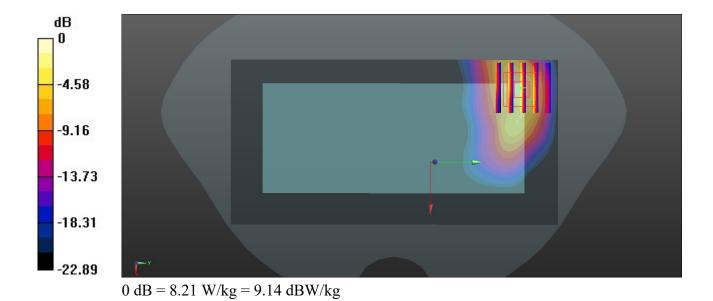
83_WCDMA II_RMC 12.2Kbps_Front_0mm_Ch9538

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1908 MHz; $\sigma = 1.457$ S/m; $\epsilon_r = 39.63$; $\rho = 1000$ kg/m³

Date: 2022/6/8


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3279; ConvF(5.28, 5.28, 5.28); Calibrated: 2021/8/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

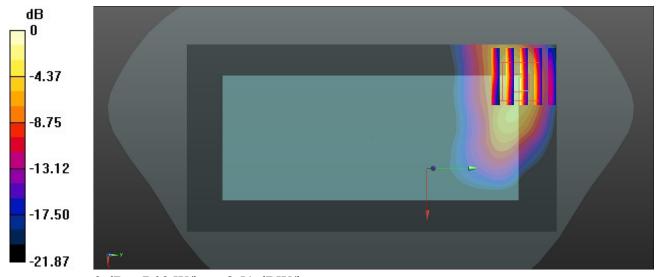
Area Scan (71x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.78 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.8670 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 12.8 W/kg SAR(1 g) = 5.36 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 8.21 W/kg

84 LTE Band 25 20M QPSK 1RB 0Offset Front 0mm Ch26590

Communication System: UID 0, LTE-FDD (0); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1905 MHz; $\sigma = 1.455$ S/m; $\epsilon_r = 39.632$; $\rho = 1000$ kg/m³

Date: 2022/6/8


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3279; ConvF(5.28, 5.28, 5.28); Calibrated: 2021/8/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (71x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.69 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.658 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 10.9 W/kg SAR(1 g) = 4.93 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 7.09 W/kg

0 dB = 7.09 W/kg = 8.51 dBW/kg

85 FR1 n2 20M QPSK 50RB 28Offset Front 0mm Ch380000

Communication System: UID 0, 5G NR (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.451$ S/m; $\varepsilon_r = 39.635$; $\rho = 1000$

Date: 2022/6/8

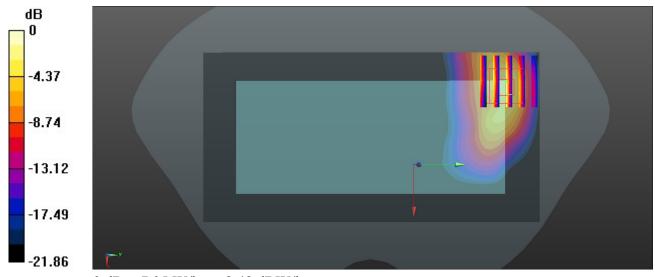
 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3279; ConvF(5.28, 5.28, 5.28); Calibrated: 2021/8/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (71x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.67 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.656 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 10.8 W/kg

SAR(1 g) = 4.91 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 7.05 W/kg

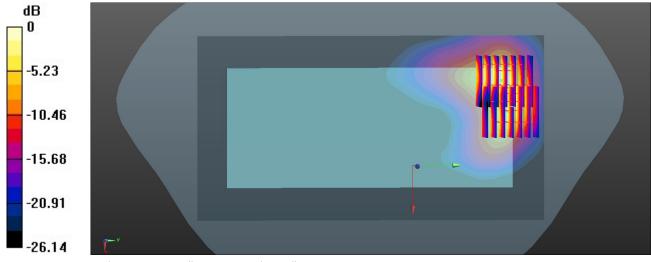
0 dB = 7.05 W/kg = 8.48 dBW/kg

86 LTE Band 7 20M QPSK 1RB 0Offset Front 0mm Ch21100

Communication System: UID 0, LTE-FDD (0); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2535 MHz; $\sigma = 1.958$ S/m; $\epsilon_r = 40.709$; $\rho = 1000$ kg/m³

Date: 2022/6/12

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: ES3DV3 SN3279; ConvF(4.47, 4.47, 4.47); Calibrated: 2021/8/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (91x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 7.11 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.138 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 13.3 W/kg SAR(1 g) = 4.65 W/kg; SAR(10 g) = 1.91 W/kg Maximum value of SAR (measured) = 6.94 W/kg

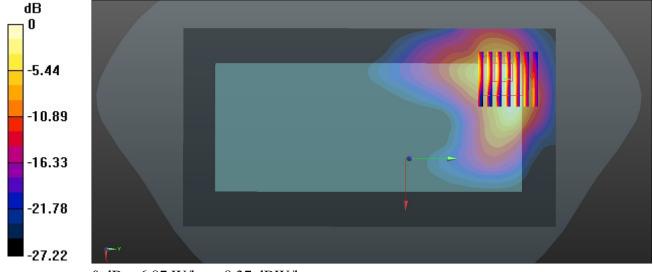
Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.138 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 13.1 W/kg SAR(1 g) = 4.31 W/kg; SAR(10 g) = 1.66 W/kg Maximum value of SAR (measured) = 6.99 W/kg

0 dB = 6.99 W/kg = 8.45 dBW/kg

87 LTE Band 41 HPUE 20M QPSK 50RB 0Offset Front 0mm Ch40620

Communication System: UID 0, LTE-TDD (0); Frequency: 2593 MHz; Duty Cycle: 1:2.33 Medium: HSL_2600 Medium parameters used: f = 2593 MHz; $\sigma = 2.004$ S/m; $\epsilon_r = 40.604$; $\rho = 1000$ kg/m³

Date: 2022/6/12


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3279; ConvF(4.47, 4.47, 4.47); Calibrated: 2021/8/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (91x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mmMaximum value of SAR (interpolated) = 6.68 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.290 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 12.4 W/kg SAR(1 g) = 4.72 W/kg; SAR(10 g) = 1.89 W/kg Maximum value of SAR (measured) = 6.87 W/kg

0 dB = 6.87 W/kg = 8.37 dBW/kg

88_FR1 n7_40M_QPSK_1RB_1Offset_Front_0mm_Ch507000

Communication System: UID 0, 5G NR (0); Frequency: 2535 MHz; Duty Cycle: 1:1

Medium: HSL_2600 Medium parameters used: f = 2535 MHz; $\sigma = 1.958$ S/m; $\varepsilon_r = 40.709$; $\rho = 1000$

Date: 2022/6/12

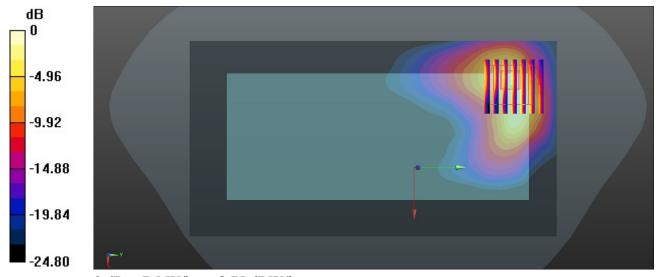
 kg/m^3

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3279; ConvF(4.47, 4.47, 4.47); Calibrated: 2021/8/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (91x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mmMaximum value of SAR (interpolated) = 8.38 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.86 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 13.2 W/kg

SAR(1 g) = 5.34 W/kg; SAR(10 g) = 2.17 W/kg

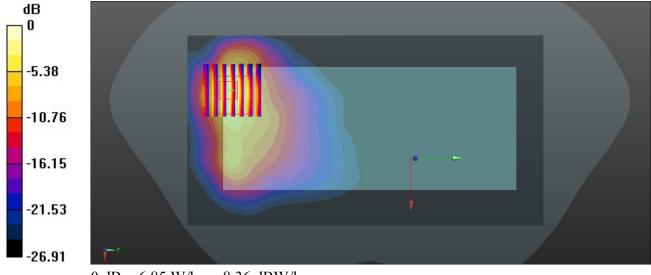
Maximum value of SAR (measured) = 7.5 W/kg

0 dB = 7.5 W/kg = 8.75 dBW/kg

89_FR1 n41 HPUE_100M_QPSK_1RB_1Offset_Back_0mm_Ch518598

Communication System: UID 0, 5G NR (0); Frequency: 2592.99 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2593 MHz; $\sigma = 2.004$ S/m; $\epsilon_r = 40.604$; $\rho = 1000$ kg/m³

Date: 2022/6/12


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3279; ConvF(4.47, 4.47, 4.47); Calibrated: 2021/8/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (91x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 6.91 W/kg

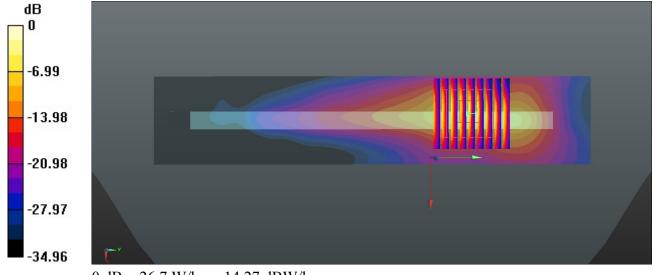
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.224 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 13.3 W/kg SAR(1 g) = 5.29 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 6.85 W/kg

0 dB = 6.85 W/kg = 8.36 dBW/kg

90 LTE Band 42 20M QPSK 1RB 0Offset Left Side 0mm Ch42590

Communication System: UID 0, LTE-TDD (0); Frequency: 3500 MHz; Duty Cycle: 1:1.59 Medium: HSL_3500 Medium parameters used: f = 3500 MHz; $\sigma = 2.879$ S/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³

Date: 2022/6/13


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3887; ConvF(6.65, 6.65, 6.65); Calibrated: 2021/10/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (41x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 10.7 W/kg

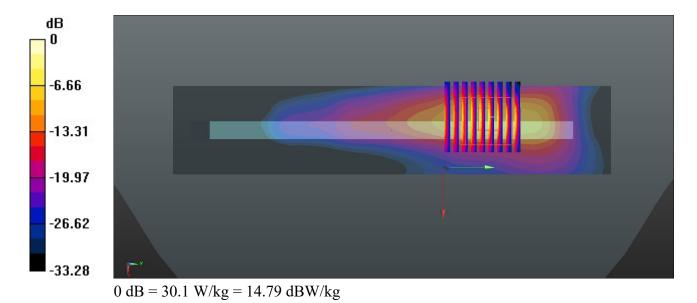
Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 21.48 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 73.4 W/kg **SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.16 W/kg**Maximum value of SAR (measured) = 26.7 W/kg

0 dB = 26.7 W/kg = 14.27 dBW/kg

91_LTE Band 48_20M_QPSK_1RB_0Offset_Left Side_0mm_Ch55830

Communication System: UID 0, LTE-TDD (0); Frequency: 3609 MHz; Duty Cycle: 1:1.59 Medium: HSL_3700 Medium parameters used: f = 3609 MHz; $\sigma = 2.99$ S/m; $\epsilon_r = 38.244$; $\rho = 1000$ kg/m³

Date: 2022/6/14


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3887; ConvF(6.4, 6.4, 6.4); Calibrated: 2021/10/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

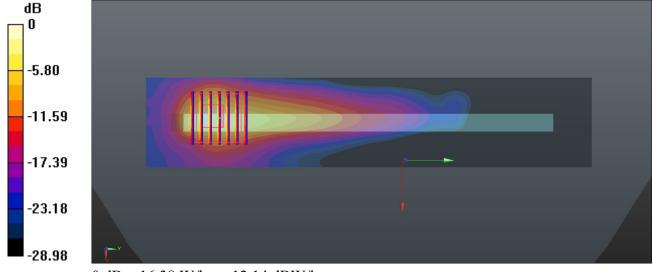
Area Scan (41x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 10.1 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 20.63 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 73.9 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 30.1 W/kg

92_FR1 n77 Part27Q HPUE_100M_QPSK_135RB_69Offset_Left Side_0mm_Ch633334

Communication System: UID 0, 5G NR (0); Frequency: 3500.01 MHz; Duty Cycle: 1:1 Medium: HSL_3500 Medium parameters used: f = 3500.01 MHz; $\sigma = 2.879$ S/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³

Date: 2022/6/13


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3887; ConvF(6.65, 6.65, 6.65); Calibrated: 2021/10/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (41x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 15.29 W/kg

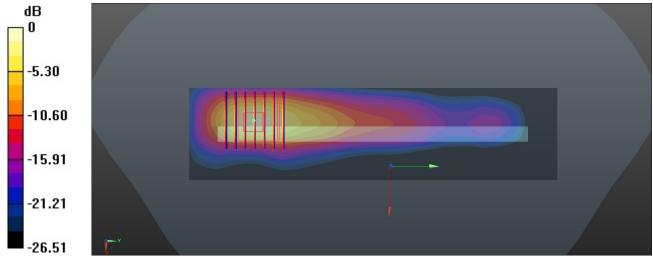
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 29.95 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.84 W/kg SAR(1 g) = 7.11 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 16.38 W/kg

0 dB = 16.38 W/kg = 12.14 dBW/kg

93 WLAN2.4GHz 802.11b 1Mbps Right Side 0mm Ch6

Communication System: UID 0, WLAN2.4GHz (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.758$ S/m; $\epsilon_r = 39.347$; $\rho = 1000$ kg/m³

Date: 2022/6/10


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3279; ConvF(4.75, 4.75, 4.75); Calibrated: 2021/8/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (41x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mmMaximum value of SAR (interpolated) = 5.45 W/kg

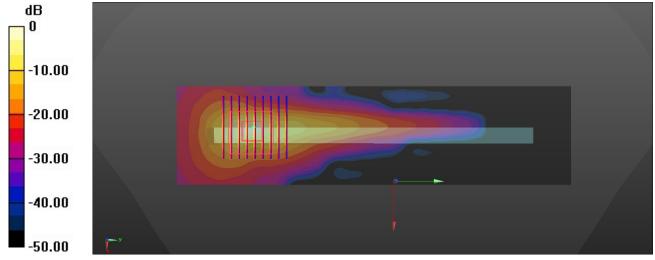
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.4180 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 12.9 W/kg SAR(1 g) = 4.38 W/kg; SAR(10 g) = 1.49 W/kg Maximum value of SAR (measured) = 6.70 W/kg

0 dB = 6.70 W/kg = 8.26 dBW/kg

94_WLAN5GHz_802.11ax-HE40 MCS0_Right Side_0mm_Ch46

Communication System: UID 0, WLAN5GHz (0); Frequency: 5230 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5230 MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 35.495$; $\rho = 1000$ kg/m³

Date: 2022/6/16


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3887; ConvF(4.8, 4.8, 4.8); Calibrated: 2021/10/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.5 W/kg

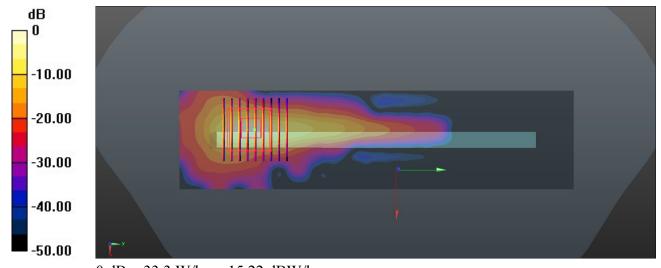
Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 82.6 W/kg SAR(1 g) = 9.41 W/kg; SAR(10 g) = 2.02 W/kg Maximum value of SAR (measured) = 26.9 W/kg

0 dB = 26.9 W/kg = 14.30 dBW/kg

95_WLAN5GHz_802.11ax-HE40 MCS0_Right Side_0mm_Ch54

Communication System: UID 0, WLAN5GHz (0); Frequency: 5270 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5270 MHz; $\sigma = 4.593$ S/m; $\epsilon_r = 35.442$; $\rho = 1000$ kg/m³

Date: 2022/6/16


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3887; ConvF(4.8, 4.8, 4.8); Calibrated: 2021/10/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 28.82 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.443 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 20.3 W/kg SAR(1 g) = 10.07 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 33.3 W/kg

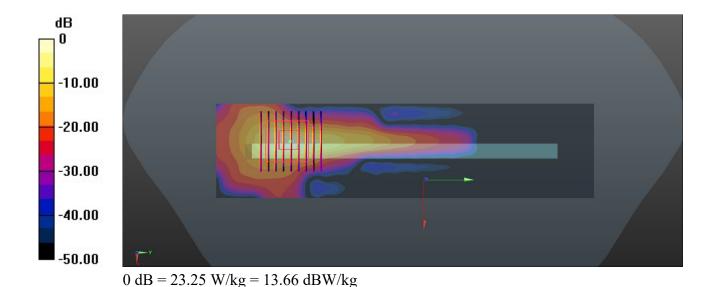
0 dB = 33.3 W/kg = 15.22 dBW/kg

96_WLAN5GHz_802.11ax-HE80 MCS0 Left Side 0mm Ch122

Communication System: UID 0, WLAN5GHz (0); Frequency: 5610 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5610 MHz; $\sigma = 4.962$ S/m; $\varepsilon_r = 34.819$; $\rho = 1000$

Date: 2022/6/17

 kg/m^3


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3887; ConvF(4.26, 4.26, 4.26); Calibrated: 2021/10/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

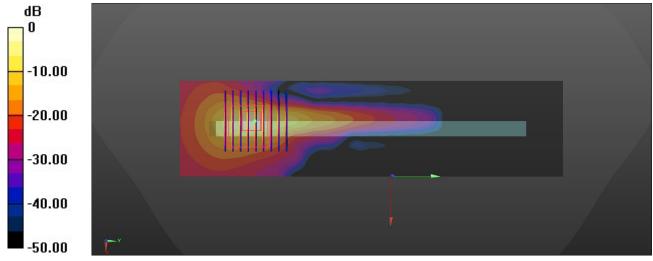
Area Scan (51x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 22.82 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.126 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 22.9 W/kg SAR(1 g) = 7.06 W/kg; SAR(10 g) = 1.48 W/kg Maximum value of SAR (measured) = 23.25 W/kg

97_WLAN5GHz_802.11ax-HE80 MCS0_Right Side_0mm_Ch155

Communication System: UID 0, WLAN5GHz (0); Frequency: 5775 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5775 MHz; $\sigma = 5.164$ S/m; $\epsilon_r = 34.561$; $\rho = 1000$ kg/m³

Date: 2022/6/18


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3887; ConvF(4.39, 4.39, 4.39); Calibrated: 2021/10/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2021/12/1
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1842
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 27.8 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.4280 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 72.0 W/kg SAR(1 g) = 6.84 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 31.9 W/kg

0 dB = 31.9 W/kg = 15.04 dBW/kg

Appendix C. DASY Calibration Certificate

Report No.: FA252601

The DASY calibration certificates are shown as follows.

 Sporton International Inc. (Kunshan)
 Page: C1 of C1

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Issued Date: Jul. 18, 2022

 FCC ID: IHDT56AF6
 Form version.: 200414

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: D750V3-1087 Feb22

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1087

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

February 24, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	Apollety
Construct the			XIII
Approved by:	Niels Kuster	Quality Manager	1/100

Issued: March 2, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x.v.z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1087_Feb22

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.58 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.65 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1087_Feb22

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω - 2.5 jΩ	
Return Loss	- 29.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D750V3-1087_Feb22 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 24.02.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1087

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 01.11.2021

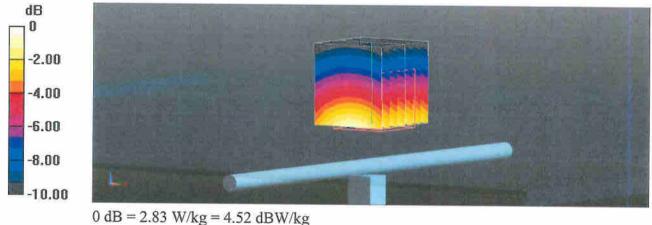
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

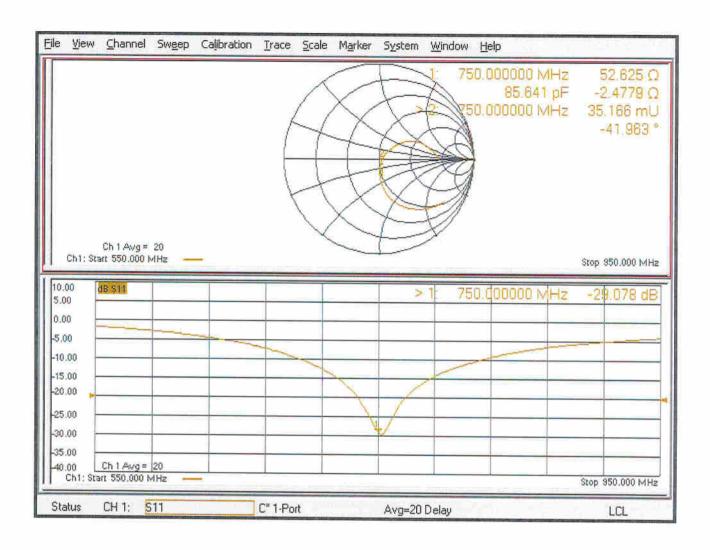
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.64 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 3.22 W/kg

SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg


Smallest distance from peaks to all points 3 dB below = 17 mm

Ratio of SAR at M2 to SAR at M1 = 66.5%

Maximum value of SAR (measured) = 2.83 W/kg

Impedance Measurement Plot for Head TSL

In Collaboration with

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Certificate No:

Z21-60551

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d162

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 17, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	
Reference Probe EX3DV4	SN 7307	26-May-21(SPEAG,No.EX3-7307_May21)	Sep-22 May-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: December 24, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60551

Page 1 of 6

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010

d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.

Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.

Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required.

Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.

SAR measured: SAR measured at the stated antenna input power.

- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60551

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	3.50.031
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.64 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	7, 9 2 2 2 2 4 4 4 7
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.26 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω- 2.20jΩ	
Return Loss	- 27.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.346 ns
	250 S (100 S (10

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
Manufactured by	SPEAG
	OI LAG

Certificate No: Z21-60551

Page 4 of 6

Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 40.77$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN7307; ConvF(10.13, 10.13, 10.13) @ 835 MHz; Calibrated: 2021-05-26

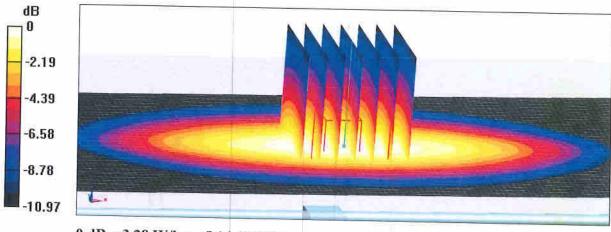
Date: 2021-12-17

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 59.81 V/m; Power Drift = -0.01 dB

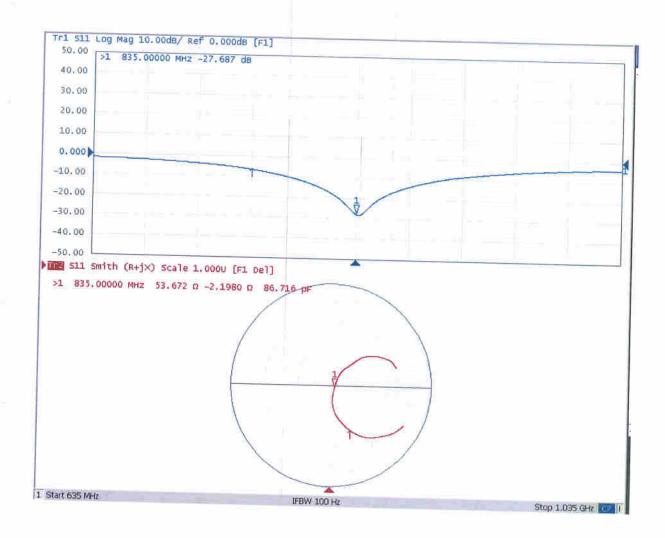

Peak SAR (extrapolated) = 3.70 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg

Smallest distance from peaks to all points 3 dB below = 20.5 mm

Ratio of SAR at M2 to SAR at M1 = 65.7%

Maximum value of SAR (measured) = 3.28 W/kg


0 dB = 3.28 W/kg = 5.16 dBW/kg

Certificate No: Z21-60551

Page 5 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Sporton

Certificate No: D1750V2-1090 Feb22

CALIBRATION CERTIFICATE

Object

D1750V2 - SN:1090

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

February 24, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	Ablisha
			100/10
Approved by:	Niels Kuster	Quality Manager	1/200

Issued: March 3, 2022

Certificate No: D1750V2-1090_Feb22

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.5 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1090_Feb22

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.9 Ω - 1.4 jΩ	
Return Loss	- 37.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.221 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

SPEAG
SPEAG
•

Certificate No: D1750V2-1090_Feb22

DASY5 Validation Report for Head TSL

Date: 24.02.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1090

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 01.11.2021

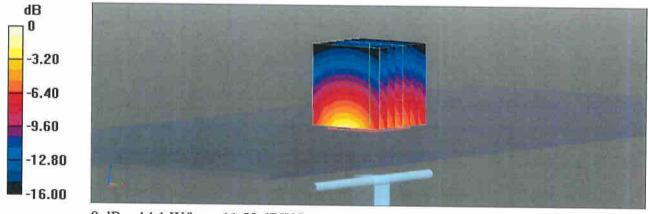
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

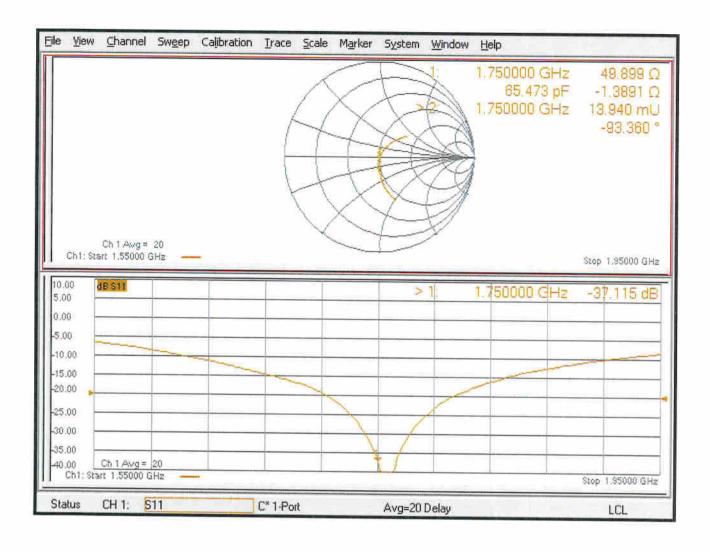
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.9 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.14 W/kg; SAR(10 g) = 4.84 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 55%

Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.50 dBW/kg

Impedance Measurement Plot for Head TSL

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Certificate No:

Z21-60553

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d182

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 20, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7307	26-May-21(SPEAG,No.EX3-7307_May21)	May-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	是怎
Reviewed by:	Lin Hao	SAR Test Engineer	ALX.
Approved by:	Qi Dianyuan	SAR Project Leader	135

Issued: December 27, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60553

Page 1 of 6