FCC RF Test Report

APPLICANT : OnePlus Technology (Shenzhen) Co., Ltd.

EQUIPMENT : keyboard BRAND NAME : ONEPLUS MODEL NAME : OPK2413

FCC ID : 2ABZ2-OPK2413

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

TEST DATE(S) : Feb. 13, 2025 ~ Mar. 11, 2025

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

This report contains data that were produced under subcontract by Sporton International Inc. (Shenzhen)

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 1 of 44

Report Issued Date : Mar. 27, 2025

Report Version : Rev. 01

Report No.: FR511614

TABLE OF CONTENTS

RE\	/ISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	.10
	2.4	Support Unit used in test configuration and system	.10
	2.5	EUT Operation Test Setup	.10
	2.6	Measurement Results Explanation Example	.11
3	TEST	RESULT	.12
	3.1	6dB and 99% Bandwidth Measurement	.12
	3.2	Output Power Measurement	.19
	3.3	Power Spectral Density Measurement	.20
	3.4	Conducted Band Edges and Spurious Emission Measurement	.27
	3.5	Radiated Band Edges and Spurious Emission Measurement	.36
	3.6	AC Conducted Emission Measurement	.40
	3.7	Antenna Requirements	.42
4	LIST	OF MEASURING EQUIPMENT	.43
5	MEAS	SUREMENT UNCERTAINTY	.44
APF	PENDI	X A. CONDUCTED TEST RESULTS	
APF	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
APF	PENDI	X C. RADIATED SPURIOUS EMISSION	
APF	PENDI	X D. DUTY CYCLE PLOTS	
APF	PENDI	X E. SETUP PHOTOGRAPHS	

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 2 of 44

Report Issued Date : Mar. 27, 2025

Report Version : Rev. 01

Report No.: FR511614

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR511614	Rev. 01	Initial issue of report	Mar. 27, 2025

FCC ID: 2ABZ2-OPK2413

Report Issued Date: Mar. 27, 2025
Report Version: Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

: 3 of 44

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Report only	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 30dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 5.93 dB at 2385.92 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 13.75 dB at 0.16 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or
 in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of
 non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 4 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No.: FR511614

1 General Description

1.1 Applicant

OnePlus Technology (Shenzhen) Co., Ltd.

18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R. China

1.2 Manufacturer

OnePlus Technology (Shenzhen) Co., Ltd.

18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R. China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	keyboard			
Brand Name	ONEPLUS			
Model Name	OPK2413			
FCC ID	2ABZ2-OPK2413			
SN Code	Conducted: T621675000010ECL0027 Conduction: T621675000007ECL0017 Radiation: T621675000007ECL0015			
HW Version	V0.30			
SW Version	KA030_B_1.1.0			
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	BLE 1Mbps: 3.50 dBm (0.0022 W)			
Maximum Output Power to Antenna	BLE 2Mbps: 3.40 dBm (0.0022 W)			
99% Occupied Bandwidth	BLE 1Mbps:1.009MHz			
39 % Occupied Balldwidth	BLE 2Mbps:2.014MHz			
Antenna Type / Gain	PCB Antenna type with gain 0.55 dBi			
Type of Modulation	Bluetooth LE : GFSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

 Sporton International Inc. (Kunshan)
 Page Number
 : 5 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	Jiangsu Province 215300 People's Republic of China				
	TEL: +86-512-57900158				
	Sporton Site No.	FCC Designation No.	FCC Test Firm		
Test Site No.	Sporton Site No.	1 CC Designation No.	Registration No.		
	TH01-KS	CN1257	314309		

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (ShenZhen)			
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City, Guangdong Province 518103 People's Republic of China TEL: +86-755-86066985			
Tagé Ciés Na	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
Test Site No.	CO02-SZ 03CH04-SZ	CN1256	421272	

Note: Conduction test cases in section 3.6 of this report is tested in C002-SZ, and Radiated Spurious Emission test cases in section 3.5 is tested in 03CH04-SZ

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	03CH04-SZ	AUDIX	E3	6.2009-8-24
2.	CO02-SZ	AUDIX	E3	6.120613b

 Sporton International Inc. (Kunshan)
 Page Number
 : 6 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 Sporton International Inc. (Kunshan)
 Page Number
 : 7 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 8 of 44

Report Issued Date : Mar. 27, 2025

Report Version : Rev. 01

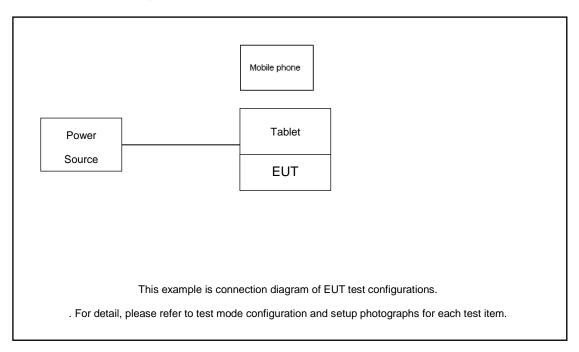
Report No.: FR511614

2.2 Test Mode

- The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
Took Itom	Data Rate / Modulation
Test Item	Bluetooth – LE / GFSK
	Mode 1: Bluetooth Tx CH00_2402 MHz_BLE 1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_BLE 1Mbps
Conducted	Mode 3: Bluetooth Tx CH39_2480 MHz_BLE 1Mbps
TCs	Mode 4: Bluetooth Tx CH00_2402 MHz_BLE 2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_BLE 2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_BLE 2Mbps
	Mode 1: Bluetooth Tx CH00_2402 MHz_BLE 1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_BLE 1Mbps
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_BLE 1Mbps
TCs	Mode 4: Bluetooth Tx CH00_2402 MHz_BLE 2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_BLE 2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_BLE 2Mbps
AC	
Conducted	Mode 1: BT Link + NFC RX + Powered from tablet+ Battery+ Adapter
Emission	
Remark:	


For Radiated Test Cases, The tests were performed with Tablet, Adapter and USB Cable.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 9 of 44 Report Issued Date: Mar. 27, 2025 Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	NA	NA	NA	NA	NA
2.	Phone	Oneplus	N/A	N/A	N/A	N/A
3.	USB Cable	NA	NA	NA	NA	NA
4.	Tablet	NA	NA	NA	NA	NA

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 10 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No.: FR511614

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.30 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 1.30 + 10 = 11.30 (dB)

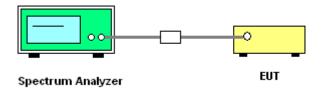
Report Template No.: BU5-FR15CBT4.0 Version 2.0

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the 99% OBW and the VBW is set to 3 times of the RBW.
- 6. Measure and record the results in the test report.

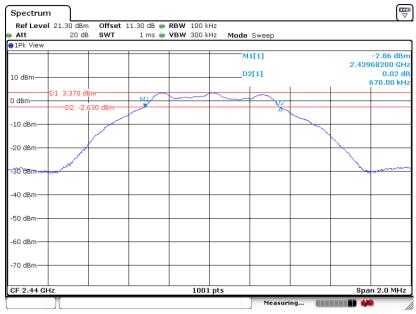
3.1.4 Test Setup

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 12 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No.: FR511614

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

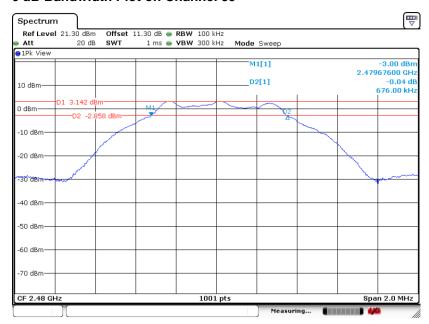

BLE 1Mbps

6 dB Bandwidth Plot on Channel 00

Date: 13.FEB.2025 11:22:05

6 dB Bandwidth Plot on Channel 19

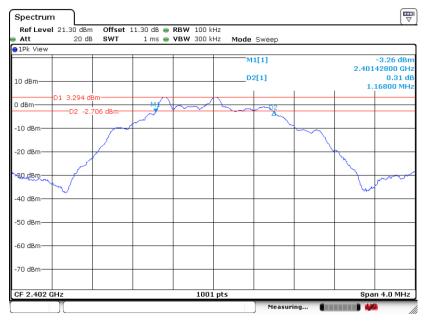
Date: 13.FEB.2025 11:31:43


 Sporton International Inc. (Kunshan)
 Page Number
 : 13 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

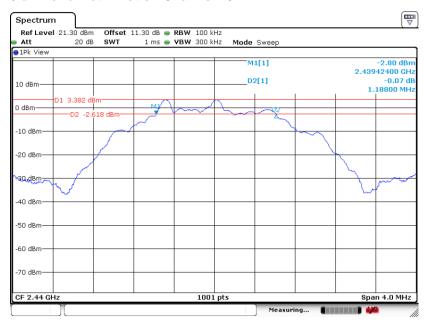
Report Template No.: BU5-FR15CBT4.0 Version 2.0


6 dB Bandwidth Plot on Channel 39

Date: 13.FEB.2025 11:35:21

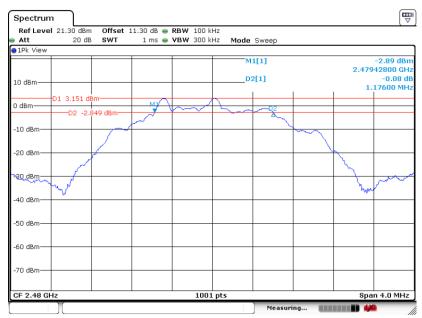
BLE 2Mbps

6 dB Bandwidth Plot on Channel 00



Date: 13.FEB.2025 11:48:14

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 14 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01


Report No. : FR511614

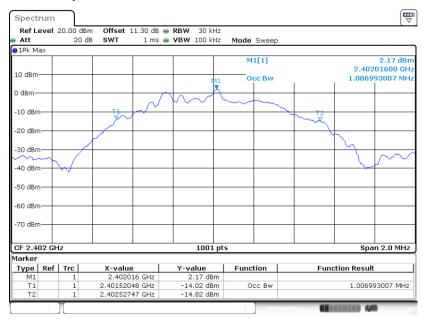
6 dB Bandwidth Plot on Channel 19

Date: 13.FEB.2025 11:43:53

6 dB Bandwidth Plot on Channel 39

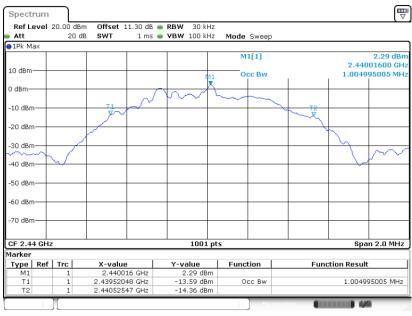
Date: 13.FEB.2025 11:40:49

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 15 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01


Report No. : FR511614

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

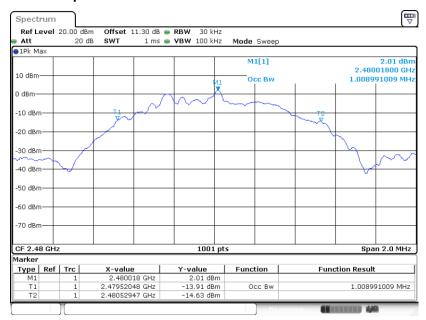

BLE 1Mbps

99% Occupied Bandwidth Plot on Channel 00

Date: 13.FEB.2025 11:22:16

99% Occupied Bandwidth Plot on Channel 19

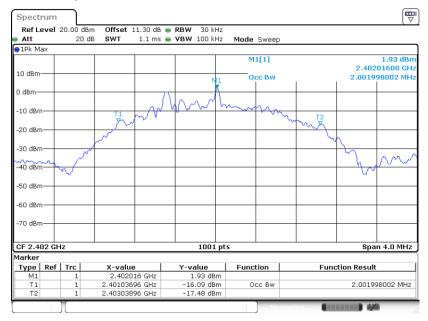
Date: 13.FEB.2025 11:31:04


 Sporton International Inc. (Kunshan)
 Page Number
 : 16 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

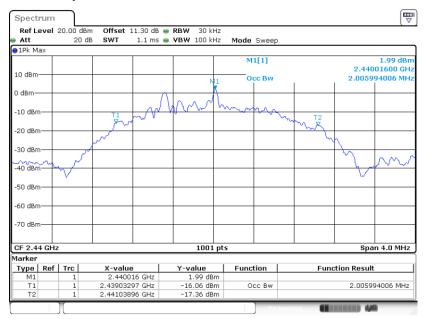

99% Occupied Bandwidth Plot on Channel 39

Date: 13.FEB.2025 11:35:01

BLE 2Mbps

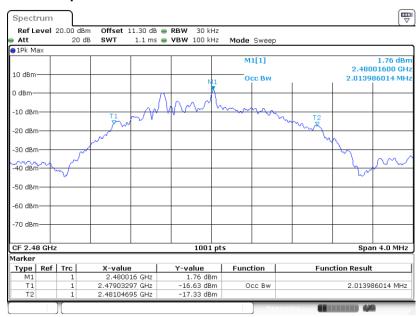
99% Occupied Bandwidth Plot on Channel 00

Date: 13.FEB.2025 11:47:13


 Sporton International Inc. (Kunshan)
 Page Number
 : 17 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01


Report Template No.: BU5-FR15CBT4.0 Version 2.0

99% Occupied Bandwidth Plot on Channel 19

Date: 13.FEB.2025 11:43:12

99% Occupied Bandwidth Plot on Channel 39

Date: 13.FEB.2025 11:40:33

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

Sporton International Inc. (Kunshan)

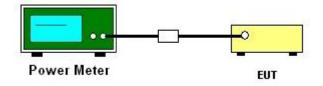
TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 18 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No.: FR511614

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1
 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

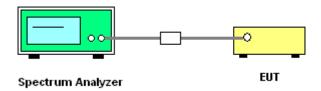
TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 19 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No.: FR511614

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

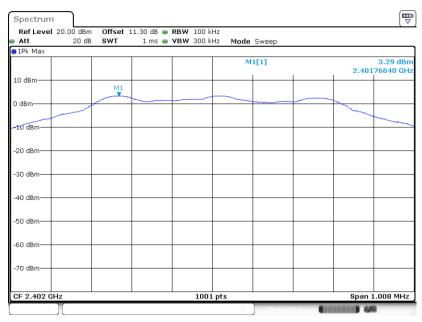
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Sporton International Inc. (Kunshan)

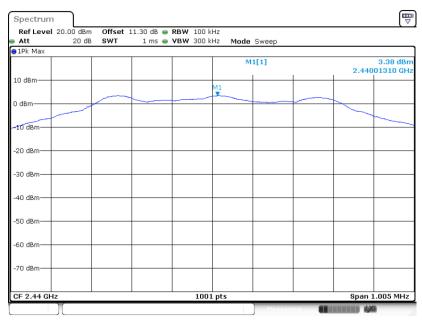
TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 20 of 44

Report Issued Date : Mar. 27, 2025


Report Version : Rev. 01

Report No.: FR511614

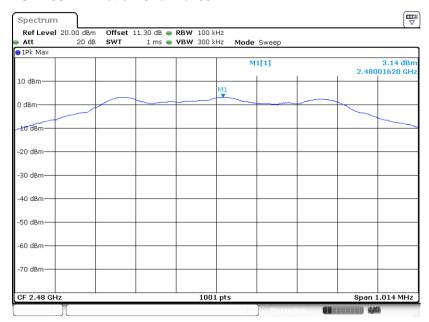
3.3.6 Test Result of Power Spectral Density Plots (100kHz)


BLE 1Mbps

PSD 100kHz Plot on Channel 00

Date: 13.FEB.2025 11:22:48

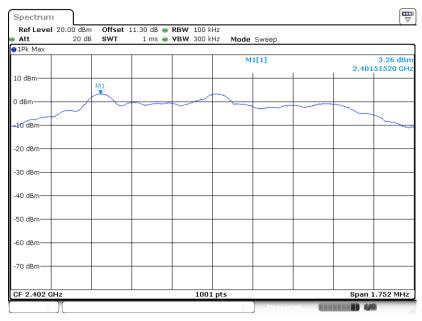
PSD 100kHz Plot on Channel 19



Date: 13.FEB.2025 11:32:16

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 21 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

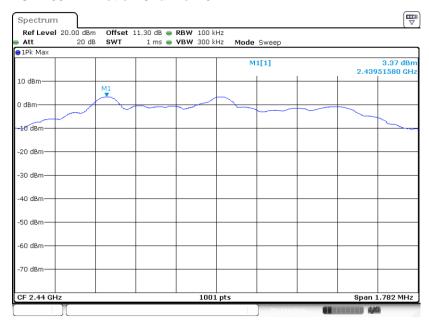
Report No. : FR511614


PSD 100kHz Plot on Channel 39

Date: 13.FEB.2025 11:36:25

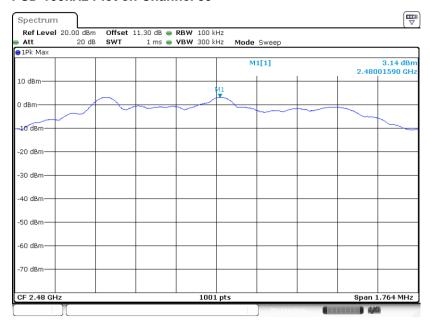
BLE 2Mbps

PSD 100kHz Plot on Channel 00



Date: 13.FEB.2025 11:49:06

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 22 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

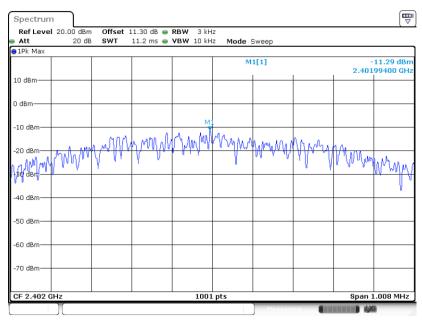

Report No. : FR511614

PSD 100kHz Plot on Channel 19

Date: 13.FEB.2025 11:44:56

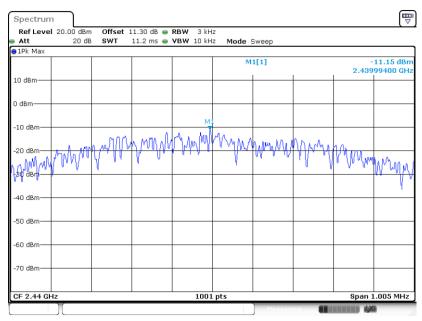
PSD 100kHz Plot on Channel 39

Date: 13.FEB.2025 11:41:22


TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 23 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No. : FR511614

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

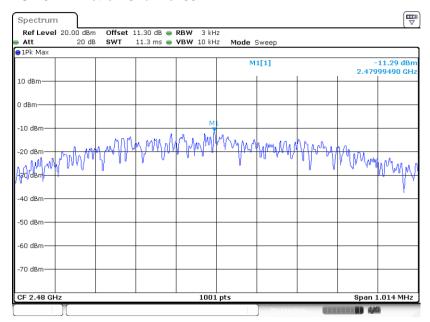

BLE 1Mbps

PSD 3kHz Plot on Channel 00

Date: 13.FEB.2025 11:22:30

PSD 3kHz Plot on Channel 19

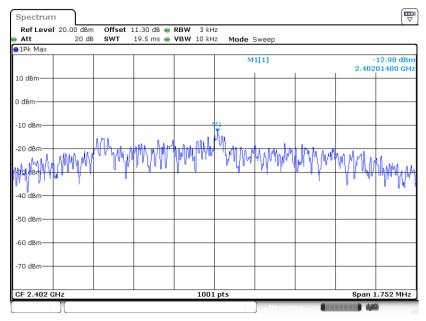
Date: 13.FEB.2025 11:31:59


 Sporton International Inc. (Kunshan)
 Page Number
 : 24 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

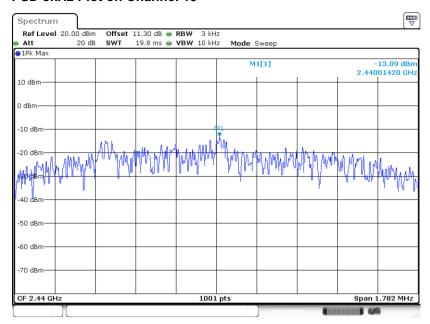

PSD 3kHz Plot on Channel 39

Date: 13.FEB.2025 11:36:06

BLE 2Mbps

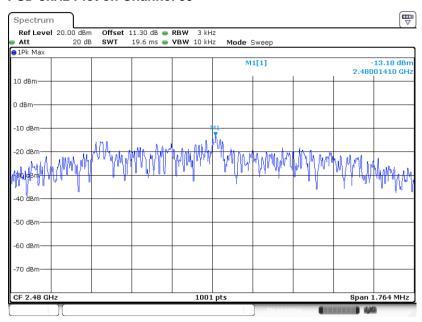
PSD 3kHz Plot on Channel 00

Date: 13.FEB.2025 11:48:46


Sporton International Inc. (Kunshan) TEL: +86-512-57900158

FCC ID: 2ABZ2-OPK2413

Page Number : 25 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01


Report No. : FR511614

PSD 3kHz Plot on Channel 19

Date: 13.FEB.2025 11:44:28

PSD 3kHz Plot on Channel 39

Date: 13.FEB.2025 11:41:04

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 26 of 44 Report Issued Date: Mar. 27, 2025

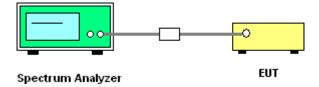
Report No. : FR511614

Report Version : Rev. 01 Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

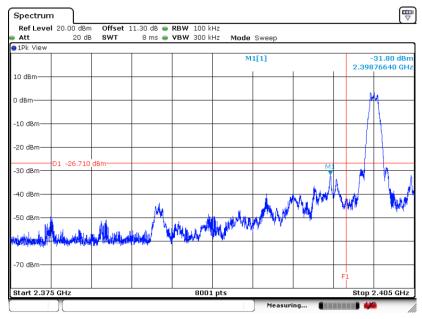
3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

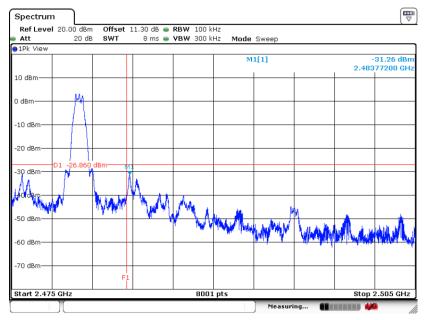
 Sporton International Inc. (Kunshan)
 Page Number
 : 27 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025


 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.4.5 Test Result of Conducted Band Edges Plots


BLE 1Mbps

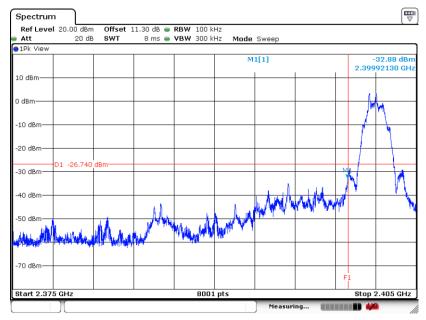
Low Band Edge Plot on Channel 00

Date: 13.FEB.2025 11:29:14

High Band Edge Plot on Channel 39

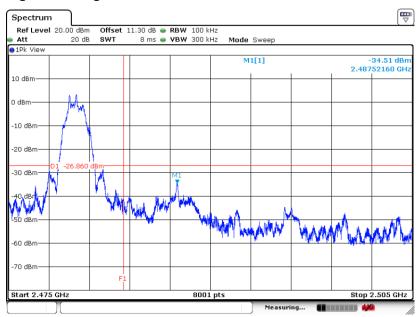
Date: 13.FEB.2025 11:39:53

 Sporton International Inc. (Kunshan)
 Page Number
 : 28 of 44


 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

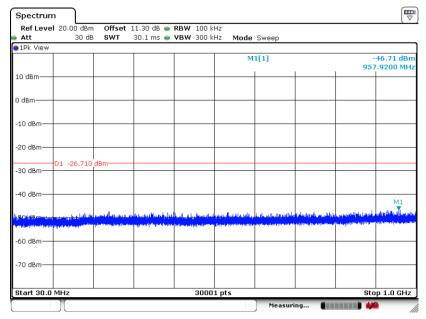

BLE 2Mbps

Low Band Edge Plot on Channel 00

Date: 13.FEB.2025 11:52:43

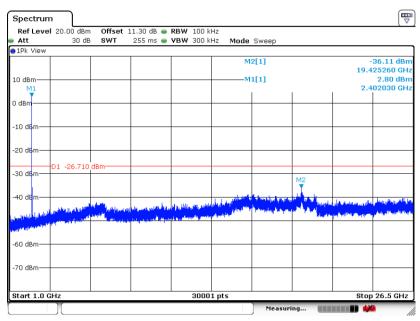
High Band Edge Plot on Channel 39

Date: 13.FEB.2025 11:42:42


Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 29 of 44 Report Issued Date: Mar. 27, 2025 Report Version : Rev. 01

Report No.: FR511614

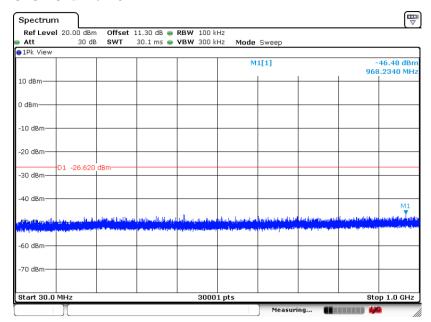

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 13.FEB.2025 11:23:43

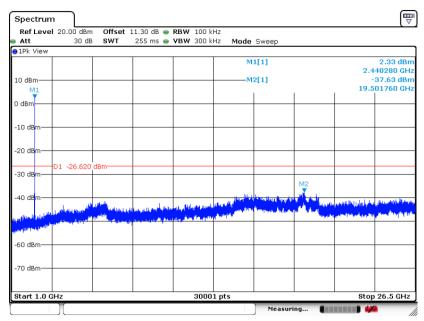
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 13.FEB.2025 11:24:07


Sporton International Inc. (Kunshan)
TEL: +86-512-57900158

FCC ID: 2ABZ2-OPK2413

Page Number : 30 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

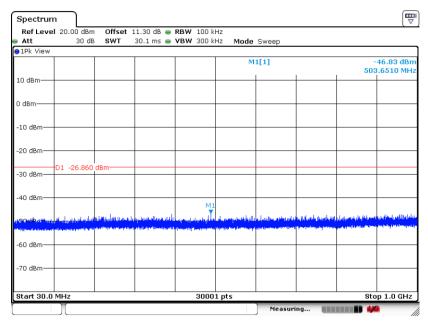

Report No.: FR511614

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 13.FEB.2025 11:32:36

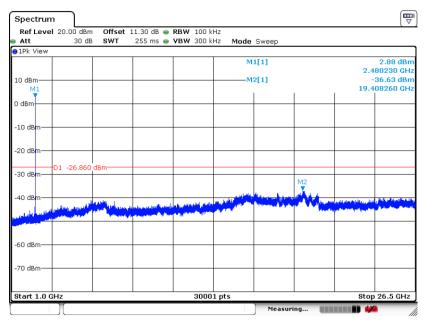
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 13.FEB.2025 11:32:54


 Sporton International Inc. (Kunshan)
 Page Number
 : 31 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

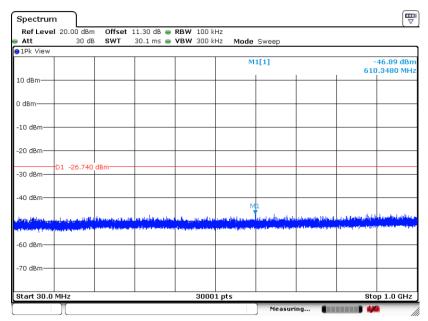

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 13.FEB.2025 11:37:10

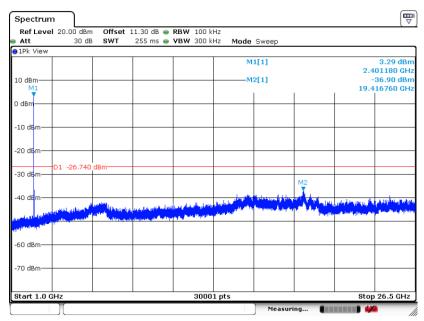
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 13.FEB.2025 11:39:34


 Sporton International Inc. (Kunshan)
 Page Number
 : 32 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

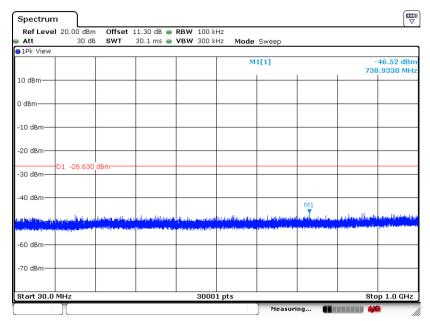

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 00

Date: 13.FEB.2025 11:49:25

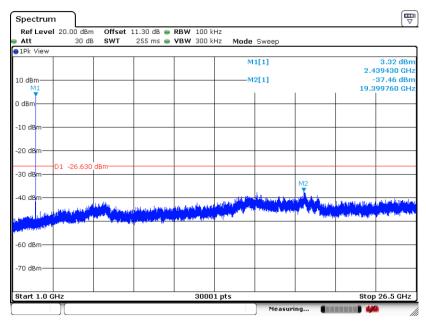
Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 00

Date: 13.FEB.2025 11:50:21


Sporton International Inc. (Kunshan)
TEL: +86-512-57900158

FCC ID: 2ABZ2-OPK2413

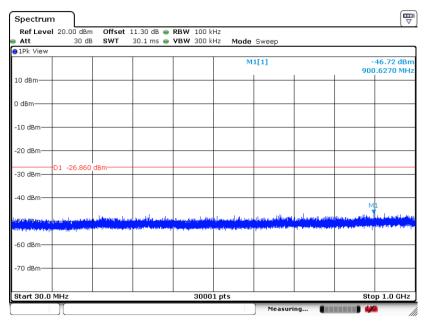
Page Number : 33 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01


Report Template No.: BU5-FR15CBT4.0 Version 2.0

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 19

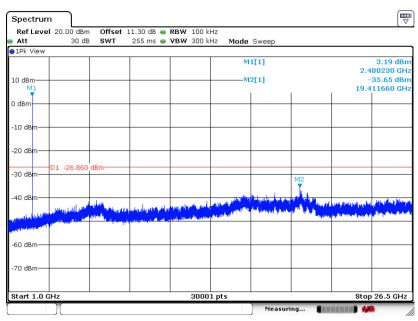
Date: 13.FEB.2025 11:45:23

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 19


Date: 13.FEB.2025 11:45:44

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 34 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01


Report No. : FR511614

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 39

Date: 13.FEB.2025 11:42:03

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 39

Date: 13.FEB.2025 11:42:21

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 35 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No. : FR511614

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

Sporton International Inc. (Kunshan)

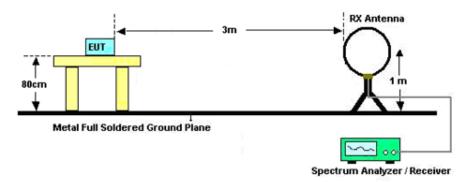
TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 36 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No. : FR511614

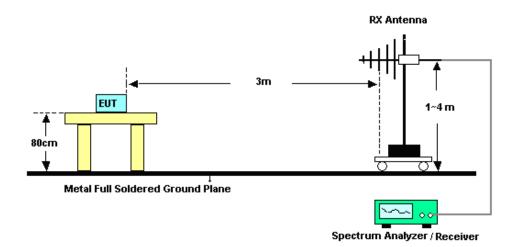
3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

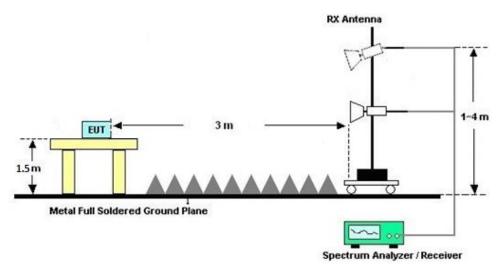
 Sporton International Inc. (Kunshan)
 Page Number
 : 37 of 44


 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01


Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.5.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 38 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No.: FR511614

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Report No. : FR511614

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

 Sporton International Inc. (Kunshan)
 Page Number
 : 39 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MHz)	Conducted limit (dBμV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Sporton International Inc. (Kunshan) Page Number : 40 of 44 Report Issued Date: Mar. 27, 2025 Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.6.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 41 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No.: FR511614

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 42 of 44

Report Issued Date : Mar. 27, 2025

Report Version : Rev. 01

Report No. : FR511614

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Oct. 14, 2024	Mar. 10, 2025~ Mar. 11, 2025	Oct. 13, 2025	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 03, 2024	Mar. 10, 2025~ Mar. 11, 2025	Jul. 02, 2025	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2E	101141	9kHz~30MHz	Dec. 28, 2024	Mar. 10, 2025~ Mar. 11, 2025	Dec. 27, 2025	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	May 09, 2024	Mar. 10, 2025~ Mar. 11, 2025	May 08, 2025	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-147 4	1GHz~18GHz	Jul. 07, 2023	Mar. 10, 2025~ Mar. 11, 2025	Jul. 06, 2025	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	Jul. 04, 2024	Mar. 10, 2025~ Mar. 11, 2025	Jul. 03, 2025	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 18, 2024	Mar. 10, 2025~ Mar. 11, 2025	Oct. 17, 2025	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 14, 2024	Mar. 10, 2025~ Mar. 11, 2025	Oct. 13, 2025	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 03, 2024	Mar. 10, 2025~ Mar. 11, 2025	Jul. 02, 2025	Radiation (03CH04-SZ)
Amplifier	Agilent Technologies	83017A	MY572801 36	500MHz~26.5G Hz	Jul. 03, 2024	Mar. 10, 2025~ Mar. 11, 2025	Jul. 02, 2025	Radiation (03CH04-SZ)
AC Power Source	APC	AFV-S-600B	F11905001 9	N/A	Oct. 14, 2024	Mar. 10, 2025~ Mar. 11, 2025	Oct. 13, 2025	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Mar. 10, 2025~ Mar. 11, 2025	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Mar. 10, 2025~ Mar. 11, 2025	NCR	Radiation (03CH04-SZ)
EMI Receiver	R&S	ESR7	102297	9kHz~7GHz;	Jul. 03, 2024	Feb. 28, 2025	Jul. 02, 2025	Conduction (CO02-SZ)
AC LISN	R&S	ENV216	101499	9kHz~30MHz	Jul. 03, 2024	Feb. 28, 2025	Jul. 02, 2025	Conduction (CO02-SZ)
AC Power Source	CHROMA	61601	616010002 470	100Vac~250Vac	Dec. 25, 2024	Feb. 28, 2025	Dec. 24, 2025	Conduction (CO02-SZ)
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 10, 2024	Feb. 13, 2025	Oct. 09, 2025	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 02, 2025	Feb. 13, 2025	Jan. 01, 2026	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 02, 2025	Feb. 13, 2025	Jan. 01, 2026	Conducted (TH01-KS)

NCR: No Calibration Required

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413 Page Number : 43 of 44
Report Issued Date : Mar. 27, 2025
Report Version : Rev. 01

Report No.: FR511614

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Conducted Spurious Emission & Bandedge	±2.22 dB				
Occupied Channel Bandwidth	±0.1%				
Conducted Power	±0.50 dB				
Conducted Power Spectral Density	±0.90 dB				
Frequency	±0.04 Hz				

<u>Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.5 dB
of 95% (U = 2Uc(y))	2.5 UB

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	5.1 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.1 dB
---	--------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence	4.8 dB
of 95% (U = 2Uc(y))	4.6 UB

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	5.1 uB

----- THE END -----

 Sporton International Inc. (Kunshan)
 Page Number
 : 44 of 44

 TEL: +86-512-57900158
 Report Issued Date
 : Mar. 27, 2025

 FCC ID: 2ABZ2-OPK2413
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Appendix A. Conducted Test Results

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413

Report Number : FR511614

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Sam Zheng	Temperature:	21~25	°C
Test Date:	2025/2/13	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.007	0.672	0.50	Pass
BLE	1Mbps	1	19	2440	1.005	0.670	0.50	Pass
BLE	1Mbps	1	39	2480	1.009	0.676	0.50	Pass

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	Power Setting	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	4.84	3.50	2dBm	30.00	0.55	4.05	36.00	Pass
BLE	1Mbps	1	19	2440	4.84	3.40	2dBm	30.00	0.55	3.95	36.00	Pass
BLE	1Mbps	1	39	2480	4.84	3.20	2dBm	30.00	0.55	3.75	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	3.29	-11.29	0.55	8.00	Pass
BLE	1Mbps	1	19	2440	3.38	-11.15	0.55	8.00	Pass
BLE	1Mbps	1	39	2480	3.14	-11.29	0.55	8.00	Pass

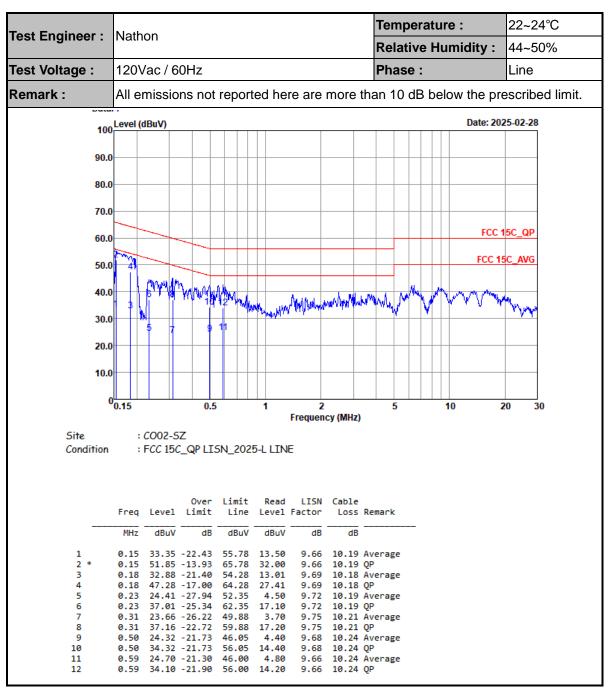
Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

Report Number : FR511614

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.002	1.168	0.50	Pass
BLE	2Mbps	1	19	2440	2.006	1.188	0.50	Pass
BLE	2Mbps	1	39	2480	2.014	1.176	0.50	Pass

TEST RESULTS DATA Average Power Table


Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	Power Setting	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	4.43	3.40	2dBm	30.00	0.55	3.95	36.00	Pass
BLE	2Mbps	1	19	2440	4.43	3.30	2dBm	30.00	0.55	3.85	36.00	Pass
BLE	2Mbps	1	39	2480	4.43	3.10	2dBm	30.00	0.55	3.65	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	3.26	-12.98	0.55	8.00	Pass
BLE	2Mbps	1	19	2440	3.37	-13.09	0.55	8.00	Pass
BLE	2Mbps	1	39	2480	3.14	-13.18	0.55	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

Appendix B. AC Conducted Emission Test Results

FCC RF Test Report

Took Engineer	Nathon	Temperature :	22~24°C
Test Engineer :	INAUTOTI	Relative Humidity:	44~50%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
Remark :	All emissions not reported here are n	nore than 10 dB below the p	rescribed limit.
100	Level (dBuV)	Date: 20	025-02-28
90.0			
80.0			
70.0			
60.0		FCC	15C_QP
	Awar The state of the state o	FCC 1	15C_AVG
50.0	Mary Soul Call and Control of the		
40.0	3 4 5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COLUMN TO THE	
30.0	1 5 7 9 11	ANN AND THE	Υ 1/2 ₄ 0/2
20.0			
10.0			
(0.15 0.5 1 2	5 10	20 30
Site	Frequency: CO02-SZ	y (MHz)	
Condition	: FCC 15C_QP LISN_2025-N NEUTRAL		
	Over Limit Read LISN	Cable	
	Over Limit Read LISN Freq Level Limit Line Level Factor	Loss Remark	
	MHz dBuV dB dBuV dBuV dB	dB	
1 2 *		10.19 Average 10.19 OP	
3		10.18 Average	
4 5		10.18 QP	
6		10.19 Average 10.19 QP	
7		10.22 Average	
8 9		10.22 QP 10.24 Average	
10	0.49 37.29 -18.94 56.23 17.00 10.05	10.24 QP	
11 12		10.24 Average 10.24 QP	

Note:

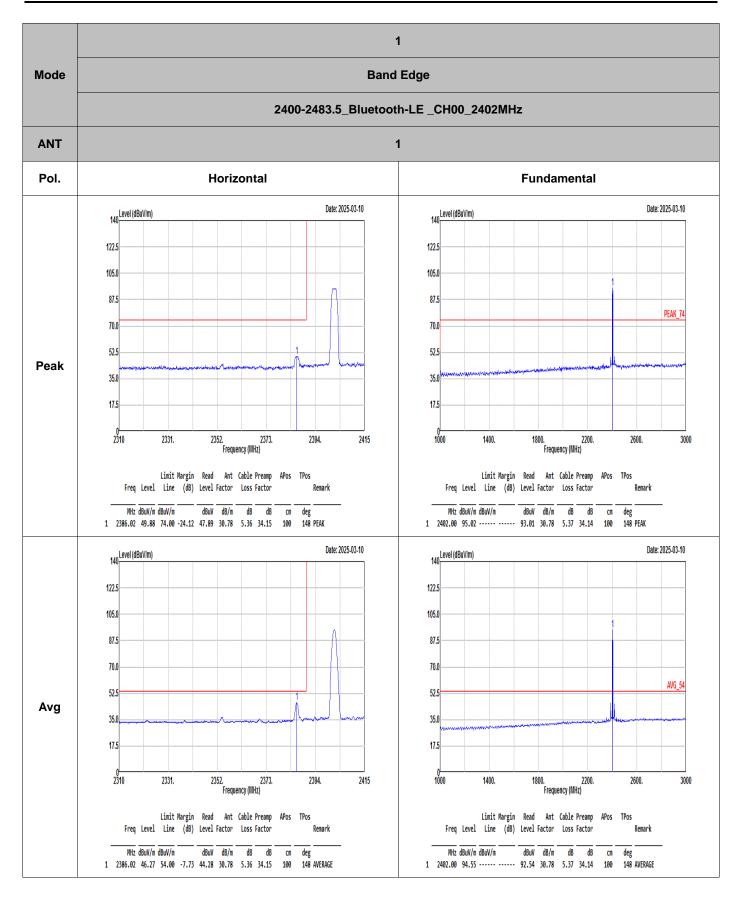
- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C Radiated Spurious Emission Test Data

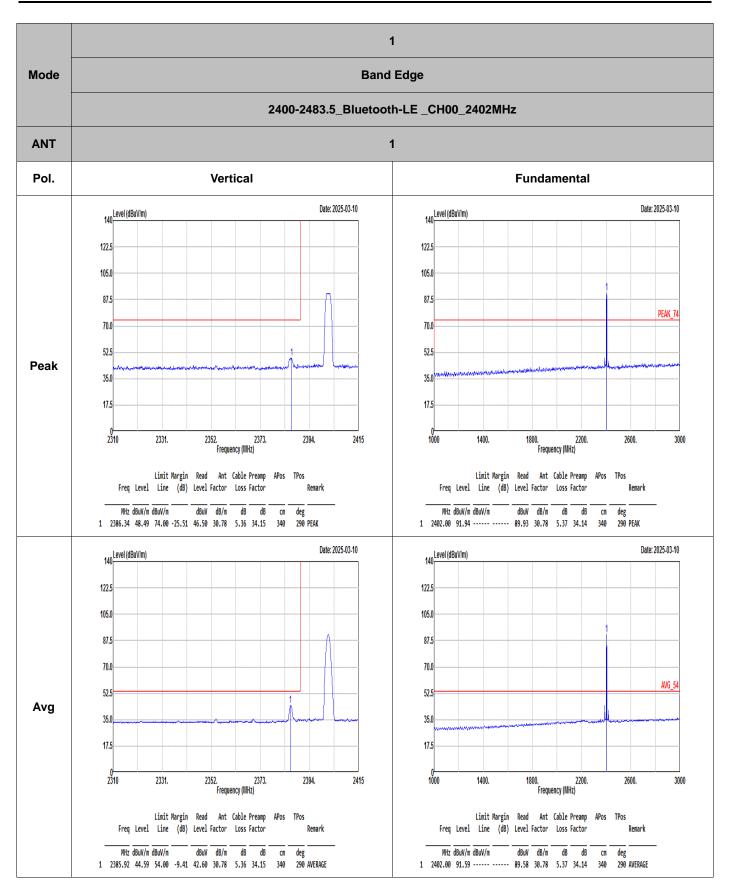
Test Engineer :	Wanha Yiga	Relative Humidity :	48~49%
	Wenbo Xiao	Temperature :	24°C~25°C

Radiated Spurious Emission Test Modes

Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	1	Bluetooth-LE	00	2402	1Mbps	-	
Mode 2	2400-2483.5	1	Bluetooth-LE	19	2440	1Mbps	-	
Mode 3	2400-2483.5	1	Bluetooth-LE	39	2480	1Mbps	-	-
Mode 4	2400-2483.5	1	Bluetooth-LE	00	2402	2Mbps	-	
Mode 5	2400-2483.5	1	Bluetooth-LE	19	2440	2Mbps	-	-
Mode 6	2400-2483.5	1	Bluetooth-LE	39	2480	2Mbps	-	-
Mode 7	2400-2483.5	1	Bluetooth-LE	00	2402	2Mbps	-	LF

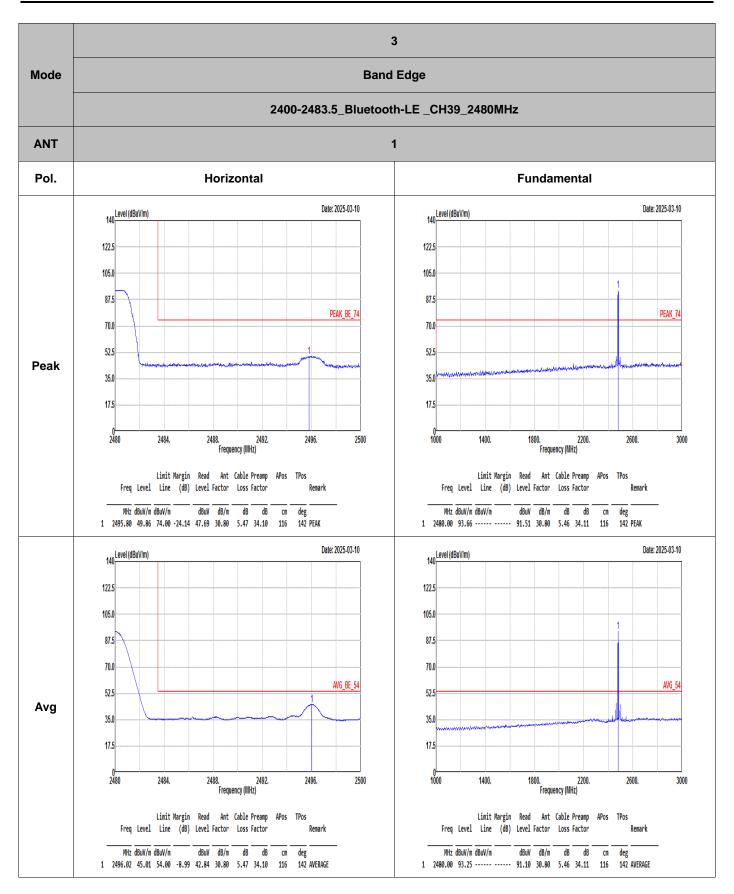

Summary of each worse mode

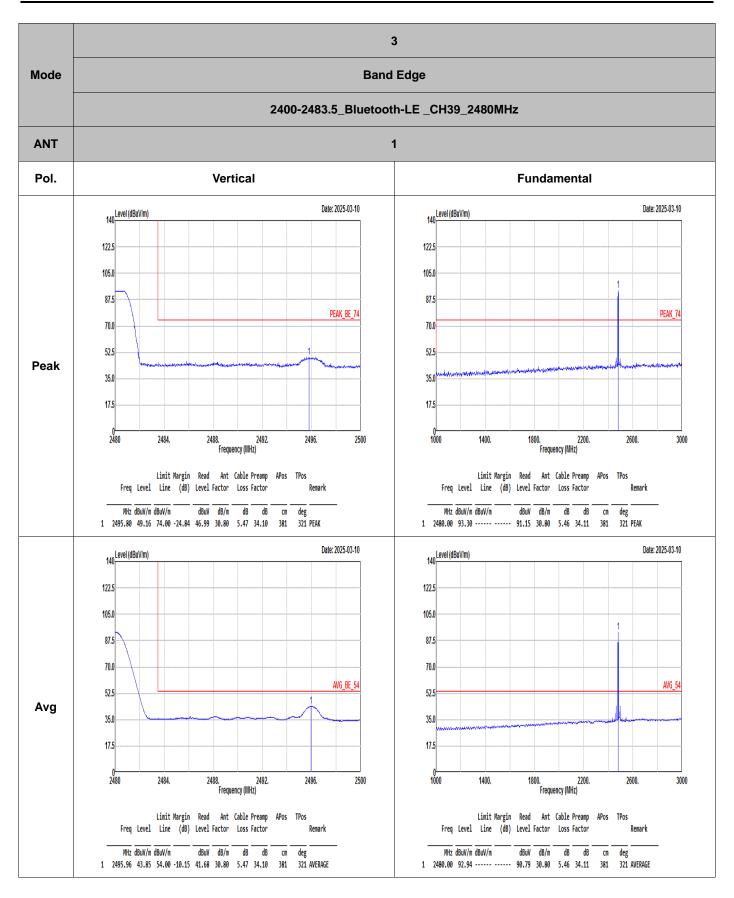
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth-LE	00	2386.02	46.27	54.00	-7.73	Н	AVERAGE	Pass	Band Edge
1	Bluetooth-LE	00	4804.00	43.91	74.00	-30.09	V	Peak	Pass	Harmonic
2	Bluetooth-LE	19	-	-	-	-	-	-	-	Band Edge
2	Bluetooth-LE	19	4880.00	43.47	74.00	-30.53	Н	Peak	Pass	Harmonic
3	Bluetooth-LE	39	2496.02	45.01	54.00	-8.99	Н	AVERAGE	Pass	Band Edge
3	Bluetooth-LE	39	4960.00	43.13	74.00	-30.87	Н	Peak	Pass	Harmonic
4	Bluetooth-LE	00	2385.92	48.07	54.00	-5.93	V	AVERAGE	Pass	Band Edge
4	Bluetooth-LE	00	4804.00	44.45	74.00	-29.55	V	Peak	Pass	Harmonic
5	Bluetooth-LE	19	-	-	-	-	-	-	-	Band Edge
5	Bluetooth-LE	19	7320.00	44.72	74.00	-29.28	Н	Peak	Pass	Harmonic
6	Bluetooth-LE	39	2495.94	46.90	54.00	-7.10	V	AVERAGE	Pass	Band Edge
6	Bluetooth-LE	39	7440.00	44.20	74.00	-29.80	Н	Peak	Pass	Harmonic
7	Bluetooth-LE-LF	00	31.94	27.55	40.00	-12.45	V	Peak	Pass	LF


TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413

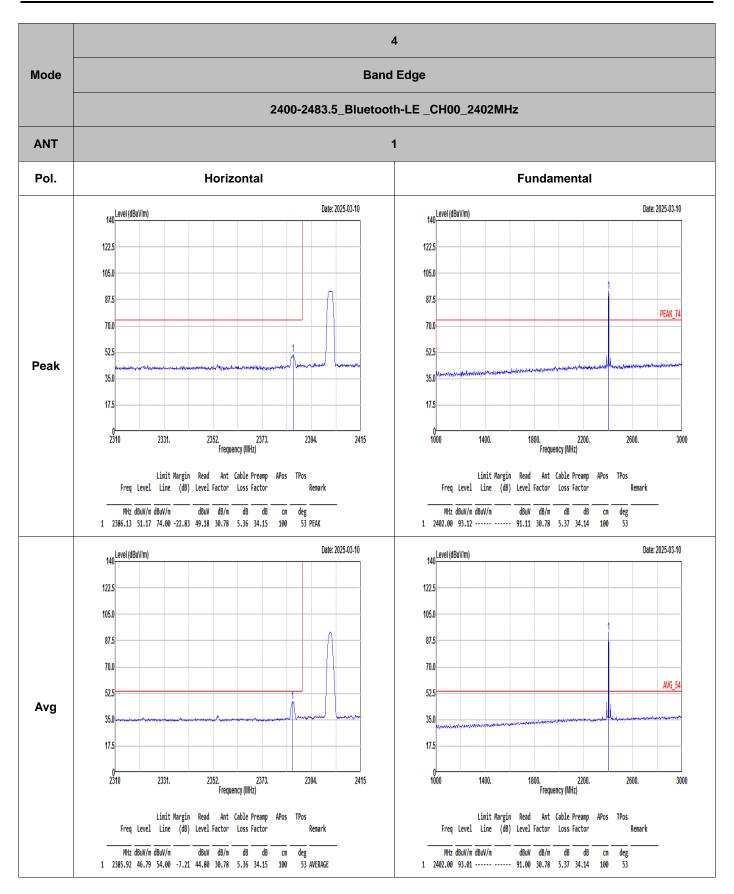
Sporton International Inc. (Kunshan)

1 Mode Harmonic 2400-2483.5_Bluetooth-LE _CH00_2402MHz **ANT** Pol. Horizontal Vertical 140_Level (dBuV/m) 140 Level (dBuV/m) Date: 2025-03-10 Date: 2025-03-10 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 Peak 52.5 52.5 35.0 Avg 35.0 17.5 17.5 0 3000 3000 9000. 12000. Frequency (MHz) 9000. 12000. Frequency (MHz) 6000. 18000 6000. 18000 Limit Read Ant Cable Preamp APos TPos Limit Read Ant Cable Preamp APos TPos Remark Freq Level Line Margin Level Factor Loss Factor Freq Level Line Margin Level Factor Loss Factor cm deg
 MHz
 dBuV/m
 dBuV/m
 dB
 dBuV
 dB/m
 dB
 dB
 cm
 deg

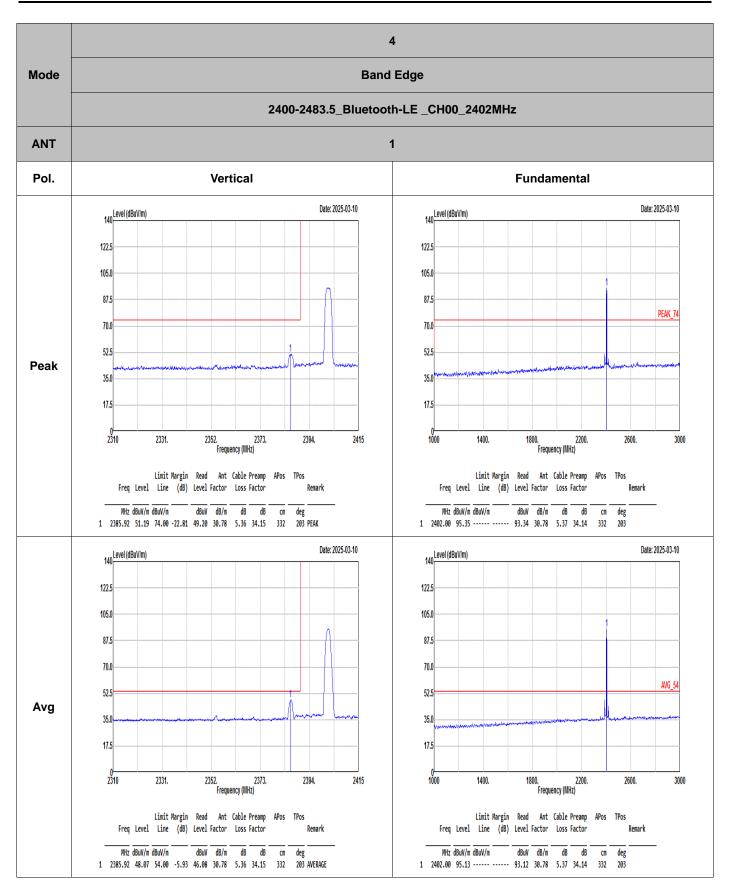

 1
 4804.00
 43.91
 74.00
 -30.09
 63.42
 36.39
 8.94
 64.84
 --- Peak
 MHz dBuV/m dBuV/m dB dBuV dB/m dB dB 1 4804.00 42.49 74.00 -31.51 62.00 36.39 8.94 64.84 --- --- Peak

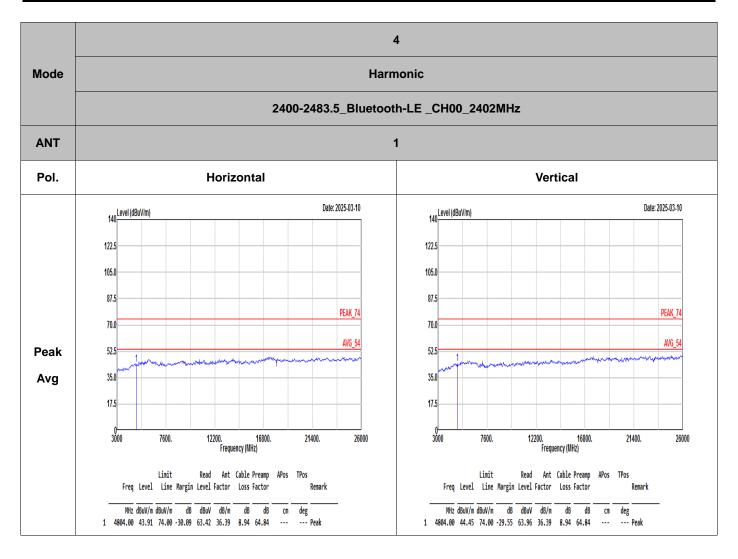

2 Mode Harmonic 2400-2483.5_Bluetooth-LE _CH19_2440MHz **ANT** Pol. Horizontal Vertical 140 Level (dBuV/m) 140 Level (dBuV/m) Date: 2025-03-10 Date: 2025-03-10 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 Peak 35.0 35.0 Avg 17.5 17.5 0 3000 3000 9000. 12000. Frequency (MHz) 9000. 12000. Frequency (MHz) 6000. 15000. 18000 6000. 15000. 18000 Limit Read Ant Cable Preamp APos TPos Limit Read Ant Cable Preamp APos TPos Freq Level Line Margin Level Factor Loss Factor Freq Level Line Margin Level Factor Loss Factor deg --- Peak deg --- Peak MHz dBuV/m dBuV/m dB dBuV dB/m dB cm MHz dBuV/m dBuV/m dB dBuV dB/m dB cm 1 4880.00 43.47 74.00 -30.53 63.07 36.51 8.71 64.82 ---1 4880.00 42.18 74.00 -31.82 61.78 36.51 8.71 64.82 2 7320.00 42.83 74.00 -31.17 60.77 36.88 10.18 65.00 2 7320.00 43.07 74.00 -30.93 61.01 36.88 10.18 65.00

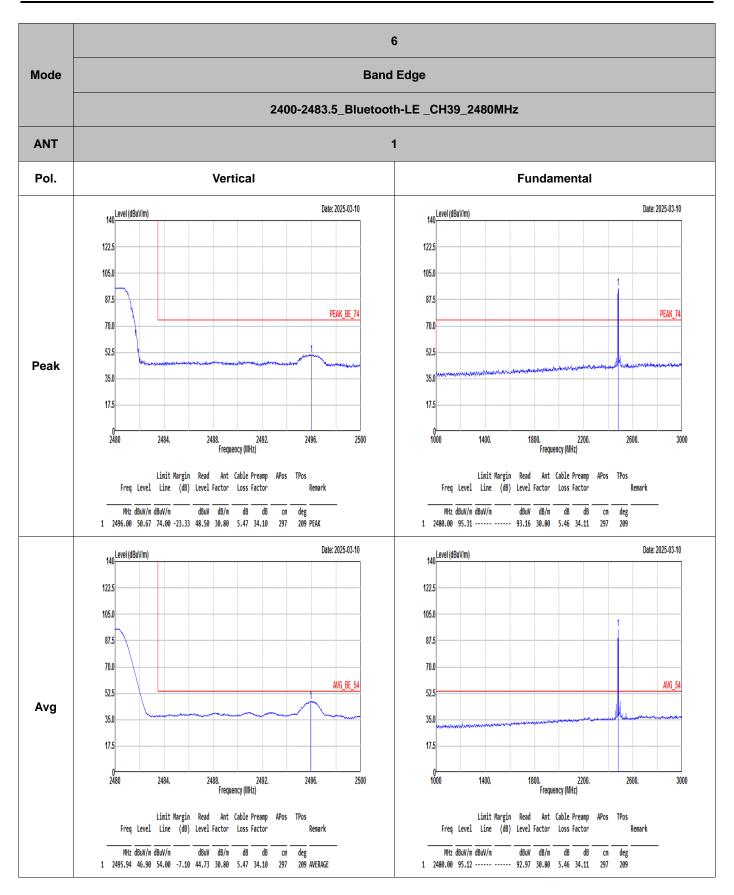
TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413



SPORTON LAB. FCC RF Test Report

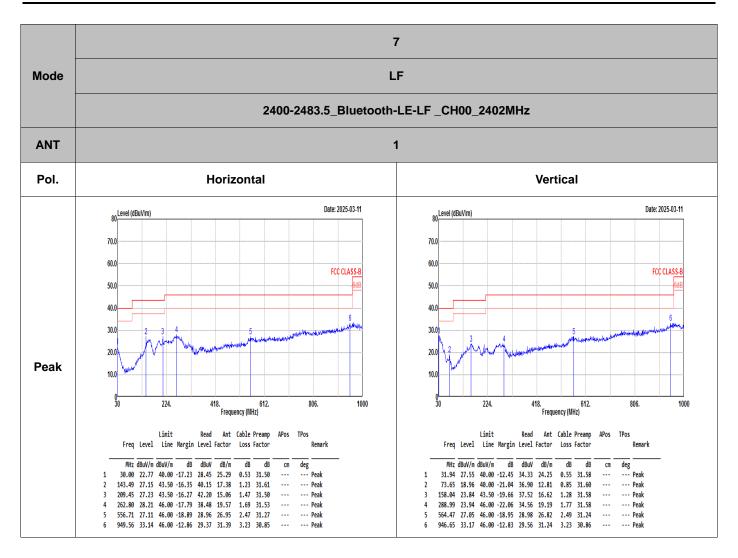



3 Mode Harmonic 2400-2483.5_Bluetooth-LE _CH39_2480MHz **ANT** Pol. Horizontal Vertical 140 Level (dBuV/m) 140 Level (dBuV/m) Date: 2025-03-10 Date: 2025-03-10 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 Peak 35.0 35.0 Avg 17.5 17.5 0 3000 9000. 12000. Frequency (MHz) 3000 9000. 12000. Frequency (MHz) 6000. 15000. 18000 6000. 15000. 18000 Limit Read Ant Cable Preamp APos TPos Limit Read Ant Cable Preamp APos TPos Freq Level Line Margin Level Factor Loss Factor Freq Level Line Margin Level Factor Loss Factor deg --- Peak deg --- Peak MHz dBuV/m dBuV/m dB dBuV dB/m dB cm MHz dBuV/m dBuV/m dB dBuV dB/m dB cm 1 4960.00 43.13 74.00 -30.87 62.84 36.64 8.46 64.81 ---1 4960.00 42.08 74.00 -31.92 61.79 36.64 8.46 64.81 2 7440.00 42.09 74.00 -31.91 60.13 36.76 10.17 64.97 ---2 7440.00 42.55 74.00 -31.45 60.59 36.76 10.17 64.97 ---


5 Mode Harmonic 2400-2483.5_Bluetooth-LE _CH19_2440MHz **ANT** Pol. Horizontal Vertical 140 Level (dBuV/m) 140 Level (dBuV/m) Date: 2025-03-10 Date: 2025-03-10 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 Peak 35.0 35.0 Avg 17.5 17.5 0 3000 3000 9000. 12000. Frequency (MHz) 6000. 9000. 12000. Frequency (MHz) 15000. 18000 6000. 15000. 18000 Limit Read Ant Cable Preamp APos TPos Limit Read Ant Cable Preamp APos TPos Freq Level Line Margin Level Factor Loss Factor Freq Level Line Margin Level Factor Loss Factor deg --- Peak deg --- Peak MHz dBuV/m dBuV/m dB dBuV dB/m dB cm MHz dBuV/m dBuV/m dB dBuV dB/m dB cm 1 4880.00 43.54 74.00 -30.46 63.14 36.51 8.71 64.82 ---1 4880.00 43.28 74.00 -30.72 62.88 36.51 8.71 64.82 2 7320.00 44.72 74.00 -29.28 62.66 36.88 10.18 65.00 2 7320.00 42.71 74.00 -31.29 60.65 36.88 10.18 65.00

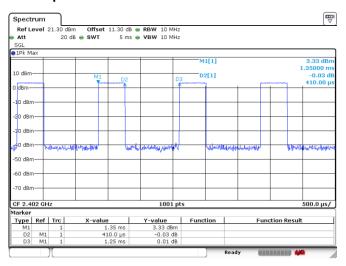
TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413

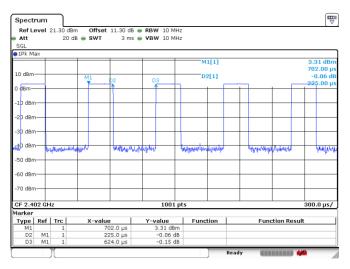
6 Mode **Band Edge** 2400-2483.5_Bluetooth-LE _CH39_2480MHz **ANT** Pol. Horizontal **Fundamental** Date: 2025-03-10 140 Level (dBuV/m) Date: 2025-03-10 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_BE_74 70.0 70.0 52.5 52.5 Peak 35.0 35.0 17.5 17.5 0 2480 1000 2488. 2492. Frequency (MHz) 1800. 2200. Frequency (MHz) 2484. 2500 3000 Limit Margin Read Ant Cable Preamp APos TPos Limit Margin Read Ant Cable Preamp APos TPos Freq Level Line (dB) Level Factor Loss Factor Freq Level Line (dB) Level Factor Loss Factor MHz dBuV/m dBuV/m dBuV dB/m dB dB cm deg MHz dBuV/m dBuV/m dBuV dB/m dB dB cm deg 1 2495.62 49.46 74.00 -24.54 47.29 30.80 5.47 34.10 166 155 PEAK 1 2480.00 92.21 ----- 90.06 30.80 5.46 34.11 166 155 Date: 2025-03-10 Date: 2025-03-10 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 AVG BE 54 AVG 54 52.5 52.5 Avg 35.0 35.0 17.5 17.5 1000 Frequency (MHz) Frequency (MHz) Limit Margin Read Ant Cable Preamp APos TPos Limit Margin Read Ant Cable Preamp APos TPos Freq Level Line (dB) Level Factor Loss Factor Remark Freq Level Line (dB) Level Factor Loss Factor MHz dBuV/m dBuV/m dBuV dB/m dB dB MHz dBuV/m dBuV/m dBuV dB/m dB dB cm cm 1 2480.00 92.04 ----- 89.89 30.80 5.46 34.11 166 155 1 2495.92 45.16 54.00 -8.84 42.99 30.80 5.47 34.10 166 155 AVERAGE



6 Mode Harmonic 2400-2483.5_Bluetooth-LE _CH39_2480MHz **ANT** Pol. Horizontal Vertical 140 Level (dBuV/m) 140 Level (dBuV/m) Date: 2025-03-10 Date: 2025-03-10 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 Peak 35.0 Avg 17.5 17.5 0 3000 3000 9000. 12000. Frequency (MHz) 6000. 9000. 12000. Frequency (MHz) 15000. 18000 6000. 15000. 18000 Limit Read Ant Cable Preamp APos TPos Limit Read Ant Cable Preamp APos TPos Freq Level Line Margin Level Factor Loss Factor Freq Level Line Margin Level Factor Loss Factor deg --- Peak deg --- Peak MHz dBuV/m dBuV/m dB dBuV dB/m dB cm MHz dBuV/m dBuV/m dB dBuV dB/m dB cm 1 4960.00 43.51 74.00 -30.49 63.22 36.64 8.46 64.81 ---1 4960.00 43.72 74.00 -30.28 63.43 36.64 8.46 64.81 2 7440.00 44.20 74.00 -29.80 62.24 36.76 10.17 64.97 ---2 7440.00 42.20 74.00 -31.80 60.24 36.76 10.17 64.97

TEL: +86-512-57900158 FCC ID: 2ABZ2-OPK2413




Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting	
Bluetooth LE 1Mbps	32.8	0.41	2.439	3KHz	
Bluetooth LE 2Mbps	36.06	0.225	4.444	10KHZ	

Bluetooth LE 1Mbps

Bluetooth LE 2Mbps

