FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Report No.: SZ1210218-04515EA

Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)	Electric Field Strength (V/m)	trength Strength Density		Averaging Time (Minutes)					
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	$*(180/f^2)$	30					
30-300	27.5	0.073	0.2	30					
300-1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

^{* =} Plane-wave equivalent power density

Frequency	Antenna Gain		Tune up conducted power		Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
2412-2462	0	1.0	17.5	56.23	20	0.011	1
2402-2477	0	1.0	18.0	63.10	20	0.013	1

Report No.: SZ1210218-04515EA

Note: 1. The tune up conducted power was declared by the applicant 2. The Wi-Fi can transmit at the same time with the 2.4G hopping radio.

Simultaneous transmitting consideration (worst case):

The ratio=MPE_{Wi-Fi}/limit+MPE_{Hopping}/limit=0.011+0.013=0.024 $\!<\!1.0$

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Pass