

Test Report

Report No.: MTI240822009-01E1

Date of issue: 2024-09-02

Applicant: Modern Marketing Concepts Inc.

Product name: COOPER BLUETOOTH RADIO

CR1121A-EB, CR1121X-XX

(X can be replaced by letter from "A"to"Z", number from

Model(s): "0" to "9" or blank.)

(XX can be replaced by letter from "A"to"Z", number

from "0" to "9" or blank.)

FCC ID: AUSCR1121A

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5
2	Sum	mary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	g
4	List	of test equipment	10
5	Eval	uation Results (Evaluation)	11
	5.1	Antenna requirement	
6	Radi	io Spectrum Matter Test Results (RF)	
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	,	
	_	aphs of the test setup	
	_	aphs of the EUT	
Аp	pendi	ix A: 20dB Emission Bandwidth	38
Аp	pendi	ix B: Maximum conducted output power	41
Аp	pendi	x C: Carrier frequency separation	44
Аp	pendi	ix D: Time of occupancy	46
		ix E: Number of hopping channels	
	_	ix F: Band edge measurements	
	_	x G: Conducted Spurious Emission	56

Test Result Certification				
Applicant:	Modern Marketing Concepts Inc.			
Address:	1220 E Oak St, Louisville, KY 40204			
Manufacturer 1:	GAO ZHOU YUNKANGYUAN TECHNOLOGY CO., LTD.			
Address:	Building B, No.1 Yunhua Road, Yuntan Committee South Industrial Zone, Yuntan Town, Gaozhou City, Guangdong, China.			
Manufacturer 2:	YUNMEI ELECTRONICS CO.,LTD.			
Address:	No.58, JinAn Road, Xiangxi Village, Liaobu Town, Dongguan City, Dongguan, GD, China.			
Product description				
Product name:	COOPER BLUETOOTH RADIO			
Trademark:	CROSLEY			
Model name:	CR1121A-EB			
Series Model(s):	CR1121X-XX (X can be replaced by letter from "A"to"Z", number from "0" to "9" or blank.) (XX can be replaced by letter from "A"to"Z", number from "0" to "9" or blank.)			
Standards:	47 CFR Part 15.247			
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013			
Date of Test				
Date of test:	2024-08-29 to 2024-08-31			
	+			

Pass

Test result:

Test Engineer	Morteer Teny
	(Maleah Deng)
Reviewed By	 Dowid. Cee
	(David Lee)
Approved By	leon chen
	(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	COOPER BLUETOOTH RADIO
Model name:	CR1121A-EB
Series Model(s):	CR1121X-XX (X can be replaced by letter from "A"to"Z", number from "0" to "9" or blank.) (XX can be replaced by letter from "A"to"Z", number from "0" to "9" or blank.)
Model difference:	All the models are the same circuit and module, except the model name and outlook colour.
Electrical rating:	DC-IN (USB Type-C): 5V 1A Li-ion Battery: 3.7V,1200mAh
Accessories:	Cable: USB-A to USB-C cable 60cm
Hardware version:	V1.1
Software version:	V27
Test sample(s) number:	MTI240822009-01S1001
RF specification	
Bluetooth version:	V5.3
Operating frequency range:	2402-2480MHz
Channel number:	79
Modulation type:	GFSK, π/4-DQPSK
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	-0.58dBi
1.2 Description of test	modes

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK
Mode2	TX-π/4-DQPSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469

	T	1	T		T		
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Test Software:	FCC Assist 1.0.2.2			
Mode	2402MHz	2441MHz	2480MHz	
GFSK	10	10	10	
π/4-DQPSK	10	10	10	

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

adming the teete:						
Support equipment list						
Description	Model	Serial No.	Manufacturer			
HUAWEI CHARGE	HW-050200C02	K95212KA103561	HUAWEI			
Support cable list						
Description	Length (m)	From	То			
1	1	1	1			

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
3	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

	List of test equipment										
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due					
	Conducted Emission at AC power line										
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19					
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20					
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19					
	Dwell Time Emissions in non-restricted frequency bands Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies										
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19					
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20					
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20					
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20					
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20					
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20					
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20					
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19					
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20					
		Emissions in frequency Band edge	uency bands (ab emissions (Radi								
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19					
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16					
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19					
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20					
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20					
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16					
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20					
	Emissions in frequency bands (below 1GHz)										
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19					
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10					
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22					
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19					

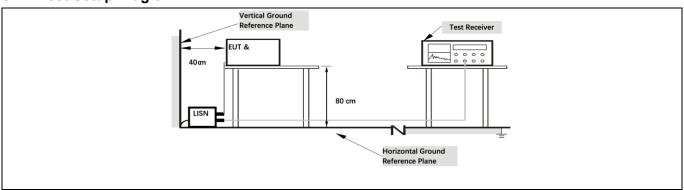
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

5.1.1 Conclusion:

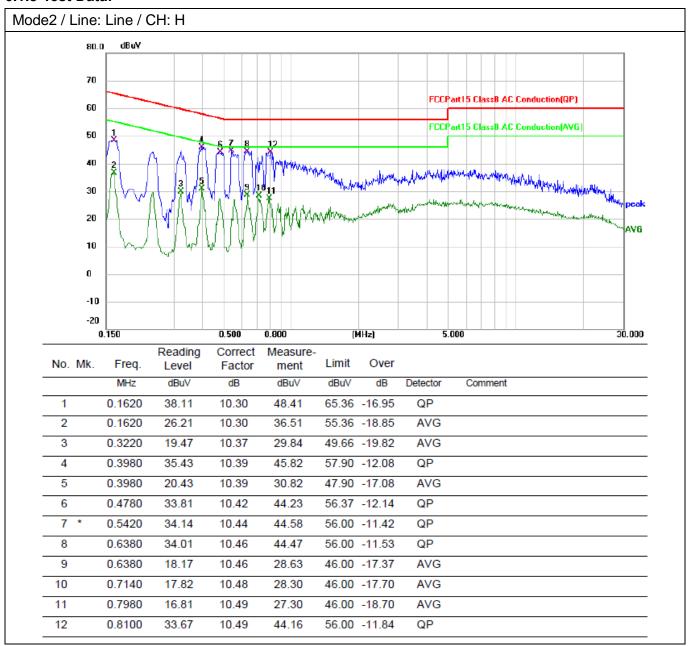
The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	f emission (MHz) Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5 56 46						
	5-30 60 50						
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 sect line conducted emissions from u						

6.1.1 E.U.T. Operation:


Operating Environment:								
Temperature:	Temperature: 34.2 °C Humidity: 28.4 % Atmospheric Pressure: 99 kPa					99 kPa		
Pre test mode: Mode1, Mode2								
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report					of the worst mode			

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

10

11

12

4.0900

7.6900

7.8660

28.21

28.65

14.73

10.57

10.64

10.64

38.78

39.29

25.37

56.00 -17.22

60.00 -20.71

50.00 -24.63

QP

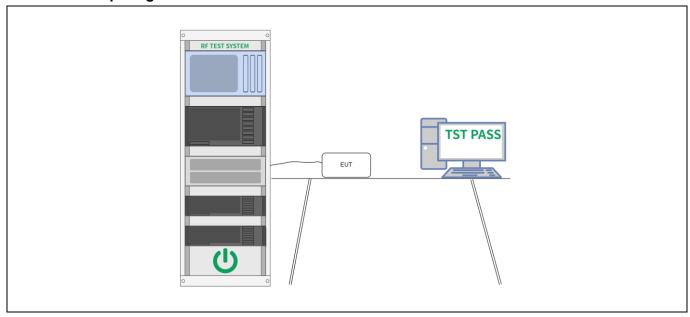
QΡ

AVG

Report No.: MTI240822009-01E1 Mode2 / Line: Neutral / CH: H dBuV 80.0 70 FCCPart15 ClassB AC Conduction(QP) 60 FCCPart15 ClassB AC Conduction(AVG) 50 40 30 20 AVG 10 n -10 0.500 0.800 (MHz) 5.000 0.150 30.000 Correct Reading Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV MHz dBuV dΒ dBuV dB Detector Comment 1 0.1620 37.88 10.30 48.18 65.36 -17.18 QP 0.1620 2 26.21 10.30 36.51 55.36 -18.85 AVG QP 3 0.4020 35.02 10.39 45.41 57.81 -12.40 4 0.4020 18.67 10.39 29.06 47.81 -18.75 AVG 5 0.7220 18.52 10.48 29.00 46.00 -17.00 AVG 6 0.7740 33.19 10.49 43.68 56.00 -12.32 QΡ 7 2.5140 27.33 10.56 37.89 56.00 -18.11 QP 2.6980 13.99 10.56 24.55 46.00 -21.45 8 AVG 9 3.9980 15.39 10.57 25.96 46.00 -20.04 AVG

6.2 Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB do



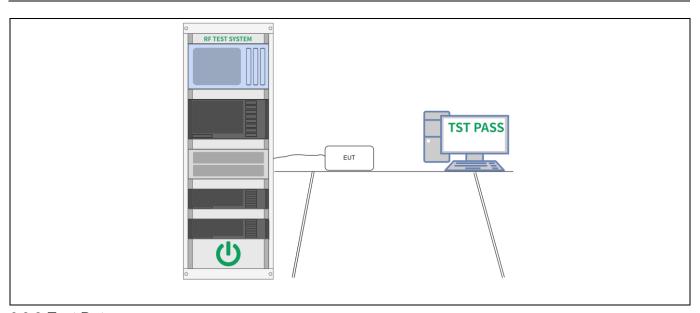
plot(s).

6.2.1 E.U.T. Operation:

Operating Envi	Operating Environment:									
Temperature:	Temperature: 25 °C Humidity: 56 % Atmospheric Pressure: 100 kPa									
Pre test mode:	Mode	e1, Mode2								
Final test mode: N			e1, Mode2							

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

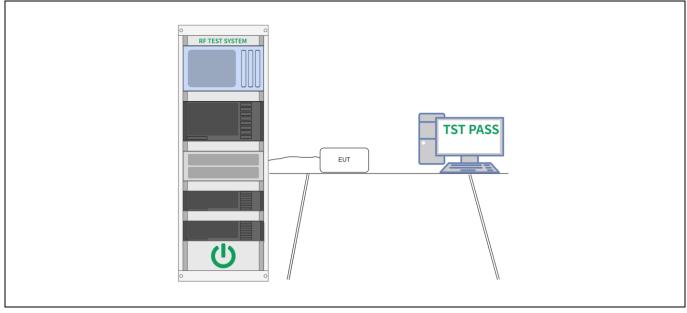
Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.3.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 25 °C Humidity: 56 % Atmospheric Pressure: 100 kPa							
Pre test mode: Me			e1, Mode2					
Final test mode: Mode1, Mode2								

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Channel Separation

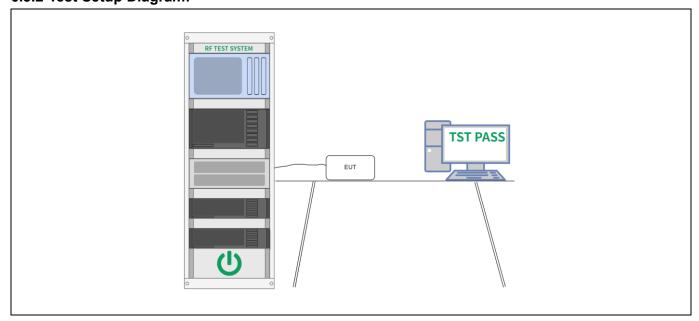
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 25 °C Humidity: 56 % Atmospheric Pressure: 100 kPa							
Pre test mode: Mo		Mode	e1, Mode2					
Final test mode: Mo		Mode	e1, Mode2					

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 Number of Hopping Frequencies

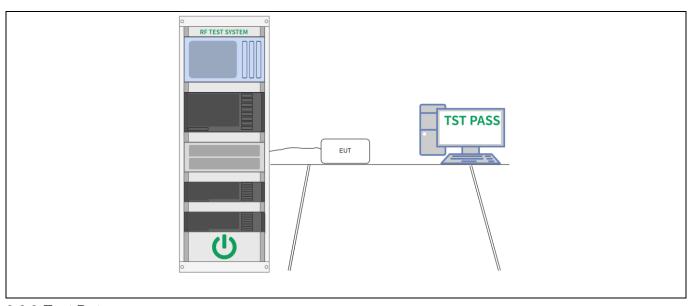
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.5.1 E.U.T. Operation:

Operating Env	ironment:	1				
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			

6.5.2 Test Setup Diagram:

6.5.3 Test Data:


6.6 Dwell Time

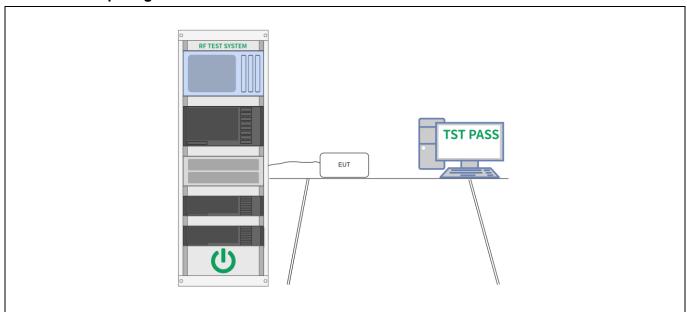
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in spectrum analyzer) × (period specified in the requirements / analyzer sweep time) (Number of hops on spectrum analyzer) × (period specified in the requirements.) If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

6.6.1 E.U.T. Operation:

Operating Envi	ironment:					
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			

6.6.2 Test Setup Diagram:

6.6.3 Test Data:


6.7 RF conducted spurious emissions and band edge measurement

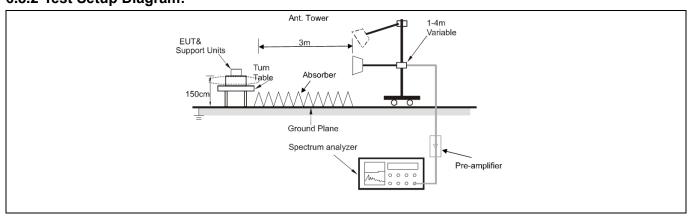
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.7.1 E.U.T. Operation:

Operating Envi	ronment:	1				
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			

6.7.2 Test Setup Diagram:

6.7.3 Test Data:


6.8 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated emfined in § 15.205(a), must also specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wi sections of this part, e. In the emission table a The emission limits sh employing a CISPR qu kHz, 110–490 kHz and	In paragraph (g), fundamental perating under this section show that the perating under this section shows the perating under this section shows the peration of the peration o	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.10.5.2	

6.8.1 E.U.T. Operation:

Operating Envi	ironment:					
Temperature:	21.3 °C		Humidity:	45.2 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:			re-test mode w ded in the repo	rere tested, only the data ort	of the worst mode
Note: The amplitude reported.	of spurio	us em	issions whic	ch are attenuate	ed more than 20 dB below	v the limits are not

6.8.2 Test Setup Diagram:

6.8.3 Test Data:

Mode2 /	Polari	zatio	n: Horizonta	al / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2310.000	48.01	-4.83	43.18	74.00	-30.82	peak
	2		2310.000	38.09	-4.83	33.26	54.00	-20.74	AVG
	3		2390.000	50.57	-4.31	46.26	74.00	-27.74	peak
	4	*	2390.000	39.86	-4.31	35.55	54.00	-18.45	AVG

Mode2 / Polarization: Vertical / CH: L

No. N	/lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2310.000	49.13	-4.83	44.30	74.00	-29.70	peak
2	2310.000	38.23	-4.83	33.40	54.00	-20.60	AVG
3	2390.000	49.85	-4.31	45.54	74.00	-28.46	peak
4 *	2390.000	39.18	-4.31	34.87	54.00	-19.13	AVG

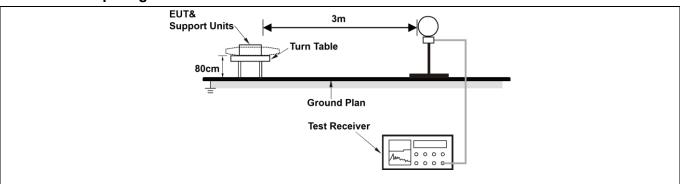
Mode2 /	Polarization	on: Horizont	al / CH: H					
	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	2483.500	51.26	-4.21	47.05	74.00	-26.95	peak
	2	2483.500	41.12	-4.21	36.91	54.00	-17.09	AVG
	3	2500.000	53.16	-4.10	49.06	74.00	-24.94	peak
	4 *	2500.000	41.57	-4.10	37.47	54.00	-16.53	AVG

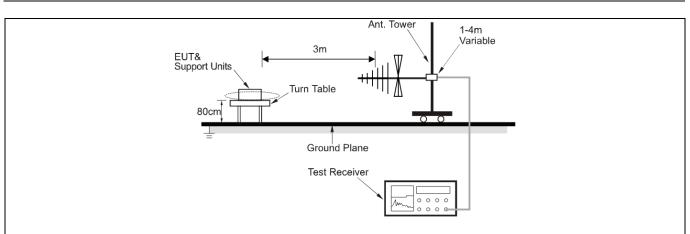
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	48.83	-4.21	44.62	74.00	-29.38	peak
2	*	2483.500	39.13	-4.21	34.92	54.00	-19.08	AVG
3		2500.000	48.99	-4.10	44.89	74.00	-29.11	peak
4		2500.000	38.95	-4.10	34.85	54.00	-19.15	AVG

6.9 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated en fined in § 15.205(a), must al s specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op- frequency bands 54-72 However, operation with sections of this part, e.g. In the emission table at The emission limits sho employing a CISPR quality, 110–490 kHz and	n paragraph (g), fundamenta erating under this section should be made this section should be made the made that the section should be made to b	nall not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.24	tion 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	tion 6.6.4	

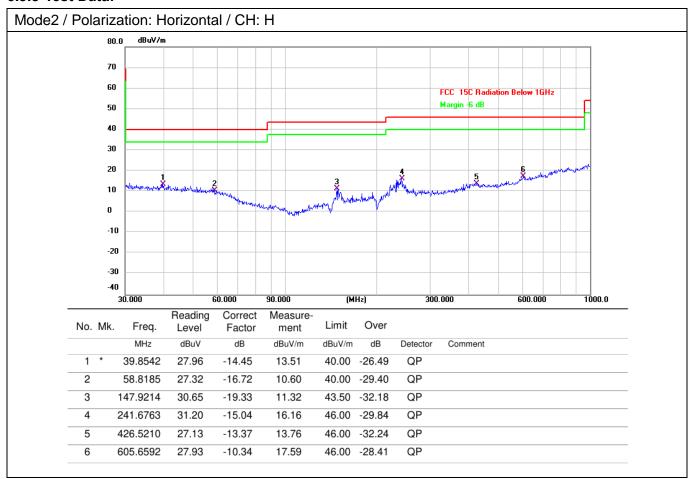
6.9.1 E.U.T. Operation:


Temperature: 21.3 °C Humidity: 45.2 % Atm	nospheric Pressure: 100 kPa
Pre test mode: Mode1, Mode2	
Final test mode: All of the listed pre-test mode were to (Mode2) is recorded in the report	ested, only the data of the worst mode


Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


6.9.2 Test Setup Diagram:

6.9.3 Test Data:

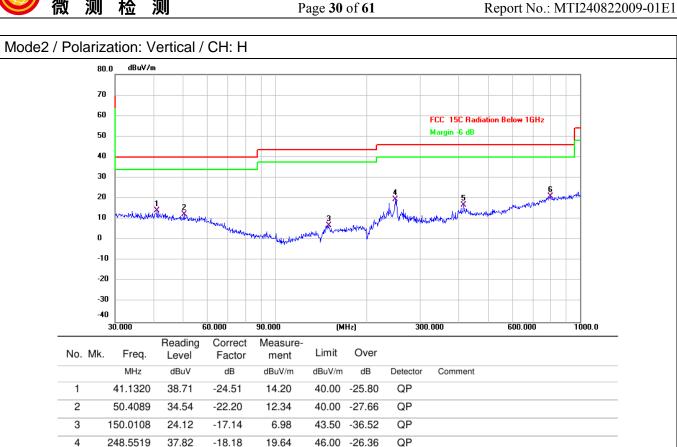
5

6

416.1791

798.9797

31.00


28.05

-14.24

-6.90

16.76

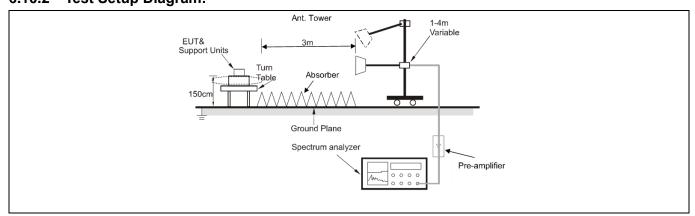
21.15

46.00 -29.24

46.00 -24.85

QP

QP


6.10 Radiated emissions (above 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`	· · · · · · · · · · · · · · · · · · ·
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation with sections of this part, e. In the emission table a The emission limits she employing a CISPR quality, 110–490 kHz and three bands are based	in paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the peration of th	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4	

6.10.1 E.U.T. Operation:

Operating Envi	ronment:	1				
Temperature:	21.3 °C		Humidity:	45.2 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	All of the listed pre-test mode were tested, only the			of the worst mode		
attenuated moi	re than 20	0 dB b	elow the lim	its are not repo	itude of spurious emission orted. d only the worst-case resu	

6.10.2 Test Setup Diagram:

6.10.3 Test Data:

Mode2 /	Polari	zatio	n: Horizonta	al / CH: L						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4804.000	43.18	0.53	43.71	74.00	-30.29	peak	
	2		4804.000	35.72	0.53	36.25	54.00	-17.75	AVG	
	3		7206.000	42.18	7.90	50.08	74.00	-23.92	peak	
	4		7206.000	37.28	7.90	45.18	54.00	-8.82	AVG	•
	5		9608.000	44.30	8.85	53.15	74.00	-20.85	peak	
	6	*	9608.000	38.44	8.85	47.29	54.00	-6.71	AVG	
										4

No. M	/lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4804.000	43.28	0.53	43.81	74.00	-30.19	peak
2	4804.000	36.73	0.53	37.26	54.00	-16.74	AVG
3	7206.000	42.92	7.90	50.82	74.00	-23.18	peak
4	7206.000	37.06	7.90	44.96	54.00	-9.04	AVG
5	9608.000	44.40	8.85	53.25	74.00	-20.75	peak
6 *	9608.000	39.40	8.85	48.25	54.00	-5.75	AVG

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	42.33	0.57	42.90	74.00	-31.10	peak
2		4882.000	37.66	0.57	38.23	54.00	-15.77	AVG
3		7323.000	42.76	7.57	50.33	74.00	-23.67	peak
4		7323.000	36.70	7.57	44.27	54.00	-9.73	AVG
5		9764.000	44.25	9.33	53.58	74.00	-20.42	peak
6	*	9764.000	35.94	9.33	45.27	54.00	-8.73	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	43.12	0.57	43.69	74.00	-30.31	peak
2		4882.000	37.66	0.57	38.23	54.00	-15.77	AVG
3		7323.000	42.73	7.57	50.30	74.00	-23.70	peak
4		7323.000	36.66	7.57	44.23	54.00	-9.77	AVG
5		9764.000	44.00	9.33	53.33	74.00	-20.67	peak
6	*	9764.000	38.83	9.33	48.16	54.00	-5.84	AVG

peak

AVG

-20.47

74.00

54.00 -4.48

5

6

9920.000

9920.000

43.84

39.83

Mode2 / Polarization: Horizontal / CH: H Reading Correct Measure-Limit Over Freq. No. Mk. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector 1 4960.000 43.77 44.43 74.00 -29.57 0.66 peak 2 4960.000 39.49 0.66 40.15 54.00 -13.85 AVG 3 51.67 7440.000 43.73 7.94 74.00 -22.33peak 4 7440.000 38.30 7.94 46.24 54.00 -7.76AVG

9.69

9.69

53.53

49.52

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	43.74	0.66	44.40	74.00	-29.60	peak
2		4960.000	39.49	0.66	40.15	54.00	-13.85	AVG
3		7440.000	43.22	7.94	51.16	74.00	-22.84	peak
4		7440.000	37.45	7.94	45.39	54.00	-8.61	AVG
5		9920.000	44.61	9.69	54.30	74.00	-19.70	peak
6	*	9920.000	40.44	9.69	50.13	54.00	-3.87	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

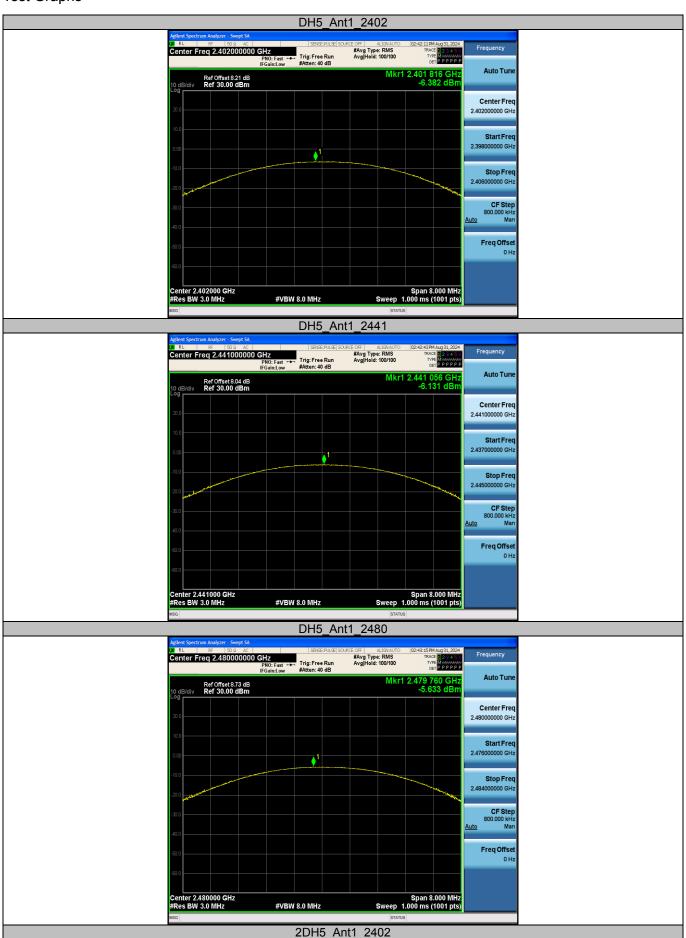
Refer to Appendix - EUT Photos

Appendix

Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]	
DH5		2402	0.948	
	Ant1	2441	0.963	
		2480	0.945	
2DH5	Ant1	2402	1.341	
		2441	1.311	
		2480	1.317	



Appendix B: Maximum conducted output power

Test Result Peak

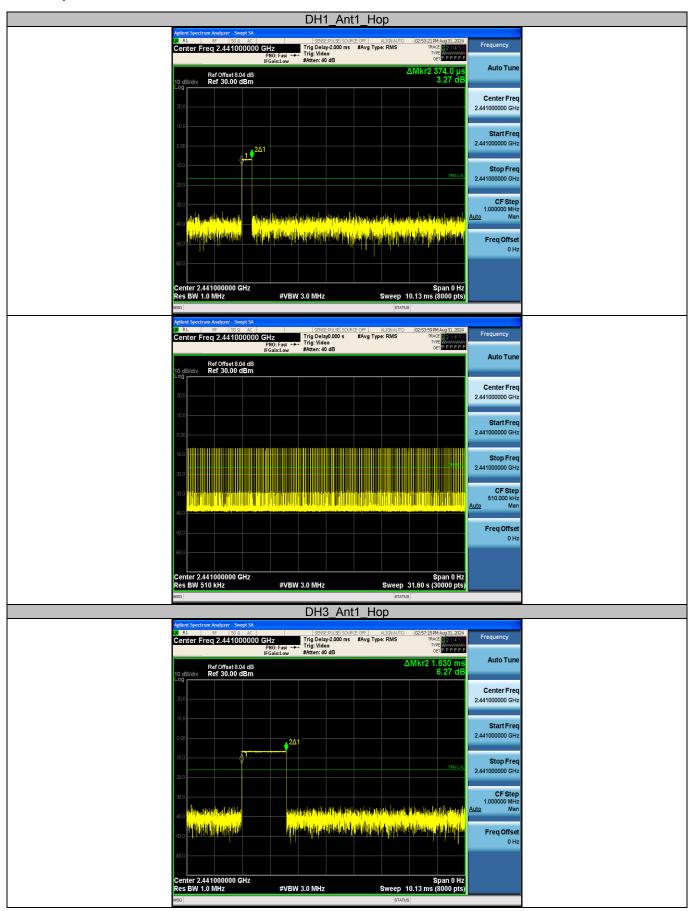
Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
DH5	Ant1	2402	-6.38	≤30	PASS
		2441	-6.13	≤30	PASS
		2480	-5.63	≤30	PASS
2DH5	Ant1	2402	-5.73	≤30	PASS
		2441	-5.39	≤30	PASS
		2480	-4.95	≤30	PASS

Appendix C: Carrier frequency separation

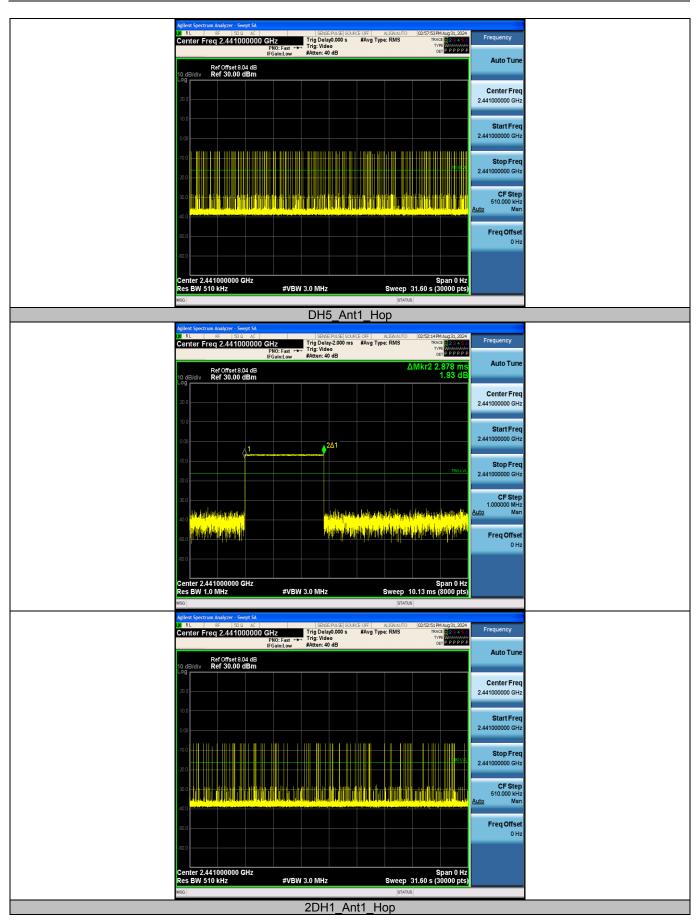
Test Result

Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	1.004	≥0.963	PASS
2DH5	Ant1	Нор	1.326	≥0.894	PASS

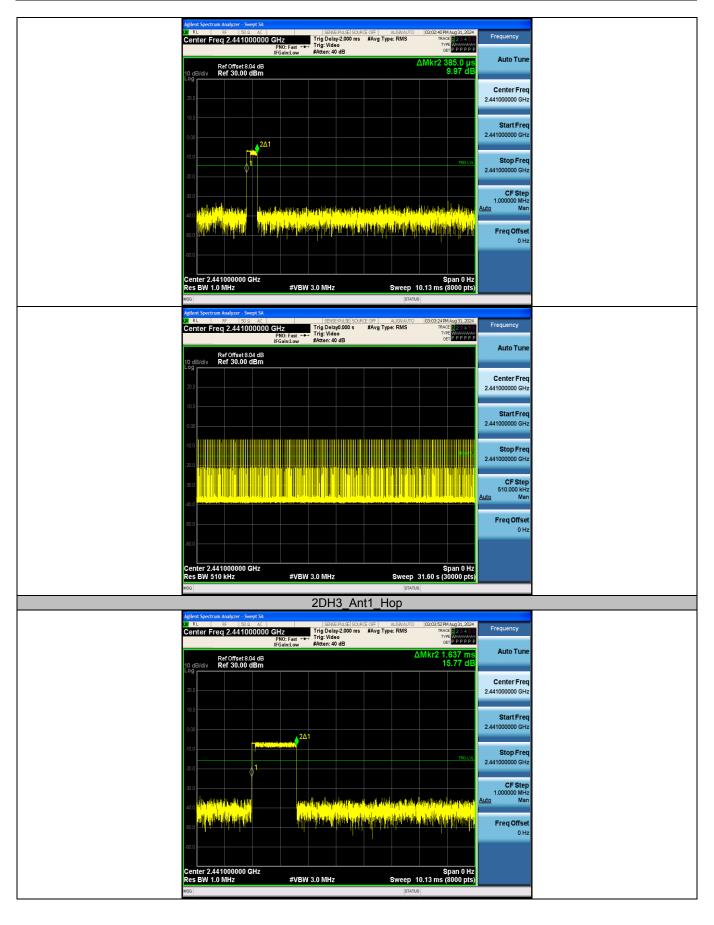
Appendix D: Time of occupancy


Test Result

Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.374	317	0.119	≤0.4	PASS
DH3	Ant1	Нор	1.630	168	0.274	≤0.4	PASS
DH5	Ant1	Нор	2.878	94	0.271	≤0.4	PASS
2DH1	Ant1	Нор	0.385	319	0.123	≤0.4	PASS
2DH3	Ant1	Нор	1.637	150	0.246	≤0.4	PASS
2DH5	Ant1	Нор	2.884	114	0.329	≤0.4	PASS


Notes:

- 1. Period time = 0.4s * 79 = 31.6s
- 2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]


Page 47 of 61 Report No.: MTI240822009-01E1

