

TEST REPORT

Applicant: HONG KONG IPRO TECHNOLOGY CO.,LIMITED

Address: 12/F,3 LOCKHART ROAD, WANCHAI, HK

FCC ID: PQ4IPROSAMBA65S

Product Name: Smart Phone

Model Number: SAMBA65S

Standard(s): 47 CFR Part 2 47 CFR Part 22, Subpart H 47 CFR Part 24, Subpart E ANSI C63.26-2015 KDB 971168 D01 Power Meas License Digital Systems v03r01

The above equipment has been tested and found compliance with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

 Report Number:
 CR21090076-00C

 Date Of Issue:
 2021-11-11

 Reviewed By:
 Sun Zhong

 Title:
 Manager

 Test Laboratory:
 China Certification ICT Co., Ltd (Dongguan)

 No. 113, Pingkang Road, Dalang Town, Dongguan,

 Guangdong, China

 Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

TEST FACILITY	2
DECLARATIONS	2
1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 Description of Test Configuration	5
1.2.2 Support Equipment List and Details	
1.2.3 Support Cable List and Details1.2.4 Configuration of Test Setup	
1.2.5 Block Diagram of Test Setup	8
1.3 MEASUREMENT UNCERTAINTY	
2. SUMMARY OF TEST RESULTS	
3. REQUIREMENTS AND TEST PROCEDURES	
3.1 Applicable Standard For Part 22 Subpart H:	
3.1.1 RF Output Power	11
3.1.2 Spurious Emissions	
3.1.3 Frequency stability	11
3.2 Applicable Standard For Part 24 Subpart E:	
3.2.1 RF Output Power	
3.2.2 Spurious Emissions	
3.2.3 Frequency stability 3.4 Test Method:	
3.4.1 RF Output Power	
3.4.2 Occupied Bandwidth	
3.4.3 Spurious emissions at antenna terminals	
3.4.4 Out of band emission	
3.4.5 Frequency stability	
3.4.6 Field strength of spurious radiation	
4. Test DATA AND RESULTS	
4.1 ANTENNA PORT TEST DATA AND RESULTS FOR GSM 850 BAND:	
4.2 ANTENNA PORT TEST DATA AND RESULTS FOR GSM 1900 BAND:	23
4.3 ANTENNA PORT TEST DATA AND RESULTS FOR WCDMA BAND 2:	29
4.4 ANTENNA PORT TEST DATA AND RESULTS FOR WCDMA BAND 5:	36
4.5 Spurious Emissions	43

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Smart Phone
EUT Model:	SAMBA65S
Operation modes:	GSM Voice, GPRS/EDGE Data,
	WCDMA(R99 (Data), HSDPA, HSUPA)
Operation Bands and modes:	GSM/GPRS/EDGE: 850/1900
operation bands and modes.	WCDMA: Band 2/5
Modulation Type:	GMSK,8PSK, QPSK, 16QAM
Rated Input Voltage:	DC 3.85 V from battery or DC 5V from adapter
Serial Number:	CR21090076-RF-S1
EUT Received Date:	2021.9.28
EUT Received Status:	Good

Accessory Information:

Accessory Description	Manufacturer	Model	Parameters
Adapter	IPRO	NTR-S05	Input: AC100V-240V 50/60Hz 300mA Output: DC5.0V DC 2A

1.2 Description of Test Configuration

1.2.1 EUT Operation Condition:

EUT Operation Mode:	The system was configured for testing in each operation mode.			
Equipment Modifications:	No			
EUT Exercise Software:	No			
The maximum power was configured per	3GPP Standard for each operation modes as below setting:			
GSM/GPRS/EGPRS				
Function: Menu select > GSM Mobile Station > GSM 850/1900 Press Connection control to choose the different menus Press RESET > choose all the reset all settings Connection Press Signal Off to turn off the signal and change settings Network Support > GSM + GPRS or GSM + EGSM Main Service > Packet Data Service selection > Test Mode A – Auto Slot Config. off MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting > Slot configuration > Uplink/Gamma > 33 dBm for GPRS 850 > 30 dBm for GPRS 850 > 26 dBm for EGPRS 1900 > 27 dBm for EGPRS 1900 BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel Frequency Offset > + 0 Hz				
Mode >BCCH and TCHBCCH Level >-85 dBm (May neeBCCH Channel >choose desire testchannel) and BCCH channel]	d to adjust if link is not stable) channel [Enter the same channel number for TCH channel (test			
Channel Type >OffP0 >4 dBSlot Config >Unchanged (if alrTCH >choose desired terHopping >OffMain Timeslot >3NetworkCoding Scheme >				
Bit Stream > 2E9-1 PSR Bit Str AF/RF Enter appropriate Connection Press Signal on t	eam e offsets for Ext. Att. Output and Ext. Att. Input o turn on the signal and change settings			

WCDMA-Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24 dBm (+1.7/-3.7).

WCDMA General Settings	Loopback Mode	Test Mode 1
	Rel99 RMC	12.2kbps RMC
	Power Control Algorithm	Algorithm2
	βc / βd	8/15

WCDMA HSDPA

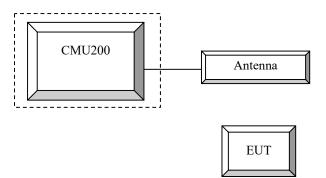
The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA
	Subset	1	2	3	4
	Loopback Mode			Test Mode 1	
	Rel99 RMC			12.2kbps RM	C
	HSDPA FRC			H-Set1	
	Power Control Algorithm			Algorithm2	
WCDMA	βc	2/15	12/15	15/15	15/15
General Settings	βd	1 /15	15/15	8/15	4/15
Settings	βd (SF)		64		
	βc/ βd	2/15	12/15	15/8	15/4
	βhs	4/15	24/15	30/15	30/15
	MPR(dB)	0	0	0.5	0.5
	DACK			8	
	DNAK			8	
HSDPA	DCQI			8	
Specific	Ack-Nack repetition			3	
Settings	factor	3			
Settings	CQI Feedback			4ms	
	CQI Repetition Factor	2			
	Ahs=βhs/ βc			30/15	

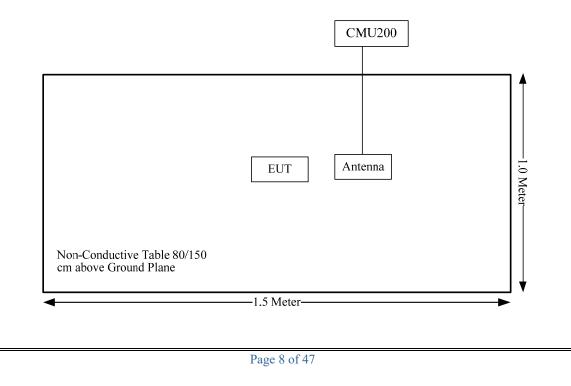
WCDMA HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA
	Subset	1	2		4	5
	Loopback Mode	Test Mode 1				
	Rel99 RMC	12.2kbps RMC				
	HSDPA FRC			H-Set1		
	HSUPA Test	HSUPA Loopback				
	Power Control	Algorithm2				
WCDMA	Algorithm			-		
General	βc	11/15	6/15	15/15	2/15	15/15
Settings	βd	15/15	15/15	9/15	15/15	0
	βec	209/225	12/15	30 15	2/15	5/15
	βc/ βd	11/15	6/15	15/9	2/15	-
	βhs	22/15	12/15	30/15	4/15	5/15
	CM(dB)	1.0	3.0	2.0	3.0	1.0
	MPR(dB)	0	2	1	2	0
	DACK			8		
	DNAK			8		
HSDPA	DCQI			8		
Specific	Ack-Nack repetition	3				
Settings	factor	3				
Settings	CQI Feedback	4ms				
	CQI Repetition Factor			2		
	Ahs= β hs/ β c			30/15		
	DE-DPCCH	6	8	8	5	7
	DHARQ	0	0	0	0	0
	AG Index	20	12	15	17	21
	ETFCI	75	67	92	71	81
	Associated Max UL Data Rate k ps	242.1	174.9	482.8	205.8	308.9
HSUPA Specific Settings	Reference E_FCls	E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC	I PO 4 CI 67 PO 18 CI 71 I PO23 CI 75 I PO26 CI 81	E-TFCI 11 E-TFCI PO4 E-TFCI 92 E-TFCI PO 18	E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC	CI 71 I PO23 CI 75 I PO26


1.2.2 Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universal Radio Communication Tester	CMU200	110 825
Un-Known	ANTENNA	Unknown	Unknown


1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
/	/	/	/	/	/

1.2.4 Configuration of Test Setup

1.2.5 Block Diagram of Test Setup

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, 6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	±1 °C
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%

2. SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC§2.1046; § 22.913 (a); § 24.232 (c)	RF Output Power	Compliance
FCC§ 2.1047	Modulation Characteristics	Not Applicable
FCC§ 2.1049; § 22.905 § 22.917; § 24.238	Occupied Bandwidth	Compliance
FCC§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance
FCC§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance
FCC§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance
FCC§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliance

3. REQUIREMENTS AND TEST PROCEDURES

3.1 Applicable Standard For Part 22 Subpart H:

3.1.1 RF Output Power

FCC §22.913(a)

(5) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7watts.

3.1.2 Spurious Emissions

FCC §22.917

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a reference bandwidth as follows:

(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth (i.e., 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
 (2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz

3.1.3 Frequency stability

FCC §22.355

Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Frequency range (MHz)	Base, fixed (ppm)	Mobile >3 watts (ppm)	Mobile ≤3 watts (ppm)
25 to 50	20	20	50
50 to 450	5	5	50
450 to 512	2.5	5	5
821 to 896	1.5	2.5	2.5
928 to 929	5	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10	n/a	n/a

Table C-1 - Frequency Tolerance for Transmitters in the Public Mobile Services

3.2 Applicable Standard For Part 24 Subpart E:

3.2.1 RF Output Power

FCC §24.232(c)

Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

3.2.2 Spurious Emissions

FCC §24.238

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Alternative out of band emission limit. Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas, in lieu of that set forth in this section, pursuant to a private contractual arrangement of all affected licensees and applicants. In this event, each party to such contract shall maintain a copy of the contract in their station files and disclose it to prospective assignees or transferees and, upon request, to the FCC.

(d) Interference caused by out of band emissions. If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

3.2.3 Frequency stability

FCC §24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.4 Test Method:

3.4.1 RF Output Power

According to CFR Part 2.1046, ANSI C63.26-2015 Section 5.2.5.5 and KDB 971168 D01 Power Meas License Digital Systems v03r01:

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

ERP or EIRP = $P_{Meas} + G_T - L_C$

where:

ERP or EI	RP = effective radiated power or equivalent isotropically radiated power, respectively
	(expressed in the same units as P _{Meas} , typically dBW or dBm);
PMeas	= measured transmitter output power or PSD, in dBm or dBW;
GT	= gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);
L _C	= signal attenuation in the connecting cable between the transmitter and antenna, in dB.

3.4.2 Occupied Bandwidth

According to CFR Part 2.1049, ANSI C63.26-2015 Section 5.4.4

The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring (99%) power bandwidth:

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient).

b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \ge 3 × RBW.

c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances.

d) Set the detection mode to peak, and the trace mode to max-hold.

e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.

f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).

3.4.3 Spurious emissions at antenna terminals

According to CFR Part 2.1051, 22.917(a), 24.238(a), ANSI C63.26-2015 Section 5.7.4, KDB 971168 D01 Power Meas License Digital Systems v03r01:

the applicable rule part specifies the reference bandwidth for measuring unwanted emission levels (typically, 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GHz),8 effectively depicting the unwanted emission limit in terms of a power spectral density. In those cases where no reference bandwidth is explicitly specified, the values in the preceding sentence should be used.

3.4.4 Out of band emission

According to CFR Part 2.1051, 22.917(a), 24.238(a), ANSI C63.26-2015 Section 5.7.3, KDB 971168 D01 Power Meas License Digital Systems v03r01:

Typically, a measurement (resolution) bandwidth smaller than the reference bandwidth is allowed for measurements within a specified frequency range at the edge of the authorized frequency block/band (e.g., within the first Y MHz outside of the authorized frequency band/block, where the value of Y is specified in the relevant rule part). Some FCC out-of-band emission rules permit the use of a narrower RBW (typically limited to a minimum RBW of 1 % of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. Beyond the specified frequency range in which this relaxation of the uniform reference bandwidth is permitted, it typically is also acceptable to use a narrower RBW (again limited to a minimum of 1 % of OBW) to increase accuracy, but the measurement result must subsequently be integrated over the full reference bandwidth.

3.4.5 Frequency stability

According to CFR Part 2.1055, ANSI C63.26-2015 Section 5.6, KDB 971168 D01 Power Meas License Digital Systems v03r01:

Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20 °C and rated supply voltage.

The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency determining circuit element shall be made subsequent to this initial set-up. Frequency stability is tested:

a) At 10 °C intervals of temperatures between -30 °C and +50 °C at the manufacturer's rated supply voltage, and

b) At +20 °C temperature and $\pm 15\%$ supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

During the test all necessary settings, adjustments and control of the EUT have to be performed without disturbing the test environment, i.e., without opening the environmental chamber. The frequency stabilities can be maintained to a lesser temperature range provided that the transmitter is automatically inhibited from operating outside the lesser temperature range. For handheld equipment that is only capable of operating from internal batteries and the supply voltage cannot be varied, the frequency stability tests shall be performed at the nominal battery voltage and the battery end point voltage specified by the manufacturer. An external supply voltage can be used and set at the internal battery nominal voltage, and again at the battery operating end point voltage which shall be specified by the equipment manufacturer.

If an unmodulated carrier is not available, the mean frequency of a modulated carrier can be obtained by using a frequency counter with gating time set to an appropriately large multiple of bit periods (gating time depending on the required accuracy). Full details on the choice of values shall be included in the test report.

3.4.6 Field strength of spurious radiation

According to CFR Part 2.1053, 22.917(a), 24.238(a), ANSI C63.26-2015 Section 5.5.3:

Test setup:

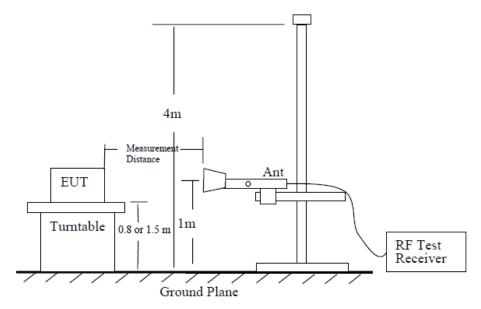
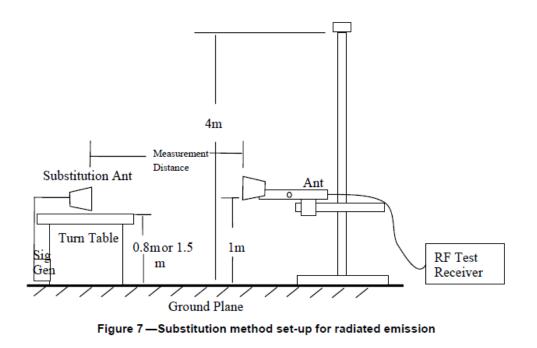



Figure 6 — Test site-up for radiated ERP and/or EIRP measurements

Page 15 of 47

Test Procedure:

- a) Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.
- b) Each emission under consideration shall be evaluated:
 - Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - 4) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - 5) Record the measured emission amplitude level and frequency using the appropriate RBW.
- c) Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- d) Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- e) Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- f) Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- g) For each emission that was detected and measured in the initial test [i.e., in step b) and step c)]:
 - Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step b) and step c).
 - 3) Record the output power level of the signal generator when equivalence is achieved in step 2).
- Repeat step e) through step g) with the measurement antenna oriented in the opposite polarization.
- i) Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

- Pe = equivalent emission power in dBm
- Ps = source (signal generator) power in dBm

NOTE-dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

- j) Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) - 2.15 dB. If necessary, the antenna gain can be calculated from calibrated antenna factor information
- k) Provide the complete measurement results as a part of the test report.

4. Test DATA AND RESULTS

4.1 Antenna Port Test Data and Results for GSM 850 band:

Serial Number:	CR21090076-RF-S1	Test Date:	2021/11/4~2021/11/5
Test Site:	RF	Test Mode:	Transmitting
Tester:	Thor Lei	Test Result:	Pass

Environmental Conditions:							
Temperature: (°C)	25.9~26.8	Relative Humidity: (%)	61~66	ATM Pressure: (kPa)	100.9~101.1		

Test Equipment List and Details:								
Manufacturer	Description Model		Serial Number	Calibration Date	Calibration Due Date			
R&S	R&S Spectrum Analyzer		101474	2021/7/22	2022/7/21			
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A			
Mini-Circuits	DC Block	BLK-18-S+	6155/10/22	Each time	N/A			
R&S	Universal Radio Communication Tester	CMU200	110 825	2021/7/22	2022/7/21			
Weinschel	Coaxial Attenuators	53-20-34	LN751	Each time	N/A			
BACL	TEMP&HUMI Test Chamber	BTH-150	1982/3/16	2021/7/22	2022/7/22			
UNI-T	Multimeter	UT39A+	C210582554	2021/9/30	2022/9/30			
E-Microwave	Two-way Spliter	ODP-1-6	OE0120176	Each Time	N/A			
* 0)		1			

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

EUT Information@ GSM 850 Band▲:							
Antenna Gain (dBi):-1.2Antenna Gain (dBd):-3.35Cable Loss (dB):0.2							
Operation Voltage(V _{DC}):							
Lowest:3.6Normal:3.85Highest:4.35							

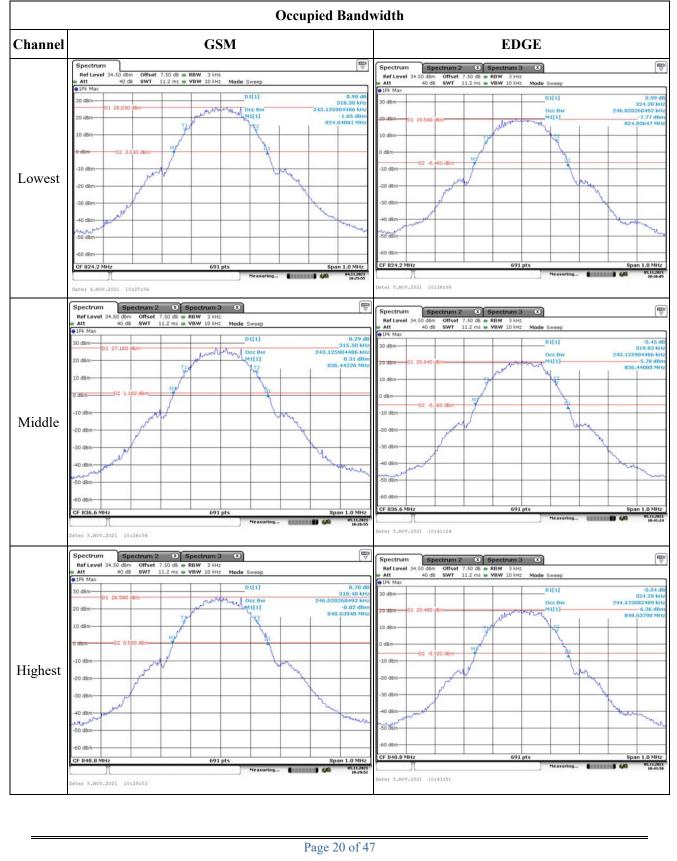
Test Frequency For Each Mode:							
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)				
GSM	824.2	836.6	848.8				
GPRS	824.2	836.6	848.8				
EDGE	824.2	836.6	848.8				

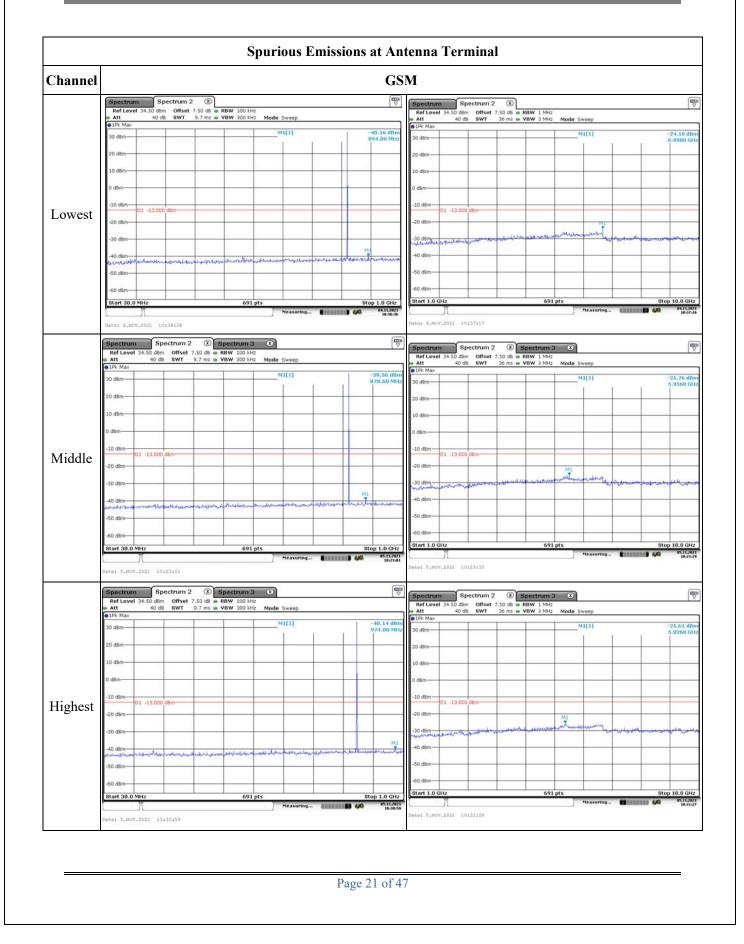
Test Data:

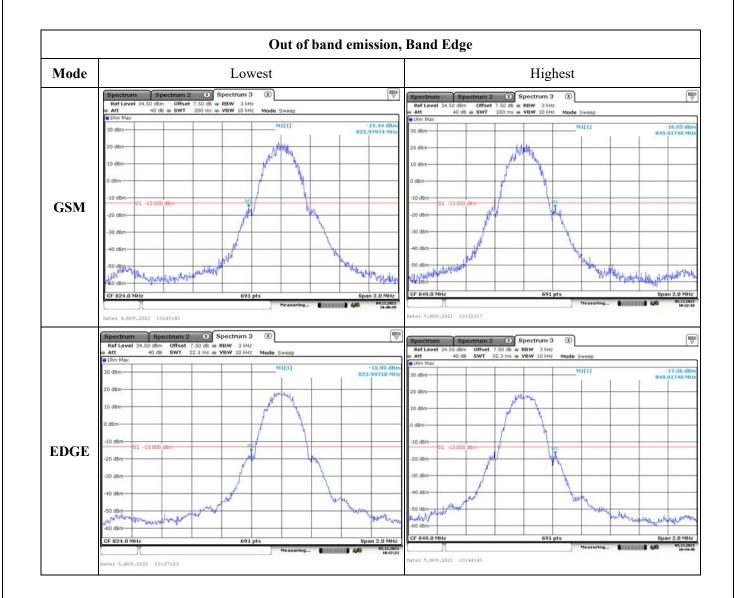
FCC§2.1046;§ 22.913 (a):RF Output Power								
	Conducted	Peak Output Pe	Maximum	ERP Limit				
Test Mode	Lowest Channel	Middle Channel	Highest Channel	ERP (dBm)	(dBm)			
GSM	32.87	32.95	32.68	29.4	38.45			
GPRS 1 Slot	32.81	32.84	32.91	29.36	38.45			
GPRS 2 Slots	30.72	30.93	30.88	27.38	38.45			
GPRS 3 Slots	29.28	29.57	29.46	26.02	38.45			
GPRS 4 Slots	27.27	27.38	27.17	23.83	38.45			
EDGE 1 Slot	26.83	26.94	26.85	23.39	38.45			
EDGE 2 Slots	25.14	25.26	25.21	21.71	38.45			
EDGE 3 Slots	23.69	23.82	23.79	20.27	38.45			
EDGE 4 Slots	21.27	21.39	21.14	17.84	38.45			
Note: ERP=Con	nducted Power(d	Bm) - Cable loss	(dB) + Antenna	Gain(dBd)				
Result: Pass								

FCC §2.1049, §22.917, §22.905:Occupied Bandwidth									
Operation	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)					
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel			
GSM	0.243	0.243	0.246	0.318	0.315	0.318			
EDGE	0.246	0.243	0.245	0.324	0.32	0.324			

Note: The test plots please refer to the Plots of Occupied Bandwidth


FCC §2.1051, §22.917(a):Spurious Emissions at Antenna Terminal					
Result:	Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.				


FCC §2.1051, §22.917(a):Out of band emission, Band Edge				
Result:	Pass, Please refer to the test plots of Out of band emission, Band Edge.			


FCC §2.1055, §22.355: Frequency Stability							
Test Modulation:	GMSK		Test Channel:	836.6	MHz		
Test Item	Temperature	Voltage	Frequen	cy Error	Limit		
Test Item	(°C)	(VDC)	(Hz)	(ppm)	(ppm)		
	-30	3.85	13	0.02	2.5		
	-20	3.85	10	0.01	2.5		
	-10	3.85	8	0.01	2.5		
Frequency	0	3.85	12	0.01	2.5		
Stability vs.	10	3.85	14	0.02	2.5		
Temperature	20	3.85	16	0.02	2.5		
	30	3.85	12	0.01	2.5		
	40	3.85	15	0.02	2.5		
	50	3.85	-12	-0.01	2.5		
Frequency Stability vs. Voltage	20	3.6	10	0.01	2.5		
	20	4.35	14	0.02	2.5		
				Result:	Pass		

Test Modulation:	8PSK		Test Channel: 836.6		MHz
Test Item	Temperature	Voltage	Frequen	cy Error	Limit
Test Item	(°°)	(Vdc)	(Hz)	(ppm)	(ppm)
	-30	3.85	-14	-0.02	2.5
	-20	3.85	15	0.02	2.5
	-10	3.85	13	0.02	2.5
Frequency	0	3.85	12	0.01	2.5
Stability vs.	10	3.85	13	0.02	2.5
Temperature	20	3.85	14	0.02	2.5
	30	3.85	12	0.01	2.5
	40	3.85	13	0.02	2.5
	50	3.85	-12	-0.01	2.5
Frequency	20	3.6	-8	-0.01	2.5
Stability vs. Voltage	20	4.35	14	0.02	2.5
				Result:	Pass

Test Plots:

4.2 Antenna Port Test Data and Results for GSM 1900 band:

Serial Number:	CR21090076-RF-S1	Test Date:	2021/11/4~2021/11/5
Test Site:	RF	Test Mode:	Transmitting
Tester:	Thor Lei	Test Result:	Pass

Environment	tal Conditions:				
Temperature: (°C)	25.9~26.8	Relative Humidity: (%)	61~66	ATM Pressure: (kPa)	100.9~101.1

Test Equipment List and Details:						
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
R&S	Spectrum Analyzer	FSV40	101474	2021/7/22	2022/7/21	
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A	
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A	
R&S	Universal Radio Communication Tester	CMU200	110 825	2021/7/22	2022/7/21	
Weinschel	Coaxial Attenuators	53-20-34	LN751	Each time	N/A	
BACL	TEMP&HUMI Test Chamber	BTH-150	30026	2021/7/22	2022/7/22	
UNI-T	Multimeter	UT39A+	C210582554	2021/9/30	2022/9/30	
E-Microwave	Two-way Spliter	ODP-1-6	OE0120176	Each Time	N/A	
* Statement of T	raceability: China Certification I	CT Co Itd (Dor	ngguan) attests th	nat all calibration	ns have been	

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

EUT Information@PCS1900 Band A:					
Antenna Gain (dBi):				Cable Loss (dB):	0.3
Operation Voltage(VDC):					
Lowest:	3.6	Normal:	3.85	Highest:	4.35

Test Frequency For Each Mode:						
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
GSM	1850.2	1880	1909.8			
GPRS	1850.2	1880	1909.8			
EDGE	1850.2	1880	1909.8			

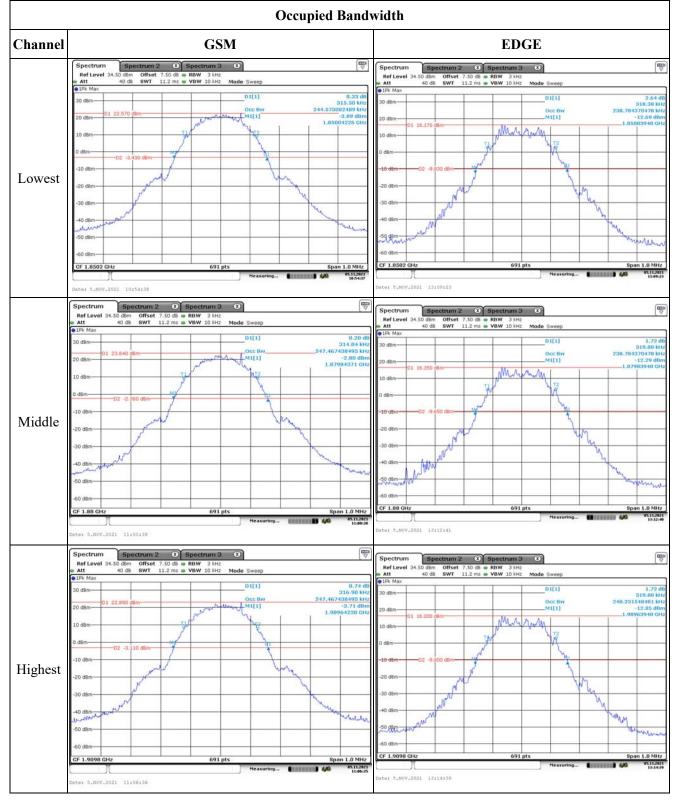
Test Data:

FCC§2.1046;§ 24.232 (c):RF Output Power					
	Conducted Peak Output Power(dBm)				EIDD
Test Mode	Lowest Channel	Middle Channel	Highest Channel	Maximum EIRP(dBm)	EIRP Limit(dBm)
GSM	29.58	29.67	29.51	27.75	33
GPRS 1 Slot	29.37	29.45	29.31	27.53	33
GPRS 2 Slots	27.84	27.69	27.74	25.92	33
GPRS 3 Slots	26.11	26.23	26.38	24.46	33
GPRS 4 Slots	24.25	24.18	24.07	22.33	33
EDGE 1 Slot	25.81	25.77	25.67	23.89	33
EDGE 2 Slots	24.12	24.23	24.14	22.31	33
EDGE 3 Slots	22.54	22.63	22.51	20.71	33
EDGE 4 Slots	20.27	20.36	20.28	18.44	33
Note: EIRP=Conducted Power(dBm) - Cable loss(dB) + Antenna Gain(dBi)					
				Result:	Pass

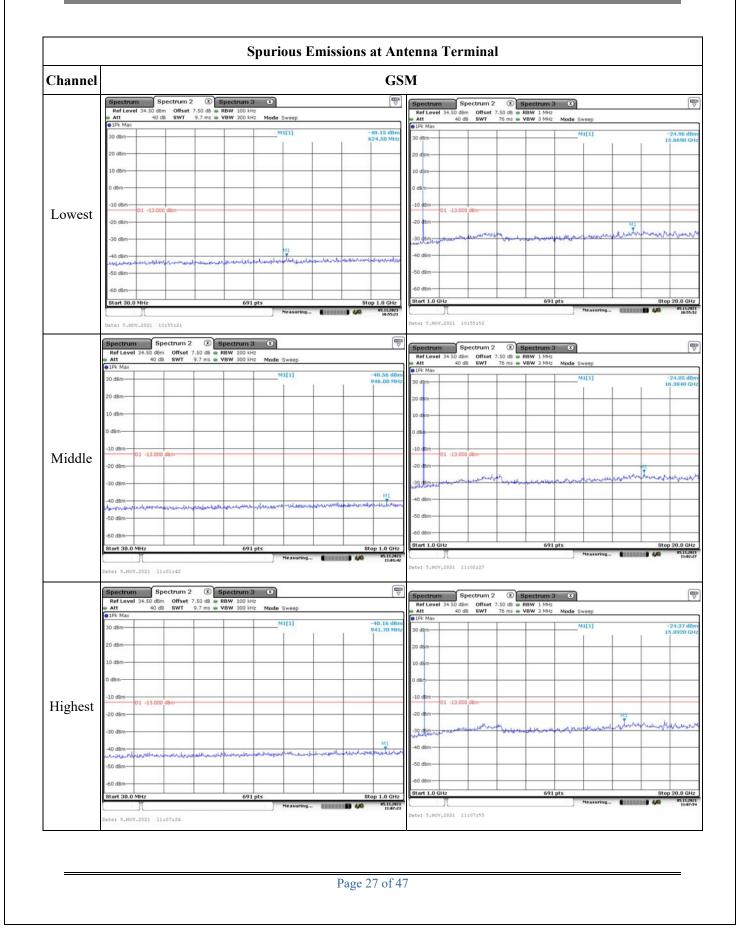
FCC §2.1049, §24.238:Occupied Bandwidth

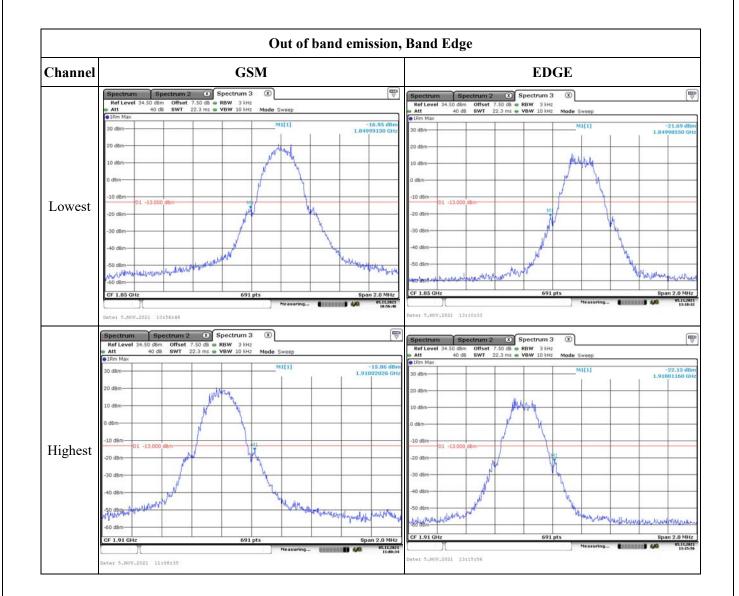
Operation	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)		
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel
GSM	0.245	0.247	0.247	0.316	0.314	0.317
EDGE	0.239 0.239 0.24			0.318	0.32	0.32
Note: The test n	lots please refer t	o the Plots of Oc	cunied Bandwid	th		

Note: The test plots please refer to the Plots of Occupied Bandwidth


FCC §2.1051,	§ 24.238 (a):Spurious Emissions at Antenna Terminal
Result:	Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, § 24.238 (a):Out of band emission, Band Edge		
Result:	Pass, Please refer to the test plots of Out of band emission, Band Edge.	


FCC §2.1055, §24.235: Frequency Stability					
Test Modulation:	GMSK		Test Channel:	1880	MHz
Test Item	Temperature	Voltage	Frequence	ey Error	Result
Test Item	(°C)	(Vdc)	(Hz)	(ppm)	Kesun
	-30	3.85	15	0.01	Pass
	-20	3.85	-14	-0.01	Pass
	-10	3.85	16	0.01	Pass
Frequency	0	3.85	12	0.01	Pass
Stability vs.	10	3.85	13	0.01	Pass
Temperature	20	3.85	14	0.01	Pass
	30	3.85	10	0.01	Pass
	40	3.85	12	0.01	Pass
	50	3.85	14	0.01	Pass
Frequency	20	3.6	-12	-0.01	Pass
Stability vs. Voltage	20	4.35	-10	-0.01	Pass
				Result:	Pass


Test Modulation:	8PSK		Test Channel:	1880	MHz
Test Item	Temperature	Voltage	Frequen	cy Error	Result
Test Item	(°C)	(Vdc)	(Hz)	(ppm)	Kesun
	-30	3.85	16	0.01	Pass
	-20	3.85	14	0.01	Pass
	-10	3.85	12	0.01	Pass
Frequency	0	3.85	13	0.01	Pass
Stability vs.	10	3.85	15	0.01	Pass
Temperature	20	3.85	14	0.01	Pass
	30	3.85	12	0.01	Pass
	40	3.85	-13	-0.01	Pass
	50	3.85	-15	-0.01	Pass
Frequency	20	3.6	10	0.01	Pass
Stability vs. Voltage	20	4.35	12	0.01	Pass
				Result:	Pass

Test Plots:

Page 26 of 47

4.3 Antenna Port Test Data and Results for WCDMA Band 2:

Serial Number:	CR21090076-RF-S1	Test Date:	2021/11/4~2021/11/5
Test Site:	RF	Test Mode:	Transmitting
Tester:	Thor Lei	Test Result:	Pass

Environmental Conditions:						
Temperature: (°C)	25.9~26.8	Relative Humidity: (%)	61~66	ATM Pressure: (kPa)	100.9~101.1	

Test Equipment List and Details:							
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
R&S	Spectrum Analyzer	FSV40	101474	2021/7/22	2022/7/21		
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A		
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A		
R&S	Universal Radio Communication Tester	CMU200	110 825	2021/7/22	2022/7/21		
Weinschel	Coaxial Attenuators	53-20-34	LN751	Each time	N/A		
BACL	TEMP&HUMI Test Chamber	BTH-150	30026	2021/7/22	2022/7/22		
UNI-T	Multimeter	UT39A+	C210582554	2021/9/30	2022/9/30		
E-Microwave	Two-way Spliter	ODP-1-6	OE0120176	Each Time	N/A		
* Statement of T	raceability: China Certification I	CT Co Itd (Dor	naguan) attasts th	nat all calibration	ns have been		

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

EUT Information@ WCDMA Band II A:						
Antenna Gain (dBi):	-1.62			Cable Loss (dB):	0.3	
Operation Volta	Operation Voltage(VDC):					
Lowest:	3.6	Normal:	3.85	Highest:	4.35	

Test Frequency For Each Mode:						
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
WCDMA	1852.4	1880	1907.6			

Test Data:

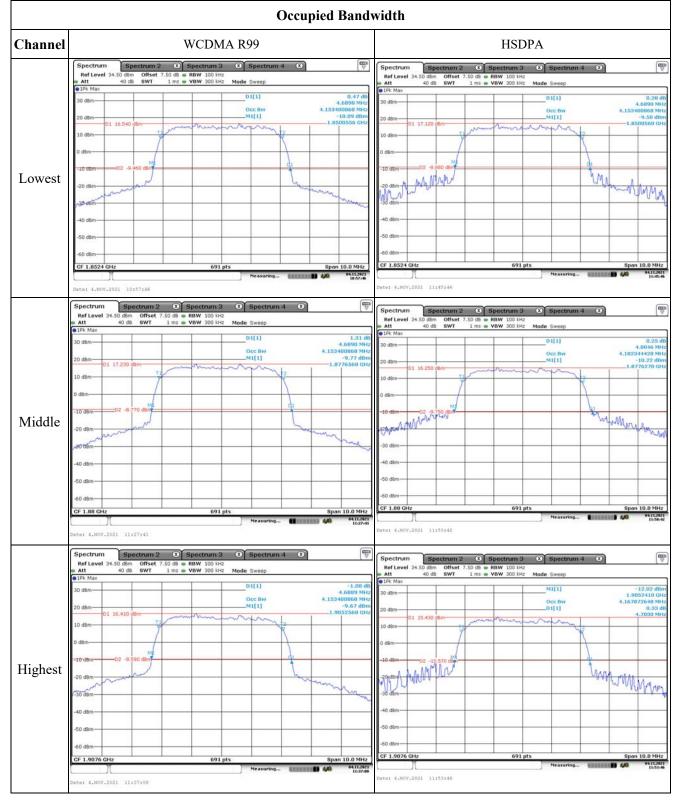
FCC§2.1046;§ 24.232 (c) RF Output Power:							
	Conducted A	verage Output	Power(dBm)		FIDD		
Test Mode	Lowest Channel	Middle Channel	Highest Channel	Maximum EIRP(dBm)	EIRP Limit(dBm)		
WCDMA R99 Subtest 1	23.54	23.15	23.37	21.62	33		
HSDPA Subtest 1	22.87	23.08	22.96	21.16	33		
HSDPA Subtest 2	22.68	22.84	22.79	20.92	33		
HSDPA Subtest 3	22.81	22.85	22.76	20.93	33		
HSDPA Subtest 4	22.63	22.74	22.59	20.82	33		
HSUPA Subtest 1	22.88	22.39	22.72	20.96	33		
HSUPA Subtest 2	22.64	22.62	22.37	20.72	33		
HSUPA Subtest 3	22.78	22.87	22.74	20.95	33		
HSUPA Subtest 4	22.86	22.41	22.68	20.94	33		
HSUPA Subtest 5	22.77	22.86	22.72	20.94	33		
Note: EIRP=Con	Note: EIRP=Conducted Power(dBm) - Cable loss(dB) + Antenna Gain(dBi)						
				Result:	Pass		

Peak-to-average Ratio(PAR)

a	ge Rano(I AR)				
		Peak	T · ·/			
	Test Mode	Lowest Channel	8		Limit (dB)	
ſ	WCDMA R99	3.1	3.07	3.22	13	
ſ	HSDPA	3.62	3.59	3.33	13	
Ī	HSUPA	3.39	3.54	3.36	13	
-				Result:	Pass	

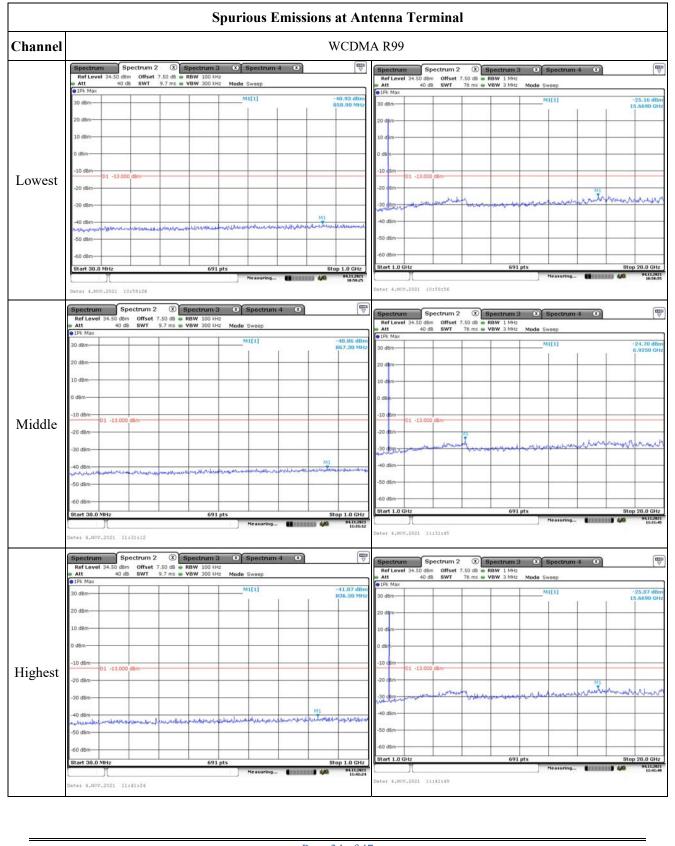
FCC §2.1049, §24.238:Occupied Bandwidth							
Operation Mode	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)			
	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel	
WCDMA R99	4.153	4.153	4.153	4.689	4.689	4.689	
HSDPA	4.153	4.182	4.168	4.689	4.805	4.703	
HSUPA	4.153	4.153	4.153	4.689	4.703	4.674	
Note: The test n	lots please refer t	the Plats of Oc	cunied Bandwid	th			

Note: The test plots please refer to the Plots of Occupied Bandwidth

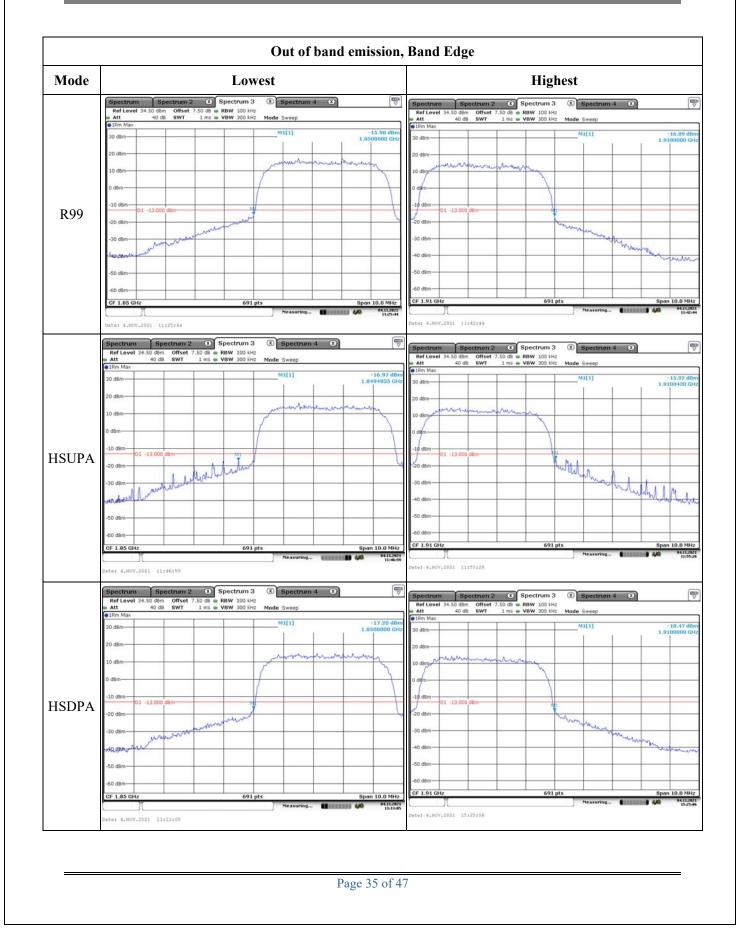

FCC §2.1051, § 24.238 (a):Spurious Emissions at Antenna Terminal

Result: Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, § 24.238 (a):Out of band emission, Band EdgeResult:Pass, Please refer to the test plots of Out of band emission, Band Edge.


FCC §2.1055, §24.235: Frequency Stability						
Test Modulation:	WCDMA R99		Test Channel:	1880	MHz	
Test Item	Temperature	Voltage	Frequen	cy Error	Result	
i est item	(°C)	(Vdc)	(Hz)	(ppm)	Kesun	
	-30	3.85	18	0.01	Pass	
	-20	3.85	-16	-0.01	Pass	
	-10	3.85	20	0.01	Pass	
Frequency	0	3.85	22	0.01	Pass	
Stability vs.	10	3.85	20	0.01	Pass	
Temperature	20	3.85	24	0.01	Pass	
	30	3.85	22	0.01	Pass	
	40	3.85	26	0.01	Pass	
	50	3.85	24	0.01	Pass	
Frequency	20	3.6	-20	-0.01	Pass	
Stability vs. Voltage	20	4.35	16	0.01	Pass	
				Result:	Pass	

Test Plots:



Page 32 of 47

Channel	HSUPA
	Spectrum Spectrum 3 Spectrum 4 Spectrum4
	e Att 40 d8 SWT 1 ms e VBW 300 kHz Mode Sweep ● 1Pk Max
	30 d8m 01[1] 0.98 dB 4.6890 MHz
	20 dBm 01 15 990 dBm 11 15 990 dBm 12 15 990 dBm 13 15 990 dBm 14 15 990 dBm 15 9900 dBm 15 990 dBm 15 990 dBm 15 990 dBm 15 990 dBm 15 99
	01 15.990 dBm
	0 dBm
	-10-d0m -02 -10,010 d8m
Lowest	-20 dBm
	100 time
	-40 dBm-
	-50 dBm-
	-60 dBm
	CF 1.8524 GHz 691 pts Span 10.0 MHz
	Messuring 1000 100 100 100 100 100 100 100 100
	Bates 4.807.2021 13:11:54 Spectrum Spectrum 2 Spectrum 3 Spectrum 4 S
	Ref Level 34,50 dBm Offset 7.50 dB RBW 100 kHz
	© 1Pk Max
	4.7030 MHz Occ Bw 4.153400868 MHz
	20 dBm
	10 dBm
	0 d8m-
Middle	-10 dBm02 -9.450 dBm
Middle	-20 dBm
	-man
	-40 dBm-
	-50 dem
	-60 dBm
	CF 1.88 GHz 691 pts Span 10.0 MHz
	Neasuring 1000.2021 35:19:38
	Spectrum Spectrum 2 3 Spectrum 3 8 Spectrum 4 8
	Spectrum
	1Pk Max D1[1] 0.41 dB
	4.6744 MHz Occ Bw 4.153400868 MHz
	20 d8m
	10 dBm
	0 dBm
Highest	-10 dbm 02 -10.070 dbm 01
Inglicat	-20 dem hand and hand hand hand hand hand hand
	NOV Jem
	-40 dBm
	-50 d8m
	-50 d8m
	CF 1.9076 GHz 691 pts Span 10.0 MHz
	Date: 4.NOV.2021 15:23:57

Page 34 of 47

4.4 Antenna Port Test Data and Results for WCDMA Band 5:

Serial Number:	CR21090076-RF-S1	Test Date:	2021/11/4~2021/11/5
Test Site:	RF	Test Mode:	Transmitting
Tester:	Thor Lei	Test Result:	Pass

Environmental Conditions:						
Temperature: (°C)	25.9~26.8	Relative Humidity: (%)	61~66	ATM Pressure: (kPa)	100.9~101.1	

Test Equipment List and Details:							
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
R&S	Spectrum Analyzer	FSV40	101474	2021/7/22	2022/7/21		
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A		
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A		
R&S	Universal Radio Communication Tester	CMU200	110 825	2021/7/22	2022/7/21		
Weinschel	Coaxial Attenuators	53-20-34	LN751	Each time	N/A		
BACL	TEMP&HUMI Test Chamber	BTH-150	30026	2021/7/22	2022/7/22		
UNI-T	Multimeter	UT39A+	C210582554	2021/9/30	2022/9/30		
E-Microwave	Two-way Spliter	ODP-1-6	OE0120176	Each Time	N/A		
* Statement of T	raceability: China Certification I	CTCo Itd (Dot	naguan) attests th	nat all calibration	ns have been		

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

EUT Information@ WCDMA Band VA:									
Antenna Gain (dBi):	-1.2	Antenna Gain (dBd):	-3.35	Cable Loss (dB):	0.2				
Operation Volta	Operation Voltage(VDC):								
Lowest:	3.6	Normal:	3.85	Highest:	4.35				

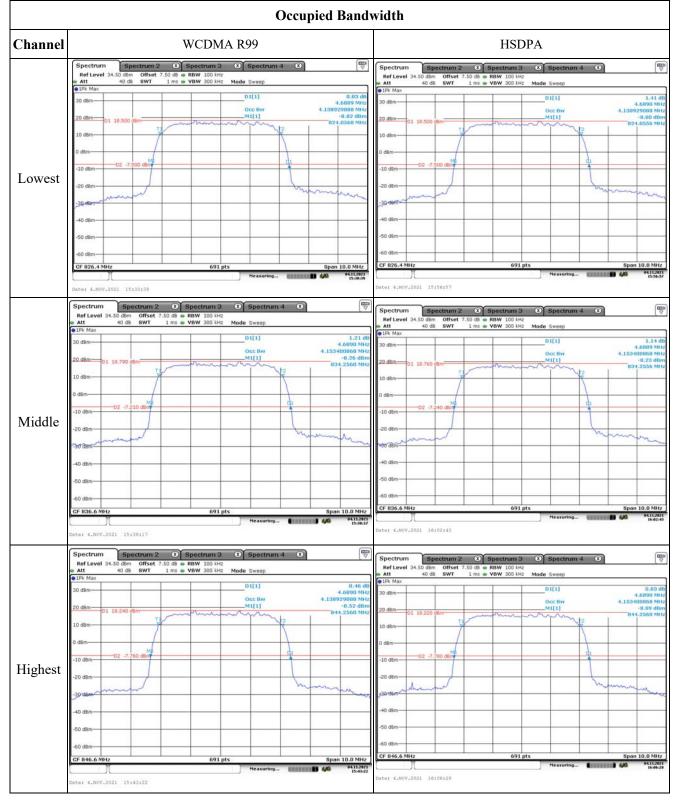
Test Frequency For Each Mode:									
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)						
WCDMA	826.4	836.6	846.6						

Test Data:									
FCC§2.1046;§	§ 22.913 (a)								
RF Output Power:									
	Conducted A	verage Output	Power(dBm)	Maximum					
Test Mode	Lowest Channel	Middle Channel	Highest Channel	ERP (dBm)	ERP Limit (dBm)				
WCDMA R99 Subtest 1	22.81	22.64	22.78	19.26	38.45				
HSDPA Subtest 1	22.95	22.87	22.62	19.4	38.45				
HSDPA Subtest 2	22.86	22.74	22.83	19.31	38.45				
HSDPA Subtest 3	22.72	22.76	22.81	19.26	38.45				
HSDPA Subtest 4	22.92	22.75	22.97	19.42	38.45				
HSUPA Subtest 1	22.54	22.89	22.72	19.34	38.45				
HSUPA Subtest 2	22.69	22.68	22.67	19.14	38.45				
HSUPA Subtest 3	22.45	22.58	22.72	19.17	38.45				
HSUPA Subtest 4	22.92	22.76	22.84	19.37	38.45				
HSUPA Subtest 5	22.83	22.71	22.63	19.28	38.45				
Note: ERP=Con	ducted Power(dE	Bm) - Cable loss((dB) + Antenna C	Gain(dBd)	•				
				Result:	Pass				

Peak-to-average Ratio(PAR)

a	ge Kaub(I AK)			
		Peak	T insta		
	Test Mode	Lowest Channel	Middle Channel	Highest Channel	Limit (dB)
	WCDMA R99	3.01	3.1	3.13	13
	HSDPA	3.01	3.1	3.1	13
	HSUPA	3.54	3.28	3.28	13
				Result:	Pass

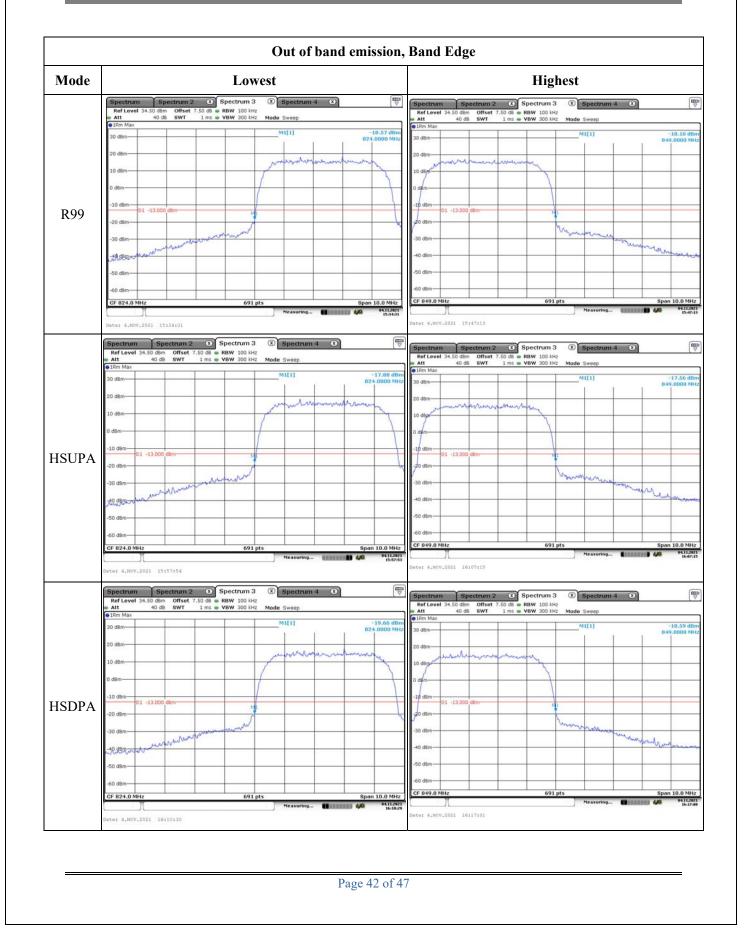
FCC §2.1049, §22.917, §22.905:Occupied Bandwidth										
Operation	99%	Occupied Band (MHz)	width	26 dB Occupied Bandwidth (MHz)						
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel				
WCDMA R99	4.139	4.153	4.139	4.689	4.689	4.689				
HSDPA	4.139	4.153	4.153	4.689	4.689	4.689				
HSUPA	4.139	4.153	4.153	4.689	4.689	4.703				
Note: The test n	late plage rafer t	o the Plats of Oc	cunied Bandwid	th						


Note: The test plots please refer to the Plots of Occupied Bandwidth

FCC §2.1051, §22.917(a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, §22.917(a):Out of band emission, Band EdgeResult:Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055,	§22.355: Frequ	uency Stability	y		
Test Modulation:	WCDMA R99		Test Channel:	836.6	MHz
Test Item	Temperature	Voltage	Frequen	cy Error	Limit
Test Item	(°C)	(VDC)	(Hz)	(ppm)	(ppm)
	-30	3.85	22	0.03	2.5
	-20	3.85	24	0.03	2.5
	-10	3.85	20	0.02	2.5
Frequency	0	3.85	22	0.03	2.5
Stability vs.	10	3.85	24	0.03	2.5
Temperature	20	3.85	26	0.03	2.5
	30	3.85	20	0.02	2.5
	40	3.85	-18	-0.02	2.5
	50	3.85	16	0.02	2.5
Frequency	20	3.6	-20	-0.02	2.5
Stability vs. Voltage	20	4.35	22	0.03	2.5
			•	Result:	Pass


Test Plots:

Page 39 of 47

Channel	HSUPA
	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 T Ref Level 24.50 dim Offset 7.50 dil = RBW 100 bHz T T T
	w Att 40 dB SWT 1 ms ⊕ VBW 300 kHz Mode Sweep ● 1Pk Max
	30 dBm 01[1] 1.94 dB 4.6890 MHz Occ Bw 4.13922008 MHz
	20 dBm 01 17.460 dBm 01 17.460 dBm 024.0556 MHz
	10 dBm
	0 dBm
T .	-10 dBmD2 -9.540 dBm
Lowest	20 com menter Manual Manual
	-30,880 www.
	-40 dBm
	-50 dBm
	-60 dBm
	CF 826.4 MHz 691 pts Span 10.0 MHz Measuring B 440 951172r1 1.69706
	Measuring Measuring Measuring
	Spectrum 2 3 Spectrum 3 3 Spectrum 4 3
	Ref Level 34,50 dBm Offset 7.50 dB RBW 100 kHz
	19k Max 30 dBm 01[1] 0.19 dB 4.690 MHz
	20 dBm 4.6990 MHz 0 Cc Bw 4.153400060 MHz 20 dBm 4.53400060 MHz -8.65 dBm
	01 17.790 dBm B34.2560 MHz
Middle	10 dBm-
	0 d8m 02 -8,210 d8m 01
	-10 dBm
	-20 dBm
	mett Gr.
	-40 dBm-
	-50 dBm-
	-60 d8m-
	CF 836.6 MHz 691 pts Span 10.0 MHz Veasuring
	Date: 4,N0V.2021 16:14:16
	Spectrum Spectrum 2 3 Spectrum 3 3 Spectrum 4 3
	RefLevel 34.50 dBm Offset 7.50 dB @ RBW 100 kHz Att 40 dB SWT 1 ms @ VBW 300 kHz Mode Sweep
	19k Max 30 dBm 4,7030 MHz
	Occ 8w 4.15340666 MHz 20.48m M1[1] -10.98 dBm
	01 17.290 dem 844.2410 MHz
	0 dBm.
Highest	
Ŭ	-20 dem month
	-30 ABAW
	-40 dBm
	-50 dBm-
	-60 dBm-
	CF 846.6 MHz 691 pts Spon 10.0 MHz Measuring Measuring Measuring
	Date: 4.NOV.2021 16:16:29
I	

Channel	WCDMA R99																	
	Spectrum Ref Level 34.5	Spectrum :		ectrum 3	Spectrue	n4 🛛 🗶			Spectrum	and the owner water w	ectrum 2	(X) Sp	ectrum 3	- ×	Spectrum	+ 8)		(III)
	Att IPk Max	40 dB SWT	9.7 ms 🖝 Vi	300 kHz	Mode Sweep				Att IPk Max	40 dB		36 ms 🖶 VE		Mode St	weep			
	30 dBm-				M1[1]			40.26 dBm 171.60 MHz	30 d8m					M	1[1]		-2.	5.07 dB 8000 GF
	20 dBm-					-			20 dBm									
	10 dBm					_			10 dBm									
	0 dBm								0 dām									
	-10 dBm-								-10 dBm									
Lowest	-20 dBm	3.000 d8m							-20 dBm	01 -13.000	dBm							
	-30 d8m								-30 dBm			Kalinha	-	when	monelog	M		where a
							MI		-40 dBm-	habran						100		
	-40 dBm	human	monorbone	withatarean	alter and the last of	Marana Mar	at humber	gr-shere-en	100000						· · · · · · · · · · · · · · · · · · ·			
	-50 dBm								-50 dBm									
	-60 dBm Start 30.0 MHz			691 pts			Ct.c	p 1.0 GHz	-60 dBm-	Hz			691	pts			Stop 1	10.0 GH
				691 pts	Measuring			94.11.2021 15:32:14][]					Measuring	Constanting of the local division of the loc		04.11.20 15:32
	Date: 4.NOV.2021	15:32:14						000 bar 1 - 12.	Date: 4,NO	7,2021 15	132157							
	Spectrum Ref Level 34.50	Spectrum 2	2 (X) Sp 7,50 d8 • RB	ectrum 3	(X) Spectru	m 4 🙁			Spectrum		ectrum 2		ectrum 3	*	Spectrum	+ 8		1
			9.7 ms 🖷 VE	W 300 kHz	Mode Sweep				e Att			.50 dB 👄 RE 36 ms 👄 VE		Mode S	weep			
	30 dBm				M1[1]	т	e -	-40.29 dBm 944.55 MHz	30 dBm					M	1[1]		-2 5.	6.04 di 8650 G
	20 dBm	-							20 dBm								_	
	10 dBm								10 dBm									
	0 dBm-								0 dām									
	-10 dBm		_						-10 dBm									
Middle	-20 dBm	.000 dBm							-20 dBm	01 -13.000	dBm			-				
									-30 dBm				المر وبالدورون	MI	my			
	-30 d8m							MI	and the second	statute	and the second second	Contra Co				Carlor He	attained and a state	- Second
	-40 dBm	monum	enourous	menesteria	war and the	levelight	and have	- desidentia	-40 dBm						· · · · · ·			
	-50 dBm						-		-50 dBm									
	-60 dBm								-60 dBm-	14.2			691	nts			Stop	10.0 GH
	Start 30.0 MHz			691 pts	Measurin		st	op 1.0 GHz 84.11.2021 15:09:14					091		Measuring			04.11.20 15:39
	Date: 4.NOV.2021	15:39:15							Date: 4.NO	7,2021 15	139145							
	Spectrum	Spectrum 2		ectrum 3	(X) Spectru	m 4 🙁			Spectrum	Sp	ectrum 2	(X) Sn	ectrum 3		Spectrum -	1 (8)		6
		dBm Offset IO dB SWT	7.50 dB . RB 9.7 ms . VE	W 100 kHz W 300 kHz	Mode Sweep				Ref Leve	34.50 dBm	Offset 7	.50 dB . RE 36 ms . VE	W 1 MHz	_				
	1Pk Max 30 dBm				M1[1]			-40.52 dBm 975.40 MHz	1Pk Max						1[1]			5.49 di
	20 dBm-						[]		20 dBm						E 1	1	6.	7500 G
	10 dBm						1											
									10 dBm									
	0 dBm-								0 dām									
lighest	-10 dBm-01 -13	.000 dBm				-			-10 dBm	01 -13.000	dBm	-						
	-20 dBm			-					-20 dBm					Marin	M2 Jenthag			
	-30 d8m							i i i i i i i i i i i i i i i i i i i	-30 dBm	ubut a	- standard	and the second	and the second	Call - South	heer	new order	and a state of the	-Harrison
	-40 dBm	how we draw he	segulisingly and	demosphere	harstenness	al warrall	and has	MI	-40 dBm									
	-50 dBm					_			-50 dBm						· · ·		-	
	-60 dBm						-		-60 dBm									
	Start 30.0 MHz			691 pts				op 1.0 GHz	Start 1.0 (Hz			691		Measuring			04.11.20 15:45
	Date: 4.Nov.2021	15:44:59			Measurin		4/6	04.11.2021 15:44:58	Date: 4,307	7,2021 15	45156						1999	

4.5 Spurious Emissions

Serial Number:	CR21090076-RF-S1	Test Date:	2021-10-06~2021-10-10
Test Site:	966-2, 966-1	Test Mode:	Transmitting
Tester:	Caps Hu, Carl Liang	Test Result:	Pass

Environmenta	Environmental Conditions:										
Temperature: (℃)	26.6~30.1	Relative Humidity: (%)	60~62	ATM Pressure: (kPa)	100.3~100.4						

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Sunol Sciences	Antenna	JB6 A082520-5		2020-10-19	2023-10-18	
R&S	EMI Test Receiver	ESR3	102724	2021-07-22	2022-07-21	
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0470-02	2021-07-18	2022-07-17	
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0780-01	2021-07-18	2022-07-17	
Sonoma	Amplifier	310N	186165	2021-07-18	2022-07-17	
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A	
MICRO-COAX	Coaxial Cable	UFA210B-0- 0720-300300	99G1448	2021-07-25	2022-07-24	
Agilent	Signal Generator	E8247C	MY43321350	2021-04-25	2022-04-24	
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020-10-13	2023-10-12	
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021-02-05	2023-02-04	
R&S	Spectrum Analyzer	FSV40	101591	2021-07-22	2022-07-21	
MICRO-COAX	Coaxial Cable	UFA210A-1- 1200-70U300	217423-008	2021-08-08	2022-08-07	
MICRO-COAX	Coaxial Cable	UFA210A-1- 2362-300300	235780-001	2021-08-08	2022-08-07	
MICRO-COAX	Coaxial Cable	UFB142A-1- 2362-200200	235772-001	2021-08-08	2022-08-07	
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2021-08-08	2022-08-07	
AH	Preamplifier	PAM-1840VH	190	2020-11-20	2021-11-19	

traceable to National Primary Standards and International System of Units (SI).

Report No.: CR21090076-00C

Test Data:

30 MHz-10	GHz:		Cenular	· Band (PAR	I 22H)					
		D •	Su	bstituted Met	hod					
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
	GSM 850 Frequency:824.2MHz									
1648.40	Н	47.03	-57.25	8.68	0.80	-49.37	-13.00	36.37		
1648.40	V	47.15	-57.21	8.68	0.80	-49.33	-13.00	36.33		
2472.60	Н	50.62	-50.10	9.38	1.00	-41.72	-13.00	28.72		
2472.60	V	52.26	-48.41	9.38	1.00	-40.03	-13.00	27.03		
3296.80	Н	35.45	-60.65	10.32	1.15	-51.48	-13.00	38.48		
3296.80	V	34.26	-61.60	10.32	1.15	-52.43	-13.00	39.43		
683.50	Н	32.93	-71.71	0.00	0.53	-72.24	-13.00	59.24		
812.60	V	40.43	-58.02	0.00	0.55	-58.57	-13.00	45.57		
			GSM 850) Frequency:8	36.6MHz					
1673.20	Н	44.36	-59.92	8.71	0.85	-52.06	-13.00	39.06		
1673.20	V	47.65	-56.74	8.71	0.85	-48.88	-13.00	35.88		
2509.80	Н	50.79	-49.79	9.42	1.01	-41.38	-13.00	28.38		
2509.80	V	52.08	-48.51	9.42	1.01	-40.10	-13.00	27.10		
3346.40	Н	33.84	-62.58	10.34	1.16	-53.40	-13.00	40.40		
3346.40	V	33.86	-62.43	10.34	1.16	-53.25	-13.00	40.25		
766.30	Н	33.29	-69.81	0.00	0.54	-70.35	-13.00	57.35		
837.90	V	43.49	-54.37	0.00	0.62	-54.99	-13.00	41.99		
			GSM 850) Frequency:84	48.8MHz					
1697.60	Н	45.89	-58.40	8.74	0.90	-50.56	-13.00	37.56		
1697.60	V	47.86	-56.56	8.74	0.90	-48.72	-13.00	35.72		
2546.40	Н	53.08	-47.19	9.47	1.01	-38.73	-13.00	25.73		
2546.40	V	53.68	-46.55	9.47	1.01	-38.09	-13.00	25.09		
3395.20	Н	34.58	-62.20	10.36	1.19	-53.03	-13.00	40.03		
3395.20	V	34.95	-61.80	10.36	1.19	-52.63	-13.00	39.63		
151.40	Н	33.86	-78.04	0.00	0.22	-78.26	-13.00	65.26		
37.70	V	40.43	-47.15	-25.30	0.11	-72.56	-13.00	59.56		

Cellular Band (PART 22H)

Report No.: CR21090076-00C

Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Method							
			Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
WCDMA Band 5 Frequency:826.4 MHz										
1652.80	Н	35.62	-68.66	8.68	0.81	-60.79	-13.00	47.79		
1652.80	V	34.27	-70.09	8.68	0.81	-62.22	-13.00	49.22		
2479.20	Н	34.59	-66.12	9.39	1.01	-57.74	-13.00	44.74		
2479.20	V	35.64	-65.03	9.39	1.01	-56.65	-13.00	43.65		
3305.60	Н	33.97	-62.15	10.32	1.15	-52.98	-13.00	39.98		
3305.60	V	34.88	-61.01	10.32	1.15	-51.84	-13.00	38.84		
815.40	Н	33.99	-67.87	0.00	0.55	-68.42	-13.00	55.42		
37.70	V	40.41	-47.17	-25.30	0.11	-72.58	-13.00	59.58		
WCDMA Band 5 Frequency:836.6MHz										
1673.20	Н	34.59	-69.69	8.71	0.85	-61.83	-13.00	48.83		
1673.20	V	33.85	-70.54	8.71	0.85	-62.68	-13.00	49.68		
2509.80	Н	34.95	-65.63	9.42	1.01	-57.22	-13.00	44.22		
2509.80	V	34.15	-66.44	9.42	1.01	-58.03	-13.00	45.03		
3346.40	Н	36.95	-59.47	10.34	1.16	-50.29	-13.00	37.29		
3346.40	V	34.27	-62.02	10.34	1.16	-52.84	-13.00	39.84		
623.10	Н	34.50	-70.26	0.00	0.48	-70.74	-13.00	57.74		
37.70	V	40.22	-47.36	-25.30	0.11	-72.77	-13.00	59.77		
WCDMA Band 5 Frequency:846.6MHz										
1693.20	Н	35.67	-68.62	8.73	0.89	-60.78	-13.00	47.78		
1693.20	V	34.62	-69.79	8.73	0.89	-61.95	-13.00	48.95		
2539.80	Н	34.02	-66.31	9.46	1.01	-57.86	-13.00	44.86		
2539.80	V	33.98	-66.31	9.46	1.01	-57.86	-13.00	44.86		
3386.40	Н	34.58	-62.14	10.35	1.18	-52.97	-13.00	39.97		
3386.40	V	34.26	-62.41	10.35	1.18	-53.24	-13.00	40.24		
832.30	Н	33.68	-67.67	0.00	0.63	-68.30	-13.00	55.30		
37.70	V	40.35	-47.23	-25.30	0.11	-72.64	-13.00	59.64		

Report No.: CR21090076-00C

China Certification ICT Co., Ltd (Dongguan)

30 MHz-20 GHz:									
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Method						
			Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
		_	GSM 1900	Frequency:18	350.2MHz				
3700.40	Н	35.06	-61.43	10.60	1.25	-52.08	-13.00	39.08	
3700.40	V	34.96	-61.51	10.60	1.25	-52.16	-13.00	39.16	
5550.60	Н	34.29	-58.75	11.44	1.49	-48.80	-13.00	35.80	
5550.60	V	33.96	-58.91	11.44	1.49	-48.96	-13.00	35.96	
37.70	Н	36.02	-45.14	-25.30	0.11	-70.55	-13.00	57.55	
530.40	V	34.67	-68.33	0.00	0.45	-68.78	-13.00	55.78	
			GSM 190	0 Frequency:1	880MHz				
3760.00	Н	34.88	-60.78	10.66	1.24	-51.36	-13.00	38.36	
3760.00	V	35.35	-60.19	10.66	1.24	-50.77	-13.00	37.77	
5640.00	Н	33.64	-59.63	11.33	1.54	-49.84	-13.00	36.84	
5640.00	V	33.87	-59.28	11.33	1.54	-49.49	-13.00	36.49	
37.70	Н	35.86	-45.30	-25.30	0.11	-70.71	-13.00	57.71	
37.70	V	40.15	-47.43	-25.30	0.11	-72.84	-13.00	59.84	
			GSM 1900	Frequency:19	09.8MHz				
3819.60	Н	35.62	-59.58	10.72	1.29	-50.15	-13.00	37.15	
3819.60	V	34.69	-60.36	10.72	1.29	-50.93	-13.00	37.93	
5729.40	Н	33.36	-60.14	11.22	1.59	-50.51	-13.00	37.51	
5729.40	V	33.84	-59.53	11.22	1.59	-49.90	-13.00	36.90	
37.00	Н	36.57	-43.60	-24.96	0.12	-68.68	-13.00	55.68	
37.70	V	40.08	-47.50	-25.30	0.11	-72.91	-13.00	59.91	

PCS Band (PART 24E)

Report No.: CR21090076-00C

Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Method							
			Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
WCDMA Band II, Frequency:1852.4 MHz										
3704.80	Н	38.75	-57.68	10.60	1.25	-48.33	-13.00	35.33		
3704.80	V	37.26	-59.15	10.60	1.25	-49.80	-13.00	36.80		
5557.20	Н	33.58	-59.47	11.43	1.49	-49.53	-13.00	36.53		
5557.20	V	33.75	-59.14	11.43	1.49	-49.20	-13.00	36.20		
877.20	Н	33.51	-66.48	0.00	0.60	-67.08	-13.00	54.08		
37.70	V	39.90	-47.68	-25.30	0.11	-73.09	-13.00	60.09		
WCDMA Band II, Frequency:1880 MHz										
3760.00	Н	40.95	-54.71	10.66	1.24	-45.29	-13.00	32.29		
3760.00	V	38.54	-57.00	10.66	1.24	-47.58	-13.00	34.58		
5640.00	Н	33.95	-59.32	11.33	1.54	-49.53	-13.00	36.53		
5640.00	V	34.47	-58.68	11.33	1.54	-48.89	-13.00	35.89		
604.80	Н	33.80	-71.00	0.00	0.50	-71.50	-13.00	58.50		
37.70	V	40.36	-47.22	-25.30	0.11	-72.63	-13.00	59.63		
WCDMA Band II, Frequency:1907.6MHz										
3815.20	Н	37.16	-58.01	10.72	1.29	-48.58	-13.00	35.58		
3815.20	V	34.51	-60.51	10.72	1.29	-51.08	-13.00	38.08		
5722.80	Н	34.26	-59.23	11.23	1.58	-49.58	-13.00	36.58		
5722.80	V	34.13	-59.23	11.23	1.58	-49.58	-13.00	36.58		
843.50	Н	33.93	-67.08	0.00	0.58	-67.66	-13.00	54.66		
37.70	V	40.68	-46.90	-25.30	0.11	-72.31	-13.00	59.31		

Note:

1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.

2) Absolute Level = Substituted Level - Cable loss + Antenna Gain

3) Margin = Limit-Absolute Level

***** END OF REPORT *****