

Power reduction mechanism verification

According to the May 2017 TCBC Workshop, Demonstration of proper functioning of the detection and triggering mechanisms is required to support the corresponding RF exposure conditions. The verification is through a base station simulator is used to establish a conducted RF connection and monitor output power under different operating conditions related to the power reduction mechanisms. Detail of power reduction mechanisms referring to Operational Description

1. Power Verification Procedure

The power verification was performed according to the following procedure:

- A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

General Note:

1. This device uses different Exposure Condition Index (DSI) to configure different time averaged power levels based on certain exposure scenarios as the following table:

Exposure Condition	Measure Distance		Ant No.	EUT Flip State	Trigger conditions
Head	touch&tilt 15deg	DSI 2	All ant	Flip Open	Earpiece On
Body worn	5 mm		All ant	Flip Open	Sensor On
Extremity	Extremity 0mm		All ant	Flip Open	Sensor On
Hotspot	5 mm		All ant	Flip Open	Hotspot on
Body worn	5 mm	DSI 10	All ant	Flip Close	Sensor On
Hotspot	Hotspot 5 mm		All ant	Flip Close	Hotspot on
Body Worn / Extremity / Sensor Off	Sensor Trigger Distance -1mm	DSI 4	All ant	Flip Open/Flip Close	Sensor Off

- 2. Select the bands with the largest power reduction for power verification:
 - a. Establish voice call and audio routed through the earpiece to monitor output power under head transmitting power states.
 - > LTE Band 41 is set at 'highest BW, 1RB, RB Offset = 0, QPSK', WCDMA IV is set AMR 12.2Kbps.
 - Establish data connection monitor hotspot power state.
 <Flip Open >

LTE Band 41 is set at 'highest BW, 1RB, RB Offset = 0, QPSK', WCDMA IV is set RMC 12.2Kbps.
<Flip Close >

> LTE Band 41 is set at 'highest BW, 1RB, RB Offset = 0, QPSK', WCDMA II is set RMC12.2Kbps.

Establish data connection monitor body worn power state.

<Flip Open >

C.

d.

- LTE Band 41 is set at 'highest BW, 1RB, RB Offset = 0, QPSK', WCDMA IV is set RMC 12.2Kbps.
- Body Detect mechanism was performed for the in-hand and on a stationary object (placed on a table) <Flip Close >
- LTE Band 41 is set at 'highest BW, 1RB, RB Offset = 0, QPSK', WCDMA II is set RMC 12.2Kbps.
- Body Detect mechanism was performed for the in-hand and on a stationary object (placed on a table) Establish data connection monitor extremity power state.
- LTE Band 41 is set at 'highest BW, 1RB, RB Offset = 0, QPSK', WCDMA IV is set RMC 12.2Kbps.
- > Body Detect mechanism was performed for the in-hand and on a stationary object (placed on a table).
- 3. In this power validation purpose is to demonstrate of proper functioning of the detection and triggering mechanisms to support the corresponding RF exposure conditions.
- 4. Verification performed for one technology/Band to demonstrate that the power reduction applies for same technology/band and call origination.

2. Verification output Power Results Head exposure conditions

Head exposure conditions					
Ear acoustic output St	O	F	ON		
Power state	WWA	I DSI4	WWAN DSI2		
Wireless technology	Antenna	Measured (dBm)	Max. Tune-up (dBm)	Measured (dBm)	Max. Tune-up (dBm)
WCDMA IV	Ant 2	23.11	24	18.23	18.9
LTE Band 41 HPUE	Ant 3	25.68	27	19.14	20

Hotspot exposure condition

<Flip Open >

Flip Open Hotspot output	t Status:	OI	FF	ON		
Power state	WWA	N DSI4	WWAN DSI7			
Wireless technology	Antenna	Measured (dBm)	Max. Tune-up (dBm)	Measured (dBm)	Max. Tune-up (dBm)	
WCDMA IV	Ant 2	23.11	24	17.45	18.1	
LTE Band 41 HPUE	25.68	27	18.67	19.4		

<Flip Close >

Flip Close Hotspot outpu	t Status:	O	-F	ON		
Power state	WWA	N DSI4	WWAN DSI11			
Wireless technology	Antenna	Max. Tune-up Measured (dBm) (dBm)		Measured (dBm)	Max. Tune-up (dBm)	
WCDMA II	II Ant 2		24	17.34	18.5	
LTE Band 41 HPUE Ant 3		25.68	27	20.35	21.1	

Body worn exposure condition

<flip open=""></flip>						
Flip Open Sensor output	t Status:	OI	₹ F	ON		
Power state		WWAN DSI4		WWAN DSI3		
Wireless technology	Antenna	Measured (dBm)	Max. Tune-up (dBm)	Measured (dBm)	Max. Tune-up (dBm)	
WCDMA IV	Ant 2	23.11	24	19.35	20.2	
LTE Band 41 HPUE	Ant 3	25.68	27	23.11	23.9	

<Flip Close >

Flip Close Sensor output	Status:	OF	F	ON		
Power state	WWAN	I DSI4	WWAN DSI10			
Wireless technology	Wireless technology Antenna		Max. Tune-up (dBm)	Measured (dBm)	Max. Tune-up (dBm)	
WCDMA II	WCDMA II Ant 2		22.85 24		22.1	
LTE Band 41 HPUE	Ant 3	25.68	27	23.56	24.4	

Extremity exposure condition

<Flip Open >

Flip Open Sensor output	OF	F	ON		
Power state		WWAN	I DSI4	WWAN DSI6	
Wireless technology	Wireless technology Antenna		Max. Tune-up (dBm)	Measured (dBm)	Max. Tune-up (dBm)
WCDMA IV	WCDMA IV Ant 2		24	22.09	22.8
LTE Band 41 HPUE Ant 3		25.68	27	23.04	23.9

3. Angle Verification Results

The angle verification procedure was performed according to the following procedure:

- 1. For licensed modes, the device state index on the device UI was monitored to determine the triggering state.
- 2. The device was opened and closed to determine the angle at which the Hall sensor mechanism triggers, per the FCC TCB Workshop Slides from November 2019. The triggering conditions of the angles were sufficient such that all possible user scenarios with the device in open/closed condition are in the different power state, the angle Verification data as following tables.

Appendix G

	Flip from closed state to open state													
Degree steps	0 Degrees	1 Degrees	2 Degrees	3 Degrees	4 Degrees	5 Degrees	6 Degrees	7 Degrees	8 Degrees	9 Degrees	10 Degrees	20 Degrees	30 Degrees	40 Degrees
State	1	1	1	0	0	0	0	0	0	0	0	0	0	0
Degree steps	50 Degrees	60 Degrees	70 Degrees	80 Degrees	90 Degrees	100 Degrees	110 Degrees	120 Degrees	130 Degrees	140 Degrees	150 Degrees	160 Degrees	170 Degrees	180 Degrees
State	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					FI	lip from op	en state to	closed sta	ite					
Degree steps	180 Degrees	170 Degrees	160 Degrees	150 Degrees	140 Degrees	130 Degrees	120 Degrees	110 Degrees	100 Degrees	90 Degrees	80 Degrees	70 Degrees	60 Degrees	50 Degrees
State	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Degree steps	40 Degrees	30 Degrees	20 Degrees	10 Degrees	9 Degrees	8 Degrees	7 Degrees	6 Degrees	5 Degrees	4 Degrees	3 Degrees	2 Degrees	1 Degrees	0 Degrees
State	0	0	0	0	0	0	0	0	0	0	0	0	1	1