2550 MHz Dipole Calibration Certificate Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client Potin (Beijing) Technology Co.,Ltd Certificate No: J23Z60270 #### **CALIBRATION CERTIFICATE** Object D2550V2 - SN: 1013 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 24, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 30, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60270 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 6 Certificate No: J23Z60270 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2550 MHz ± 1 MHz | | | | | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.1 | 1.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.3 ± 6 % | 1.95 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.8 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.5 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 18.7 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.1Ω- 2.40jΩ | |--------------------------------------|---------------| | Return Loss | - 31.7dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.046 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |--|-------| | ************************************** | | Certificate No: J23Z60270 Page 4 of 6 Date: 2023-05-24 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1013 Communication System: UID 0, CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 1.946$ S/m; $\varepsilon_r = 39.3$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7517; ConvF(7.75, 7.17, 7.36) @ 2600 MHz; Calibrated: 2023-01-27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.13 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 47.7% Maximum value of SAR (measured) = 23.9 W/kg 0 dB = 23.9 W/kg = 13.78 dBW/kg Certificate No: J23Z60270 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### Impedance Measurement Plot for Head TSL ## 5 GHz Dipole Calibration Certificate ## Calibration Laboratory of Schmid & Partner **Engineering AG** Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Beijing Certificate No. D5GHzV2-1060_Jun23 ## **CALIBRATION CERTIFICATE** D5GHzV2 - SN:1060 Object QA CAL-22.v7 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: June 19, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | d. to | | Approved by: | Sven Kühn | Technical Manager | 1/1/2 | Issued: June 20, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1060_Jun23 Page 2 of 12 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5250 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ## Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.92 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | The tensor of th | Temperature | Permittivity | Conductivity | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.67 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.4 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 4.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 5.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|-----------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | $35.0 \pm 6 \%$ | 5.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 48.6Ω - $5.3 j\Omega$ | | |--------------------------------------|-------------------------------|--| | Return Loss | - 25.1 dB | | #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.7 Ω - 4.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.2 dB | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 46.9 Ω - 2.2 jΩ | 120 | |--------------------------------------|-----------------|-----| | Return Loss | - 28.0 dB | | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.6 Ω - 4.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.0 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.6 Ω + 1.2 j Ω | |--------------------------------------|--------------------------------| | Return Loss | - 28.6 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.4 Ω - 0.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 37.3 dB | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 51.2 Ω - 2.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: D5GHzV2-1060_Jun23 #### **DASY5 Validation Report for Head TSL** Date: 19.06.2023 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.53$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 4.60$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.67$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.97$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 35.0$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 07.03.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.08 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 70.9% Maximum value of SAR (measured) = 18.0 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.90 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71.8% Maximum value of SAR (measured) = 18.0 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.02 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 18.8 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.86 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.56 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 20.1 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.37 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.5% Maximum value of SAR (measured) = 19.6 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.46 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 19.3 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.09 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 19.6 W/kg Certificate No: D5GHzV2-1060_Jun23 Page 9 of 12 0 dB = 20.1 W/kg = 13.03 dBW/kg ## Impedance Measurement Plot for Head TSL (5200, 5300, 5500, 5800 MHz) ## Impedance Measurement Plot for Head TSL (5250, 5600, 5750 MHz) ## **ANNEX I Sensor Triggering Data Summary** #### SAR sensor trigger Distance definition | ANT | P-Sensor Detect | Near | Far | |---------|-----------------|--------|-------| | | Front | <=12mm | >12mm | | Main | Left | <=12mm | >12mm | | Antenna | Тор | <=12mm | >12mm | | | Rear | <=18mm | >18mm | | ANT | P-Sensor Detect | Near | Far | |----------|-----------------|-------|------| | | Rear | <=0mm | >0mm | | WIFI ANT | Left | <=6mm | >6mm | | | front | <=6mm | >6mm | Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for some positions. The measured output power within ± 5 mm of the triggering points (or until touching the phantom) is included for front, rear and each applicable edge. To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power. #### MAIN Ant: #### **Front** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 17 16 15 14 13 12 11 10 9 8 7 | | | | | | | | | | 7 | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | ## Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---------------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 7 8 9 10 11 12 13 14 15 16 17 | | | | | | | | | | | 17 | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | ## Rear Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 23 22 21 20 19 18 17 16 15 14 13 | | | | | | | | | | | 13 | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | ## Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |------------------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 13 14 15 16 17 18 19 20 21 22 23 | | | | | | | | | | | 23 | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | ## **Top Edge** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|---|------| | Distance [mm] 17 16 15 14 13 12 11 10 9 8 7 | | | | | | | | | | 7 | | | Main antenna | Main antenna Far Far Far Far Near Near Near Near Near Near Near | | | | | | | | | | Near | ## Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---------------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 7 8 9 10 11 12 13 14 15 16 17 | | | | | | | | | | 17 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | ## Left Edge Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 17 16 15 14 13 12 11 10 9 8 7 | | | | | | | | | | 7 | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | ## Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | | |-----------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|-----|--|--| | Distance [mm] 7 8 9 10 11 12 13 14 15 16 17 | | | | | | | | | | | | | | | Main antenna Near Near Near Near Near Far Far Far Far Far | | | | | | | | | | | Far | | | ## WIFI Ant: ## Front Edge Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |---------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------|--| | Distance [mm] 11 10 9 8 7 6 5 4 3 2 1 | | | | | | | | | | | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | ## Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | | |-------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--| | Distance [mm] 1 2 3 4 5 6 17 18 19 20 21 | | | | | | | | | | | | | | | Main antenna Near Near Near Near Near Far Far Far Far | | | | | | | | | | | | | | ## Left Edge Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|------|--| | Distance [mm] 11 10 9 8 7 6 5 4 3 2 1 | | | | | | | | | | | | | | Main antenna Far Far Far Far Near Near Near Near Near Near Near | | | | | | | | | | | Near | | ## Moving device away from the phantom: | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | | |-----------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|-----|--|--|--| | Distance [mm] 1 2 3 4 5 6 17 18 19 20 21 | | | | | | | | | | | | | | | | Main antenna Near Near Near Near Near Far Far Far Far Far | | | | | | | | | | | Far | | | | ## Main Ant: #### Rear Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|------|--| | Distance [mm] 23 22 21 20 19 18 17 16 15 14 13 | | | | | | | | | | | | | | Main antenna Far Far Far Far Near Near Near Near Near Near Near | | | | | | | | | | | Near | | ## Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | | |-----------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|-----|--|--| | Distance [mm] 13 14 15 16 17 18 19 20 21 22 23 | | | | | | | | | | | | | | | Main antenna Near Near Near Near Near Far Far Far Far Far | | | | | | | | | | | Far | | | ## **Right Edge** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | | |-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--| | Distance [mm] 23 22 21 20 19 18 17 16 15 14 13 | | | | | | | | | | | | | | | Main antenna Far Far Far Far Near Near Near Near Near Near Near | | | | | | | | | | | | | | ## Moving device away from the phantom: | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | | |-------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--| | Distance [mm] 13 14 15 16 17 18 19 20 21 22 23 | | | | | | | | | | | | | | | | Main antenna Near Near Near Near Near Far Far Far Far | | | | | | | | | | | | | | | ## **Bottom Edge** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------|--| | Distance [mm] 20 19 18 17 16 15 14 13 12 11 10 | | | | | | | | | | | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | ## Moving device away from the phantom: | | , | | | | | | | | | | | | | |------------------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|--|--| | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | | | Distance [mm] 10 11 12 13 14 15 16 17 18 19 20 | | | | | | | | | | | | | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | | | Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° . The front/rear evaluation The top edge evaluation The Left edge evaluation Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer. ## **ANNEX J Accreditation Certificate** ## **Accredited Laboratory** A2LA has accredited ## TELECOMMUNICATION TECHNOLOGY LABS, CAICT Beijing, People's Republic of China for technical competence in the field of #### **Electrical Testing** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017). Presented this 26th day of June 2023. Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01 Valid to July 31, 2024 For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.