

RF TEST REPORT

Report nu	mber	RAPA24-O-003	
	Name	NZIA Connect Inc.	
Applicant	Logo	N/A	
	Address	#1302, 286, Beotkkot-ro, Geumcheon-gu, Seoul, Republic of Korea	
Manufacturar	Name	NZIA Connect Inc.	
Manufacturer	Address	#1302, 286, Beotkkot-ro, Geumcheon-gu, Seoul, Republic of Korea	
Type of equ	iipment	TVWS Wireless Networking Radio System	
Basic mode	l name	NZC-WS20	
Multi mode	l name	N/A	
Serial nu	mber	N/A	
FCC I	D	2AUON-NZC-WS20	
Test duration		Nov 16, 2023 to Feb 6, 2024	
Date of is	ssue	Feb 8, 2024	
Total pa	age	32 Pages (including this page)	

SUMMARY

The equipment complies with the regulation; FCC Part 15 Subpart H

This test report only contains the result of a single test of the sample supplied for the examination. It is not a general valid assessment of the features of the respective products of the mass-production.

Feb 8, 2028

2.27

Tested by MinGu Ji Tester Feb 8, 2024

류우열

Reviewed by Wooyeol- Ryu Executive Manager

Test Report Version History

Version	Date Reason for revision	
1.0	Feb 8, 2024	Original Document

CONTENTS

1. Description of EUT	4
1.1 Applicant	4
1.2 Manufacturer	
1.3 Basic description	
1.4 General description	4
1.5 Alternative type(s)/model(s)	
2. General information of test	5
2.1 Test standards and results	5
2.2 Description of EUT during the test	
2.3 Test configuration	
2.4 Test Facility	
2.5 PRELIMINARY TEST	
3. Measurement data	7
3.1 Occupied bandwidth	7
3.2 Output Power and Power Spectral Density	
3.3 Band Edge and Adjacent Channel power	
3.4 Radiated Emission	
3.5 Conducted Emission Test	
3.6 Antenna Requirement	31
4. Test equipment list	

Page: 4 / 32

1. Description of EUT

1.1 Applicant

- Company name : NZIA Connect Inc.
- Address : #1302, 286, Beotkkot-ro, Geumcheon-gu, Seoul, Republic of Korea
- Contact person : Lee Nam Ku / Senior Researcher / kevin@nzia.kr
- Phone/Fax : +82-70-4282-4700 / +82-2-851-3873

1.2 Manufacturer

- Company name : NZIA Connect Inc.
- Address : #1302, 286, Beotkkot-ro, Geumcheon-gu, Seoul, Republic of Korea
- Phone/Fax : +82-70-4282-4700 / +82-2-851-3873

1.3 Basic description

- Product name : TVWS Wireless Networking Radio System
- Basic model name : NZC-WS20
- Alternative model name : N/A

1.4 General description

- EQUIPMENT CLASS : WGF White Space Device with Geo-location Fixed
- Frequency Range
- ge : 470 MHz ~ 698 MHz : 16.03 dBm
- Output Power
- Modulation Type
- : QPSK : Patch Antenna
- Antenna Type : Patch Antenna
 Antenna Gain : 8.28 dBi
- Power Supply
- : AC 110.0 ~ 230.0 V

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range Bandwidth, MHz	Channel size, MHz	Low channel	Mid channel	High channel
470	698	228	6	473	587	695

1.5 Alternative type(s)/model(s)

There is no alternative type(s) and/or model(s).

2. General information of test

2.1 Test standards and results

Applied Standards : FCC Part 15 Subpart H						
Section	Section Description of Test					
ANSI 63.10 6.9.3	99 % Occupied Bandwidth	Pass				
15.709 (b) (ii)	OUTPUT POWER AND POWER SPECTRAL DENSITY	Pass				
15.709 (d)	BAND-EDGE and ADJACENT CHANNEL EMISSIONS	Pass				
15.709 (d)	Radiated Emission which fall in the Restricted Band	Pass				
15.207	Conducted Limits	Pass				
15.209	Radiated Emission Limits	Pass				
15.203	Antenna Requirement	Pass				

2.2 Description of EUT during the test

During the test, keep the EUT in continuously transmitting mode.

There was no mechanical or circuitry modification to improve RF and spurious characteristic, and any RF and spurious suppression device(s) was not added against the device tested.

The EUT was moved throughout the X, Y, and Z axis and worst case data was recorded in this report.

2.3 Test configuration

• Type of peripheral equipment used

Model	Manufacturer	Description	Connected to
650G1	HP	Notebook	EUT
PA-1900-32HT	LITE-ON TECHNOLOGY(CHANGZHOU_Co., Ltd.	Power Adapter	Notebook

2.4 Test Facility

FCC Registration No: 927453

• IC Company address code: 9355B

RRA Designation Number: KR0027

• Place of Test <u>Anyang Test Site(RF Test Room)</u> #101 & B104 Anyang Megavalley, 268, Hagui-ro, Dongan-gu, Anyang-si, Gyeonggi-do, 14056, Korea

2.5 PRELIMINARY TEST

• Product description and theory of operation

- The TVWS base station is a outdoor unit that transmits independent carriers. Each carrier provides up to 32 Mbps by TVWS channels. The base station is deployed with an external SISO antenna. It is connected to the network through a SFP with AC input. The base station includes an GPS an external antenna. The base station main features include up to 32 Mbps throughput, up to 256 QAM modulation rates in 6 MHz channel bandwidths. The TVWS subscriber unit delivers up to 32 Mbps and includes a directional integrated flat panel antenna for quick and easy installation. TVWS is highly robust, a mandatory requirement for maintaining low operational costs in remote rural networks. The TVWS incorporates an embedded GPS, enabling dynamic spectrum allocation according to the regulation.

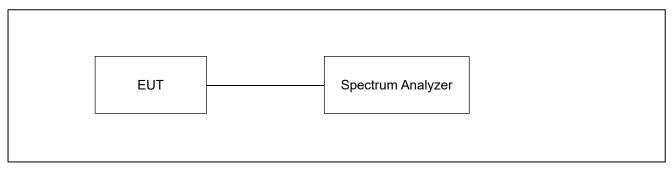
2.5.1 AC Power line Conducted Emissions Tests

Operation Mode	The Worse operating condition (Please check one only)
Transmitting mode.	Х

2.5.2 General Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
Transmitting mode.	X


3. Measurement data

3.1 Occupied bandwidth

3.1.1 Requirement

• FCC Part15 subpart H , ANSI 63.10 6.9.3

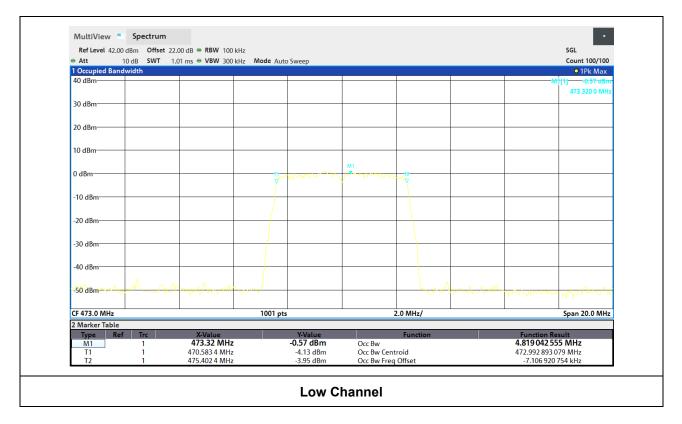
3.1.2 Test Procedure

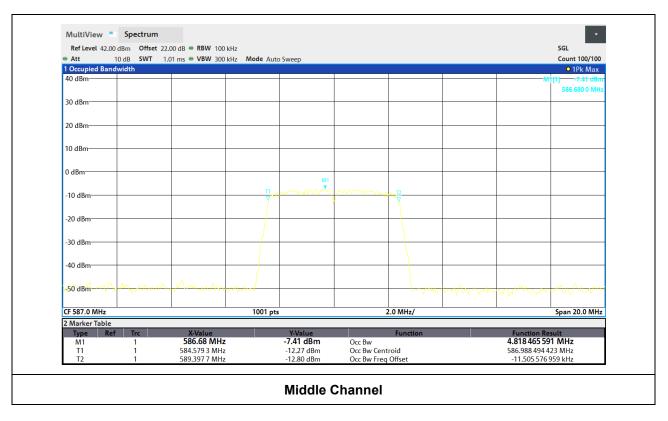
The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained.

Set the analyzer as follows for measuring 99% BW:

- 1. Set RBW to 1-5 % of OBW
- 2. Set the VBW \geq [3 × RBW].
- Bet the VBW = [5 × RBV
 Detector = peak.
 Trace mode = max hold.
 Sweep = auto couple.
- 6. Use instrument 99% BW function to measure BW.

3.1.3 Test environment


• 22 °C, 43 % R.H.

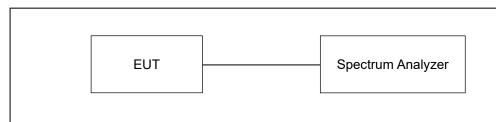

3.1.4 Test results

Frequen	cy [MHz]	Measured Value [MHz]	Limit [dBm]	Result
Low	473	4.82	6.00	
Middle	587	4.82	6.00	PASS
High	695	4.82	6.00	



3.1.5 Test Plots

3.2 Output Power and Power Spectral Density


3.2.1 Requirement

• FCC Part15 subpart H Section 15.709

EIRP (6 MHz)	Conducted power limit ¹ (6 MHz)	Conducted PSD limit (100 kHz)	Conducted adjacent channel emission limit (100 kHz)
16 dBm (40 mW)	10 dBm (10 mW)	-7.4 dBm	-62.8 dBm
20 dBm (100 mW)	14 dBm (25 mW)	-3.4 dBm	-58.8 dBm
24 dBm (250 mW)	18 dBm (63 mW)	0.6 dBm	-54.8 dBm
28 dBm (625 mW)	22 dBm (158 mW)	4.6 dBm	-50.8 dBm
32 dBm (1600 mW)	26 dBm (400 mW)	8.6 dBm	-46.8 dBm
36 dBm (4000 mW)	30 dBm (1000 mW)	12.6 dBm	-42.8 dBm
40 dBm (10000 mW)	30 dBm (1000 mW)	12.6 dBm	-42.8 dBm

¹The conducted power spectral density from a fixed white space device shall not be greater than the values shown in the table when measured in any 100 kHz band during any time interval of continuous transmission, except that a 40 mW fixed white space device operating in a four megahertz channel within a seven megahertz guard band must comply with a conducted power spectral density limit of -5.4 dBm.

3.2.2 Test Procedure

1. Connect a patch cable of known attenuation (at the specific frequencies under consideration) between the antenna port of the DUT and a spectrum analyzer. For a fixed White Space device, it may be necessary to insert an external attenuator in the signal path to prevent overload damage to the analyzer.

2. Select the analyzer's power averaging (RMS) detector, a span of 10-MHz, a resolution bandwidth (RBW) of 100-kHz, a video bandwidth of 300 kHz, and a sweep speed that provides one millisecond per trace point integration time.

3. Activate the DUT test mode that provides continuous transmission of the output signal (no time bursting or signal gating) on the operating channel under investigation, as required by §15.709(c).

Low, middle, and high channels within tuning range must be examined.

4. Employ trace averaging over a minimum of 100 traces.

5. Use the integrated band/channel power analyzer function to determine the average power within the 6-MHz channel bandwidth.

6. Use the peak marker function to determine the maximum power spectral density (PSD) in any 100 kHz band segment.

7. Make the necessary corrections to the measured amplitude levels to account for externalities inserted into the signal path (e.g., signal attenuation in patch cable and/or external attenuator).

Record the adjusted amplitude levels as the power levels measured for power and PSD in 6-MHz and 100-kHz band, respectively.

8. If the device has multiple antenna ports, power must be summed across all antennas and antenna elements (§15.709(c)(2))

9. Compare the total conducted power levels and PSDs to the applicable conducted power and PSD limits to assess compliance. Add the necessary antenna gain of the DUT to determine EIRP levels.

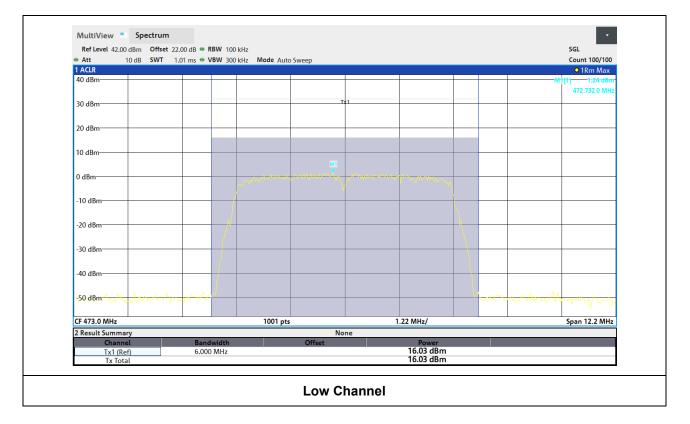
10. Repeat until data is accumulated for the low, middle and high channels in the DUT tuning range.

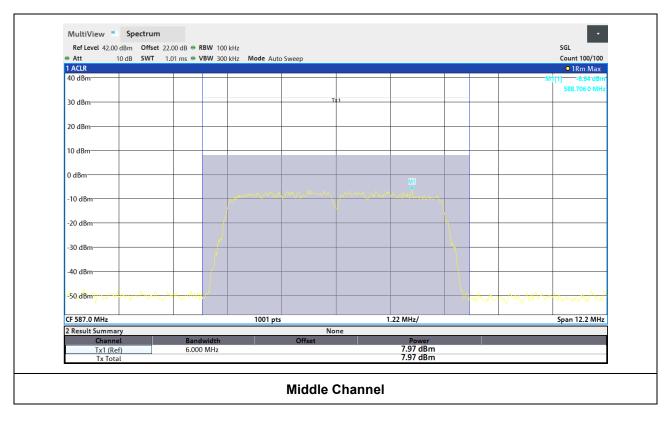
3.2.3 Test environment

• 22 °C, 43 % R.H.

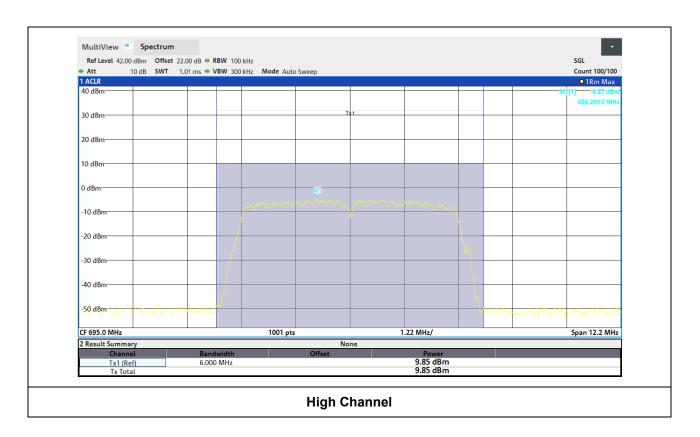
3.2.4 Test results

• <u>3.2.4.1 Output Power Results</u>

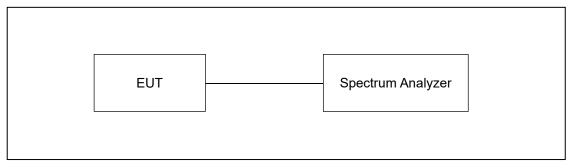

Freque [MH	•	Measured Value [dBm]	Limit [dBm/6 MHz]	Antenna Gain [dBi]	EIRP [dBm]	EIRP Limit dBm/6 MHz	Result
Low	473	16.03	27.72	8.28	24.31	36.00	
Middle	587	7.97	27.72	8.28	16.25	36.00	PASS
High	695	9.85	27.72	8.28	18.13	36.00	


• 3.2.4.2 PSD Results

Frequency [MHz]		Measured Value [dBm]	Limit [dBm]	Result
Low	473	1.24	12.60	
Middle	587	-6.64	12.60	PASS
High	695	-4.87	12.60	



3.1.5 Test Plots



3.3 Band Edge and Adjacent Channel power

3.3.1 Requirement

• FCC Part15 subpart H Section 15.709 (d)

3.3.2 Test Procedure

Adjacent channel measurement:

1. Select the power averaging (RMS) detector, a start frequency of fL- 6 MHz and a stop frequency of fL- 100 kHz (where fL is the lower edge frequency of the operating channel), a resolution bandwidth (RBW) of 100-kHz, a minimum video bandwidth of 300-kHz and a sweep speed that provides one millisecond per trace point integration time.

2. Employ trace averaging over a minimum of 10 traces.

3. Use the peak marker function of the analyzer to determine the maximum power spectral density in any 100-kHz segment within the frequency span.

4. Adjust the measured amplitude level to account for externalities in the signal path (e.g., attenuation in the patch cable for conducted measurements and the measurement antenna gain for radiated tests).

5. Repeat the procedure with the analyzer start frequency set to fU + 100 kHz and the stop frequency set to fU + 6 MHz.

6. Repeat the entire procedure until data is accumulated for the lower, middle and upper channels in the DUT tuning range.

Band edge measurement:

1. Select the power averaging (RMS) detector, a start frequency of fL- 100 kHz and a stop frequency of fL (where fL is the lower edge frequency of the operating channel), a resolution bandwidth (RBW) of 10 kHz, a minimum video bandwidth of 30 kHz and a sweep speed that

provides one millisecond per trace point integration time.

2. Employ trace averaging over a minimum of 100 traces.

3. Use the integrated band/channel power function of the analyzer to determine the maximum average power spectral density over the 100 kHz frequency span.

4. Adjust the measured amplitude level to account for externalities in the signal path (e.g., attenuation in the patch cable for conducted measurements) to include measurement antenna gain for radiated tests.

5. Repeat the procedure with the analyzer start frequency set to fU and the stop frequency set to fU + 100 kHz.
6. Repeat the entire procedure until data is accumulated for the lower, middle, and upper channels in the DUT tuning range.

3.3.3 Test environment

• 22 °C, 43 % R.H.

3.3.4 Test results

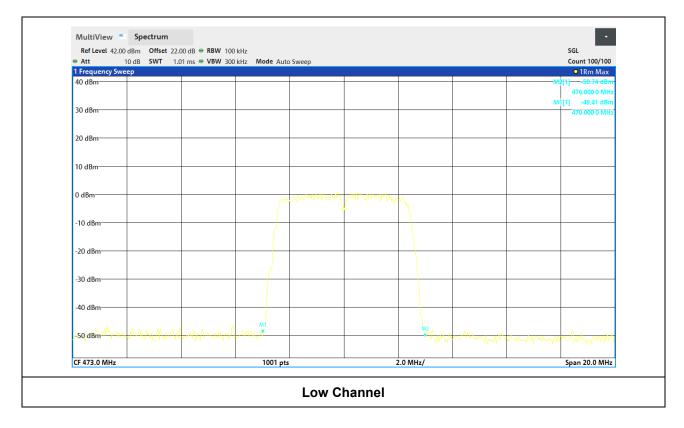
• 3.3.4.1 Lower ACP

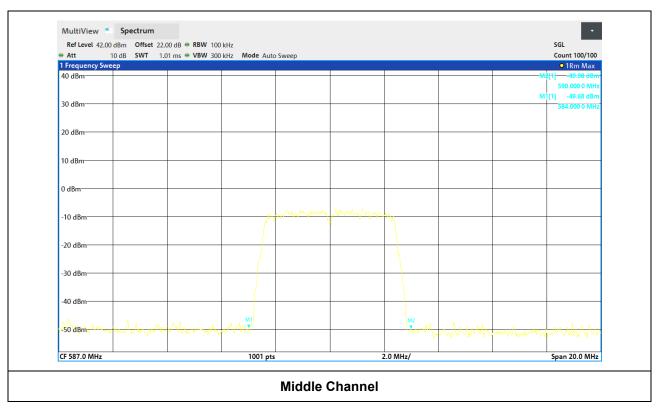
Frequen	cy [MHz]	Measured Value [dBm]	Limit [dBm]	Result
Low	470	-49.41	-42.80	
Middle	584	-49.68	-42.80	PASS
High	692	-45.20	-42.80	

• 3.3.4.2 Upper ACP

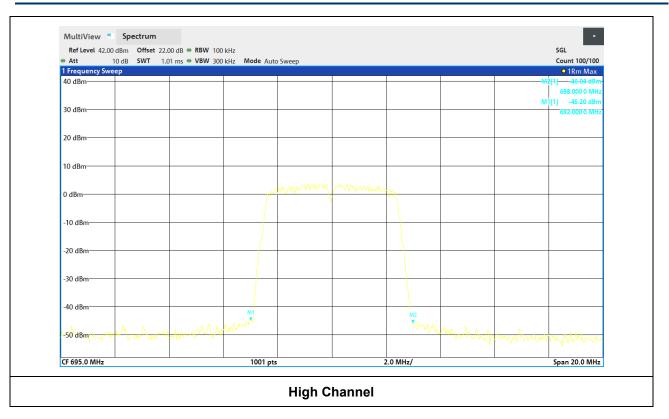
Frequen	cy [MHz]	Measured Value [dBm]	Limit [dBm]	Result	
Low	476	-50.74	-42.80		
Middle	590	-49.98	-42.80	PASS	
High	698	-46.04	-42.80		

• 3.3.4.3 Lower Band-Edge

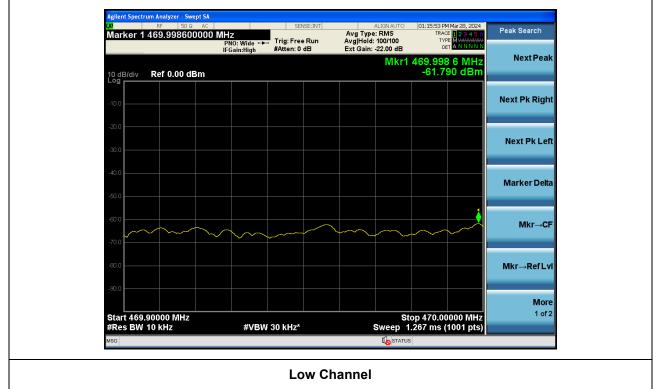

Frequen	cy [MHz]	Measured Value [dBm]	Limit [dBm]	Result
Low	473	-61.79	-42.80	
Middle	587	-66.28	-42.80	PASS
High	695	-63.07	-42.80	


• <u>3.3.4.4 Upper Band-Edge</u>

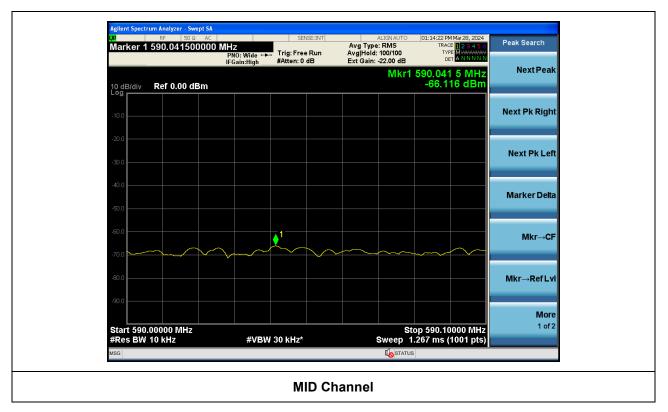
Frequen	cy [MHz]	Measured Value [dBm]	Limit [dBm]	Result	
Low	473	-61.94	-42.80		
Middle	587	-66.11	-42.80	PASS	
High	695	-63.89	-42.80		

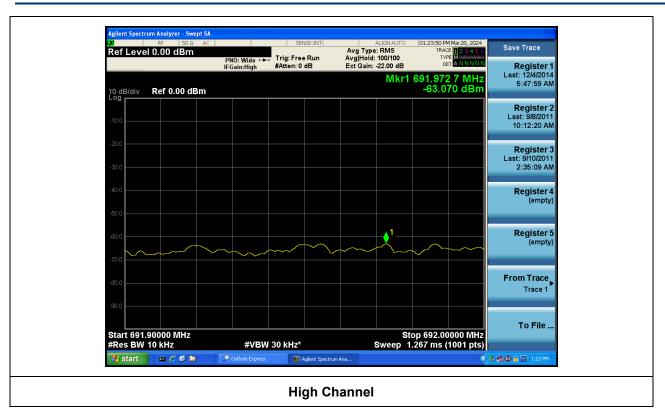


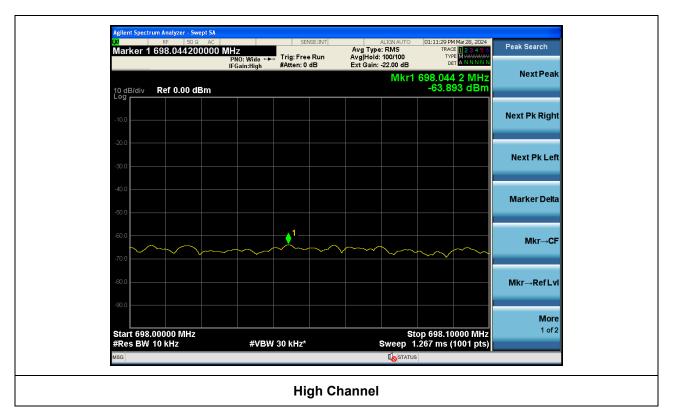
3.3.4 Test Plots






Band Edge Test Plot





3.4 Radiated Emission

3.4.1 Requirement

• FCC Part15 subpart H Section 15.709 (d)

3.4.2 Test Procedure

The radiated emissions measurements were performed on the 3 m anechoic chamber. The EUT was placed on a non-conductive turntable above the ground plane. The frequency spectrum from 30 kHz to 7.0 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

3.4.3 Test environment

• 24 °C, 41 % R.H.

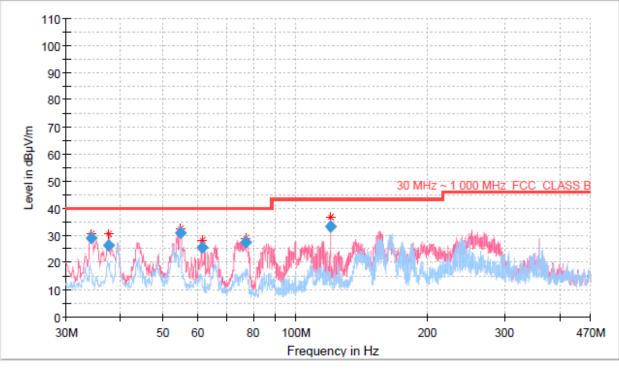
3.4.4 Test results

3.4.4.1 Spurious Radiated Emission

3.4.4.1.1 Test Data for Below 30 MHz

•. Detector	: Quasi-Peak (6 dB Bandwidth: 200 Hz, 9 kHz)
•.Measurement distance	: 3 m
 Frequency range 	: 9 kHz ~ 30 MHz
 Operating Condition 	: Highest Output Power Transmitting Mode
•.Result	: PASS

Frequency	Reading	Ant. Pol.	Ant. Factor	Cable	Amp	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	(dB/m)	Loss	Gain	Level(dBµV/m)	(dBµV/m)	(dB)
	Em	iissions ol	oserved were	e below the li	mit and th	us not reported		


3.4.4.1.2 Test Data for 30 MHz ~ 1000 MHz

- •. Detector
- : Quasi-Peak (6 dB Bandwidth: 120 kHz)
- Measurement distance
- •.Frequency range : 30 MHz ~ 470 MHz
- •.Operating Condition
- Result

- : Highest Output Power Transmitting Mode
- : PASS

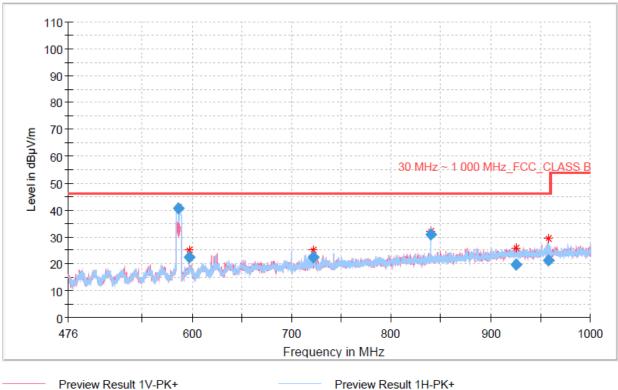
: 3 m

RE Test Report

Preview Result 1H-PK+ 30 MHz ~ 1 000 MHz_FCC_CLASS B

Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(cm)		(deg)	(dB)
34.29	28.99	40.00	11.01	15000.0	99.9	V	26.0	-15.0
37.48	26.49	40.00	13.51	15000.0	99.9	V	26.0	-15.4
54.75	31.16	40.00	8.84	15000.0	99.9	V	230.0	-17.2
61.08	25.68	40.00	14.32	15000.0	99.9	V	213.0	-18.4
77.14	27.64	40.00	12.36	15000.0	200.2	V	202.0	-22.9
119.98	33.41	43.50	10.09	15000.0	300.2	V	52.0	-24.0


- •. Detector
- Measurement distance
- •.Frequency range
- •.Operating Condition
- •.Result
- : 476 MHz ~ 1000 MHz
- : Highest Output Power Transmitting Mode

: Quasi-Peak (6 dB Bandwidth: 120 kHz)

: PASS

: 3 m

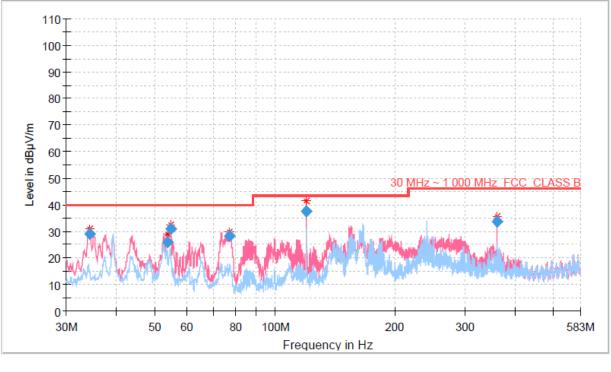
RE Test Report

30 MHz ~ 1 000 MHz_FCC_CLASS B

Final_Result

Critical_Freqs PK+

Final_Result QPK


Frequency	QuasiPeak	Limit	Margin	Meas. Time	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(cm)		(deg)	(dB)
586.43	40.63	46.00	5.37	15000.0	300.0	Н	281.0	-14.1
597.18	22.43	46.00	23.57	15000.0	400.2	Н	12.0	-13.8
722.02	22.51	46.00	23.49	15000.0	99.8	V	87.0	-10.8
840.05	30.89	46.00	15.11	15000.0	99.9	Н	357.0	-8.3
925.46	19.81	46.00	26.19	15000.0	400.2	Н	174.0	-6.3
957.36	21.26	46.00	24.74	15000.0	99.9	Н	92.0	-6.0

- •. Detector
- : Quasi-Peak (6 dB Bandwidth: 120 kHz)
- Measurement distance
- •.Frequency range
- •.Operating Condition
- •.Result

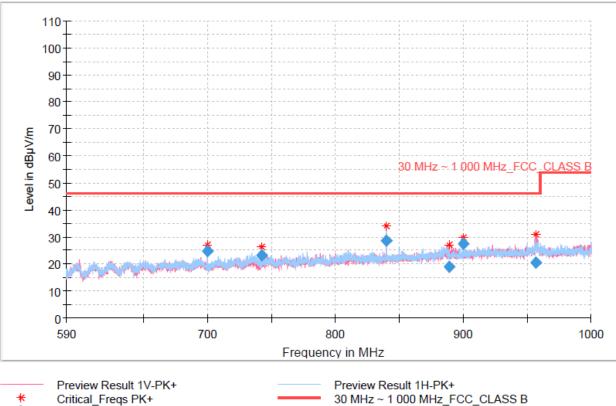
- : 3 m : 30 MHz ~ 583 MHz
- Llink - t Outruit Dourse Trons -
- : Highest Output Power Transmitting Mode
- : PASS

RE Test Report

Preview Result 1V-PK+ Critical_Freqs PK+ Final_Result QPK Preview Result 1H-PK+ 30 MHz ~ 1 000 MHz_FCC_CLASS B

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.29	29.01	40.00	10.99	15000.0	99.9	V	37.0	-15.0
53.71	25.94	40.00	14.06	15000.0	99.9	V	326.0	-17.1
54.75	30.98	40.00	9.02	15000.0	99.9	V	237.0	-17.2
77.14	28.13	40.00	11.87	15000.0	99.9	V	134.0	-22.9
120.00	37.40	43.50	6.10	15000.0	99.9	V	0.0	-24.0
360.00	33.87	46.00	12.13	15000.0	99.9	V	185.0	-21.1


- •. Detector
- •.Measurement distance
- •.Frequency range
- •.Operating Condition
- •.Result
- : 590 MHz ~ 1000 MHz
- : Highest Output Power Transmitting Mode

: Quasi-Peak (6 dB Bandwidth: 120 kHz)

: 3 m

: PASS

RE Test Report

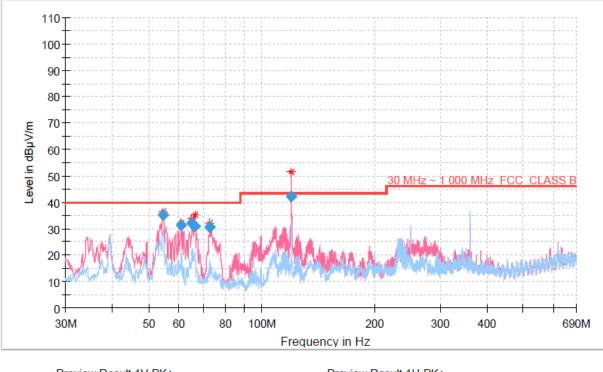
30 MHz ~ 1 000 MHz_FCC_CLASS B

Final Result

Final_Result QPK

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(cm)		(deg)	(dB)
699.98	24.75	46.00	21.25	15000.0	99.7	Н	210.0	-11.3
742.52	23.26	46.00	22.75	15000.0	99.7	Н	114.0	-10.4
840.00	28.50	46.00	17.50	15000.0	400.2	Н	277.0	-8.3
888.69	18.85	46.00	27.15	15000.0	99.7	V	157.0	-7.5
900.01	27.63	46.00	18.37	15000.0	99.7	Н	223.0	-7.1
956.64	20.69	46.00	25.31	15000.0	400.2	V	291.0	-6.0

Page: 26 / 32

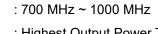

- •. Detector
- •.Measurement distance
- •.Frequency range
- •.Operating Condition
- •.Result
- : 30 MHz ~ 690 MHz
- : Highest Output Power Transmitting Mode

: Quasi-Peak (6 dB Bandwidth: 120 kHz)

: PASS

: 3 m

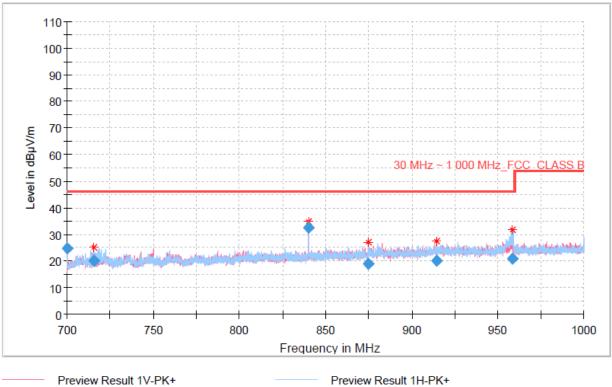
RE Test Report


Preview Result 1V-PK+
 Critical_Freqs PK+
 Final_Result QPK
 Preview Result 1H-PK+
 30 MHz ~ 1 000 MHz_FCC_CLASS B

Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(cm)		(deg)	(dB)
54.75	35.20	40.00	4.80	15000.0	99.8	V	183.0	-17.2
61.02	31.52	40.00	8.48	15000.0	99.8	V	230.0	-18.4
65.15	32.11	40.00	7.89	15000.0	99.8	V	202.0	-19.2
66.14	30.81	40.00	9.19	15000.0	300.1	V	0.0	-19.5
72.90	30.47	40.00	9.53	15000.0	99.8	V	261.0	-21.4
119.93	42.15	43.50	1.35	15000.0	99.8	V	161.0	-24.0

- •. Detector
- Measurement distance
- •.Frequency range
- •.Operating Condition
- •.Result


: Highest Output Power Transmitting Mode

: Quasi-Peak (6 dB Bandwidth: 120 kHz)

: PASS

: 3 m

RE Test Report

30 MHz ~ 1 000 MHz_FCC_CLASS B

Final_Result

Critical_Freqs PK+

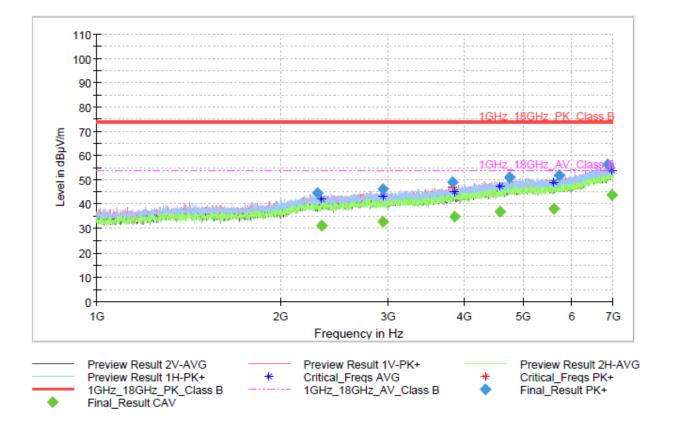
Final_Result QPK

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(cm)		(deg)	(dB)
700.00	24.62	46.00	21.38	15000.0	99.8	Н	143.0	-11.3
715.64	20.05	46.00	25.95	15000.0	99.8	Н	327.0	-11.0
840.06	32.51	46.00	13.49	15000.0	99.8	V	182.0	-8.3
874.71	18.88	46.00	27.13	15000.0	99.8	Н	325.0	-7.6
914.46	20.08	46.00	25.92	15000.0	99.8	Н	127.0	-6.2
958.75	21.10	46.00	24.90	15000.0	200.2	Н	247.0	-6.0

Page: 28 / 32

3.4.4.1.3 Test Data for Avove 1 GHz(Worst Case)

:3 m


- •. Detector
- : Peak, Average (6 dB Bandwidth: 1 MHz)

: Highest Output Power Transmitting Mode

- Measurement distance
- •.Frequency range : 1 GHz ~ 7.0 GHz
- •.Operating Condition
- •.Result

- : PASS
- •. 1 GHz ~ 7 GHz

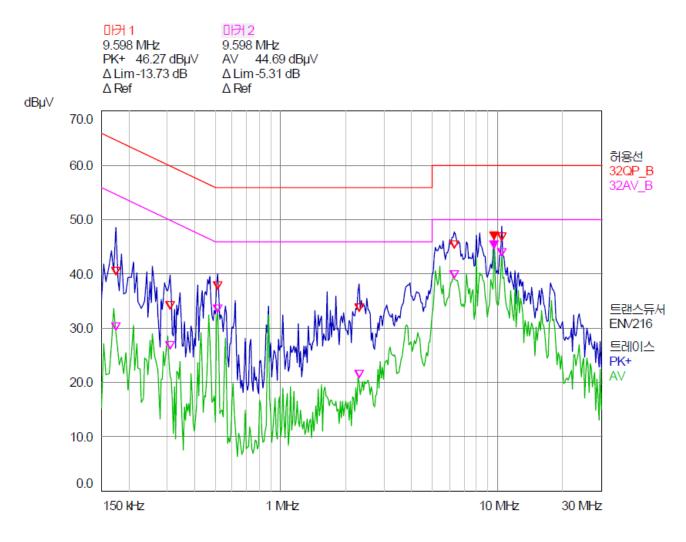
RE Test Report

Final_Result

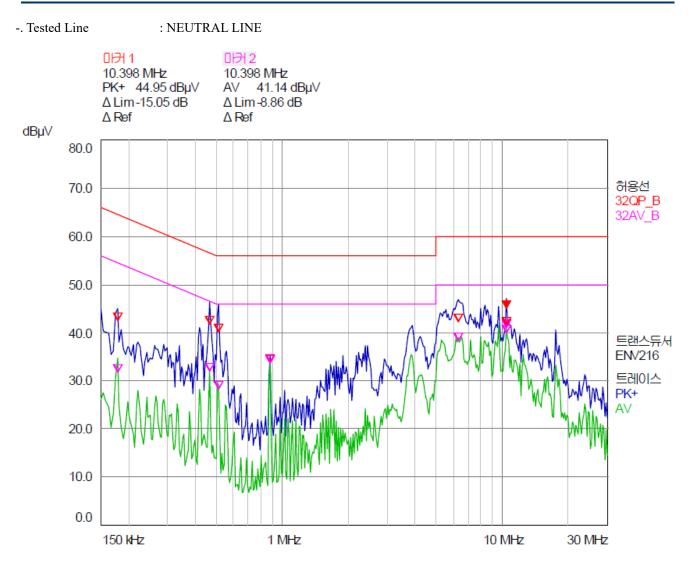
Frequency	MaxPeak	CAverage	Limit	Margin	Meas. Time	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(cm)		(deg)	(dB)
2296.00	44.76		74.00	29.24	15000.0	99.9	Н	184.0	0.9
2330.50		31.37	54.00	22.63	15000.0	99.9	Н	256.0	0.9
2939.50	46.29		74.00	27.71	15000.0	200.1	V	43.0	2.4
2939.50		32.74	54.00	21.26	15000.0	199.8	V	43.0	2.4
3816.25	49.14		74.00	24.86	15000.0	300.2	Н	154.0	5.5
3849.25		34.96	54.00	19.04	15000.0	199.8	V	48.0	5.7
4574.50		36.93	54.00	17.07	15000.0	199.8	V	56.0	7.9
4741.75	51.34		74.00	22.66	15000.0	300.2	Н	0.0	8.9
5602.00		38.33	54.00	15.67	15000.0	400.3	Н	91.0	9.8
5707.75	51.99		74.00	22.01	15000.0	99.9	V	358.0	10.0
6872.50	56.57		74.00	17.43	15000.0	400.3	V	327.0	14.4
6970.00		43.97	54.00	10.03	15000.0	300.0	V	96.0	15.1

3.5 Conducted Emission Test

3.5.1 Requirement


• FCC Part15 subpart C Section 15.207

3.5.2 Test Procedure


The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

3.6.3 Test data

- -. Resolution bandwidth : 9 kHz
- -. Frequency range $: 0.15 \text{ MHz} \sim 30 \text{ MHz}$
- -. Tested Line : HOT LINE

FREQ	Corr.F	ator [dB]	[H/N]	Quasi-peak [dBuV]			C-Average [dBuV]		
[MHz]	LISN	cables	[11/1]	Measured	limit	Margin	Measured	limit	Margin
0.18	9.41	9.91	Ν	42.56	64.58	22.02	31.84	54.58	22.74
0.47	9.44	9.93	Ν	41.83	56.58	14.75	31.90	46.58	14.68
0.51	9.44	9.93	Ν	40.11	56.00	15.89	28.21	46.00	17.79
0.88	9.45	9.95	N	33.90	56.00	22.10	33.61	46.00	12.39
6.31	9.54	10.09	N	42.26	60.00	17.74	38.23	50.00	11.77
10.39	9.61	10.20	Н	46.07	60.00	13.93	43.30	50.00	6.70

3.6 Antenna Requirement

3.6.1 Requirement

• FCC Part15 subpart H Section 15.203

• An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as

perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.6.2 Result

- Must the EUT be professionally installed? ☑ YES □ NO
- If detachable, is the antenna connector(s) non-standard? □ YES ⊠ NO □ N/A

4. Test equipment list

Use	Model Number	Manufacturer	Description	Serial Number	Cal. Date.(Interval)
\boxtimes	AMP 20-1000	INFINITECH	BROADBAND PRE-AMP	2013 05 00003	Dec 21, 2023(1Y)
\boxtimes	DS 2000S	Innco GmbH	Turn Table	N/A	N/A
\boxtimes	MA4000-EP-HS	Innco GmbH	Antenna Mast	N/A	N/A
\boxtimes	MA4640-XP-ET	Innco GmbH	Tilt Antenna Mast	N/A	N/A
\boxtimes	CO3000	Innco GmbH	Controller	N/A	N/A
\boxtimes	CO3000	Innco GmbH	Controller	N/A	N/A
\boxtimes	N9020A	Agilent	Spectrum Analyzer	MY50200260	Dec 21, 2023(1Y)
\boxtimes	FSV3007	R&S	Spectrum Analyzer	101334	Aug 22, 2023(1Y)
\boxtimes	6502	EMCO	Loop Antenna	9609-3087	Oct 23, 2023(2Y)
\boxtimes	VULB 9168	SCHWARZBECK	Bi-Log Antenna	180	Nov 16, 2022(2Y)
\boxtimes	8449B	Agilent	Preamplifier	3008A02013	Dec 21, 2023(1Y)
\boxtimes	3115	EMCO	Horn Antenna	9402-4229	Oct 23, 2023(2Y)
\boxtimes	ESCI7	Rohde & Schwarz	EMI Test Receiver	100938	Dec 21, 2023(1Y)
\boxtimes	ESH-Z2	Rohde & Schwarz	Pulse Limter	101631	Dec 21, 2023(1Y)
\boxtimes	ENV216	Rohde & Schwarz	LISN	101264	Jun 29, 2023(1Y)
\boxtimes	PE7019-20	PASTERNACK	Attenuator	TEMP_1	Jun 27, 2023(1Y)
\boxtimes	ES-SCAN	Rohde & Schwarz	EMI Software	N/A	N/A
\boxtimes	EMC32	Rohde & Schwarz	EMI Software	N/A	N/A
	SAS-574	A.H.Systems	Horn Antenna	595	Jun 27, 2023(2Y)
	PAM-840A	Com-power	Preamplifier	461334	Dec 23, 2022(1Y)