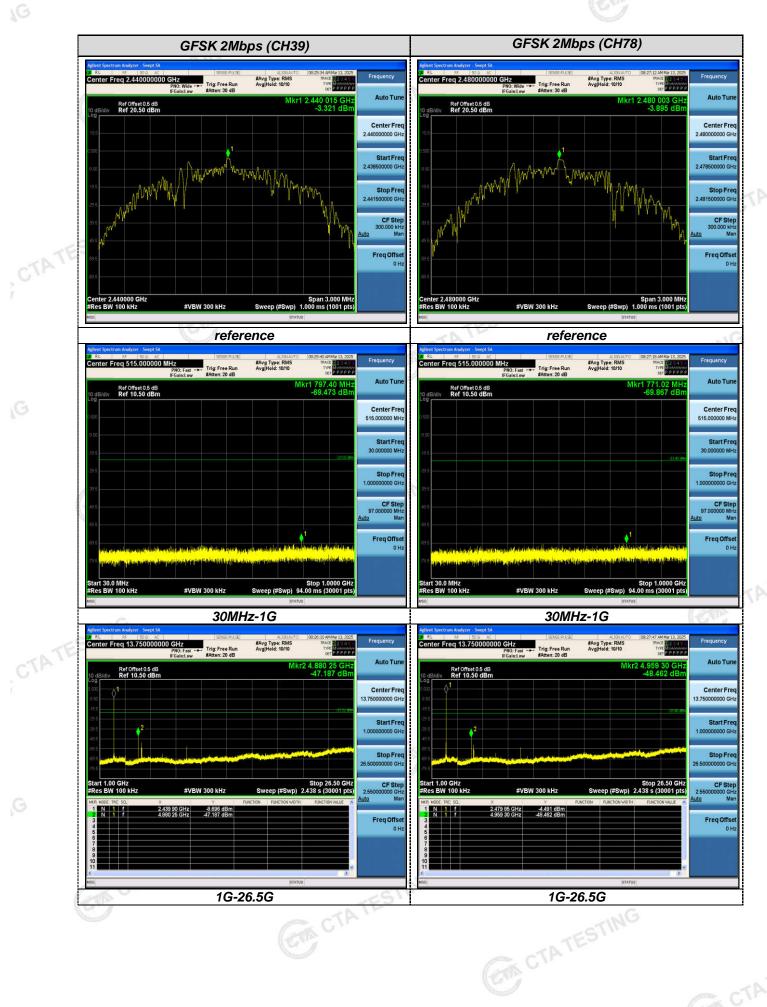
Test Procedure

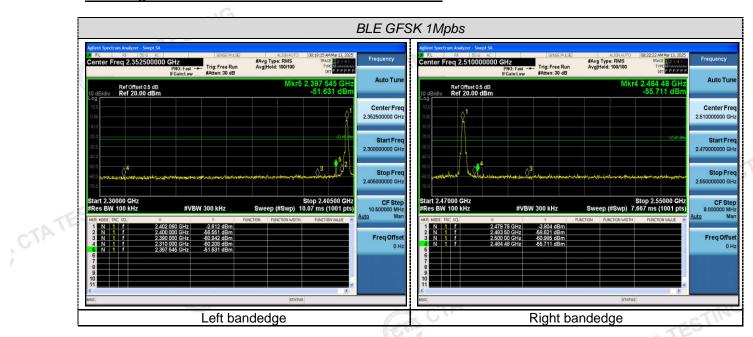
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

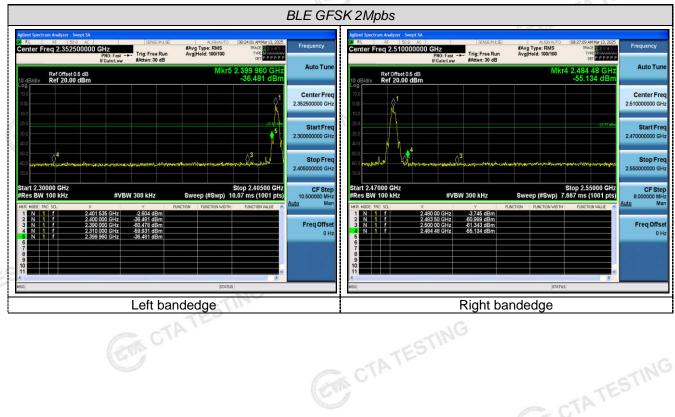

Test Configuration


Test Results Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTING







Report No.: CTA25031101201 Page 32 of 41

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA25031101201 Page 33 of 41

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to RSS-Gen 6.8:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

For intentional device, according to FCC 47 CFR Section 15.203:

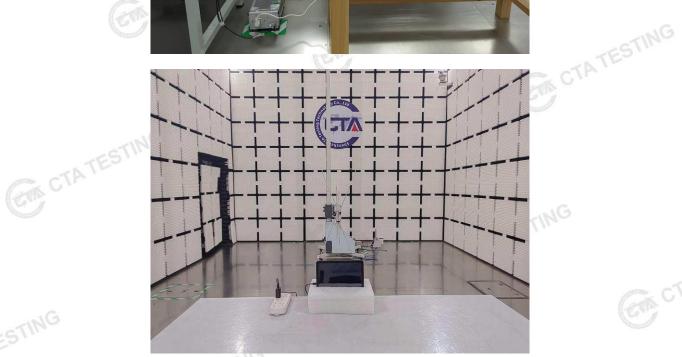
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

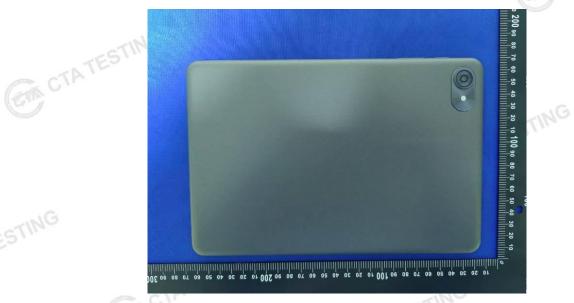
The maximum gain of antenna was 3.27 dBi.

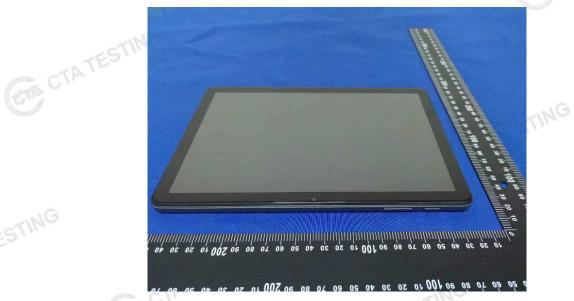

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

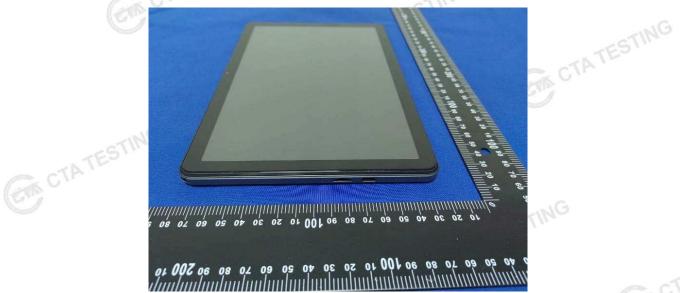
Report No.: CTA25031101201 Page 34 of 41

5 Test Setup Photos of the EUT

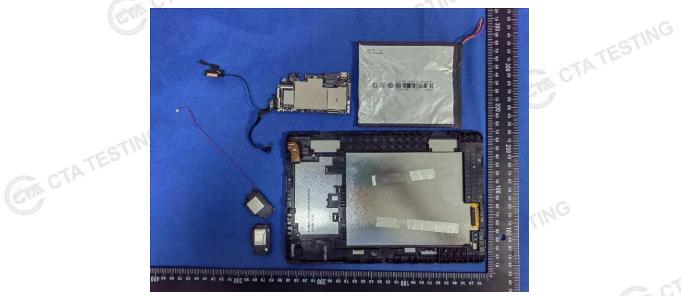
Report No.: CTA25031101201 Page 35 of 41

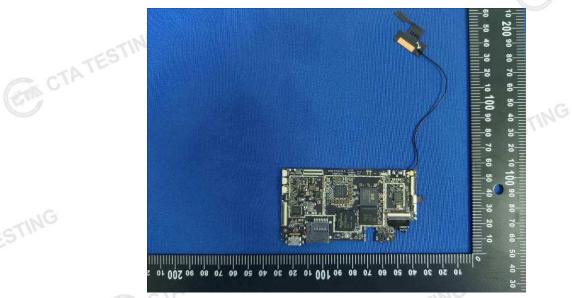

6 Photos of the EUT

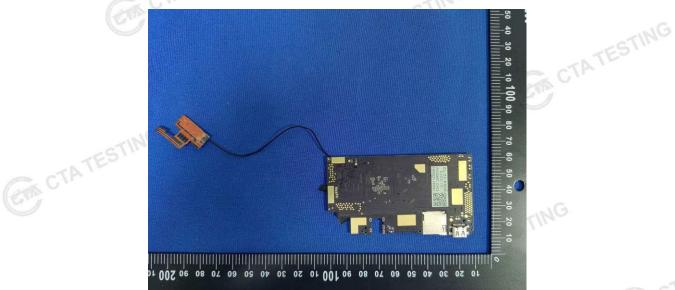

Report No.: CTA25031101201 Page 36 of 41



Report No.: CTA25031101201 Page 37 of 41




Report No.: CTA25031101201 Page 38 of 41



Report No.: CTA25031101201 Page 39 of 41

Report No.: CTA25031101201 Page 40 of 41

Report No.: CTA25031101201 Page 41 of 41

