

Report No. : EED32P81306501 Page 1 of 44

TEST REPORT

Product : Unimouse Wireless

Trade mark : CONTOUR

Model/Type reference : CDUMBK11001, UNIMOUSE-WL,

UNIMOUSE-WL-L, JW-2000/00,

UNIMOUSE-WL-X, UNIMOUSE-WL-PLUS, UNIMOUSE-WL-S, UNIMOUSE-WVL-X-L,

UNIMOUSE-WL-PLUS-L, UNIMOUSE-WL-S-L,

2050, 2051, CDUMBK11002.

Serial Number : N/A

Report Number : EED32P81306501

FCC ID : 2AG6O-UMWL

Date of Issue : Dec. 22, 2023

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

CONTOUR (GUANGZHOU) DESIGN, INC.
Building B21-2F, Huachuang Animation Park, Panyu,
GuangZhou, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

mark.chen.

Mark Chen

Reviewed by:

Date:

Tom Chen

Dec. 22, 2023

Aaron Ma

Check No.: 9452180823

Report No.: EED32P81306501

Content

1 COVER PAGE	•••••		1
2 CONTENT			
3 VERSION			3
4 TEST SUMMARY			4
5 GENERAL INFORMATION			5
5.1 CLIENT INFORMATION			5
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREMENT DATA	· · · · · · · · · · · · · · · · · · ·		12
7.1 ANTENNA REQUIREMENT	D Spurious Emission		13 16 17 18
8 APPENDIX BLE			31
9 PHOTOGRAPHS OF TEST SETUP			32
10 PHOTOGRAPHS OF EUT CONSTRUCTION	AL DETAILS	U	34

Report No.: EED32P81306501

Page 3 of 44

3 Version

Version No.	Date	6	Description	9
00	Dec. 22, 2023		Original	
((2)	(35)	(67)	(677)

Report No. : EED32P81306501 Page 4 of 44

4 Test Summary


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: CDUMBK11001, UNIMOUSE-WL, UNIMOUSE-WL-L, JW-2000/00, UNIMOUSE-WL-X, UNIMOUSE-WL-PLUS, UNIMOUSE-WL-X-L, UNIMOUSE-WL-PLUS-L, UNIMOUSE-WL-S-L, 2050, 2051, CDUMBK11002.

Only the model CDUMBK11001 was tested. Their electrical circuit design, layout, components used and internal wiring are identical. Only the appearance and model name are different.

5 General Information

5.1 Client Information

Applicant:	CONTOUR (GUANGZHOU) DESIGN, INC.
Address of Applicant:	Building B21-2F, Huachuang Animation Park, Panyu, GuangZhou, China
Manufacturer:	CONTOUR (GUANGZHOU) DESIGN, INC.
Address of Manufacturer:	Building B21-2F, Huachuang Animation Park, Panyu, GuangZhou, China
Factory:	CONTOUR (GUANGZHOU) DESIGN, INC.
Address of Factory:	Building B21-2F, Huachuang Animation Park, Panyu, GuangZhou, China

5.2 General Description of EUT

Product Name:	Unimouse Wireless					
Model No.(EUT):	CDUMBK11001, UNIMOUSE-WL, UNIMOUSE-WL-L, JW-2000/00, UNIMOUSE-WL-X, UNIMOUSE-WL-PLUS, UNIMOUSE-WL-S, UNIMOUSE-WVL-X-L, UNIMOUSE-WL-PLUS-L, UNIMOUSE-WL-S-L, 2050, 2051, CDUMBK11002.					
Test Model No:	CDUMBK11001					
Trade mark:	CONTOUR					
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location					
Operation Frequency:	2402MHz~2480MHz					
Modulation Type:	GFSK					
Transfer Rate:	1Mbps					
Number of Channel:	40					
Antenna Type:	PCB Antenna					
Antenna Gain:	5.66dBi					
Power Supply:	Battery DC 3.7V					
Test Voltage:	DC 3.7V					
Sample Received Date:	Aug. 18, 2023					
Sample tested Date:	Aug. 18, 2023 to Aug. 29, 2023					

Page 6 of 44 Report No.: EED32P81306501

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	Settings:					
Test Software of EU	(25)					
EUT Power Grade:	Default(Pow selected)	Default(Power level is built-in set parameters and cannot be changed selected)				
Use test software to transmitting of the E	set the lowest frequency UT.	, the middle freque	ncy and the highest	frequency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	CH0	2402		
Mode b	GFSK	1Mbps	CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		

Report No. : EED32P81306501 Page 7 of 44

5.4 Test Environment

	Operating Environment	:					
	Radiated Spurious Emi	ssions:					
	Temperature:	22~25.0 °C	(4)		(41)		(41)
1	Humidity:	50~55 % RH	0		(0)		6
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(3)		(30)	
	Humidity:	50~55 % RH		(0,)		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(3)		(3)		
r)	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6,7)
	Atmospheric Pressure:	1010mbar					

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	Apple	A1443	FCC&IC	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

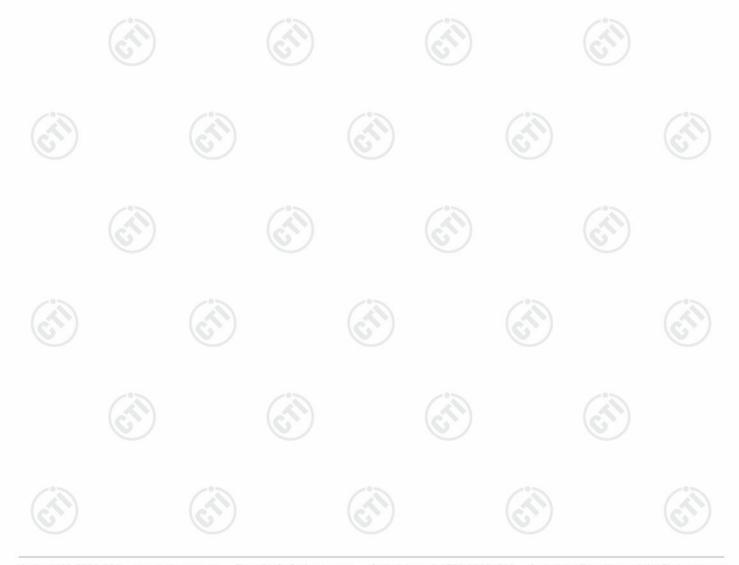
101	
Item	Measurement Uncertainty
Radio Frequency	7.9 x 10 ⁻⁸
DE newer conducted	0.46dB (30MHz-1GHz)
2 RF power, conducted	0.55dB (1GHz-40GHz)
	3.3dB (9kHz-30MHz)
Radiated Spurious emission test	4.3dB (30MHz-1GHz)
adiated Spurious emission test	4.5dB (1GHz-18GHz)
	3.4dB (18GHz-40GHz)
Conduction emission	3.5dB (9kHz to 150kHz)
Conduction emission	3.1dB (150kHz to 30MHz)
Temperature test	0.64°C
Humidity test	3.8%
DC power voltages	0.026%
	Radio Frequency RF power, conducted Radiated Spurious emission test Conduction emission Temperature test Humidity test

Report No.: EED32P81306501 Page 9 of 44

6 Equipment List

RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication tset set	R&S	CMW500	107929	06-28-2023	06-27-2024	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(H)	(8	

	Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024		
Temperature/ Humidity Indicator	Defu	TH128	1				
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023		
Barometer	changchun	DYM3	1188	(W/	(0)		
Test software	Fara	EZ-EMC	EMC-CON 3A1.1				



Page 10 of 44 Report No.: EED32P81306501

		101					
3M Semi-anechoic Chamber (2)- Radiated disturbance Test							
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date		
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025		
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023		
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025		
Multi device Controller	maturo	NCD/070/10711112			O.		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024		
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023	06/19/2024		
Test software	Fara	EZ-EMC	EMEC-3A1-Pre	<u></u>	_ @		

Report No. : EED32P81306501 Page 11 of 44

				/	100		
3M full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		(5		
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024		
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024		
Spectrum Analyzer TRILOG Broadband	Keysight Schwarzbeck	N9030B VULB 9163	MY57140871 9163-1148	02-21-2023 04-28-2021	02-20-2024		
Antenna	Conwarzbook	VOLDOTOO	0100 1110	01202021	01272021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024		
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024		
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024		
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024		
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024		
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023		
Temperature/	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024		
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(3)		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002				
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(3		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)			
Cable line	Times	EMC104-NMNM-1000	SN160710				
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	/	<i>(</i>		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(D		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001				
Cable line	Times	HF160-KMKM-3.00M	393493-0001		- (3		

Report No. : EED32P81306501 Page 12 of 44

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

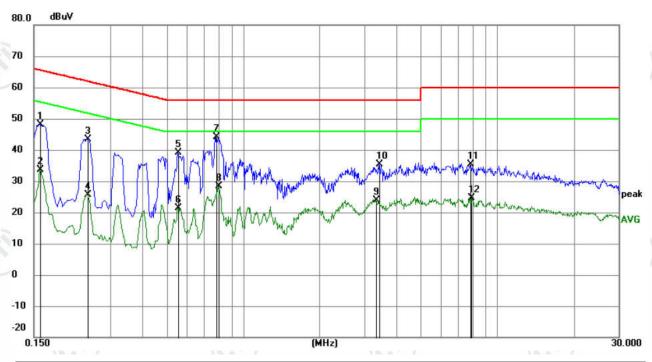
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 5.66dBi.

Report No.: EED32P81306501 Page 13 of 44

7.2 Conducted Emissions


7.2 Conducted		(A) (A)		(~55)					
Test Requireme	ent: 4	7 CFR Part 15C Section 15	.207						
Test Method:	P	ANSI C63.10: 2013							
Test Frequency	Range: 1	150kHz to 30MHz							
Receiver setup:	F	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto						
Limit:		Frequency range (MHz)	Limit (dBuV)					
		Trequency range (IVII IZ)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
	*	Decreases with the logarith	m of the frequency.						
		Shielding Room EUT AE AC Mains LISN1 Gro	Test Re	_					
Test Procedure:	3	impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the	It to AC power source Network) which provide cables of all other SN 2, which was bonders the LISN 1 for the was used to connect rating of the LISN was acced upon a non-metal and for floor-standing a ground reference plane was bonded N 1 was placed 0.8 m and to a ground resound reference plane. The LISN 1 and the EUT. It was at least 0.8 m from the relations to the counter of the plane was bonded to a ground resound reference plane. The LISN 1 and the EUT. It was at least 0.8 m from the relations to the plane was bonded to a ground resound reference plane. The plane was at least 0.8 m from the relations to the plane was bonded to a ground resound reference plane. The plane was at least 0.8 m from the plane was been such as the plane was at least 0.8 m from the plane was been such as the provided was at least 0.8 m from the plane was been such as the plane was been such as the plane was	e through a LISN 1 (Line is a 50Ω/50μH + 5Ω linear units of the EUT were ed to the ground reference is unit being measured. A multiple power cables to a mot exceeded. Allic table 0.8m above the trangement, the EUT was a ference plane. The rear of and reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs this distance was between All other units of the EUT m the LISN 2. The positions of equipment according to					
Test Mode:		ANSI C63.10: 2013 on co All modes were tested, only t eport.	-0-						
Test Results:		Pass							
			1 2 2 2						

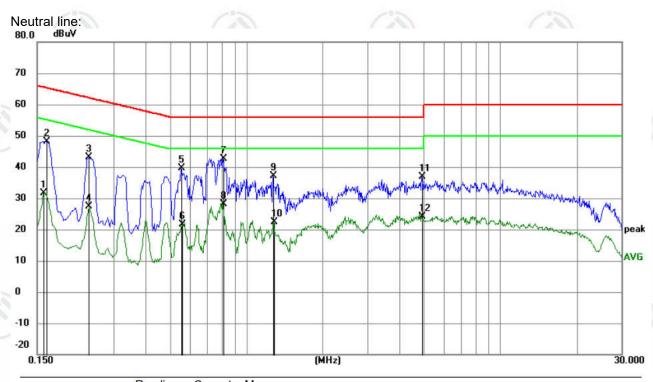
Measurement Data

Live line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	38.19	9.87	48.06	65.52	-17.46	QP	
2	0.1590	23.81	9.87	33.68	55.52	-21.84	AVG	
3	0.2445	33.54	9.96	43.50	61.94	-18.44	QP	
4	0.2445	15.79	9.96	25.75	51.94	-26.19	AVG	
5	0.5550	29.06	10.02	39.08	56.00	-16.92	QP	
6	0.5550	11.44	10.02	21.46	46.00	-24.54	AVG	
7 *	0.7799	34.19	9.86	44.05	56.00	-11.95	QP	
8	0.7980	18.47	9.85	28.32	46.00	-17.68	AVG	
9	3.3450	14.12	9.79	23.91	46.00	-22.09	AVG	
10	3.4215	25.64	9.78	35.42	56.00	-20.58	QP	
11	7.8225	25.51	9.79	35.30	60.00	-24.70	QP	
12	7.9215	14.77	9.79	24.56	50.00	-25.44	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



No. M	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	21.85	9.87	31.72	55.52	-23.80	AVG	
2	0.1635	38.33	9.87	48.20	65.28	-17.08	QP	
3	0.2400	33.08	9.95	43.03	62.10	-19.07	QP	
4	0.2400	17.44	9.95	27.39	52.10	-24.71	AVG	
5	0.5549	29.71	10.02	39.73	56.00	-16.27	QP	
6	0.5594	11.62	10.02	21.64	46.00	-24.36	AVG	
7 *	0.8114	32.87	9.85	42.72	56.00	-13.28	QP	
8	0.8114	18.16	9.85	28.01	46.00	-17.99	AVG	
9	1.2749	27.29	9.82	37.11	56.00	-18.89	QP	
10	1.2839	12.49	9.82	22.31	46.00	-23.69	AVG	
11	4.9020	27.00	9.78	36.78	56.00	-19.22	QP	
12	4.9020	14.28	9.78	24.06	46.00	-21.94	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		(3)
	Control Congular Power Supply Power Foot Table RF test System System Instrument Table	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	(C)
Limit:	30dBm	_°>
Test Mode:	Refer to clause 5.3	(2)
Test Results:	Refer to Appendix BLE	

Report No. : EED32P81306501 Page 17 of 44

7.4 DTS Bandwidth

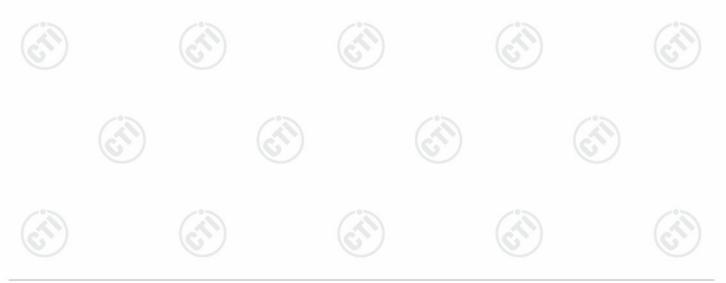
132.7	
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Power Power Pool Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix BLE

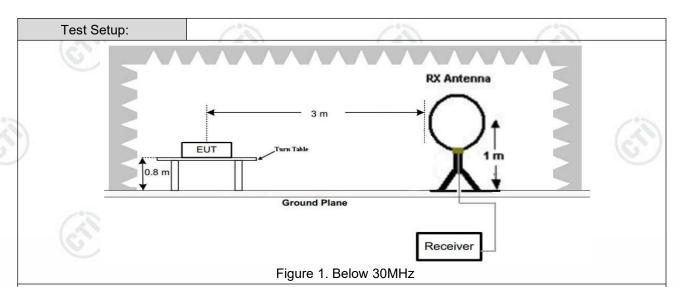
7.5 Maximum Power Spectral Density

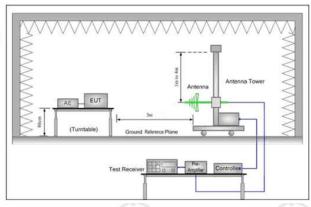
Т	est Requirement:	47 CFR Part 15C Section 15.247 (e)			
Т	est Method:	ANSI C63.10 2013			
Т	est Setup:				
		Control Comprutes Power Power Power Power Attenuator Table RF test System Instrument Table			
		Remark: Offset=Cable loss+ attenuation factor.			
Т	est Procedure:	a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.			
	imit:	≤8.00dBm/3kHz			
Т	est Mode:	Refer to clause 5.3			
Т	est Results:	Refer to Appendix BLE			
<u>'</u>	est results.	Neier to Appendix BLL			

7.6 Band Edge measurements and Conducted Spurious Emission

47 CFR Part 15C Section 15.247 (d)
ANSI C63.10 2013
RF test System Forwer Supply RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Refer to clause 5.3
Refer to Appendix BLE




7.7 Radiated Spurious Emission & Restricted bands


16.7	165		163		16.	<i></i>		
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak		
	A1 4011-		Peak	1MHz	3MHz	Peak		
	Above 1GHz		Peak	1MHz	10kHz	Average		
Limit:	Frequency	ncy Field (microv		Limit (dBuV/m)	Remark	Measuremen distance (m		
	/ / / / / / / / / / / / / / / / / / / /		400/F(kHz)	-	-/0>	300		
			1000/F(kHz)	-	(A)	30		
	1.705MHz-30MHz		30	-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz 216MHz-960MHz 960MHz-1GHz		150	43.5	Quasi-peak	3		
			200 46.0		Quasi-peak	3		
			500	54.0	Quasi-peak	3		
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	IB above the imment under t	maximum est. This p	permitted ave	erage emission		

Report No.: EED32P81306501 Page 21 of 44

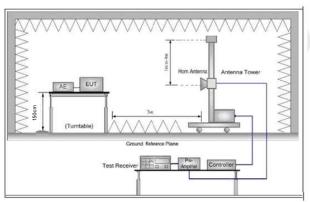


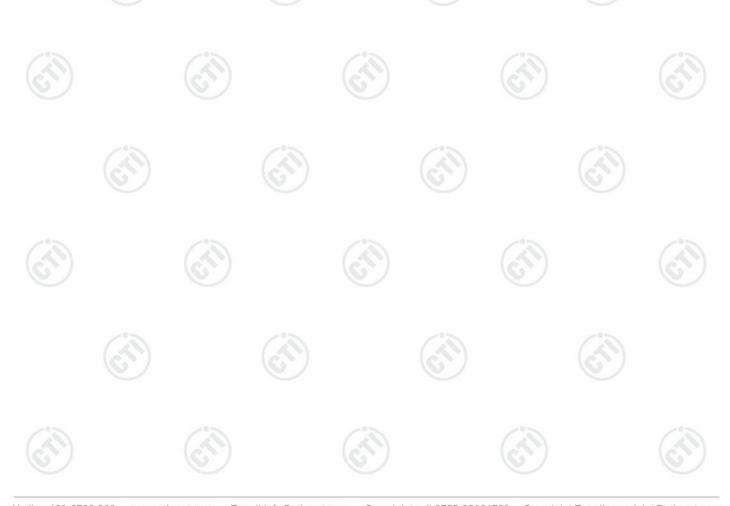
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

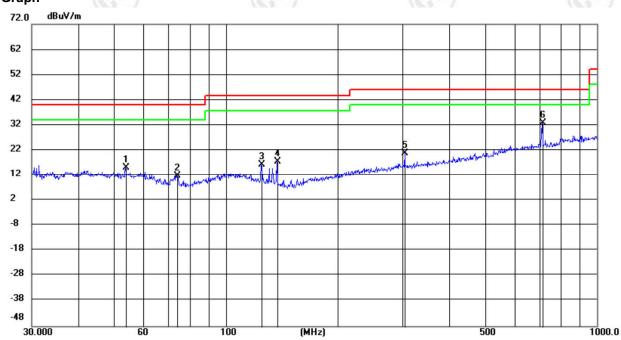
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Test Mode: Refer to clause 5.3		horizontal and vertical polarizations of the antenna are set to make the measurement.
Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Test Mode: Refer to clause 5.3		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360
limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Test Mode: Refer to clause 5.3		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
(2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Test Mode: Refer to clause 5.3		limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Test Mode: Refer to clause 5.3		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Test Mode: Refer to clause 5.3		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		i. Repeat above procedures until all frequencies measured was complete.
Test Results: Pass	Test Mode:	Refer to clause 5.3
1 651 1 65416.	Test Results	Pass


Report No.: EED32P81306501 Page 23 of 44

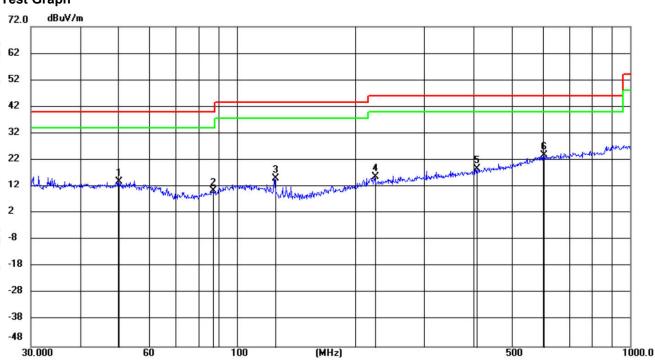
Radiated Spurious Emission below 1GHz:

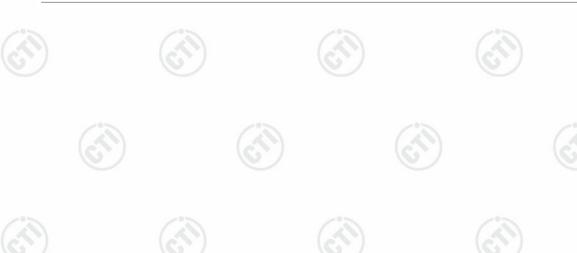
During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel for GFSK of 1M was recorded in the report.

Horizontal:

Test Graph

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	53.7025	1.71	13.32	15.03	40.00	-24.97	QP	100	282	
2	73.9663	2.57	9.35	11.92	40.00	-28.08	QP	100	221	
3	124.9846	5.54	10.68	16.22	43.50	-27.28	QP	100	57	
4	137.5407	8.44	9.25	17.69	43.50	-25.81	QP	100	282	
5	304.2363	4.79	16.13	20.92	46.00	-25.08	QP	100	47	
6 *	711.9230	9.82	23.09	32.91	46.00	-13.09	QP	100	252	





Vertical:

Test Graph

N	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1	50.1621	0.31	13.53	13.84	40.00	-26.16	QP	100	290	
	2	87.3564	-0.22	10.61	10.39	40.00	-29.61	QP	200	109	
	3	125.0066	4.42	10.68	15.10	43.50	-28.40	QP	200	354	
-	4	225.0316	2.31	13.38	15.69	46.00	-30.31	QP	100	352	
	5	407.7289	0.92	17.98	18.90	46.00	-27.10	QP	100	290	
	6 *	602.4819	1.69	22.28	23.97	46.00	-22.03	QP	200	354	

Radiated Spurious Emission above 1GHz:

Mode	:		BLE GFSK Trai	nsmitting		Channel:		2402 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1449.0449	1.43	38.97	40.40	74.00	33.60	Pass	Н	PK
2	1977.0977	4.43	37.46	41.89	74.00	32.11	Pass	Н	PK
3	3799.0533	-19.25	55.15	35.90	74.00	38.10	Pass	Н	PK
4	5043.1362	-15.76	52.79	37.03	74.00	36.97	Pass	Н	PK
5	7774.3183	-11.29	50.41	39.12	74.00	34.88	Pass	Н	PK
6	12025.6017	-5.40	49.73	44.33	74.00	29.67	Pass	Н	PK
7	1384.8385	1.34	38.86	40.20	74.00	33.80	Pass	V	PK
8	1918.0918	4.12	37.87	41.99	74.00	32.01	Pass	V	PK
9	3419.0279	-20.16	56.41	36.25	74.00	37.75	Pass	V	PK
10	4898.1265	-16.20	52.56	36.36	74.00	37.64	Pass	V	PK
11	7586.3058	-11.20	50.08	38.88	74.00	35.12	Pass	V	PK
12	12652.6435	-4.53	48.75	44.22	74.00	29.78	Pass	V	PK

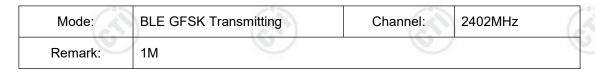
	(41)		(40)		(4)	10		(11)	
Mode	e:		BLE GFSK Trai	nsmitting		Channel:		2440 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1452.2452	1.43	38.14	39.57	74.00	34.43	Pass	Н	PK
2	1930.8931	4.19	37.65	41.84	74.00	32.16	Pass	Н	PK
3	3246.0164	-20.10	56.58	36.48	74.00	37.52	Pass	Н	PK
4	4790.1193	-16.26	52.94	36.68	74.00	37.32	Pass	Н	PK
5	7776.3184	-11.30	51.02	39.72	74.00	34.28	Pass	Н	PK
6	11847.5898	-5.97	49.46	43.49	74.00	30.51	Pass	Н	PK
7	1409.841	1.40	38.28	39.68	74.00	34.32	Pass	V	PK
8	1901.2901	4.04	36.99	41.03	74.00	32.97	Pass	V	PK
9	3424.0283	-20.16	56.39	36.23	74.00	37.77	Pass	V	PK
10	5044.1363	-15.76	53.38	37.62	74.00	36.38	Pass	V	PK
11	7400.2934	-11.51	51.02	39.51	74.00	34.49	Pass	V	PK
12	11395.5597	-6.15	48.81	42.66	74.00	31.34	Pass	V	PK

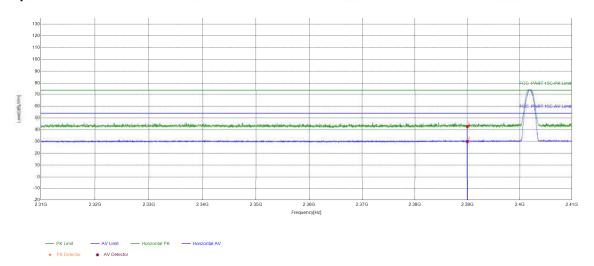
Report No.: EED32P81306501 Page 26 of 44

_	20%					20%			0 -	
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	<u>z</u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1423.8424	1.41	38.40	39.81	74.00	34.19	Pass	Н	PK
1	2	1890.289	3.96	37.00	40.96	74.00	33.04	Pass	Н	PK
	3	3838.0559	-19.19	55.27	36.08	74.00	37.92	Pass	Н	PK
I	4	5640.176	-14.13	52.38	38.25	74.00	35.75	Pass	Н	PK
	5	7674.3116	-11.09	51.05	39.96	74.00	34.04	Pass	Н	PK
	6	11819.588	-6.05	50.04	43.99	74.00	30.01	Pass	Н	PK
	7	1296.4296	1.05	38.77	39.82	74.00	34.18	Pass	V	PK
	8	1793.6794	3.26	38.01	41.27	74.00	32.73	Pass	V	PK
	9	3513.0342	-20.07	55.36	35.29	74.00	38.71	Pass	V	PK
	10	5463.1642	-14.52	51.29	36.77	74.00	37.23	Pass	V	PK
	11	9216.4144	-7.89	48.95	41.06	74.00	32.94	Pass	V	PK
6	12	14406.7605	1.13	44.81	45.94	74.00	28.06	Pass	V	PK

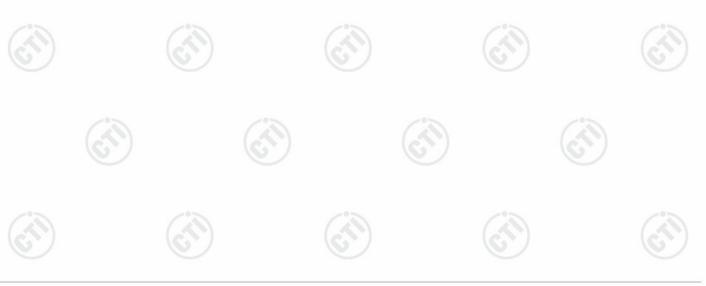
Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



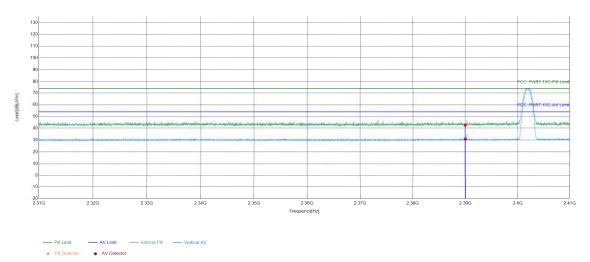


Restricted bands:


Test plot as follows:

Test Graph

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	37.03	42.80	74.00	31.20	PASS	Horizontal	PK
2	2390	5.77	24.25	30.02	54.00	23.98	PASS	Horizontal	AV



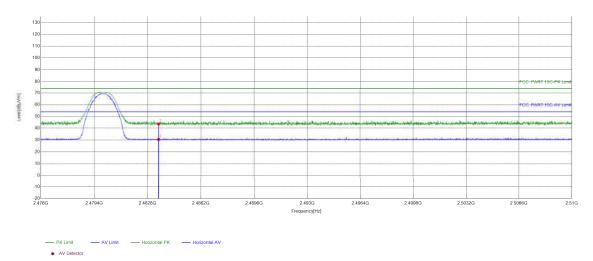
Report No.: EED32P81306501

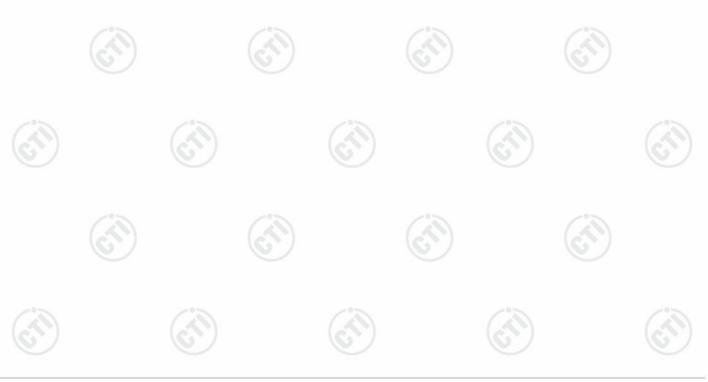
C. N. J	(EN)	(6)	(63)
Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:	1M		

Test Graph

	Suspected List										
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2390	5.77	36.93	42.70	74.00	31.30	PASS	Vertical	PK	
	2	2390	5.77	25.01	30.78	54.00	23.22	PASS	Vertical	AV	

Page 28 of 44

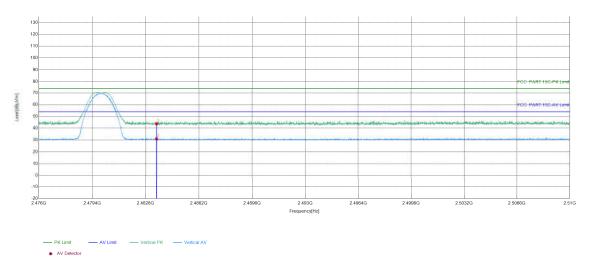




Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	1M		

Test Graph

	Suspected List										
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5	6.57	37.04	43.61	74.00	30.39	PASS	Horizontal	PK	
	2	2483.5	6.57	23.94	30.51	54.00	23.49	PASS	Horizontal	AV	



Report No.: EED32P81306501 Page 30 of 44

Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	1M		

Test Graph

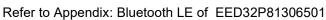
	Suspected List										
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5	6.57	37.17	43.74	74.00	30.26	PASS	Vertical	PK	
	2	2483.5	6.57	24.38	30.95	54.00	23.05	PASS	Vertical	AV	

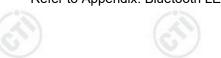
Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor





Page 31 of 44

Appendix BLE

