



# TEST REPORT

Applicant: Shenzhen Xinguodu Technology Co., Ltd.

17B JinSong Mansion, Terra Industrial & Trade Park Address: Chegongmiao, Futian District, Shenzhen, Guangdong, China.

**Product Name: POS terminal** 

FCC ID: XDON92-01

47 CFR Part 15, Subpart E(15.407) ANSI C63.10-2013 Standard(s): KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 Report Number: 2402V85163E-RF-00D

Report Date: 2024/10/25

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Keeho Yun

**Reviewed By:** Pedro Yun

Title: Project Engineer

fron Cas

Approved By: Ivan Cao Title: EMC Manager

**Bay Area Compliance Laboratories Corp. (Dongguan)** No.12, Pulong East 1<sup>st</sup> Road, Tangxia Town, Dongguan, Guangdong, China

> Tel: +86-769-86858888 Fax: +86-769-86858891

www.baclcorp.com.cn

Note: The information marked  $\blacktriangle$  is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with  $\star$ . This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

# CONTENTS

| DOCUMENT REVISION HISTORY                                                   | ••••••4       |
|-----------------------------------------------------------------------------|---------------|
| 1. GENERAL INFORMATION                                                      | 5             |
| <b>1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)</b>               |               |
| 1.2 ACCESSORY INFORMATION ·····                                             | 5             |
| 1.3 ANTENNA INFORMATION DETAIL                                              | 6             |
| 1.4 Equipment Modifications ·····                                           | 6             |
| 2. SUMMARY OF TEST RESULTS                                                  | 7             |
| 3. DESCRIPTION OF TEST CONFIGURATION                                        | 8             |
| 3.1 OPERATION FREQUENCY DETAIL ·····                                        |               |
| 3.2 EUT OPERATION CONDITION ······                                          |               |
| 3.3 SUPPORT EQUIPMENT LIST AND DETAILS ·····                                |               |
| 3.4 SUPPORT CABLE LIST AND DETAILS                                          |               |
| 3.5 BLOCK DIAGRAM OF TEST SETUP                                             |               |
| 3.6 TEST FACILITY                                                           |               |
| 3.7 MEASUREMENT UNCERTAINTY ·····                                           |               |
| 4. REQUIREMENTS AND TEST PROCEDURES                                         |               |
| 4.1 AC LINE CONDUCTED EMISSIONS ······                                      |               |
| 4.1.1 Applicable Standard                                                   |               |
| 4.1.2 EUT Setup                                                             |               |
| 4.1.3 EMI Test Receiver Setup<br>4.1.4 Test Procedure                       |               |
| 4.1.5 Corrected Amplitude & Margin Calculation                              |               |
| 4.1.6 Test Result                                                           |               |
| 4.2 RADIATION SPURIOUS EMISSIONS ······                                     |               |
| 4.2.1 Applicable Standard ·····                                             |               |
| 4.2.2 EUT Setup                                                             |               |
| 4.2.3 EMI Test Receiver & Spectrum Analyzer Setup<br>4.2.4 Test Procedure   |               |
| 4.2.5 Corrected Result & Margin Calculation                                 |               |
| 4.2.6 Test Result ·····                                                     |               |
| 4.3 EMISSION BANDWIDTH ·····                                                |               |
| 4.3.1 Applicable Standard                                                   |               |
| 4.3.2 EUT Setup                                                             |               |
| 4.3.3 Test Procedure 4.3.4 Test Result                                      |               |
| 4.3.4 Test Result                                                           |               |
| 4.4.1 Applicable Standard ·····                                             |               |
| 4.4.2 EUT Setup                                                             |               |
| 4.4.3 Test Procedure                                                        |               |
| 4.4.4 Test Result ······<br>4.5 MAXIMUM POWER SPECTRAL DENSITY ······       |               |
| 4.5.1 Applicable Standard                                                   |               |
| 4.5.1 Applicable Standard<br>Report Template Version: FCC-WiFi5-Client-V1.2 |               |
| Report rempiate version, rece-wiris-Chent-v1.2                              | Page 2 of 119 |

| 4      | 5.2 EUT Setup                                                     |
|--------|-------------------------------------------------------------------|
| 4.     | 5.3 Test Procedure 24                                             |
|        |                                                                   |
| 4.     | 5.4 Test Result                                                   |
| 4.6    | <b>DUTY CYCLE</b>                                                 |
| 4      | 6.1 EUT Setup                                                     |
| 4      | 6.2 Test Procedure                                                |
|        | 6.3 Judgment                                                      |
| 47     | ANTENNA REQUIREMENT ····································          |
|        |                                                                   |
| 4.     | 7.1 Applicable Standard                                           |
| 4.     | 7.2 Judgment ····································                 |
| 5. Tes | t DATA AND RESULTS ·······28                                      |
| 5.1    | AC LINE CONDUCTED EMISSIONS ······ 28                             |
| 5.2    | RADIATION SPURIOUS EMISSIONS ···································· |
| 5.3    | EMISSION BANDWIDTH ······ 83                                      |
| 5.4    | 99% OCCUPIED BANDWIDTH 93                                         |
| 5.5    | MAXIMUM CONDUCTED OUTPUT POWER ·····103                           |
| 5.6    | POWER SPECTRAL DENSITY ······106                                  |
| 5.7    | DUTY CYCLE ······116                                              |
| EXH    | BIT A - EUT PHOTOGRAPHS ······118                                 |
|        |                                                                   |
| EXH    | BIT B - TEST SETUP PHOTOGRAPHS ······119                          |

# **DOCUMENT REVISION HISTORY**

| Revision Number | Report Number      | Description of<br>Revision | Date of Revision |
|-----------------|--------------------|----------------------------|------------------|
| 1.0             | 2402V85163E-RF-00D | Original Report            | 2024/10/25       |

# **1. GENERAL INFORMATION**

# **1.1 Product Description for Equipment under Test (EUT)**

| EUT Name:                                  | POS terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EUT Model:                                 | N92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Operation Frequency:</b>                | Band1:<br>5180-5240 MHz(802.11a/n ht20/ac vht20)<br>5190-5230 MHz(802.11n ht40/ac vht40)<br>5210 MHz(802.11ac vht80)<br>Band2:<br>5260-5320 MHz (802.11a/n ht20/ac vht20)<br>5270-5310 MHz(802.11n ht40/ac vht40)<br>5290 MHz(802.11ac vht80)<br>Band3:<br>5500-5720 MHz (802.11a/n ht20/ac vht20)<br>5510-5710 MHz(802.11n ht40/vht40)<br>5530-5690MHz(802.11ac vht80)<br>Band4:<br>5745-5825 MHz (802.11a/n ht20/ac vht20)<br>5755-5795 MHz(802.11n ht40/ac vht40)<br>5775 MHz(802.11ac vht80)<br>15.62dBm(5150-5250MHz) |
| Maximum Average Conducted<br>Output Power: | 14.36Bm(5250-5350MHz)<br>11.81dBm(5470-5725MHz)<br>14.59dBm(5725-5850MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Modulation Type:                           | 802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rated Input Voltage:                       | DC 7.2V from battery or DC 5V from adapter or<br>DC 5V from Charging Base                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Serial Number:                             | For RF Conducted Test:2092-17<br>For AC line conducted emission Test: 2092-1<br>For Radiated spurious emission Test: 2092-13                                                                                                                                                                                                                                                                                                                                                                                               |
| EUT Received Date:                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EUT Received Status:                       | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# **1.2 Accessory Information**

| Accessory<br>Description | Manufacturer                           | Model       | Parameters                                                                                                                |
|--------------------------|----------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------|
| Adapter                  | SHENZHEN RUIJING<br>INDUSTRIAL CO.,LTD | STC-A520A-Z | Input: 100-240Vac~50/60Hz 400mA<br>Output: 5.0Vdc 2000mA                                                                  |
| Battery                  | Zhengzhou BAK Battery<br>Co.,Ltd       | GX12        | Typical Capacity:3300mAh<br>Rated Capacity:3200mAh<br>Typical Energy:23.76Wh<br>Nominal Energy:23.04Wh<br>Output: DC 7.2V |

# **1.3 Antenna Information Detail**

| Antenna Manufacturer       | rer Antenna input impedance<br>Type (Ohm) Fr                                                                                            |          | Frequency Range | Antenna<br>Gain |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-----------------|--|
|                            |                                                                                                                                         |          | 5.15~5.25GHz    | 4.75dBi         |  |
| Shenzhen Bogesi Communica  | ation FPC                                                                                                                               | 50       | 5.25~5.35 GHz   | 4.61dBi         |  |
| Technology Co.,Ltd         | FPC                                                                                                                                     | FPC 50   | 5.47~5.725 GHz  | 3.85dBi         |  |
|                            |                                                                                                                                         |          | 5.725~5.85 GHz  | 3.44dBi         |  |
| The design of compliance w | ith §15.203:                                                                                                                            |          |                 |                 |  |
| Unit uses a perm           | nanently attached a                                                                                                                     | intenna. |                 |                 |  |
| Unit uses a uniq           | Unit uses a unique coupling to the intentional radiator.                                                                                |          |                 |                 |  |
|                            | Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit. |          |                 |                 |  |

# **1.4 Equipment Modifications**

No modifications are made to the EUT during all test items.

# 2. SUMMARY OF TEST RESULTS

| FCC Rules                                                                                                                                                                                           | Description of Test                    | Result    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|--|--|
| FCC §15.207(a)                                                                                                                                                                                      | AC Line Conducted Emissions            | Compliant |  |  |
| FCC§15.205& §15.209<br>&§15.407(b)                                                                                                                                                                  | Undesirable Emission& Restricted Bands | Compliant |  |  |
| FCC§15.407(a) (e)                                                                                                                                                                                   | Emission Bandwidth                     | Compliant |  |  |
| FCC§15.407 (a)                                                                                                                                                                                      | Maximum Conducted Output Power         | Compliant |  |  |
| FCC§15.407 (a)                                                                                                                                                                                      | Power Spectral Density                 | Compliant |  |  |
| FCC §15.203                                                                                                                                                                                         | Antenna Requirement                    | Compliant |  |  |
| Note 1: For AC line conducted emissions, the maximum output power mode and channel was tested.<br>Note 2: For Radiated Spurious Emissions 9kHz~ 1GHz, the maximum output power mode and channel was |                                        |           |  |  |

Note 2: For Radiated Spurious Emissions 9kHz~ 1GHz, the maximum output power mode and channel was tested.

Note 3: Per BT report, Powered by Adapter was the worst, so only performed it.

# **3. DESCRIPTION OF TEST CONFIGURATION**

# **3.1 Operation Frequency Detail**

#### For 802.11a/n ht20/ac vht20:

| 5150-5250 | MHz Band           | 5250-5350 | 350 MHz Band 5470-5725 |         | MHz Band           | 5725-5850 | MHz Band           |
|-----------|--------------------|-----------|------------------------|---------|--------------------|-----------|--------------------|
| Channel   | Frequency<br>(MHz) | Channel   | Frequency<br>(MHz)     | Channel | Frequency<br>(MHz) | Channel   | Frequency<br>(MHz) |
| 36        | 5180               | 52        | 5260                   | 100     | 5500               | 149       | 5745               |
| 40        | 5200               | 56        | 5280                   | 104     | 5520               | 153       | 5765               |
| 44        | 5220               | 60        | 5300                   | 108     | 5540               | 157       | 5785               |
| 48        | 5240               | 64        | 5320                   | 112     | 5560               | 161       | 5805               |
| /         | /                  | /         | /                      | 116     | 5580               | 165       | 5825               |
| /         | /                  | /         | /                      | 120     | 5600               | /         | /                  |
| /         | /                  | /         | /                      | 124     | 5620               | /         | /                  |
| /         | /                  | /         | /                      | 128     | 5640               | /         | /                  |
| /         | /                  | /         | /                      | 132     | 5660               | /         | /                  |
| /         | /                  | /         | /                      | 136     | 5680               | /         | /                  |
| /         | /                  | /         | /                      | 140     | 5700               | /         | /                  |
| /         | /                  | /         | /                      | 144*    | 5720               | /         | /                  |

### For 802.11n ht40/ac vht40:

| 5150-52 | 250MHz             | 5250-53 | 50 MHz             | 5470-57 | 25 MHz             | 5725-58 | 850MHz             |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 38      | 5190               | 54      | 5270               | 102     | 5510               | 151     | 5755               |
| 46      | 5230               | 62      | 5310               | 110     | 5550               | 159     | 5795               |
| /       | /                  | /       | /                  | 118     | 5590               | /       | /                  |
| /       | /                  | /       | /                  | 126     | 5630               | /       | /                  |
| /       | /                  | /       | /                  | 134     | 5670               | /       | /                  |
| /       | /                  | /       | /                  | 142*    | 5710               | /       | /                  |

#### For 802.11ac vht80:

| 5150-52 | 250MHz             | 5250-53 | 50 MHz             | 5470-57 | 25 MHz             | 5725-58 | 850MHz             |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 42      | 5210               | 58      | 5290               | 106     | 5530               | 155     | 5775               |
| /       | /                  | /       | /                  | 122     | 5610               | /       | /                  |
| /       | /                  | /       | /                  | 138*    | 5690               | /       | /                  |

Note: Additional channels cross the band 5470-5725MHz and 5725-5850 MHz, Conducted output power/ Power Spectral Density/bandwidth test with the additional channel to compliance with stricter limit of the two bands(5470-5725MHz more stricter).

# **3.2 EUT Operation Condition**

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

The EUT configuration is below:

802.11ac vht80

Middle

5290

MCS0

| EUT Exe                                                         | cise Software:   | WIFI Tool for MT3031.exe   |                         |                             |  |  |
|-----------------------------------------------------------------|------------------|----------------------------|-------------------------|-----------------------------|--|--|
| The software was provide by the manufacturer $\blacktriangle$ : | d by manufactu   | rer. The maxim             | um power was configured | as below, that was provided |  |  |
| 5150-5250 MHz Band:                                             |                  |                            |                         |                             |  |  |
| Test Modes                                                      | Test<br>Channels | Test<br>Frequency<br>(MHz) | Data rate               | Power Level Setting         |  |  |
|                                                                 | Lowest           | 5180                       | 6Mbps                   | 19                          |  |  |
| 802.11a                                                         | Middle           | 5200                       | 6Mbps                   | 19                          |  |  |
|                                                                 | Highest          | 5240                       | 6Mbps                   | 19                          |  |  |
|                                                                 | Lowest           | 5180                       | MCS0                    | 19                          |  |  |
| 802.11n ht20                                                    | Middle           | 5200                       | MCS0                    | 19                          |  |  |
|                                                                 | Highest          | 5240                       | MCS0                    | 19                          |  |  |
| 000 11 1/40                                                     | Lowest           | 5190                       | MCS0                    | 17                          |  |  |
| 802.11n ht40                                                    | Highest          | 5230                       | MCS0                    | 17                          |  |  |
| 802.11ac vht80                                                  | Middle           | 5210                       | MCS0                    | 17                          |  |  |
| 5250-5350 MHz Band:                                             |                  |                            |                         |                             |  |  |
| Test Modes                                                      | Test<br>Channels | Test<br>Frequency<br>(MHz) | Data rate               | Power Level Setting         |  |  |
|                                                                 | Lowest           | 5260                       | 6Mbps                   | 18                          |  |  |
| 802.11a                                                         | Middle           | 5280                       | 6Mbps                   | 18                          |  |  |
|                                                                 | Highest          | 5320                       | 6Mbps                   | 18                          |  |  |
|                                                                 | Lowest           | 5260                       | MCS0                    | 18                          |  |  |
| 802.11n ht20                                                    | Middle           | 5280                       | MCS0                    | 18                          |  |  |
|                                                                 | Highest          | 5320                       | MCS0                    | 18                          |  |  |
| 802.11n ht40                                                    | Lowest           | 5270                       | MCS0                    | 17                          |  |  |
| 002.1111 III40                                                  | Highest          | 5310                       | MCS0                    | 17                          |  |  |

15

| 5470-5725 MHz Band:           |                  |                            |           |                     |  |
|-------------------------------|------------------|----------------------------|-----------|---------------------|--|
| Test Modes                    | Test<br>Channels | Test<br>Frequency<br>(MHz) | Data rate | Power Level Setting |  |
|                               | Lowest           | 5500                       | 6Mbps     | 15                  |  |
| 802.11a                       | Middle           | 5580                       | 6Mbps     | 15                  |  |
| 802.11a                       | Highest          | 5700                       | 6Mbps     | 15                  |  |
|                               | Cross            | 5720                       | 6Mbps     | 15                  |  |
|                               | Lowest           | 5500                       | MCS0      | 15                  |  |
| 90 <b>2</b> 11. h4 <b>2</b> 0 | Middle           | 5580                       | MCS0      | 15                  |  |
| 802.11n ht20                  | Highest          | 5700                       | MCS0      | 15                  |  |
|                               | Cross            | 5720                       | MCS0      | 15                  |  |
|                               | Lowest           | 5510                       | MCS0      | 16                  |  |
| 802.11n ht40                  | Middle           | 5550                       | MCS0      | 16                  |  |
| 802.11n nt40                  | Highest          | 5670                       | MCS0      | 16                  |  |
|                               | Cross            | 5710                       | MCS0      | 16                  |  |
| 802.11ac vht80                | Lowest           | 5530                       | MCS0      | 15                  |  |
|                               | Highest          | 5610                       | MCS0      | 15                  |  |
|                               | Cross            | 5690                       | MCS0      | 15                  |  |

#### 5725-5850 MHz Band:

| Test Modes     | Test<br>Channels | Test<br>Frequency<br>(MHz) | Data rate | Power Level Setting |
|----------------|------------------|----------------------------|-----------|---------------------|
|                | Lowest           | 5745                       | 6Mbps     | 20                  |
| 802.11a        | Middle           | 5785                       | 6Mbps     | 20                  |
|                | Highest          | 5825                       | 6Mbps     | 20                  |
|                | Lowest           | 5745                       | MCS0      | 20                  |
| 802.11n ht20   | Middle           | 5785                       | MCS0      | 20                  |
|                | Highest          | 5825                       | MCS0      | 20                  |
| 802.11n ht40   | Lowest           | 5755                       | MCS0      | 19                  |
| 002.111111140  | Highest          | 5795                       | MCS0      | 19                  |
| 802.11ac vht80 | Middle           | 5775                       | MCS0      | 17                  |

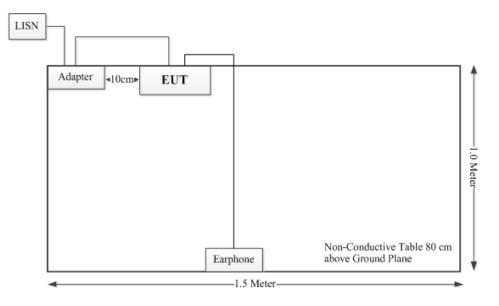
Note:

1. The system support 802.11a/n ht20/n ht40/ac vht20/vht40/vht80, the vht20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.

2. The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.

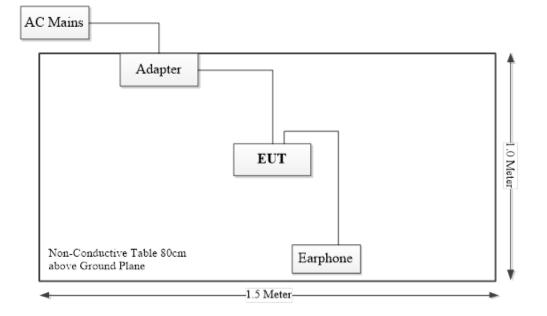
## **3.3 Support Equipment List and Details**

| Manufacturer | Description | Model         | Serial Number   |
|--------------|-------------|---------------|-----------------|
| IPRO         | Earphone    | Phonenix 5.0s | EMZBEP21103002B |

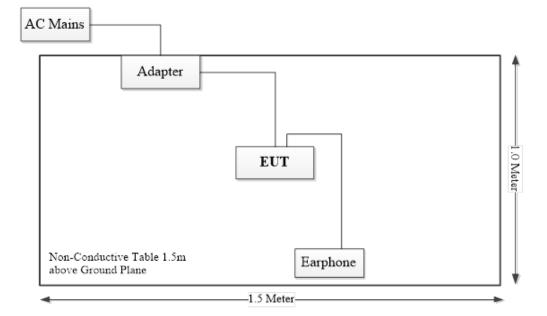

## **3.4 Support Cable List and Details**

| Cable Description | Shielding<br>Type | Ferrite<br>Core | Length<br>(m) | From Port | То  |
|-------------------|-------------------|-----------------|---------------|-----------|-----|
| USB Cable         | No                | No              | 1.2           | Adapter   | EUT |
| Earphone Cable    | No                | No              | 1.5           | Earphone  | EUT |

Report Template Version: FCC-WiFi5-Client-V1.2


# 3.5 Block Diagram of Test Setup

AC line conducted emissions:




#### Bay Area Compliance Laboratories Corp. (Dongguan)

Spurious Emissions: Below 1GHz:



Above 1GHz:



Page 12 of 119

## **3.6 Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

## **3.7 Measurement Uncertainty**

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

| Parameter                         | Measurement Uncertainty                                |
|-----------------------------------|--------------------------------------------------------|
| Occupied Channel Bandwidth        | ±5 %                                                   |
| RF output power, conducted        | ±0.61dB                                                |
| Power Spectral Density, conducted | ±0.61 dB                                               |
|                                   | 9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: |
| Unwanted Emissions, radiated      | 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB,      |
|                                   | 18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB           |
| Unwanted Emissions, conducted     | ±2.47 dB                                               |
| Temperature                       | ±1℃                                                    |
| Humidity                          | $\pm 5\%$                                              |
| DC and low frequency voltages     | $\pm 0.4\%$                                            |
| Duty Cycle                        | 1%                                                     |
| AC Power Lines Conducted Emission | 3.11 dB (150 kHz to 30 MHz)                            |

# 4. REQUIREMENTS AND TEST PROCEDURES

## 4.1 AC Line Conducted Emissions

## 4.1.1 Applicable Standard

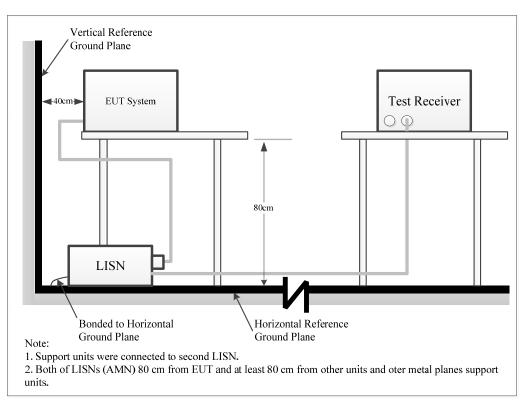
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

|                             | Conducted limit (dBµV) |           |  |
|-----------------------------|------------------------|-----------|--|
| Frequency of emission (MHz) | Quasi-peak             | Average   |  |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |  |
| 0.5-5                       | 56                     | 46        |  |
| 5-30                        | 60                     | 50        |  |

\*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000  $\mu$ V within the frequency band 535-1705 kHz, as measured using a 50  $\mu$ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

### 4.1.2 EUT Setup



The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

#### 4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

#### 4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

#### 4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

#### 4.1.6 Test Result

Please refer to section 5.1.

## **4.2 Radiation Spurious Emissions**

#### 4.2.1 Applicable Standard

FCC §15.407 (b);

*Undesirable emission limits.* Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of \_27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

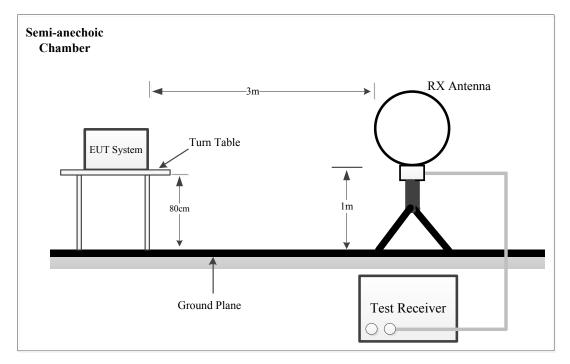
(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating solely in the 5.725-5.850 GHz band:

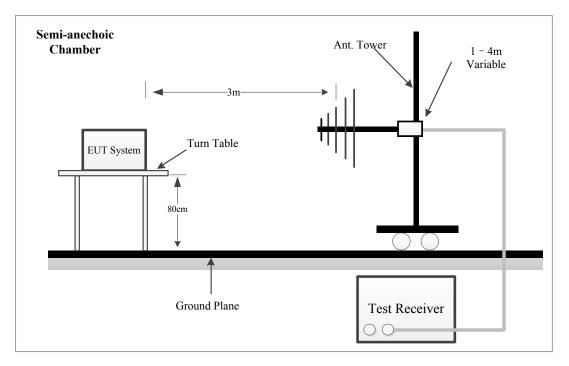
(i) All emissions shall be limited to a level of  $_{-27}$  dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in  $\S$  15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

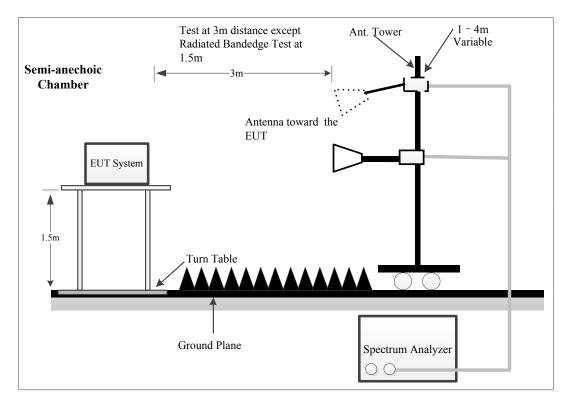
(8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.


(9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
(10) The provisions of § 15.205 apply to intentional radiators operating under this section.

(11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.


(c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

## 4.2.2 EUT Setup


## 9kHz~30MHz:



## 30MHz~1GHz:



## Above 1GHz:



The radiated emission tests were performed in the semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was FCC 15.209, FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

#### 4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| 9kHz- | 1000MHz: |
|-------|----------|
|       |          |

| Frequency Range     | Measurement | RBW     | Video B/W | IF B/W  |
|---------------------|-------------|---------|-----------|---------|
| 9 kHz – 150 kHz     | QP/AV       | 200 Hz  | 1 kHz     | 200 Hz  |
| 150 kHz – 30 MHz    | QP/AV       | 9 kHz   | 30 kHz    | 9 kHz   |
| 30 MHz – 1000 MHz   | PK          | 100 kHz | 300 kHz   | /       |
| 50 MITZ – 1000 MITZ | QP          | /       | /         | 120 kHz |

1GHz-40GHz:

Pre-scan:

| Measurement | Duty cycle | RBW  | Video B/W               |
|-------------|------------|------|-------------------------|
| РК          | Any        | 1MHz | 3 MHz                   |
| Avo         | >98%       | 1MHz | 5kHz                    |
| Ave.        | <98%       | 1MHz | 1/T, not less than 5kHz |

Final measurement for emission identified during the pre-scan:

| Measurement | Duty cycle | RBW  | Video B/W |
|-------------|------------|------|-----------|
| PK          | Any        | 1MHz | 3 MHz     |
| A vo        | >98%       | 1MHz | 10 Hz     |
| Ave.        | <98%       | 1MHz | 1/T       |

Note: T is minimum transmission duration

If the maximized peak measured value is under the QP limit by more than 6dB, then it is unnecessary to perform an QP measurement.

If the maximized peak measured value is under the average limit, then it is unnecessary to perform an QP measurement.

#### 4.2.4 Test Procedure

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as:  $E [dB\mu V/m] = EIRP[dBm] + 95.2$ , for d = 3 meters.

For Radiated Bandedge test, which was performed at 1.5 m distance, according to C63.10, the test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m

Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.0 dB

#### 4.2.5 Corrected Result & Margin Calculation

The basic equation except radiated bandedge test is as follows:

Factor = Antenna Factor + Cable Loss- Amplifier Gain

Result = Reading + Factor

For Radiated Bandedge test:

Factor = Antenna Factor + Cable Loss-Distance extrapolation Factor

Result = Reading + Factor

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

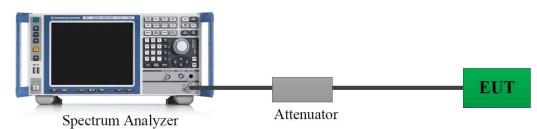
#### 4.2.6 Test Result

Please refer to section 5.2.

Report Template Version: FCC-WiFi5-Client-V1.2

## 4.3 Emission Bandwidth

## 4.3.1 Applicable Standard


## FCC §15.407 (a),(h)

(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

#### FCC §15.407 (e)

Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

## 4.3.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

## 4.3.3 Test Procedure

#### 26dB Emission Bandwidth:

According to ANSI C63.10-2013 Section 12.4.1

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set the VBW > RBW.
- c) Detector = peak.

d) Trace mode = max hold

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

## 6 dB emission bandwidth:

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW)  $\geq$  3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

#### 99% Occupied Bandwidth:

According to ANSI C63.10-2013 Section 12.4.2&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

#### 4.3.4 Test Result

Please refer to section 5.3 and section 5.4.

## 4.4 Maximum Conducted Output Power

#### 4.4.1 Applicable Standard

#### FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

#### 4.4.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer  $\blacktriangle$ .

#### 4.4.3 Test Procedure

According to ANSI C63.10-2013 Section 12.3.3.1

Method PM-G is measurement using a gated RF average power meter.

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

#### 4.4.4 Test Result

Please refer to section 5.5.

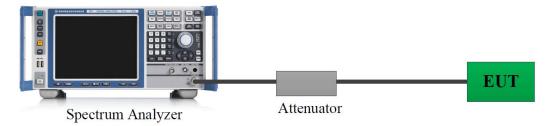
Report Template Version: FCC-WiFi5-Client-V1.2

## 4.5 Maximum Power Spectral Density

#### 4.5.1 Applicable Standard

#### FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


#### FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

## 4.5.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer  $\blacktriangle$ .

#### 4.5.3 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

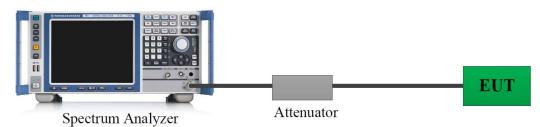
#### Duty cycle ≥98%

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-1 should be applied.

## Duty cycle <98%, duty cycle variations are less than $\pm 2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-2 should be applied.

## Duty cycle <98%, duty cycle variations exceed $\pm 2\%$


KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-3 should be applied.

## 4.5.4 Test Result

Please refer to section 5.6.

# 4.6 Duty Cycle

## 4.6.1 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

## 4.6.2 Test Procedure

According to ANSI C63.10-2013 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set RBW  $\geq$  OBW if possible; otherwise, set RBW to the largest available value. 3) Set VBW  $\geq$  RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if  $T \le 16.7$ μs.)

## 4.6.3 Judgment

Report Only. Please refer to section 5.7.

## 4.7 Antenna Requirement

### 4.7.1 Applicable Standard

#### FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

#### 4.7.2 Judgment

**Compliant.** Please refer to the Antenna Information detail in Section 1.3.

# 5. Test DATA AND RESULTS

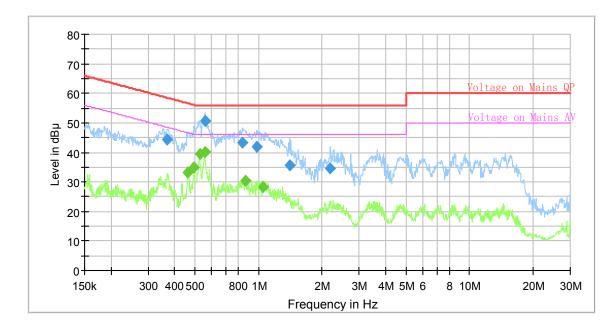
## 5.1 AC Line Conducted Emissions

| Serial Number: | 2092-1    | Test Date:   | 2024/7/19    |
|----------------|-----------|--------------|--------------|
| Test Site:     | CE        | Test Mode:   | Transmitting |
| Tester:        | Bill Yang | Test Result: | Pass         |

## **Environmental Conditions:**

| Temperature:<br>(°C) 26.7 | Relative<br>Humidity: 66<br>(%) | ATM Pressure:<br>(kPa) 100.8 |
|---------------------------|---------------------------------|------------------------------|
|---------------------------|---------------------------------|------------------------------|

## **Test Equipment List and Details:**

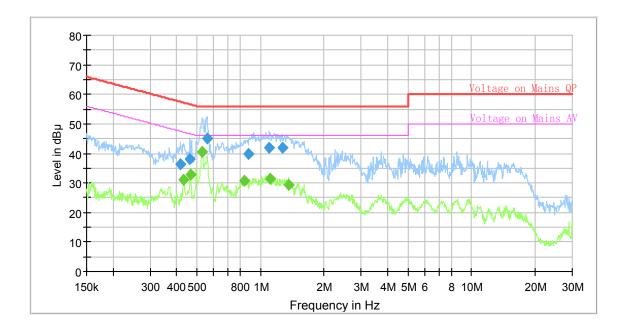

| Manufacturer | Description          | Model     | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|----------------------|-----------|------------------|---------------------|-------------------------|
| R&S          | LISN                 | ENV216    | 101614           | 2023/10/18          | 2024/10/17              |
| MICRO-COAX   | Coaxial Cable        | C-NJNJ-50 | C-0200-01        | 2023/9/7            | 2024/9/6                |
| R&S          | EMI Test<br>Receiver | ESCI      | 100035           | 2023/8/18           | 2024/8/17               |
| R&S          | Test Software        | EMC32     | V9.10.00         | N/A                 | N/A                     |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: 2402V85163E-RF-00D



2402V85163E-RF Bill Yang 2024-7-19 L Transmitting AC 120V/60Hz 802.11n ht20 5200MHz




| Frequency | QuasiPeak | Average | Limit  | Margin | Bandwidth | Line | Corr. |
|-----------|-----------|---------|--------|--------|-----------|------|-------|
| (MHz)     | (dBµV)    | (dBµV)  | (dBµV) | (dB)   | (kHz)     |      | (dB)  |
| 0.369955  | 44.22     |         | 58.50  | 14.28  | 9.000     | L1   | 10.8  |
| 0.463043  |           | 33.23   | 46.64  | 13.41  | 9.000     | L1   | 10.8  |
| 0.494060  |           | 34.99   | 46.10  | 11.11  | 9.000     | L1   | 10.8  |
| 0.527156  |           | 39.48   | 46.00  | 6.52   | 9.000     | L1   | 10.8  |
| 0.556885  | 50.81     |         | 56.00  | 5.19   | 9.000     | L1   | 10.8  |
| 0.556885  |           | 40.19   | 46.00  | 5.81   | 9.000     | L1   | 10.8  |
| 0.838267  | 43.49     |         | 56.00  | 12.51  | 9.000     | L1   | 10.9  |
| 0.868051  |           | 30.24   | 46.00  | 15.76  | 9.000     | L1   | 10.9  |
| 0.978432  | 42.04     |         | 56.00  | 13.96  | 9.000     | L1   | 10.9  |
| 1.054439  |           | 28.37   | 46.00  | 17.63  | 9.000     | L1   | 10.8  |
| 1.408163  | 35.67     |         | 56.00  | 20.33  | 9.000     | L1   | 10.8  |
| 2.184069  | 34.51     |         | 56.00  | 21.49  | 9.000     | L1   | 10.8  |

Report No.: 2402V85163E-RF-00D



2402V85163E-RF Bill Yang 2024-7-19 N Transmitting AC 120V/60Hz 802.11n ht20 5200MHz



| Frequency | QuasiPeak | Average | Limit  | Margin | Bandwidth | Line | Corr. |
|-----------|-----------|---------|--------|--------|-----------|------|-------|
| (MHz)     | (dBµV)    | (dBµV)  | (dBµV) | (dB)   | (kHz)     |      | (dB)  |
| 0.419083  | 36.39     |         | 57.47  | 21.08  | 9.000     | N    | 10.8  |
| 0.431814  |           | 31.06   | 47.22  | 16.16  | 9.000     | Ν    | 10.8  |
| 0.463043  | 38.24     |         | 56.64  | 18.40  | 9.000     | Ν    | 10.8  |
| 0.465358  |           | 32.85   | 46.60  | 13.75  | 9.000     | N    | 10.8  |
| 0.529791  |           | 40.37   | 46.00  | 5.63   | 9.000     | N    | 10.7  |
| 0.559669  | 45.09     |         | 56.00  | 10.91  | 9.000     | Ν    | 10.7  |
| 0.834097  |           | 30.74   | 46.00  | 15.26  | 9.000     | N    | 10.8  |
| 0.872391  | 39.76     |         | 56.00  | 16.24  | 9.000     | N    | 10.8  |
| 1.102849  | 41.98     |         | 56.00  | 14.02  | 9.000     | Ν    | 10.9  |
| 1.108363  |           | 31.47   | 46.00  | 14.53  | 9.000     | Ν    | 10.9  |
| 1.268136  | 41.83     |         | 56.00  | 14.17  | 9.000     | N    | 10.9  |
| 1.353083  |           | 29.50   | 46.00  | 16.50  | 9.000     | N    | 10.9  |

# **5.2 Radiation Spurious Emissions**

## 1) 9kHz - 1GHz

| Serial Number: | 2092-13    | Test Date:   | 2024/7/25    |
|----------------|------------|--------------|--------------|
| Test Site:     | Chamber A  | Test Mode:   | Transmitting |
| Tester:        | Jayce Wang | Test Result: | Pass         |

| Environmental Conditions: |      |                           |                           |      |  |  |
|---------------------------|------|---------------------------|---------------------------|------|--|--|
| Temperature:              | 28.2 | Relative Humidity: (%) 41 | ATM<br>Pressure:<br>(kPa) | 99.3 |  |  |

## **Test Equipment List and Details:**

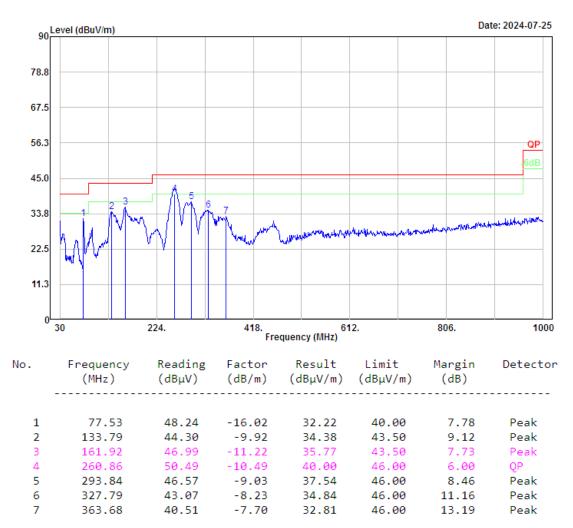
| Manufacturer   | Description             | Model     | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|----------------|-------------------------|-----------|------------------|---------------------|-------------------------|
| EMCO           | Passive Loop<br>Antenna | 6512      | 9706-1206        | 2023/10/21          | 2026/10/20              |
| Sunol Sciences | Hybrid Antenna          | JB3       | A060611-3        | 2024/1/12           | 2027/1/11               |
| Wilson         | Coaxial Attenuator      | 859936    | F-08-EM014       | 2024/1/12           | 2027/1/11               |
| Unknown        | Coaxial Cable           | C-NJNJ-50 | C-0075-01        | 2024/7/1            | 2025/6/30               |
| Unknown        | Coaxial Cable           | C-NJNJ-50 | C-0400-01        | 2024/7/1            | 2025/6/30               |
| Unknown        | Coaxial Cable           | C-NJNJ-50 | C-1400-01        | 2024/7/1            | 2025/6/30               |
| Sonoma         | Amplifier               | 310N      | 372193           | 2024/7/1            | 2025/6/30               |
| R&S            | EMI Test Receiver       | ESR3      | 102453           | 2023/8/18           | 2024/8/17               |
| Audix          | Test Software           | E3        | 191218 V9        | N/A                 | N/A                     |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

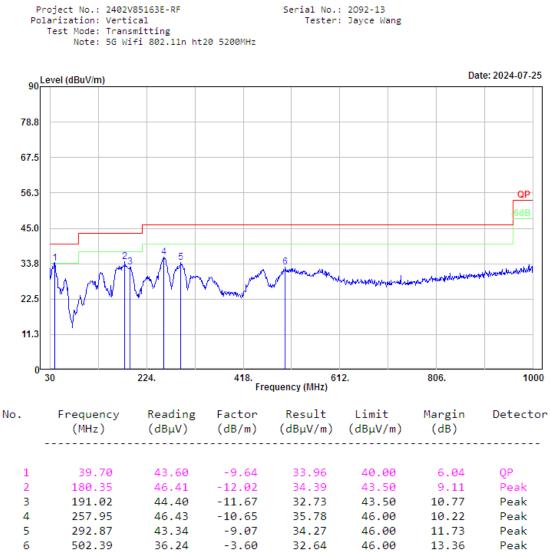
## **Test Data:**

Please refer to the below table and plots.

After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.


## 9kHz~30MHz

The 802.11n ht20 5200MHz was tested. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


### 30MHz-1GHz

|               | 2402V85163E-RF               |
|---------------|------------------------------|
| Polarization: | Horizontal                   |
| Test Mode:    | Transmitting                 |
| Note:         | 5G Wifi 802.11n ht20 5200MHz |

Serial No.: 2092-13 Tester: Jayce Wang



Report No.: 2402V85163E-RF-00D



Project No.: 2402V85163E-RF Polarization: Vertical

Report Template Version: FCC-WiFi5-Client-V1.2

Page 34 of 119

## 2) 1-40GHz:

| Serial Number: | 2092-13              | Test Date:   | 2024/7/24~2024/10/24 |
|----------------|----------------------|--------------|----------------------|
| Test Site:     | Chamber B            | Test Mode:   | Transmitting         |
| Tester:        | Nat Zhou, Colin Yang | Test Result: | Pass                 |

## **Environmental Conditions:**

| Temperature: (°C) 24.4~27.2 | Relative<br>Humidity: 36~43 | 5 ATM Pressure: 99.9~101.2 (kPa) |
|-----------------------------|-----------------------------|----------------------------------|
|-----------------------------|-----------------------------|----------------------------------|

## **Test Equipment List and Details:**

| Manufacturer             | Description              | Model                             | Serial<br>Number     | Calibration<br>Date | Calibration<br>Due Date |
|--------------------------|--------------------------|-----------------------------------|----------------------|---------------------|-------------------------|
| ETS-Lindgren             | Horn Antenna             | 3115                              | 000 527 35           | 2023/9/7            | 2026/9/6                |
| Ducommun<br>Technologies | Horn Antenna             | ARH-4223-02                       | 1007726-02<br>1304   | 2023/2/22           | 2026/2/21               |
| Ducommun<br>Technologies | Horn Antenna             | ARH-2823-02                       | 1007726-01<br>1302   | 2023/2/22           | 2026/2/21               |
| Xinhang Macrowave        | Coaxial Cable            | XH750A-N/J-<br>SMA/J-10M          | 20231117004<br>#0001 | 2023/11/17          | 2024/11/16              |
| Xinhang Macrowave        | Coaxial Cable            | XH360A-<br>2.92/J-2.92/J-<br>6M-A | 20231208001<br>#0001 | 2023/12/11          | 2024/12/10              |
| AH                       | Preamplifier             | PAM-0118P                         | 469                  | 2024/4/15           | 2025/4/14               |
| AH                       | Preamplifier             | PAM-1840VH                        | 191                  | 2023/9/7            | 2024/9/6                |
| AH                       | Preamplifier             | PAM-1840VH                        | 191                  | 2024/9/5            | 2025/9/4                |
| R&S                      | Spectrum<br>Analyzer     | FSV40                             | 101944               | 2023/10/18          | 2024/10/17              |
| R&S                      | Spectrum<br>Analyzer     | FSV40                             | 101944               | 2024/9/6            | 2025/9/5                |
| Audix                    | Test Software            | E3                                | 191218 (V9)          | N/A                 | N/A                     |
| Sinoscite                | Band Rejection<br>Filter | BSF5150-<br>5850MN                | 0899003              | 2024/2/21           | 2025/2/20               |
| Mini-Circuits            | High Pass Filter         | VHF-6010+                         | 31118                | 2023/12/1           | 2024/11/30              |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp.(Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

## **Test Data:**

After pre-scan in the X, Y and Z axes of orientation, the worst case is below:

| 002.11a_0-1 |                |          |            |        |                        |        |        |
|-------------|----------------|----------|------------|--------|------------------------|--------|--------|
| Frequency   | Reading        | Detector | Polar      | Factor | Corrected<br>Amplitude | Limit  | Margin |
| MHz         | dBµV           | PK/QP/AV | H/V        | dB/m   | dBµV/m                 | dBµV/m | dB     |
|             |                | Lo       | ow channel | 5180   | MHz                    |        |        |
| 5150.00     | 62.44          | РК       | Н          | 6.53   | 68.97                  | 74.00  | 5.03   |
| 5150.00     | 44.87          | AV       | Н          | 6.53   | 51.40                  | 54.00  | 2.60   |
| 5150.00     | 59.27          | РК       | V          | 6.53   | 65.80                  | 74.00  | 8.20   |
| 5150.00     | 43.04          | AV       | V          | 6.53   | 49.57                  | 54.00  | 4.43   |
| 10360.00    | 49.23          | РК       | Н          | 0.33   | 49.56                  | 68.20  | 18.64  |
| 10360.00    | 47.92          | РК       | V          | 0.33   | 48.25                  | 68.20  | 19.95  |
| 15540.00    | 48.01          | РК       | Н          | 0.6    | 48.61                  | 74.00  | 25.39  |
| 15540.00    | 38.26          | AV       | Н          | 0.6    | 38.86                  | 54.00  | 15.14  |
| 15540.00    | 48.72          | РК       | V          | 0.6    | 49.32                  | 74.00  | 24.68  |
| 15540.00    | 38.43          | AV       | V          | 0.6    | 39.03                  | 54.00  | 14.97  |
|             | Middle channel |          |            | 5200   | MHz                    |        |        |
| 10400.00    | 47.79          | РК       | Н          | 0.4    | 48.19                  | 68.20  | 20.01  |
| 10400.00    | 48.26          | РК       | V          | 0.4    | 48.66                  | 68.20  | 19.54  |
| 15600.00    | 48.61          | РК       | Н          | 0.58   | 49.19                  | 74.00  | 24.81  |
| 15600.00    | 37.58          | AV       | Н          | 0.58   | 38.16                  | 54.00  | 15.84  |
| 15600.00    | 48.29          | РК       | V          | 0.58   | 48.87                  | 74.00  | 25.13  |
| 15600.00    | 37.37          | AV       | V          | 0.58   | 37.95                  | 54.00  | 16.05  |
|             |                | Hi       | gh channel | 5240   | MHz                    |        |        |
| 5350.00     | 50.90          | РК       | Н          | 7.1    | 58.00                  | 74.00  | 16.00  |
| 5350.00     | 39.23          | AV       | Н          | 7.1    | 46.33                  | 54.00  | 7.67   |
| 5350.00     | 51.61          | РК       | V          | 7.1    | 58.71                  | 74.00  | 15.29  |
| 5350.00     | 39.11          | AV       | V          | 7.1    | 46.21                  | 54.00  | 7.79   |
| 10480.00    | 47.83          | РК       | Н          | 0.56   | 48.39                  | 68.20  | 19.81  |
| 10480.00    | 48.44          | РК       | V          | 0.56   | 49.00                  | 68.20  | 19.20  |
| 15720.00    | 48.39          | PK       | Н          | 0.55   | 48.94                  | 74.00  | 25.06  |
| 15720.00    | 37.42          | AV       | Н          | 0.55   | 37.97                  | 54.00  | 16.03  |
| 15720.00    | 48.06          | РК       | V          | 0.55   | 48.61                  | 74.00  | 25.39  |
| 15720.00    | 37.23          | AV       | V          | 0.55   | 37.78                  | 54.00  | 16.22  |

## 802.11a\_U-NII-1

| <u>802.111120_</u> ( |         |          |             |        |                        |        |        |
|----------------------|---------|----------|-------------|--------|------------------------|--------|--------|
| Frequency            | Reading | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
| MHz                  | dBµV    | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|                      |         | Lo       | w channel   | 5180   | MHz                    |        |        |
| 5150.00              | 64.04   | PK       | Н           | 6.53   | 70.57                  | 74.00  | 3.43   |
| 5150.00              | 45.24   | AV       | Н           | 6.53   | 51.77                  | 54.00  | 2.23   |
| 5150.00              | 60.15   | РК       | V           | 6.53   | 66.68                  | 74.00  | 7.32   |
| 5150.00              | 43.21   | AV       | V           | 6.53   | 49.74                  | 54.00  | 4.26   |
| 10360.00             | 47.90   | РК       | Н           | 0.33   | 48.23                  | 68.20  | 19.97  |
| 10360.00             | 50.06   | РК       | V           | 0.33   | 50.39                  | 68.20  | 17.81  |
| 15540.00             | 47.60   | РК       | Н           | 0.6    | 48.20                  | 74.00  | 25.80  |
| 15540.00             | 37.12   | AV       | Н           | 0.6    | 37.72                  | 54.00  | 16.28  |
| 15540.00             | 48.54   | PK       | V           | 0.6    | 49.14                  | 74.00  | 24.86  |
| 15540.00             | 37.49   | AV       | V           | 0.6    | 38.09                  | 54.00  | 15.91  |
|                      |         | Midd     | lle channel | 5200   | MHz                    |        |        |
| 10400.00             | 48.13   | РК       | Н           | 0.4    | 48.53                  | 68.20  | 19.67  |
| 10400.00             | 48.64   | РК       | V           | 0.4    | 49.04                  | 68.20  | 19.16  |
| 15600.00             | 48.46   | РК       | Н           | 0.58   | 49.04                  | 74.00  | 24.96  |
| 15600.00             | 37.34   | AV       | Н           | 0.58   | 37.92                  | 54.00  | 16.08  |
| 15600.00             | 48.59   | РК       | V           | 0.58   | 49.17                  | 74.00  | 24.83  |
| 15600.00             | 37.45   | AV       | V           | 0.58   | 38.03                  | 54.00  | 15.97  |
|                      |         | Hi       | gh channel  | 5240   | MHz                    |        |        |
| 5350.00              | 50.74   | РК       | Н           | 7.1    | 57.84                  | 74.00  | 16.16  |
| 5350.00              | 39.47   | AV       | Н           | 7.1    | 46.57                  | 54.00  | 7.43   |
| 5350.00              | 50.96   | PK       | V           | 7.1    | 58.06                  | 74.00  | 15.94  |
| 5350.00              | 38.62   | AV       | V           | 7.1    | 45.72                  | 54.00  | 8.28   |
| 10480.00             | 46.99   | РК       | Н           | 0.56   | 47.55                  | 68.20  | 20.65  |
| 10480.00             | 47.94   | PK       | V           | 0.56   | 48.50                  | 68.20  | 19.70  |
| 15720.00             | 48.42   | PK       | Н           | 0.55   | 48.97                  | 74.00  | 25.03  |
| 15720.00             | 39.12   | AV       | Н           | 0.55   | 39.67                  | 54.00  | 14.33  |
| 15720.00             | 48.22   | PK       | V           | 0.55   | 48.77                  | 74.00  | 25.23  |
| 15720.00             | 38.83   | AV       | V           | 0.55   | 39.38                  | 54.00  | 14.62  |

## 802.11n20\_U-NII-1

| Frequency | Reading | Detector | Polar      | Factor | Corrected<br>Amplitude | Limit  | Margin |
|-----------|---------|----------|------------|--------|------------------------|--------|--------|
| MHz       | dBµV    | PK/QP/AV | H/V        | dB/m   | dBµV/m                 | dBµV/m | dB     |
|           |         | La       | w channel  | 5190   | MHz                    |        |        |
| 5150.00   | 63.49   | РК       | Н          | 6.53   | 70.02                  | 74.00  | 3.98   |
| 5150.00   | 44.79   | AV       | Н          | 6.53   | 51.32                  | 54.00  | 2.68   |
| 5150.00   | 60.10   | РК       | V          | 6.53   | 66.63                  | 74.00  | 7.37   |
| 5150.00   | 40.79   | AV       | V          | 6.53   | 47.32                  | 54.00  | 6.68   |
| 10380.00  | 47.66   | РК       | Н          | 0.37   | 48.03                  | 68.20  | 20.17  |
| 10380.00  | 49.71   | РК       | V          | 0.37   | 50.08                  | 68.20  | 18.12  |
| 15570.00  | 48.59   | РК       | Н          | 0.59   | 49.18                  | 74.00  | 24.82  |
| 15570.00  | 38.51   | AV       | Н          | 0.59   | 39.10                  | 54.00  | 14.90  |
| 15570.00  | 47.95   | РК       | V          | 0.59   | 48.54                  | 74.00  | 25.46  |
| 15570.00  | 38.34   | AV       | V          | 0.59   | 38.93                  | 54.00  | 15.07  |
|           |         | Hig      | gh channel | 5230   | MHz                    |        |        |
| 5350.00   | 50.29   | РК       | Н          | 7.1    | 57.39                  | 74.00  | 16.61  |
| 5350.00   | 38.63   | AV       | Н          | 7.1    | 45.73                  | 54.00  | 8.27   |
| 5350.00   | 50.37   | РК       | V          | 7.1    | 57.47                  | 74.00  | 16.53  |
| 5350.00   | 39.09   | AV       | V          | 7.1    | 46.19                  | 54.00  | 7.81   |
| 10460.00  | 48.14   | РК       | Н          | 0.51   | 48.65                  | 68.20  | 19.55  |
| 10460.00  | 48.08   | РК       | V          | 0.51   | 48.59                  | 68.20  | 19.61  |
| 15690.00  | 48.30   | РК       | Н          | 0.56   | 48.86                  | 74.00  | 25.14  |
| 15690.00  | 37.14   | AV       | Н          | 0.56   | 37.70                  | 54.00  | 16.30  |
| 15690.00  | 48.22   | РК       | V          | 0.56   | 48.78                  | 74.00  | 25.22  |
| 15690.00  | 37.03   | AV       | V          | 0.56   | 37.59                  | 54.00  | 16.41  |

## 802.11n40\_U-NII-1

802.11ac80\_U-NII-1

| Frequency | Reading | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
|-----------|---------|----------|-------------|--------|------------------------|--------|--------|
| MHz       | dBµV    | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|           |         | Midd     | lle channel | 5210   | MHz                    |        |        |
| 5150.00   | 65.16   | РК       | Н           | 6.53   | 71.69                  | 74.00  | 2.31   |
| 5150.00   | 46.12   | AV       | Н           | 6.53   | 52.65                  | 54.00  | 1.35   |
| 5150.00   | 60.00   | PK       | V           | 6.53   | 66.53                  | 74.00  | 7.47   |
| 5150.00   | 42.91   | AV       | V           | 6.53   | 49.44                  | 54.00  | 4.56   |
| 5350.00   | 51.72   | PK       | Н           | 7.1    | 58.82                  | 74.00  | 15.18  |
| 5350.00   | 40.03   | AV       | Н           | 7.1    | 47.13                  | 54.00  | 6.87   |
| 5350.00   | 50.96   | PK       | V           | 7.1    | 58.06                  | 74.00  | 15.94  |
| 5350.00   | 39.13   | AV       | V           | 7.1    | 46.23                  | 54.00  | 7.77   |
| 10420.00  | 47.70   | PK       | Н           | 0.43   | 48.13                  | 68.20  | 20.07  |
| 10420.00  | 47.73   | РК       | V           | 0.43   | 48.16                  | 68.20  | 20.04  |
| 15630.00  | 48.36   | PK       | Н           | 0.57   | 48.93                  | 74.00  | 25.07  |
| 15630.00  | 39.09   | AV       | Н           | 0.57   | 39.66                  | 54.00  | 14.34  |
| 15630.00  | 49.06   | PK       | V           | 0.57   | 49.63                  | 74.00  | 24.37  |
| 15630.00  | 39.36   | AV       | V           | 0.57   | 39.93                  | 54.00  | 14.07  |

Report Template Version: FCC-WiFi5-Client-V1.2

| 002.11a_0-1 |         |          |             |        | Corrected |        |        |
|-------------|---------|----------|-------------|--------|-----------|--------|--------|
| Frequency   | Reading | Detector | Polar       | Factor | Amplitude | Limit  | Margin |
| MHz         | dBµV    | PK/QP/AV | H/V         | dB/m   | dBµV/m    | dBµV/m | dB     |
|             |         | Lo       | ow channel  | 5260   | MHz       |        |        |
| 5150.00     | 50.60   | РК       | Н           | 6.53   | 57.13     | 74.00  | 16.87  |
| 5150.00     | 39.16   | AV       | Н           | 6.53   | 45.69     | 54.00  | 8.31   |
| 5150.00     | 50.50   | РК       | V           | 6.53   | 57.03     | 74.00  | 16.97  |
| 5150.00     | 38.61   | AV       | V           | 6.53   | 45.14     | 54.00  | 8.86   |
| 10520.00    | 47.74   | РК       | Н           | 0.6    | 48.34     | 68.20  | 19.86  |
| 10520.00    | 47.03   | РК       | V           | 0.6    | 47.63     | 68.20  | 20.57  |
| 15780.00    | 47.98   | РК       | Н           | 0.55   | 48.53     | 74.00  | 25.47  |
| 15780.00    | 38.62   | AV       | Н           | 0.55   | 39.17     | 54.00  | 14.83  |
| 15780.00    | 47.92   | РК       | V           | 0.55   | 48.47     | 74.00  | 25.53  |
| 15780.00    | 38.51   | AV       | V           | 0.55   | 39.06     | 54.00  | 14.94  |
|             |         | Midd     | lle channel | 5280   | MHz       |        |        |
| 10560.00    | 47.78   | РК       | Н           | 0.61   | 48.39     | 68.20  | 19.81  |
| 10560.00    | 47.69   | РК       | V           | 0.61   | 48.30     | 68.20  | 19.90  |
| 15840.00    | 47.74   | РК       | Н           | 0.54   | 48.28     | 74.00  | 25.72  |
| 15840.00    | 37.50   | AV       | Н           | 0.54   | 38.04     | 54.00  | 15.96  |
| 15840.00    | 48.37   | РК       | V           | 0.54   | 48.91     | 74.00  | 25.09  |
| 15840.00    | 37.35   | AV       | V           | 0.54   | 37.89     | 54.00  | 16.11  |
|             |         | Hi       | gh channel  | 5320   | MHz       |        |        |
| 5350.00     | 61.33   | РК       | Н           | 7.1    | 68.43     | 74.00  | 5.57   |
| 5350.00     | 42.37   | AV       | Н           | 7.1    | 49.47     | 54.00  | 4.53   |
| 5350.00     | 57.94   | РК       | V           | 7.1    | 65.04     | 74.00  | 8.96   |
| 5350.00     | 40.86   | AV       | V           | 7.1    | 47.96     | 54.00  | 6.04   |
| 10640.00    | 47.61   | РК       | Н           | 0.62   | 48.23     | 74.00  | 25.77  |
| 10640.00    | 37.52   | AV       | Н           | 0.62   | 38.14     | 54.00  | 15.86  |
| 10640.00    | 47.54   | РК       | V           | 0.62   | 48.16     | 74.00  | 25.84  |
| 10640.00    | 37.44   | AV       | V           | 0.62   | 38.06     | 54.00  | 15.94  |
| 15960.00    | 47.72   | РК       | Н           | 0.5    | 48.22     | 74.00  | 25.78  |
| 15960.00    | 37.28   | AV       | Н           | 0.5    | 37.78     | 54.00  | 16.22  |
| 15960.00    | 48.23   | РК       | V           | 0.5    | 48.73     | 74.00  | 25.27  |
| 15960.00    | 37.46   | AV       | V           | 0.5    | 37.96     | 54.00  | 16.04  |

## 802.11a\_U-NII-2A

| Frequency | Reading | Detector  | Polar       | Factor  | Corrected | Limit  | Margin     |
|-----------|---------|-----------|-------------|---------|-----------|--------|------------|
| rrequency | Reading | Dettettor | 1 0141      | 1 actor | Amplitude | Linnt  | iviai giii |
| MHz       | dBµV    | PK/QP/AV  | H/V         | dB/m    | dBµV/m    | dBµV/m | dB         |
|           |         | La        | w channel   | 5260    | MHz       |        |            |
| 5150.00   | 51.33   | РК        | Н           | 6.53    | 57.86     | 74.00  | 16.14      |
| 5150.00   | 39.70   | AV        | Н           | 6.53    | 46.23     | 54.00  | 7.77       |
| 5150.00   | 50.85   | РК        | V           | 6.53    | 57.38     | 74.00  | 16.62      |
| 5150.00   | 39.05   | AV        | V           | 6.53    | 45.58     | 54.00  | 8.42       |
| 10520.00  | 48.79   | РК        | Н           | 0.6     | 49.39     | 68.20  | 18.81      |
| 10520.00  | 46.38   | РК        | V           | 0.6     | 46.98     | 68.20  | 21.22      |
| 15780.00  | 47.86   | РК        | Н           | 0.55    | 48.41     | 74.00  | 25.59      |
| 15780.00  | 38.72   | AV        | Н           | 0.55    | 39.27     | 54.00  | 14.73      |
| 15780.00  | 47.63   | РК        | V           | 0.55    | 48.18     | 74.00  | 25.82      |
| 15780.00  | 38.52   | AV        | V           | 0.55    | 39.07     | 54.00  | 14.93      |
|           |         | Midd      | lle channel | 5280    | MHz       |        |            |
| 10560.00  | 48.23   | PK        | Н           | 0.61    | 48.84     | 68.20  | 19.36      |
| 10560.00  | 47.68   | РК        | V           | 0.61    | 48.29     | 68.20  | 19.91      |
| 15840.00  | 48.47   | РК        | Н           | 0.54    | 49.01     | 74.00  | 24.99      |
| 15840.00  | 37.87   | AV        | Н           | 0.54    | 38.41     | 54.00  | 15.59      |
| 15840.00  | 47.78   | РК        | V           | 0.54    | 48.32     | 74.00  | 25.68      |
| 15840.00  | 37.53   | AV        | V           | 0.54    | 38.07     | 54.00  | 15.93      |
|           | •       | Hi        | gh channel  | 5320    | MHz       |        |            |
| 5350.00   | 59.94   | PK        | Н           | 7.1     | 67.04     | 74.00  | 6.96       |
| 5350.00   | 41.11   | AV        | Н           | 7.1     | 48.21     | 54.00  | 5.79       |
| 5350.00   | 55.99   | РК        | V           | 7.1     | 63.09     | 74.00  | 10.91      |
| 5350.00   | 39.65   | AV        | V           | 7.1     | 46.75     | 54.00  | 7.25       |
| 10640.00  | 47.69   | РК        | Н           | 0.62    | 48.31     | 74.00  | 25.69      |
| 10640.00  | 37.36   | AV        | Н           | 0.62    | 37.98     | 54.00  | 16.02      |
| 10640.00  | 47.54   | РК        | V           | 0.62    | 48.16     | 74.00  | 25.84      |
| 10640.00  | 37.23   | AV        | V           | 0.62    | 37.85     | 54.00  | 16.15      |
| 15960.00  | 47.72   | РК        | Н           | 0.5     | 48.22     | 74.00  | 25.78      |
| 15960.00  | 37.51   | AV        | Н           | 0.5     | 38.01     | 54.00  | 15.99      |
| 15960.00  | 47.42   | РК        | V           | 0.5     | 47.92     | 74.00  | 26.08      |
| 15960.00  | 37.38   | AV        | V           | 0.5     | 37.88     | 54.00  | 16.12      |

## 802.11n20\_U-NII-2A

| Frequency   | Reading  | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
|-------------|----------|----------|-------------|--------|------------------------|--------|--------|
| MHz         | dBµV     | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|             |          | Lo       | ow channel  | 5270   | MHz                    |        |        |
| 5150.00     | 50.43    | РК       | Н           | 6.53   | 56.96                  | 74.00  | 17.04  |
| 5150.00     | 39.28    | AV       | Н           | 6.53   | 45.81                  | 54.00  | 8.19   |
| 5150.00     | 50.60    | РК       | V           | 6.53   | 57.13                  | 74.00  | 16.87  |
| 5150.00     | 39.28    | AV       | V           | 6.53   | 45.81                  | 54.00  | 8.19   |
| 10540.00    | 48.07    | РК       | Н           | 0.59   | 48.66                  | 68.20  | 19.54  |
| 10540.00    | 47.62    | РК       | V           | 0.59   | 48.21                  | 68.20  | 19.99  |
| 15810.00    | 47.82    | РК       | Н           | 0.54   | 48.36                  | 74.00  | 25.64  |
| 15810.00    | 37.69    | AV       | Н           | 0.54   | 38.23                  | 54.00  | 15.77  |
| 15810.00    | 47.64    | РК       | V           | 0.54   | 48.18                  | 74.00  | 25.82  |
| 15810.00    | 37.55    | AV       | V           | 0.54   | 38.09                  | 54.00  | 15.91  |
|             |          | Hi       | gh channel  | 5310   | MHz                    |        |        |
| 5350.00     | 62.52    | РК       | Н           | 7.1    | 69.62                  | 74.00  | 4.38   |
| 5350.00     | 45.68    | AV       | Н           | 7.1    | 52.78                  | 54.00  | 1.22   |
| 5350.00     | 60.97    | РК       | V           | 7.1    | 68.07                  | 74.00  | 5.93   |
| 5350.00     | 43.75    | AV       | V           | 7.1    | 50.85                  | 54.00  | 3.15   |
| 10620.00    | 47.50    | РК       | Н           | 0.62   | 48.12                  | 74.00  | 25.88  |
| 10620.00    | 37.73    | AV       | Н           | 0.62   | 38.35                  | 54.00  | 15.65  |
| 10620.00    | 46.83    | РК       | V           | 0.62   | 47.45                  | 74.00  | 26.55  |
| 10620.00    | 38.14    | AV       | V           | 0.62   | 38.76                  | 54.00  | 15.24  |
| 15930.00    | 47.77    | РК       | Н           | 0.51   | 48.28                  | 74.00  | 25.72  |
| 15930.00    | 37.94    | AV       | Н           | 0.51   | 38.45                  | 54.00  | 15.55  |
| 15930.00    | 48.05    | РК       | V           | 0.51   | 48.56                  | 74.00  | 25.44  |
| 15930.00    | 38.05    | AV       | V           | 0.51   | 38.56                  | 54.00  | 15.44  |
| 802.11ac80_ | U-NII-2A |          |             |        |                        |        |        |
| Frequency   | Reading  | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
| MHz         | dBµV     | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|             |          | Midd     | lle channel | 5290   | MHz                    |        |        |
| 5150.00     | 51.52    | РК       | Н           | 6.53   | 58.05                  | 74.00  | 15.95  |
| 5150.00     | 39.91    | AV       | Н           | 6.53   | 46.44                  | 54.00  | 7.56   |

# 802.11n40 U-NII-2A

| Frequency | Reading        | Detector | Polar | Factor | Corrected<br>Amplitude | Limit  | Margin |
|-----------|----------------|----------|-------|--------|------------------------|--------|--------|
| MHz       | dBµV           | PK/QP/AV | H/V   | dB/m   | dBµV/m                 | dBµV/m | dB     |
|           | Middle channel |          | 5290  | MHz    |                        |        |        |
| 5150.00   | 51.52          | PK       | Н     | 6.53   | 58.05                  | 74.00  | 15.95  |
| 5150.00   | 39.91          | AV       | Н     | 6.53   | 46.44                  | 54.00  | 7.56   |
| 5150.00   | 50.54          | PK       | V     | 6.53   | 57.07                  | 74.00  | 16.93  |
| 5150.00   | 39.32          | AV       | V     | 6.53   | 45.85                  | 54.00  | 8.15   |
| 5350.00   | 60.29          | PK       | Н     | 7.1    | 67.39                  | 74.00  | 6.61   |
| 5350.00   | 45.07          | AV       | Н     | 7.1    | 52.17                  | 54.00  | 1.83   |
| 5350.00   | 55.24          | PK       | V     | 7.1    | 62.34                  | 74.00  | 11.66  |
| 5350.00   | 42.57          | AV       | V     | 7.1    | 49.67                  | 54.00  | 4.33   |
| 10580.00  | 48.50          | PK       | Н     | 0.61   | 49.11                  | 68.20  | 19.09  |
| 10580.00  | 46.85          | PK       | V     | 0.61   | 47.46                  | 68.20  | 20.74  |
| 15870.00  | 48.09          | РК       | Н     | 0.53   | 48.62                  | 74.00  | 25.38  |
| 15870.00  | 38.20          | AV       | Н     | 0.53   | 38.73                  | 54.00  | 15.27  |
| 15870.00  | 47.22          | PK       | V     | 0.53   | 47.75                  | 74.00  | 26.25  |
| 15870.00  | 38.27          | AV       | V     | 0.53   | 38.80                  | 54.00  | 15.20  |

Page 41 of 119

| <b>802.11a_U-</b> r |         |          |             |        |                        |        |        |
|---------------------|---------|----------|-------------|--------|------------------------|--------|--------|
| Frequency           | Reading | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
| MHz                 | dBµV    | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|                     |         | La       | w channel   | 5500   | MHz                    |        |        |
| 5460.00             | 51.65   | РК       | Н           | 7.33   | 58.98                  | 74.00  | 15.02  |
| 5460.00             | 39.23   | AV       | Н           | 7.33   | 46.56                  | 54.00  | 7.44   |
| 5460.00             | 51.46   | РК       | V           | 7.33   | 58.79                  | 74.00  | 15.21  |
| 5460.00             | 38.99   | AV       | V           | 7.33   | 46.32                  | 54.00  | 7.68   |
| 5470.00             | 54.20   | РК       | Н           | 7.34   | 61.54                  | 68.20  | 6.66   |
| 5470.00             | 54.03   | PK       | V           | 7.34   | 61.37                  | 68.20  | 6.83   |
| 11000.00            | 47.85   | PK       | Н           | 0.72   | 48.57                  | 74.00  | 25.43  |
| 11000.00            | 37.33   | AV       | Н           | 0.72   | 38.05                  | 54.00  | 15.95  |
| 11000.00            | 47.86   | PK       | V           | 0.72   | 48.58                  | 74.00  | 25.42  |
| 11000.00            | 37.98   | AV       | V           | 0.72   | 38.70                  | 54.00  | 15.30  |
| 16500.00            | 48.00   | PK       | Н           | 1.1    | 49.10                  | 68.20  | 19.10  |
| 16500.00            | 47.95   | PK       | V           | 1.1    | 49.05                  | 68.20  | 19.15  |
|                     |         | Midd     | lle channel | 5580   | MHz                    |        |        |
| 11160.00            | 48.24   | РК       | Н           | 1      | 49.24                  | 74.00  | 24.76  |
| 11160.00            | 37.27   | AV       | Н           | 1      | 38.27                  | 54.00  | 15.73  |
| 11160.00            | 48.42   | РК       | V           | 1      | 49.42                  | 74.00  | 24.58  |
| 11160.00            | 37.15   | AV       | V           | 1      | 38.15                  | 54.00  | 15.85  |
| 16740.00            | 48.33   | PK       | Н           | 2.42   | 50.75                  | 68.20  | 17.45  |
| 16740.00            | 47.41   | РК       | V           | 2.42   | 49.83                  | 68.20  | 18.37  |
|                     |         | Hig      | gh channel  | 5700   | MHz                    |        |        |
| 5725.00             | 53.06   | РК       | Н           | 8.03   | 61.09                  | 68.20  | 7.11   |
| 5725.00             | 53.22   | РК       | V           | 8.03   | 61.25                  | 68.20  | 6.95   |
| 11400.00            | 47.47   | РК       | Н           | 1.4    | 48.87                  | 74.00  | 25.13  |
| 11400.00            | 37.02   | AV       | Н           | 1.4    | 38.42                  | 54.00  | 15.58  |
| 11400.00            | 48.06   | РК       | V           | 1.4    | 49.46                  | 74.00  | 24.54  |
| 11400.00            | 37.13   | AV       | V           | 1.4    | 38.53                  | 54.00  | 15.47  |
| 17100.00            | 47.60   | РК       | Н           | 4      | 51.60                  | 68.20  | 16.60  |
| 17100.00            | 47.29   | РК       | V           | 4      | 51.29                  | 68.20  | 16.91  |

### 802.11a U-NII-2C

| 802.11n20_0 | J-1111-2C |          |             |        |                        |        |        |
|-------------|-----------|----------|-------------|--------|------------------------|--------|--------|
| Frequency   | Reading   | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
| MHz         | dBµV      | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|             |           | Lo       | w channel   | 5500   | MHz                    |        |        |
| 5460.00     | 51.53     | РК       | Н           | 7.33   | 58.86                  | 74.00  | 15.14  |
| 5460.00     | 39.55     | AV       | Н           | 7.33   | 46.88                  | 54.00  | 7.12   |
| 5460.00     | 50.74     | РК       | V           | 7.33   | 58.07                  | 74.00  | 15.93  |
| 5460.00     | 39.50     | AV       | V           | 7.33   | 46.83                  | 54.00  | 7.17   |
| 5470.00     | 55.59     | РК       | Н           | 7.34   | 62.93                  | 68.20  | 5.27   |
| 5470.00     | 55.44     | РК       | V           | 7.34   | 62.78                  | 68.20  | 5.42   |
| 11000.00    | 47.48     | РК       | Н           | 0.72   | 48.20                  | 74.00  | 25.80  |
| 11000.00    | 37.24     | AV       | Н           | 0.72   | 37.96                  | 54.00  | 16.04  |
| 11000.00    | 48.95     | РК       | V           | 0.72   | 49.67                  | 74.00  | 24.33  |
| 11000.00    | 37.38     | AV       | V           | 0.72   | 38.10                  | 54.00  | 15.90  |
| 16500.00    | 47.51     | РК       | Н           | 1.1    | 48.61                  | 68.20  | 19.59  |
| 16500.00    | 47.53     | РК       | V           | 1.1    | 48.63                  | 68.20  | 19.57  |
|             |           | Midd     | lle channel | 5580   | MHz                    |        |        |
| 11160.00    | 47.27     | РК       | Н           | 1      | 48.27                  | 74.00  | 25.73  |
| 11160.00    | 37.10     | AV       | Н           | 1      | 38.10                  | 54.00  | 15.90  |
| 11160.00    | 47.34     | РК       | V           | 1      | 48.34                  | 74.00  | 25.66  |
| 11160.00    | 37.26     | AV       | V           | 1      | 38.26                  | 54.00  | 15.74  |
| 16740.00    | 47.42     | РК       | Н           | 2.42   | 49.84                  | 68.20  | 18.36  |
| 16740.00    | 47.36     | РК       | V           | 2.42   | 49.78                  | 68.20  | 18.42  |
|             |           | Hig      | gh channel  | 5700   | MHz                    |        |        |
| 5725.00     | 55.65     | РК       | Н           | 8.03   | 63.68                  | 68.20  | 4.52   |
| 5725.00     | 53.73     | РК       | V           | 8.03   | 61.76                  | 68.20  | 6.44   |
| 11400.00    | 45.89     | РК       | Н           | 1.4    | 47.29                  | 74.00  | 26.71  |
| 11400.00    | 37.53     | AV       | Н           | 1.4    | 38.93                  | 54.00  | 15.07  |
| 11400.00    | 47.40     | РК       | V           | 1.4    | 48.80                  | 74.00  | 25.20  |
| 11400.00    | 37.59     | AV       | V           | 1.4    | 38.99                  | 54.00  | 15.01  |
| 17100.00    | 47.61     | РК       | Н           | 4      | 51.61                  | 68.20  | 16.59  |
| 17100.00    | 48.02     | РК       | V           | 4      | 52.02                  | 68.20  | 16.18  |

## 802.11n20\_U-NII-2C

| 802.11n40_0 | J-INII-2C |          |             |        |                        |        |        |
|-------------|-----------|----------|-------------|--------|------------------------|--------|--------|
| Frequency   | Reading   | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
| MHz         | dBµV      | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|             |           | Lo       | w channel   | 5510   | MHz                    | -      |        |
| 5460.00     | 52.87     | PK       | Н           | 7.33   | 60.20                  | 74.00  | 13.80  |
| 5460.00     | 39.86     | AV       | Н           | 7.33   | 47.19                  | 54.00  | 6.81   |
| 5460.00     | 52.81     | РК       | V           | 7.33   | 60.14                  | 74.00  | 13.86  |
| 5460.00     | 39.66     | AV       | V           | 7.33   | 46.99                  | 54.00  | 7.01   |
| 5470.00     | 59.09     | РК       | Н           | 7.34   | 66.43                  | 68.20  | 1.77   |
| 5470.00     | 58.81     | РК       | V           | 7.34   | 66.15                  | 68.20  | 2.05   |
| 11020.00    | 48.58     | РК       | Н           | 0.75   | 49.33                  | 74.00  | 24.67  |
| 11020.00    | 37.28     | AV       | Н           | 0.75   | 38.03                  | 54.00  | 15.97  |
| 11020.00    | 49.02     | РК       | V           | 0.75   | 49.77                  | 74.00  | 24.23  |
| 11020.00    | 37.49     | AV       | V           | 0.75   | 38.24                  | 54.00  | 15.76  |
| 16530.00    | 47.79     | PK       | Н           | 1.27   | 49.06                  | 68.20  | 19.14  |
| 16530.00    | 47.61     | PK       | V           | 1.27   | 48.88                  | 68.20  | 19.32  |
|             |           | Midd     | lle channel | 5550   | MHz                    |        |        |
| 11100.00    | 48.37     | РК       | Н           | 0.89   | 49.26                  | 74.00  | 24.74  |
| 11100.00    | 37.16     | AV       | Н           | 0.89   | 38.05                  | 54.00  | 15.95  |
| 11100.00    | 49.21     | РК       | V           | 0.89   | 50.10                  | 74.00  | 23.90  |
| 11100.00    | 37.31     | AV       | V           | 0.89   | 38.20                  | 54.00  | 15.80  |
| 16650.00    | 47.56     | РК       | Н           | 1.93   | 49.49                  | 68.20  | 18.71  |
| 16650.00    | 47.35     | РК       | V           | 1.93   | 49.28                  | 68.20  | 18.92  |
|             |           | Hi       | gh channel  | 5670   | MHz                    |        |        |
| 5725.00     | 53.49     | РК       | Н           | 8.03   | 61.52                  | 68.20  | 6.68   |
| 5725.00     | 54.63     | РК       | V           | 8.03   | 62.66                  | 68.20  | 5.54   |
| 11340.00    | 47.35     | РК       | Н           | 1.29   | 48.64                  | 74.00  | 25.36  |
| 11340.00    | 37.71     | AV       | Н           | 1.29   | 39.00                  | 54.00  | 15.00  |
| 11340.00    | 46.73     | РК       | V           | 1.29   | 48.02                  | 74.00  | 25.98  |
| 11340.00    | 37.54     | AV       | V           | 1.29   | 38.83                  | 54.00  | 15.17  |
| 17010.00    | 47.75     | РК       | Н           | 3.87   | 51.62                  | 68.20  | 16.58  |
| 17010.00    | 47.23     | РК       | V           | 3.87   | 51.10                  | 68.20  | 17.10  |

## 802.11n40\_U-NII-2C

| Frequency | Reading | Detector | Polar      | Factor | Corrected<br>Amplitude | Limit  | Margin |
|-----------|---------|----------|------------|--------|------------------------|--------|--------|
| MHz       | dBµV    | PK/QP/AV | H/V        | dB/m   | dBµV/m                 | dBµV/m | dB     |
|           |         | La       | w channel  | 5530   | MHz                    | -      |        |
| 5460.00   | 54.57   | РК       | Н          | 7.33   | 61.90                  | 74.00  | 12.10  |
| 5460.00   | 39.95   | AV       | Н          | 7.33   | 47.28                  | 54.00  | 6.72   |
| 5460.00   | 53.51   | PK       | V          | 7.33   | 60.84                  | 74.00  | 13.16  |
| 5460.00   | 39.10   | AV       | V          | 7.33   | 46.43                  | 54.00  | 7.57   |
| 5470.00   | 56.08   | PK       | Н          | 7.34   | 63.42                  | 68.20  | 4.78   |
| 5470.00   | 55.93   | PK       | V          | 7.34   | 63.27                  | 68.20  | 4.93   |
| 11060.00  | 48.40   | PK       | Н          | 0.82   | 49.22                  | 74.00  | 24.78  |
| 11060.00  | 37.48   | AV       | Н          | 0.82   | 38.30                  | 54.00  | 15.70  |
| 11060.00  | 47.40   | PK       | V          | 0.82   | 48.22                  | 74.00  | 25.78  |
| 11060.00  | 37.09   | AV       | V          | 0.82   | 37.91                  | 54.00  | 16.09  |
| 16590.00  | 47.33   | PK       | Н          | 1.6    | 48.93                  | 68.20  | 19.27  |
| 16590.00  | 47.22   | PK       | V          | 1.6    | 48.82                  | 68.20  | 19.38  |
|           |         | Hi       | gh channel | 5610   | MHz                    |        |        |
| 5725.00   | 51.28   | РК       | Н          | 8.03   | 59.31                  | 68.20  | 8.89   |
| 5725.00   | 50.71   | PK       | V          | 8.03   | 58.74                  | 68.20  | 9.46   |
| 11220.00  | 47.79   | РК       | Н          | 1.1    | 48.89                  | 74.00  | 25.11  |
| 11220.00  | 37.48   | AV       | Н          | 1.1    | 38.58                  | 54.00  | 15.42  |
| 11220.00  | 47.49   | PK       | V          | 1.1    | 48.59                  | 74.00  | 25.41  |
| 11220.00  | 37.14   | AV       | V          | 1.1    | 38.24                  | 54.00  | 15.76  |
| 16830.00  | 46.85   | РК       | Н          | 2.91   | 49.76                  | 68.20  | 18.44  |
| 16830.00  | 45.58   | РК       | V          | 2.91   | 48.49                  | 68.20  | 19.71  |

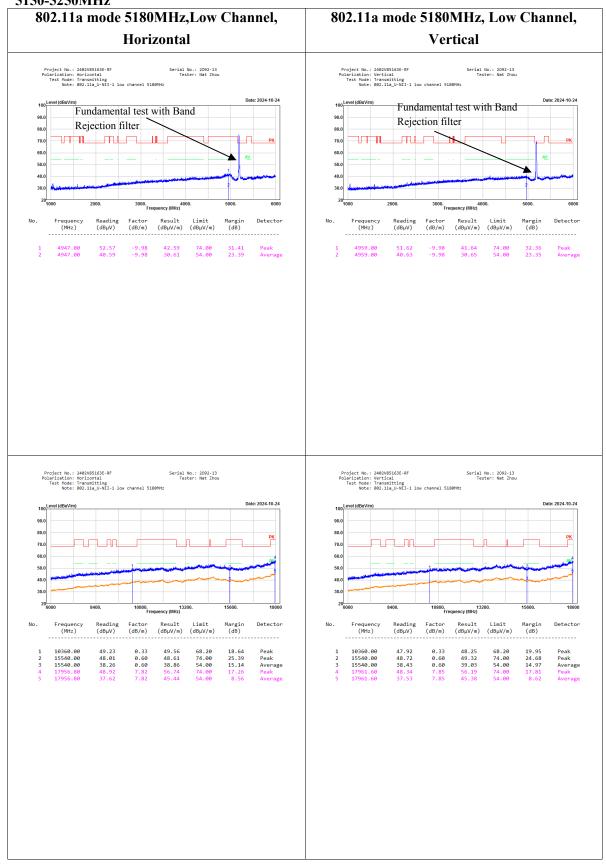
\_\_\_\_\_

### 802.11ac80\_U-NII-2C

| 802.11a_U-r | 111-5   |          |             |        |                        |        |        |
|-------------|---------|----------|-------------|--------|------------------------|--------|--------|
| Frequency   | Reading | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
| MHz         | dBµV    | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|             |         | Lo       | ow channel  | 5745   | MHz                    | -      |        |
| 5725.00     | 75.12   | РК       | Н           | 8.03   | 83.15                  | 122.20 | 39.05  |
| 5720.00     | 67.74   | РК       | Н           | 8.02   | 75.76                  | 110.80 | 35.04  |
| 5700.00     | 54.55   | РК       | Н           | 7.98   | 62.53                  | 105.20 | 42.67  |
| 5650.00     | 50.55   | РК       | Н           | 7.89   | 58.44                  | 68.20  | 9.76   |
| 5725.00     | 74.54   | РК       | V           | 8.03   | 82.57                  | 122.20 | 39.63  |
| 5720.00     | 66.42   | РК       | V           | 8.02   | 74.44                  | 110.80 | 36.36  |
| 5700.00     | 55.48   | РК       | V           | 7.98   | 63.46                  | 105.20 | 41.74  |
| 5650.00     | 50.97   | РК       | V           | 7.89   | 58.86                  | 68.20  | 9.34   |
| 11490.00    | 54.38   | РК       | Н           | 1.55   | 55.93                  | 74.00  | 18.07  |
| 11490.00    | 46.16   | AV       | Н           | 1.55   | 47.71                  | 54.00  | 6.29   |
| 11490.00    | 55.60   | РК       | V           | 1.55   | 57.15                  | 74.00  | 16.85  |
| 11490.00    | 47.13   | AV       | V           | 1.55   | 48.68                  | 54.00  | 5.32   |
| 17235.00    | 47.43   | РК       | Н           | 4.2    | 51.63                  | 68.20  | 16.57  |
| 17235.00    | 47.29   | РК       | V           | 4.2    | 51.49                  | 68.20  | 16.71  |
|             |         | Midd     | lle channel | 5785   | MHz                    |        |        |
| 11570.00    | 54.08   | РК       | Н           | 1.59   | 55.67                  | 74.00  | 18.33  |
| 11570.00    | 43.13   | AV       | Н           | 1.59   | 44.72                  | 54.00  | 9.28   |
| 11570.00    | 54.86   | РК       | V           | 1.59   | 56.45                  | 74.00  | 17.55  |
| 11570.00    | 43.26   | AV       | V           | 1.59   | 44.85                  | 54.00  | 9.15   |
| 17355.00    | 47.62   | РК       | Н           | 4.37   | 51.99                  | 68.20  | 16.21  |
| 17355.00    | 47.13   | РК       | V           | 4.37   | 51.50                  | 68.20  | 16.70  |
|             |         | Hi       | gh channel  | 5825   | MHz                    |        |        |
| 5850.00     | 65.36   | РК       | Н           | 8.2    | 73.56                  | 122.20 | 48.64  |
| 5855.00     | 63.90   | РК       | Н           | 8.21   | 72.11                  | 110.80 | 38.69  |
| 5875.00     | 55.60   | РК       | Н           | 8.28   | 63.88                  | 105.20 | 41.32  |
| 5925.00     | 51.56   | РК       | Н           | 8.4    | 59.96                  | 68.20  | 8.24   |
| 5850.00     | 65.29   | РК       | V           | 8.2    | 73.49                  | 122.20 | 48.71  |
| 5855.00     | 62.68   | РК       | V           | 8.21   | 70.89                  | 110.80 | 39.91  |
| 5875.00     | 55.67   | РК       | V           | 8.28   | 63.95                  | 105.20 | 41.25  |
| 5925.00     | 50.72   | РК       | V           | 8.4    | 59.12                  | 68.20  | 9.08   |
| 11650.00    | 51.49   | РК       | Н           | 1.59   | 53.08                  | 74.00  | 20.92  |
| 11650.00    | 40.13   | AV       | Н           | 1.59   | 41.72                  | 54.00  | 12.28  |
| 11650.00    | 50.89   | РК       | V           | 1.59   | 52.48                  | 74.00  | 21.52  |
| 11650.00    | 39.14   | AV       | V           | 1.59   | 40.73                  | 54.00  | 13.27  |
| 17475.00    | 47.25   | РК       | Н           | 4.56   | 51.81                  | 68.20  | 16.39  |
| 17475.00    | 47.38   | РК       | V           | 4.56   | 51.94                  | 68.20  | 16.26  |

## 802.11a\_U-NII-3

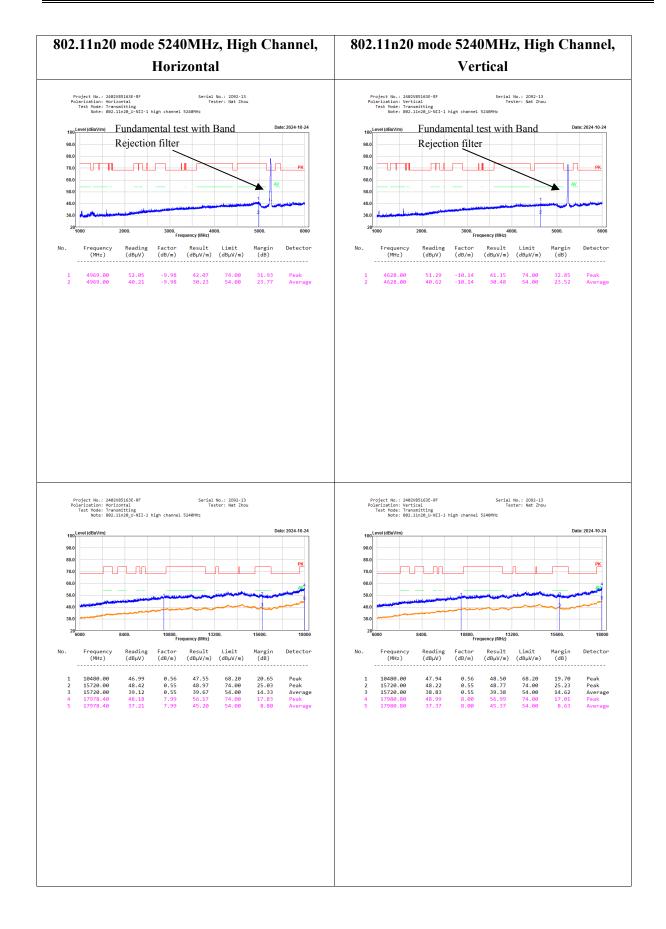
| 802.11n20_0 | 0-1111-5 |          |             |        |                        |        |        |
|-------------|----------|----------|-------------|--------|------------------------|--------|--------|
| Frequency   | Reading  | Detector | Polar       | Factor | Corrected<br>Amplitude | Limit  | Margin |
| MHz         | dBµV     | PK/QP/AV | H/V         | dB/m   | dBµV/m                 | dBµV/m | dB     |
|             |          | Lo       | w channel   | 5745   | MHz                    |        |        |
| 5725.00     | 72.84    | РК       | Н           | 8.03   | 80.87                  | 122.20 | 41.33  |
| 5720.00     | 65.16    | РК       | Н           | 8.02   | 73.18                  | 110.80 | 37.62  |
| 5700.00     | 55.90    | РК       | Н           | 7.98   | 63.88                  | 105.20 | 41.32  |
| 5650.00     | 50.53    | РК       | Н           | 7.89   | 58.42                  | 68.20  | 9.78   |
| 5725.00     | 76.01    | РК       | V           | 8.03   | 84.04                  | 122.20 | 38.16  |
| 5720.00     | 66.34    | РК       | V           | 8.02   | 74.36                  | 110.80 | 36.44  |
| 5700.00     | 54.71    | РК       | V           | 7.98   | 62.69                  | 105.20 | 42.51  |
| 5650.00     | 49.96    | РК       | V           | 7.89   | 57.85                  | 68.20  | 10.35  |
| 11490.00    | 52.24    | РК       | Н           | 1.55   | 53.79                  | 74.00  | 20.21  |
| 11490.00    | 41.73    | AV       | Н           | 1.55   | 43.28                  | 54.00  | 10.72  |
| 11490.00    | 53.58    | РК       | V           | 1.55   | 55.13                  | 74.00  | 18.87  |
| 11490.00    | 42.44    | AV       | V           | 1.55   | 43.99                  | 54.00  | 10.01  |
| 17235.00    | 47.52    | РК       | Н           | 4.2    | 51.72                  | 68.20  | 16.48  |
| 17235.00    | 47.21    | РК       | V           | 4.2    | 51.41                  | 68.20  | 16.79  |
|             |          | Midd     | lle channel | 5785   | MHz                    |        |        |
| 11570.00    | 53.98    | РК       | Н           | 1.59   | 55.57                  | 74.00  | 18.43  |
| 11570.00    | 46.43    | AV       | Н           | 1.59   | 48.02                  | 54.00  | 5.98   |
| 11570.00    | 55.76    | РК       | V           | 1.59   | 57.35                  | 74.00  | 16.65  |
| 11570.00    | 44.74    | AV       | V           | 1.59   | 46.33                  | 54.00  | 7.67   |
| 17355.00    | 47.96    | РК       | Н           | 4.37   | 52.33                  | 68.20  | 15.87  |
| 17355.00    | 47.66    | РК       | V           | 4.37   | 52.03                  | 68.20  | 16.17  |
|             |          | Hi       | gh channel  | 5825   | MHz                    |        |        |
| 5850.00     | 66.06    | РК       | Н           | 8.2    | 74.26                  | 122.20 | 47.94  |
| 5855.00     | 63.24    | РК       | Н           | 8.21   | 71.45                  | 110.80 | 39.35  |
| 5875.00     | 55.00    | РК       | Н           | 8.28   | 63.28                  | 105.20 | 41.92  |
| 5925.00     | 50.64    | РК       | Н           | 8.4    | 59.04                  | 68.20  | 9.16   |
| 5850.00     | 64.49    | РК       | V           | 8.2    | 72.69                  | 122.20 | 49.51  |
| 5855.00     | 62.02    | РК       | V           | 8.21   | 70.23                  | 110.80 | 40.57  |
| 5875.00     | 54.66    | РК       | V           | 8.28   | 62.94                  | 105.20 | 42.26  |
| 5925.00     | 50.31    | РК       | V           | 8.4    | 58.71                  | 68.20  | 9.49   |
| 11650.00    | 50.88    | РК       | Н           | 1.59   | 52.47                  | 74.00  | 21.53  |
| 11650.00    | 39.41    | AV       | Н           | 1.59   | 41.00                  | 54.00  | 13.00  |
| 11650.00    | 50.73    | РК       | V           | 1.59   | 52.32                  | 74.00  | 21.68  |
| 11650.00    | 40.04    | AV       | V           | 1.59   | 41.63                  | 54.00  | 12.37  |
| 17475.00    | 47.87    | РК       | Н           | 4.56   | 52.43                  | 68.20  | 15.77  |
| 17475.00    | 47.46    | РК       | V           | 4.56   | 52.02                  | 68.20  | 16.18  |


## 802.11n20\_U-NII-3

| <u>802.11140_</u> ( |         |          |            |        |                        |        |        |  |  |  |  |
|---------------------|---------|----------|------------|--------|------------------------|--------|--------|--|--|--|--|
| Frequency           | Reading | Detector | Polar      | Factor | Corrected<br>Amplitude | Limit  | Margin |  |  |  |  |
| MHz                 | dBµV    | PK/QP/AV | H/V        | dB/m   | dBµV/m                 | dBµV/m | dB     |  |  |  |  |
|                     |         | La       | ow channel | 5755   | MHz                    |        |        |  |  |  |  |
| 5725.00             | 71.93   | РК       | Н          | 8.03   | 79.96                  | 122.20 | 42.24  |  |  |  |  |
| 5720.00             | 68.70   | РК       | Н          | 8.02   | 76.72                  | 110.80 | 34.08  |  |  |  |  |
| 5700.00             | 59.02   | РК       | Н          | 7.98   | 67.00                  | 105.20 | 38.20  |  |  |  |  |
| 5650.00             | 50.76   | РК       | Н          | 7.89   | 58.65                  | 68.20  | 9.55   |  |  |  |  |
| 5725.00             | 70.02   | РК       | V          | 8.03   | 78.05                  | 122.20 | 44.15  |  |  |  |  |
| 5720.00             | 67.20   | РК       | V          | 8.02   | 75.22                  | 110.80 | 35.58  |  |  |  |  |
| 5700.00             | 58.49   | РК       | V          | 7.98   | 66.47                  | 105.20 | 38.73  |  |  |  |  |
| 5650.00             | 50.19   | РК       | V          | 7.89   | 58.08                  | 68.20  | 10.12  |  |  |  |  |
| 11510.00            | 50.33   | РК       | Н          | 1.57   | 51.90                  | 74.00  | 22.10  |  |  |  |  |
| 11510.00            | 40.93   | AV       | Н          | 1.57   | 42.50                  | 54.00  | 11.50  |  |  |  |  |
| 11510.00            | 51.22   | РК       | V          | 1.57   | 52.79                  | 74.00  | 21.21  |  |  |  |  |
| 11510.00            | 42.54   | AV       | V          | 1.57   | 44.11                  | 54.00  | 9.89   |  |  |  |  |
| 17265.00            | 47.76   | РК       | Н          | 4.24   | 52.00                  | 68.20  | 16.20  |  |  |  |  |
| 17265.00            | 48.20   | РК       | V          | 4.24   | 52.44                  | 68.20  | 15.76  |  |  |  |  |
|                     |         | Hig      | gh channel | 5795   | MHz                    |        |        |  |  |  |  |
| 5850.00             | 60.47   | РК       | Н          | 8.2    | 68.67                  | 122.20 | 53.53  |  |  |  |  |
| 5855.00             | 56.45   | РК       | Н          | 8.21   | 64.66                  | 110.80 | 46.14  |  |  |  |  |
| 5875.00             | 54.82   | PK       | Н          | 8.28   | 63.10                  | 105.20 | 42.10  |  |  |  |  |
| 5925.00             | 50.56   | РК       | Н          | 8.4    | 58.96                  | 68.20  | 9.24   |  |  |  |  |
| 5850.00             | 58.46   | РК       | V          | 8.2    | 66.66                  | 122.20 | 55.54  |  |  |  |  |
| 5855.00             | 56.30   | РК       | V          | 8.21   | 64.51                  | 110.80 | 46.29  |  |  |  |  |
| 5875.00             | 52.73   | РК       | V          | 8.28   | 61.01                  | 105.20 | 44.19  |  |  |  |  |
| 5925.00             | 50.65   | РК       | V          | 8.4    | 59.05                  | 68.20  | 9.15   |  |  |  |  |
| 11590.00            | 49.85   | РК       | Н          | 1.58   | 51.43                  | 74.00  | 22.57  |  |  |  |  |
| 11590.00            | 37.62   | AV       | Н          | 1.58   | 39.20                  | 54.00  | 14.80  |  |  |  |  |
| 11590.00            | 49.15   | РК       | V          | 1.58   | 50.73                  | 74.00  | 23.27  |  |  |  |  |
| 11590.00            | 38.24   | AV       | V          | 1.58   | 39.82                  | 54.00  | 14.18  |  |  |  |  |
| 17385.00            | 47.92   | РК       | Н          | 4.42   | 52.34                  | 68.20  | 15.86  |  |  |  |  |
| 17385.00            | 47.81   | РК       | V          | 4.42   | 52.23                  | 68.20  | 15.97  |  |  |  |  |

## 802.11n40\_U-NII-3

| Frequency | Reading | Detector | Detector Polar Factor |      | Corrected<br>Amplitude | Limit  | Margin |  |
|-----------|---------|----------|-----------------------|------|------------------------|--------|--------|--|
| MHz       | dBµV    | PK/QP/AV | H/V                   | dB/m | dBµV/m                 | dBµV/m | dB     |  |
|           |         | Midd     | lle channel           | 5775 | MHz                    |        |        |  |
| 5725.00   | 65.29   | РК       | Н                     | 8.03 | 73.32                  | 122.20 | 48.88  |  |
| 5720.00   | 64.70   | РК       | Н                     | 8.02 | 72.72                  | 110.80 | 38.08  |  |
| 5700.00   | 60.04   | РК       | Н                     | 7.98 | 68.02                  | 105.20 | 37.18  |  |
| 5650.00   | 51.44   | РК       | Н                     | 7.89 | 59.33                  | 68.20  | 8.87   |  |
| 5850.00   | 59.42   | РК       | Н                     | 8.2  | 67.62                  | 122.20 | 54.58  |  |
| 5855.00   | 59.86   | РК       | Н                     | 8.21 | 68.07                  | 110.80 | 42.73  |  |
| 5875.00   | 55.81   | РК       | Н                     | 8.28 | 64.09                  | 105.20 | 41.11  |  |
| 5925.00   | 50.92   | РК       | Н                     | 8.4  | 59.32                  | 68.20  | 8.88   |  |
| 5725.00   | 62.66   | РК       | V                     | 8.03 | 70.69                  | 122.20 | 51.51  |  |
| 5720.00   | 62.84   | РК       | V                     | 8.02 | 70.86                  | 110.80 | 39.94  |  |
| 5700.00   | 58.32   | РК       | V                     | 7.98 | 66.30                  | 105.20 | 38.90  |  |
| 5650.00   | 51.10   | РК       | V                     | 7.89 | 58.99                  | 68.20  | 9.21   |  |
| 5850.00   | 56.97   | РК       | V                     | 8.2  | 65.17                  | 122.20 | 57.03  |  |
| 5855.00   | 56.72   | РК       | V                     | 8.21 | 64.93                  | 110.80 | 45.87  |  |
| 5875.00   | 54.06   | РК       | V                     | 8.28 | 62.34                  | 105.20 | 42.86  |  |
| 5925.00   | 50.95   | РК       | V                     | 8.4  | 59.35                  | 68.20  | 8.85   |  |
| 11550.00  | 47.79   | РК       | Н                     | 1.58 | 49.37                  | 74.00  | 24.63  |  |
| 11550.00  | 37.25   | AV       | Н                     | 1.58 | 38.83                  | 54.00  | 15.17  |  |
| 11550.00  | 46.63   | РК       | V                     | 1.58 | 48.21                  | 74.00  | 25.79  |  |
| 11550.00  | 37.22   | AV       | V                     | 1.58 | 38.80                  | 54.00  | 15.20  |  |
| 17325.00  | 48.61   | PK       | Н                     | 4.33 | 52.94                  | 68.20  | 15.26  |  |
| 17325.00  | 47.93   | РК       | V                     | 4.33 | 52.26                  | 68.20  | 15.94  |  |

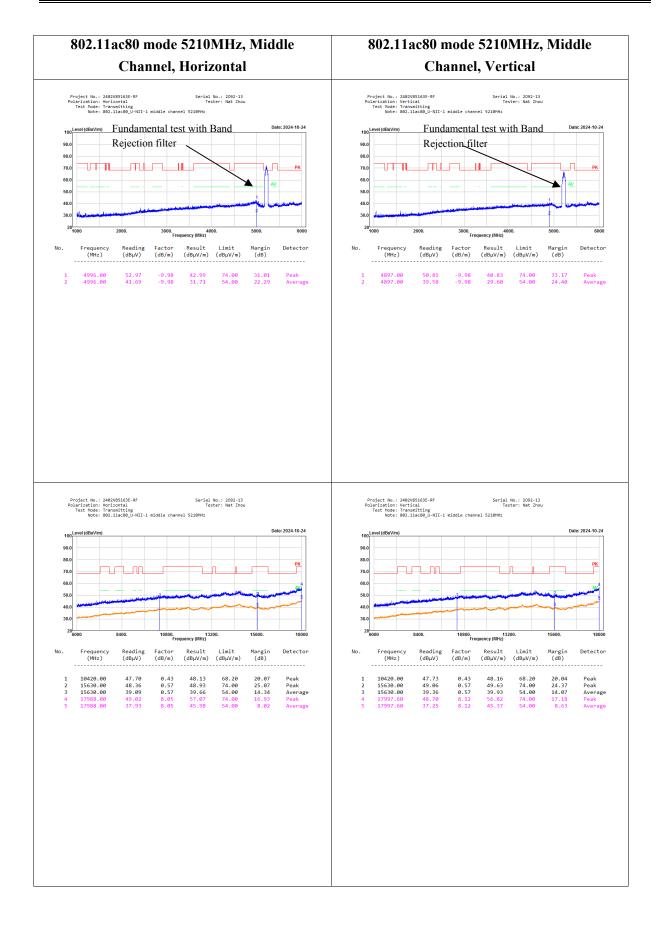

### 802.11ac80 U-NII-3



# Worst Channel Test plots: 5150-5250MHz

Report Template Version: FCC-WiFi5-Client-V1.2

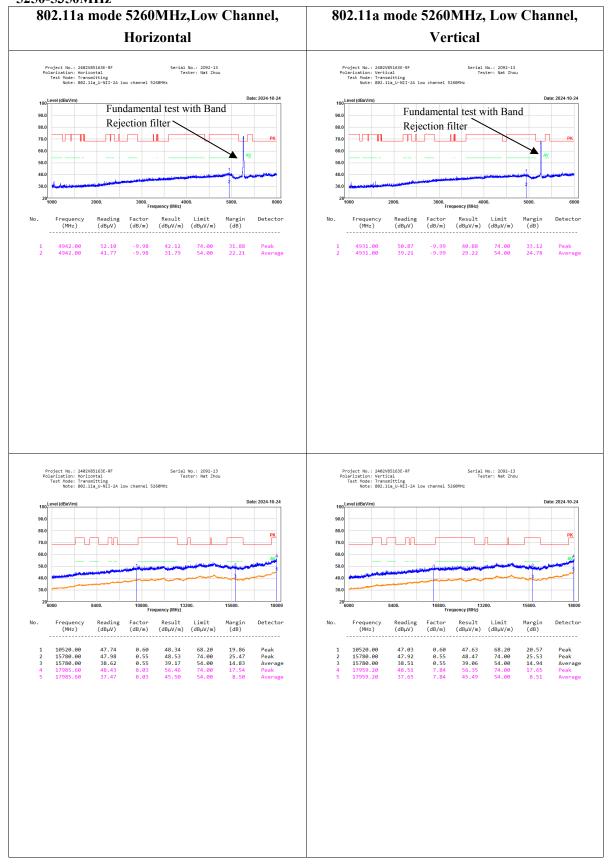
Page 50 of 119



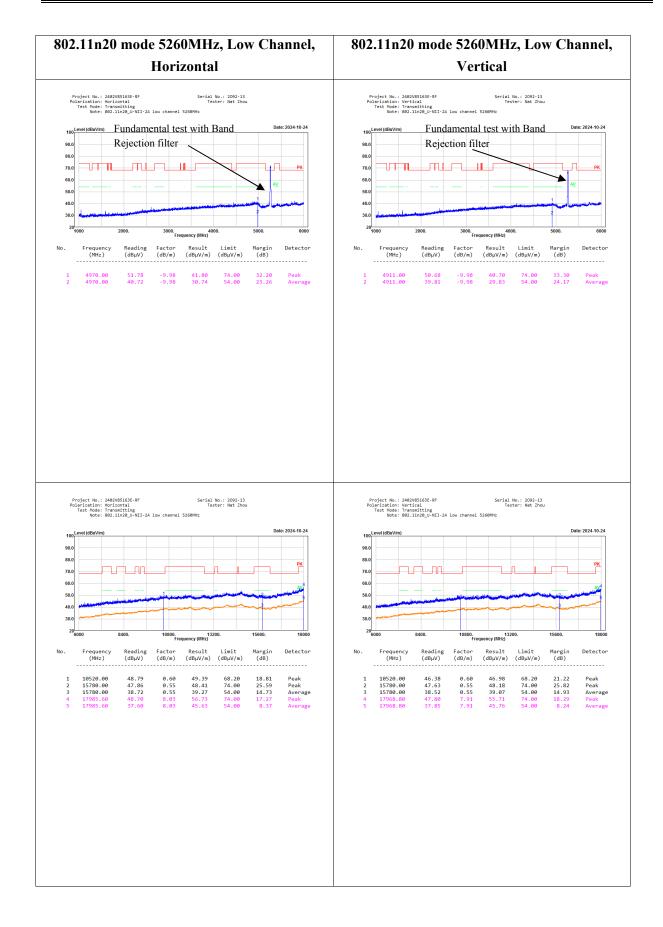

Page 51 of 119



Report Template Version: FCC-WiFi5-Client-V1.2


Page 52 of 119



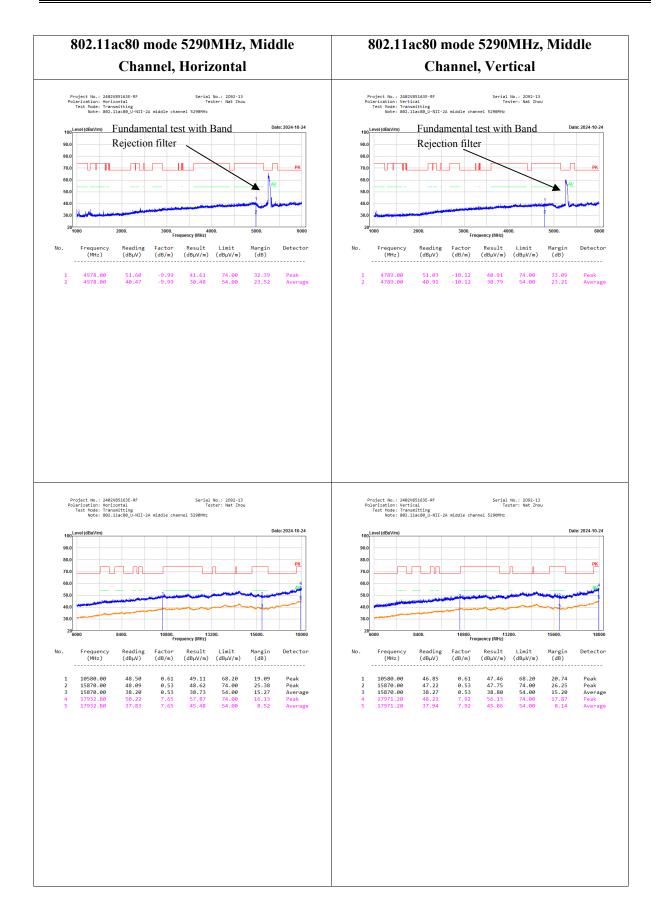

Report Template Version: FCC-WiFi5-Client-V1.2

Page 53 of 119

#### 5250-5350MHz

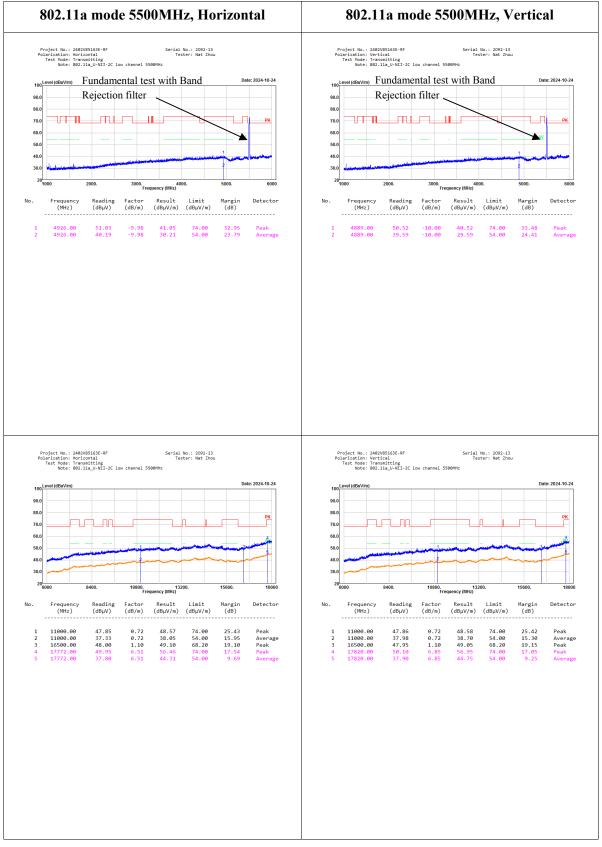


Page 54 of 119




Page 55 of 119




Report Template Version: FCC-WiFi5-Client-V1.2

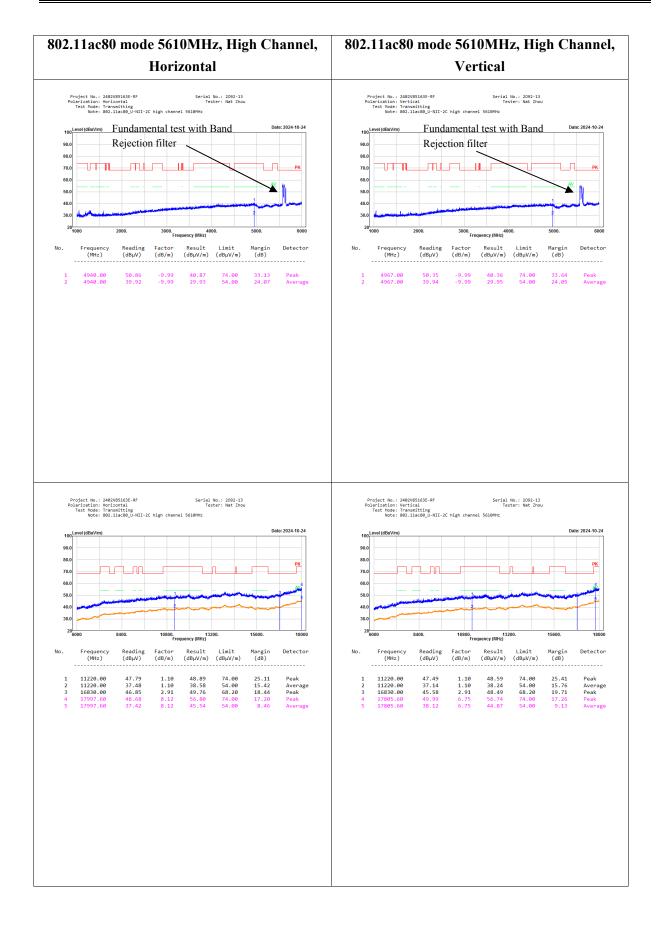
Page 56 of 119



Page 57 of 119

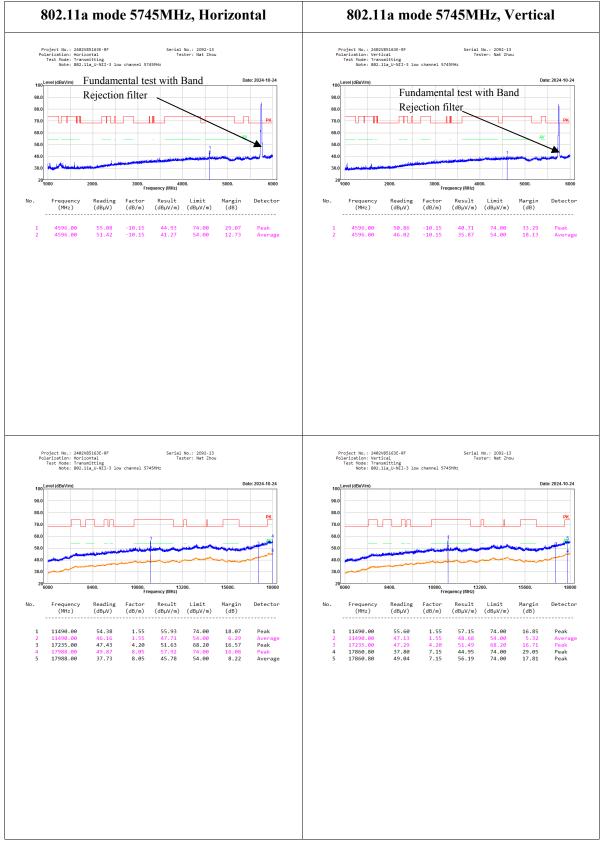
#### 5470-5725MHz



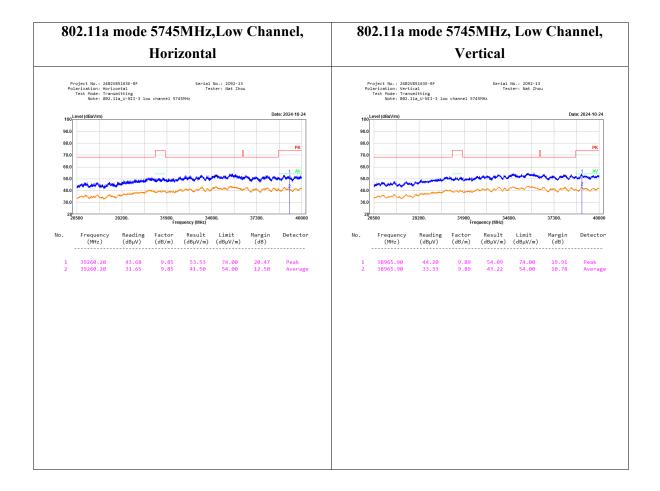

Page 58 of 119



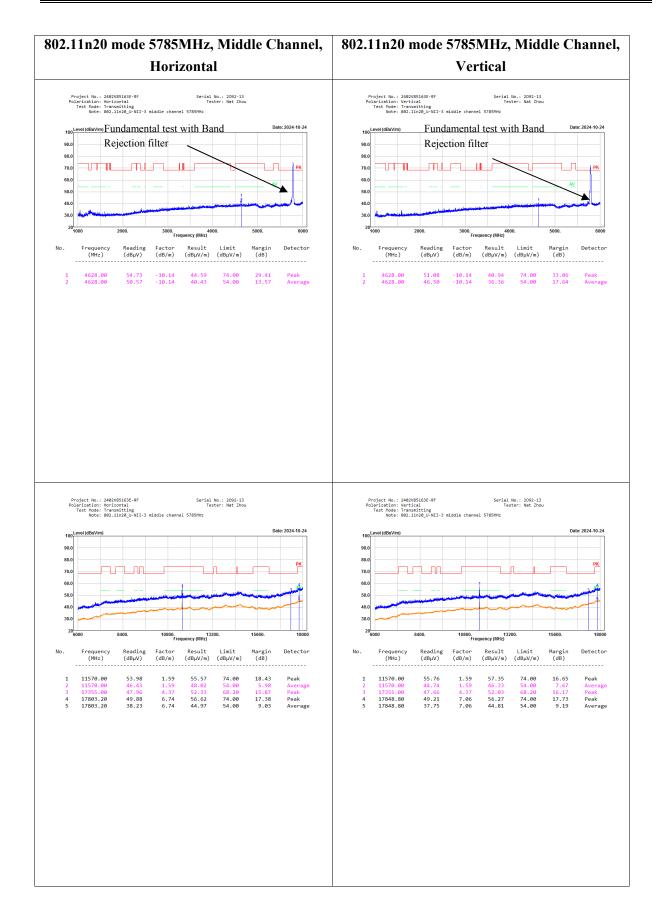
Page 59 of 119



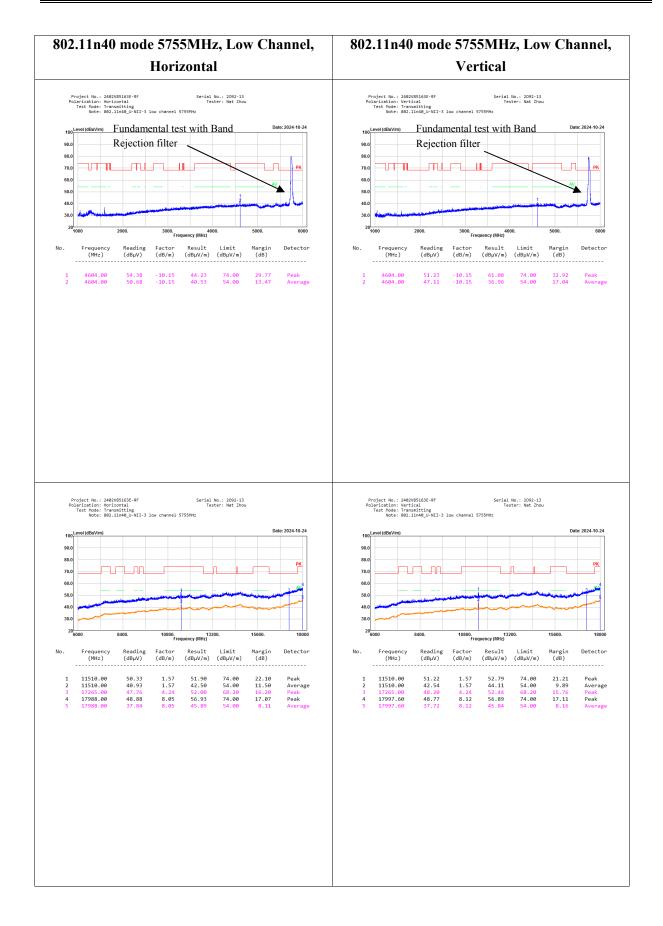

Page 60 of 119




Page 61 of 119

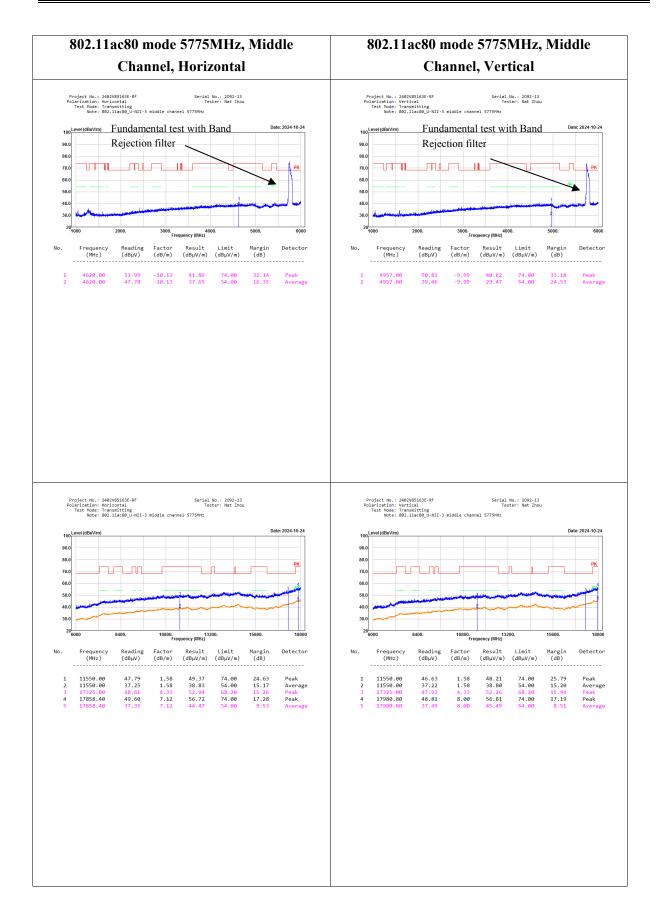

#### 5725-5850MHz




Page 62 of 119

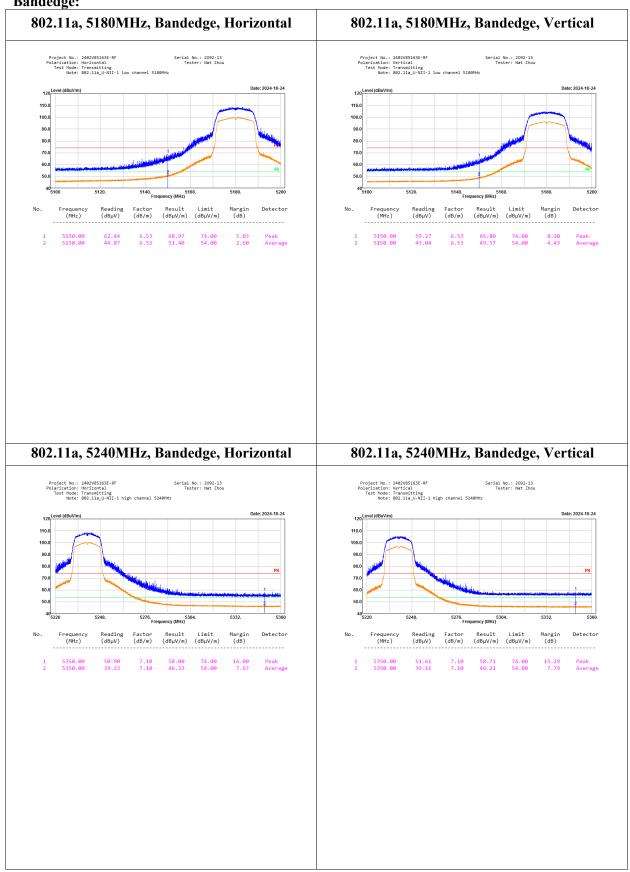


Page 63 of 119



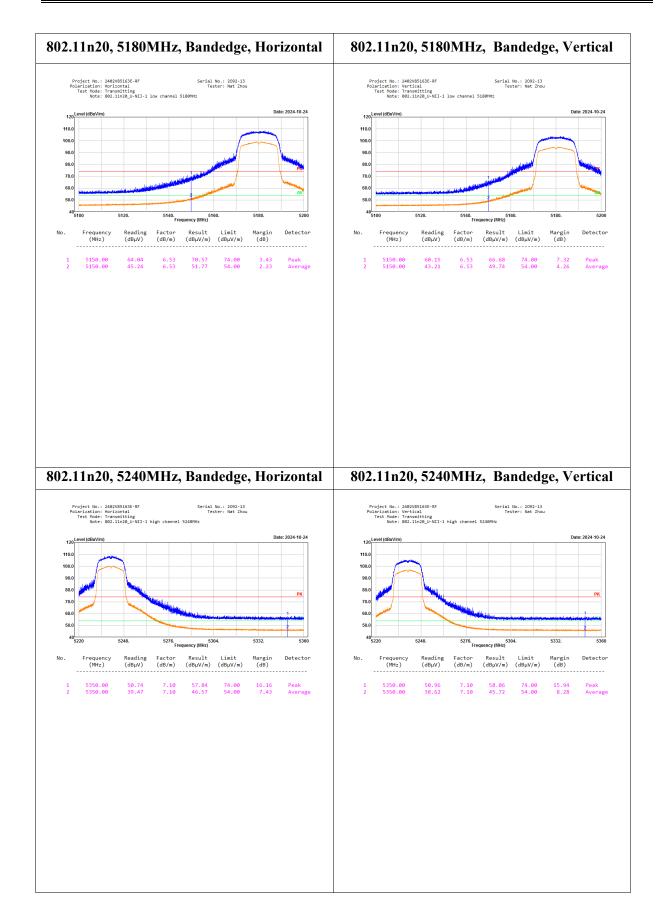

Page 64 of 119




Report Template Version: FCC-WiFi5-Client-V1.2

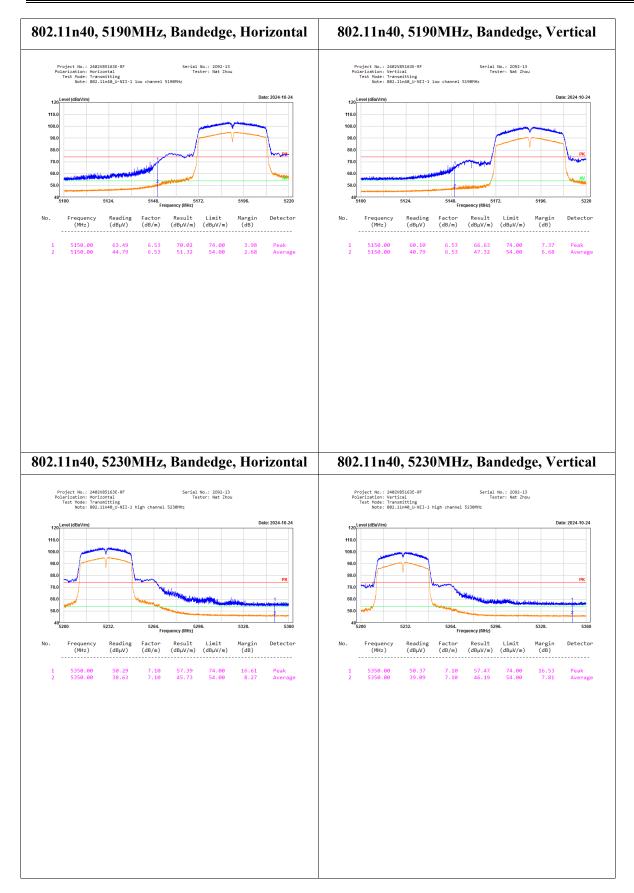
Page 65 of 119




Page 66 of 119

#### **Bandedge:**




Report Template Version: FCC-WiFi5-Client-V1.2

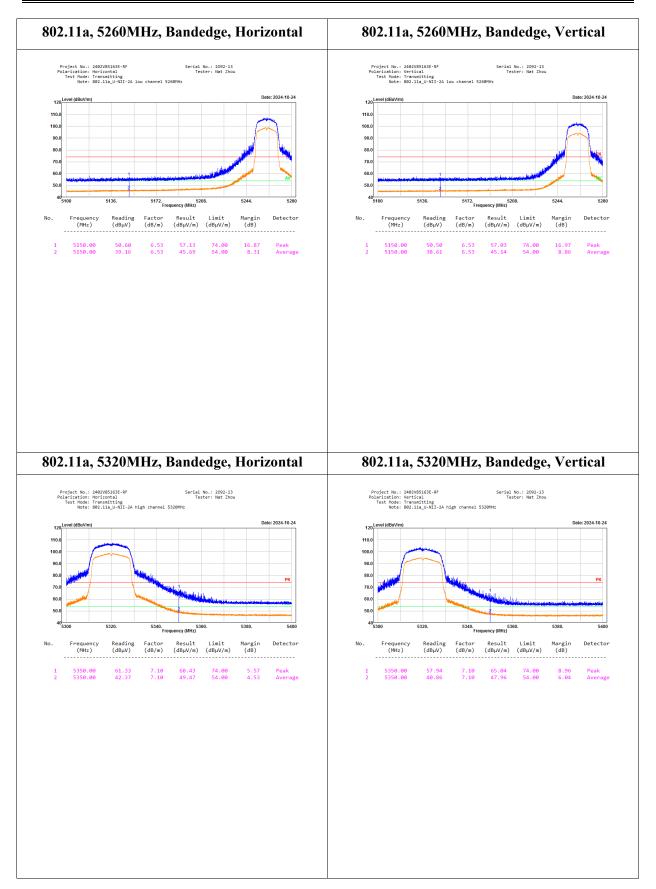
Page 67 of 119



Page 68 of 119

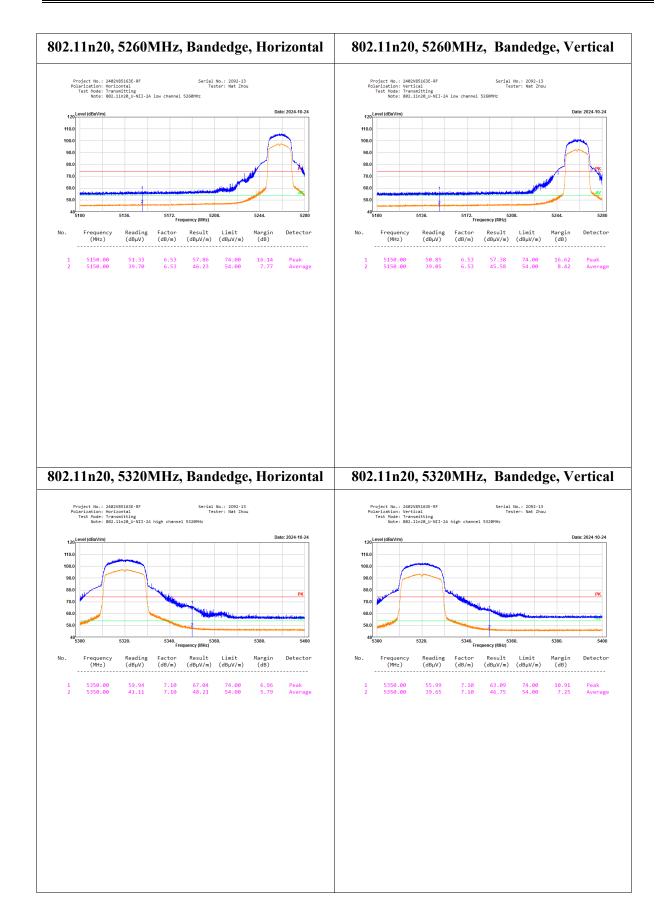
#### Bay Area Compliance Laboratories Corp. (Dongguan)




Report Template Version: FCC-WiFi5-Client-V1.2

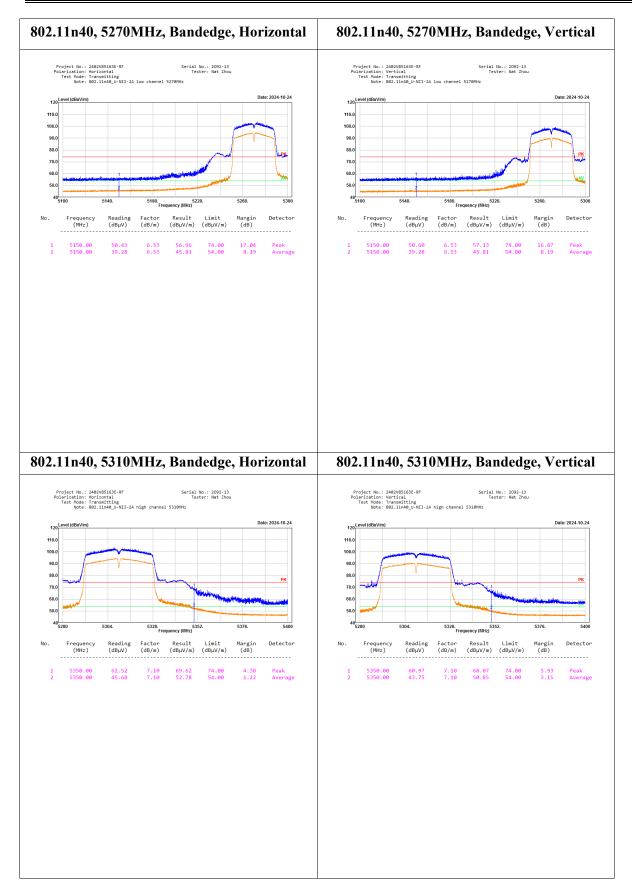
Page 69 of 119

# Bay Area Compliance Laboratories Corp. (Dongguan)


|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lac80_U-NII-1     | middie chann     | 101 5210MMZ               |                        |                |                 |                  |                    | 11ac80_U-NII-1    | middle chan      | nei Szionnz                |                   |                |                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|---------------------------|------------------------|----------------|-----------------|------------------|--------------------|-------------------|------------------|----------------------------|-------------------|----------------|-----------------------|
| 120          | evel (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                  |                           |                        | Da             | ate: 2024-10-24 | 120 <sup>L</sup> | .evel (dBuV/m)     |                   |                  |                            |                   | Da             | ate: 2024-10-24       |
| 110.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                           |                        |                |                 | 110.0            |                    |                   |                  |                            |                   |                |                       |
| 100.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  | and a second state of the |                        |                |                 | 100.0            |                    |                   | manna            | and a second second second |                   |                |                       |
| 90.0<br>80.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                 |                  |                           |                        |                |                 | 90.0             |                    | <u> </u>          |                  |                            |                   |                |                       |
| 70.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | James -           |                  |                           | and law lay state a se |                | РК              | 70.0             |                    |                   |                  |                            |                   |                | PK                    |
| 60.0         | and the state of t |                   |                  |                           |                        | WWW            | 3               | 60.0             |                    | berning b         |                  |                            | Million Million   | WWW.           | 3                     |
| 50.0         | and the second s | n warder          |                  |                           | and the second second  |                |                 | 50.0             |                    | -                 |                  |                            | -                 |                | Anteriore August<br>4 |
| 40           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5152.             | 5204.            | 52                        | 56.                    | 5308.          | 5360            | 40               | 100                | 5152.             | 5204.            |                            | 256.              | 5308.          | 5360                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Fre              | quency (MHz)              |                        |                |                 |                  |                    |                   | Fre              | equency (MHz)              |                   |                |                       |
| No.          | Frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reading<br>(dBµV) | Factor<br>(dB/m) | Result<br>(dBµV/m)        | Limit<br>(dBµV/m)      | Margin<br>(dB) | Detector        | No.              | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor<br>(dB/m) | Result<br>(dBµV/m)         | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector              |
| 1            | 5150.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65.16             | 6.53             | 71.69                     | 74.00                  | 2.31           | Peak            | 1                | 5150.00            | 60.00             | 6.53             | 66.53                      | 74.00             | 7.47           | Peak                  |
| 2<br>3       | 5150.00<br>5350.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.12<br>51.72    | 6.53<br>7.10     | 52.65<br>58.82            | 54.00<br>74.00         | 1.35<br>15.18  | Avenage<br>Peak | 2<br>3           | 5150.00<br>5350.00 | 42.91<br>50.96    | 6.53<br>7.10     | 49.44<br>58.06             | 54.00<br>74.00    | 4.56<br>15.94  | Average<br>Peak       |
| 4            | 5350.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.03             | 7.10             | 47.13                     | 54.00                  | 6.87           | Average         | 4                | 5350.00            | 39.13             | 7.10             | 46.23                      | 54.00             | 7.77           | Average               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                           |                        |                |                 |                  |                    |                   |                  |                            |                   |                |                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                           |                        |                |                 |                  |                    |                   |                  |                            |                   |                |                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                           |                        |                |                 |                  |                    |                   |                  |                            |                   |                |                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                           |                        |                |                 |                  |                    |                   |                  |                            |                   |                |                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                           |                        |                |                 |                  |                    |                   |                  |                            |                   |                |                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                           |                        |                |                 |                  |                    |                   |                  |                            |                   |                |                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                           |                        |                |                 |                  |                    |                   |                  |                            |                   |                |                       |

#### Bay Area Compliance Laboratories Corp. (Dongguan)




Report Template Version: FCC-WiFi5-Client-V1.2

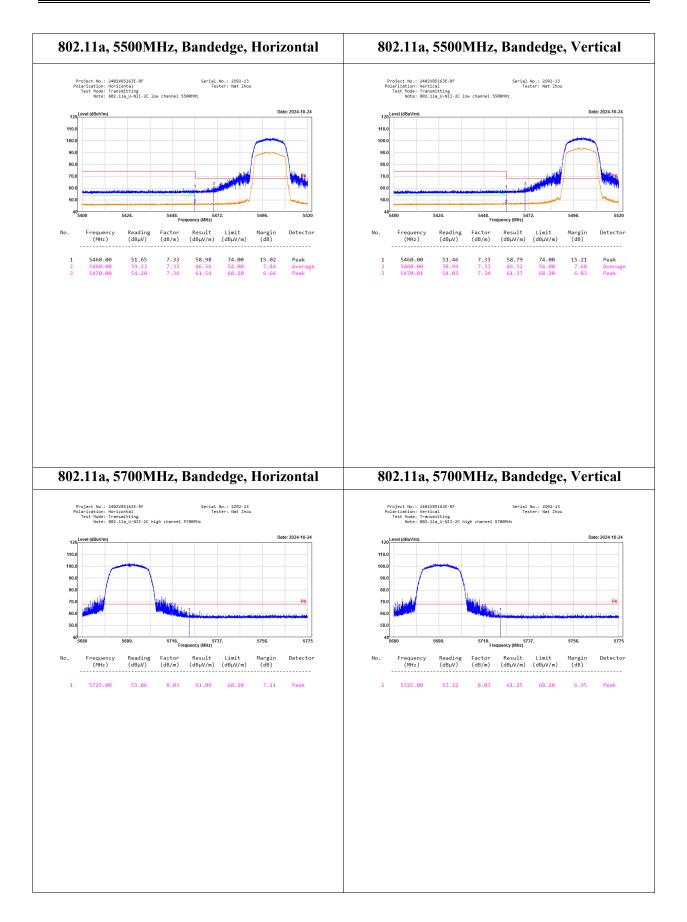
Page 71 of 119



Page 72 of 119

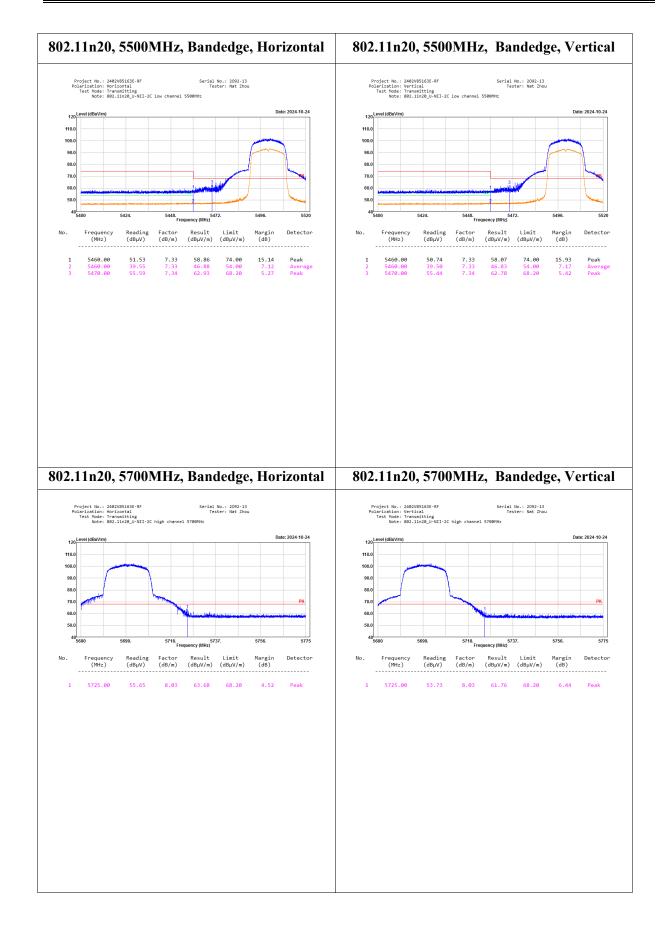
#### Bay Area Compliance Laboratories Corp. (Dongguan)




Report Template Version: FCC-WiFi5-Client-V1.2

Page 73 of 119

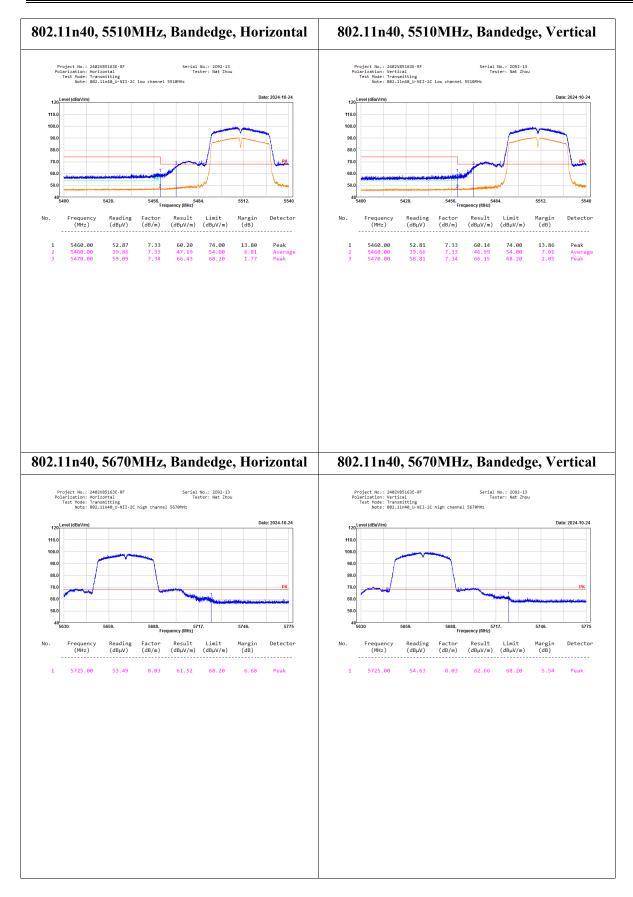
### Bay Area Compliance Laboratories Corp. (Dongguan)


|       | Note: 802.         | 11ac80_U-NII-2    | A middle char               | nel 5290MHz        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       | Test Mode: Tran<br>Note: 802. | 11ac80_U-NII-2    | A middle cha     | nnel 5290MHz       |                         |                       |                     |
|-------|--------------------|-------------------|-----------------------------|--------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|-------------------------------|-------------------|------------------|--------------------|-------------------------|-----------------------|---------------------|
| 120   | evel (dBuV/m)      |                   |                             |                    |                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date: 2024-10-24                                                                                                | 120L  | .evel (dBuV/m)                |                   |                  |                    |                         | D                     | ate: 2024-10-24     |
| 110.0 |                    |                   |                             |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 110.0 |                               |                   |                  |                    |                         |                       |                     |
| 100.0 |                    | _                 |                             |                    |                   | and the set of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 100.0 |                               | _                 |                  |                    |                         |                       |                     |
| 90.0  |                    |                   |                             | 1                  |                   | and the second division of the second divisio | <u> </u>                                                                                                        | 90.0  |                               |                   |                  |                    | مجانئة المتناعضين المست | and the second second |                     |
| 80.0  |                    |                   |                             |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | РК                                                                                                              | 80.0  |                               |                   |                  |                    |                         |                       | РК                  |
| 70.0  |                    |                   |                             | البالعظم للب       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                               | 70.0  |                               |                   |                  |                    |                         |                       |                     |
| 60.0  | to an altra sector | 1 manual and      | Inderstation and the second |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AV                                                                                                              | 60.0  | المراجع والمراجع              | 1                 | بالمعرفين بعريق  | down what          |                         |                       | And the strength of |
| 50.0  |                    | 2                 |                             | man                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second se | 50.0  |                               | 2                 |                  | manual             |                         |                       | hundre              |
| 40    | 100                | 5152.             | 5204.                       | 52                 | 256.              | 5308.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5360                                                                                                            | 40    | 100                           | 5152.             | 5204.            | 52                 | 256.                    | 5308.                 | 5360                |
|       |                    |                   | Fre                         | quency (MHz)       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |                               |                   | Fre              | quency (MHz)       |                         |                       |                     |
| No.   | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor<br>(dB/m)            | Result<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Detector                                                                                                        | No.   | Frequency<br>(MHz)            | Reading<br>(dBµV) | Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBµV/m)       | Margin<br>(dB)        | Detector            |
| 1     | 5150.00            | 51.52             | 6.53                        | 58.05              | 74.00             | 15.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak                                                                                                            | 1     | 5150.00                       | 50.54             | 6.53             | 57.07              | 74.00                   | 16.93                 | Peak                |
| 2     | 5150.00<br>5350.00 | 39.91<br>60.29    | 6.53<br>7.10                | 46.44<br>67.39     | 54.00<br>74.00    | 7.56<br>6.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average<br>Peak                                                                                                 | 2     | 5150.00<br>5350.00            | 39.32<br>55.24    | 6.53<br>7.10     | 45.85<br>62.34     | 54.00<br>74.00          | 8.15<br>11.66         | Average<br>Peak     |
| 4     | 5350.00            | 45.07             | 7.10                        | 52.17              | 54.00             | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                                                                                                         | 4     | 5350.00                       | 42.57             | 7.10             | 49.67              | 54.00                   | 4.33                  | Average             |
|       |                    |                   |                             |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |                               |                   |                  |                    |                         |                       |                     |
|       |                    |                   |                             |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |                               |                   |                  |                    |                         |                       |                     |
|       |                    |                   |                             |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |                               |                   |                  |                    |                         |                       |                     |
|       |                    |                   |                             |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |                               |                   |                  |                    |                         |                       |                     |
|       |                    |                   |                             |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |                               |                   |                  |                    |                         |                       |                     |
|       |                    |                   |                             |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |                               |                   |                  |                    |                         |                       |                     |

Page 74 of 119



Report Template Version: FCC-WiFi5-Client-V1.2


Page 75 of 119



Report Template Version: FCC-WiFi5-Client-V1.2

Page 76 of 119

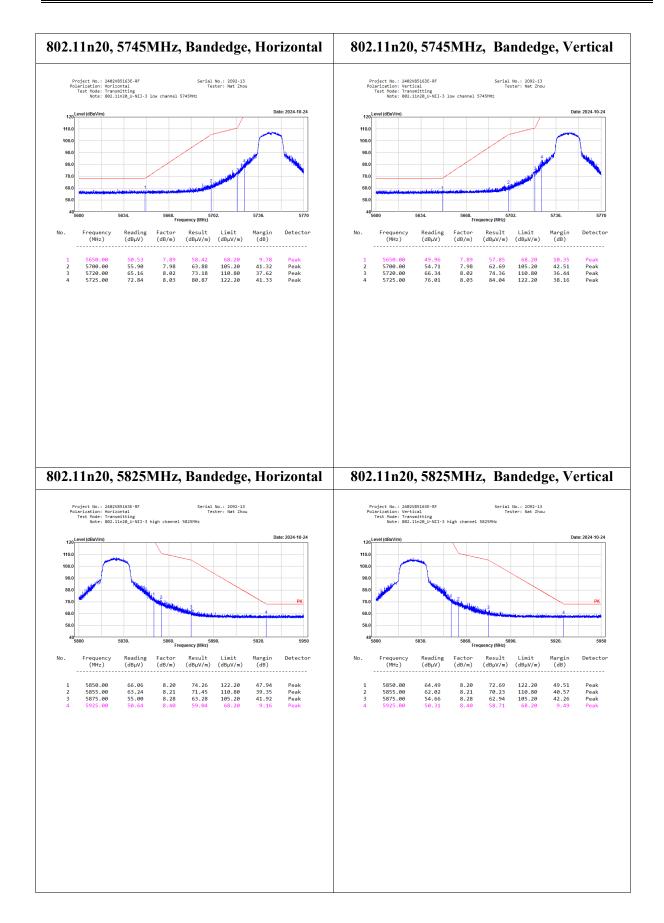
#### Bay Area Compliance Laboratories Corp. (Dongguan)



Report Template Version: FCC-WiFi5-Client-V1.2


Page 77 of 119

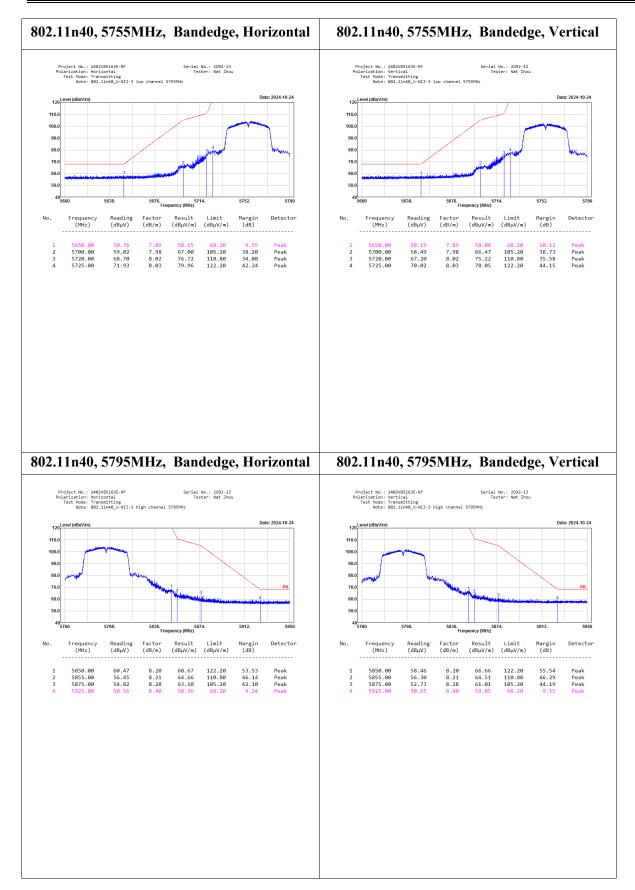
### Bay Area Compliance Laboratories Corp. (Dongguan)


| Currently Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Realing Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Real of Star 7,33 64.54 74.60 12.15 Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Real of Regin Detector Star 1 Real of Regin Real of Regin Real of Regin Real of Regin Detector Star 1 Real of Regin Real o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classed Sold Sold Sold Sold Sold Sold Sold Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>C.11ac80, 5610MHz, Bandedge, Horizontal Building States </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li> <sup>1</sup>/<sub>1</sub> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Job                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (PHE) (dBy/) (dBy//a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1       5460.00       52.57       7.33       01.90       72.40       1.560.00       52.57       7.33       01.92       72.90       1.560.00       52.97       72.90       02.97       72.90       1.560.00       52.97       72.90       02.97       72.90       1.560.00       52.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       02.97       72.90       72.90       72.90       72.90       72.90       72.90       72.90       72.90       72.90       72.90       72.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>2 5460.00 39.05 7.33 63.42 54.00 6.72 Average 3 5460.00 39.10 7.33 64.43 54.00 7.57 Average 3 5470.00 55.33 7.34 63.27 64.20 4.33 Peet 3 5470.00 55.33 7.34 63.27 64.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 63.20 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7.34</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projet: No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Serial No.: 2021-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Projet No.: 2482/851587-87<br>Polarization: Horizontai.<br>Textor: Ket Zhou<br>Textor: Ket Zhou<br>Textor: Ket Zhou<br>Textor: Ket Zhou<br>Textor: Ket Zhou<br>Textor: Texnesiting<br>Note: 080.11ac88_U-HIT-2C high channel 5610Mtz<br>Projet No.: 2482/851587-87<br>Serial No.: 2020-13<br>Textor: Texnesiting<br>Note: 080.11ac88_U-HIT-2C high channel 5610Mtz<br>Textor: Result Science<br>No. Frequency Reading Factor Result Limit Margin Detector<br>(MHz) (dByW) (dByW) (dByW/m) (dByW/m) (dB)<br>Textor: Textor: Textor: Texnesiting<br>No. Frequency Reading Factor Result Limit Margin Detector<br>(MHz) (dByW) (dByW) (dByW/m) (dByW/m) (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Serial No.: 2021-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Projet No.: 2482/851587-87<br>Polarization: Horizontai.<br>Textor: Ket Zhou<br>Textor: Ket Zhou<br>Textor: Ket Zhou<br>Textor: Ket Zhou<br>Textor: Ket Zhou<br>Textor: Texnesiting<br>Note: 080.11ac88_U-HIT-2C high channel 5610Mtz<br>Projet No.: 2482/851587-87<br>Serial No.: 2020-13<br>Textor: Texnesiting<br>Note: 080.11ac88_U-HIT-2C high channel 5610Mtz<br>Textor: Result Science<br>No. Frequency Reading Factor Result Limit Margin Detector<br>(MHz) (dByW) (dByW) (dByW/m) (dByW/m) (dB)<br>Textor: Textor: Textor: Texnesiting<br>No. Frequency Reading Factor Result Limit Margin Detector<br>(MHz) (dByW) (dByW) (dByW/m) (dByW/m) (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Serial No.: 2021-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Serial No.: 2021-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Projet No.: 2482/4951637-87<br>Serial No.: 2021-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Projett No: 2482V85162F-AF Serial No: 2022-13<br>Texter: Nat Zhou<br>Texter: Nat                                                                                                                                                                                                                                                                                                                                      |
| Polarizifion: Morizontal Text rest 2. Transitting<br>Text Not: Transitting<br>Mot: 992.11ac68_U-MIT-2C high channel 56109Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Polarizifion: Morizontal Text rest 2. Transitting<br>Text Not: Transitting<br>Mot: 992.11ac68_U-MIT-2C high channel 56109Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Polarizifion: Morizontal Texture: Nat Zhou<br>Text Not: Transmitting<br>Note: 692.11ac68_U-MIT-2C high channel 5610Mtz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note: 88.1 lac88_U-VII-2C high channel 5618992         Note: Frequency Reading Factor Result Limit Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Note: 88.1 lac88_U-VII-2C high channel 5618992         Note: Frequency Reading Factor Result Limit Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 110.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0 <td< th=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 110.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 110.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0 |
| 100.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0<br>90.0 |
| 90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 80.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 70.0         πκ           60.0         40 <sup>4</sup> / <sub>0</sub> 5500         5595.           5595.         5640.           requency Reading Factor Result Limit Margin Detector           (MHz)         (dBµV) (dBµ) (dBµV/m) (dBµV/m) (dBµV/m) (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 70.0         πκ           60.0         40 <sup>4</sup> / <sub>0</sub> 5500         5595.           5595.         5640.           requency Reading Factor Result Limit Margin Detector           (MHz)         (dBµV) (dBµ) (dBµV/m) (dBµV/m) (dBµV/m) (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 60.0         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 60.0         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40         5550         5595.         5640.         Frequency (MHz)         5730.         5775.           5.         Frequency (MHz)         5695.         5640.         Frequency (MHz)         5730.         5           6.         Frequency (dBµV)         (dBµV)         (dBµV)         (dBµV)         (dBµV)         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40         5550         5595.         5640.         Frequency (MHz)         5730.         5775.           5.         Frequency (MHz)         5695.         5640.         Frequency (MHz)         5730.         5           6.         Frequency (dBµV)         (dBµV)         (dBµV)         (dBµV)         (dBµV)         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| b. Frequency Reading Factor Result Limit Margin Detector<br>(MHz) (dbμV) (db/m) (dbμV/m) (db)<br>(MHz) (dbμV) (db/m) (dbμV/m) (db)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>b. Frequency Reading Factor Result Limit Margin Detector</li> <li>No. Frequency Reading Factor Result Limit Margin Detector</li> <li>(MHz) (dbμV) (db/m) (dbμV/m) (db)</li> <li>(MHz) (dbμV) (db/m) (dbμV/m) (db)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>b. Frequency Reading Factor Result Limit Margin Detector</li> <li>No. Frequency Reading Factor Result Limit Margin Detector</li> <li>(NHz) (dbμV) (db/m) (dbμV/m) (db)</li> <li>(NHz) (dbμV) (db/m) (dbμV/m) (db)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (MHz) (dBµV) (dB/m) (dBµV/m) (dBµV/m) (dB) (MHz) (dBµV/m) (dBµV/m) (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (MHz) (dBµV) (dB/m) (dBµV/m) (dBµV/m) (dB) (MHz) (dBµV/m) (dBµV/m) (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 5725.00 51.28 8.03 59.31 68.20 8.89 Peak 1 5725.00 50.71 8.03 58.74 68.20 9.46 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 5725.00 51.28 8.03 59.31 68.20 8.89 Peak 1 5725.00 50.71 8.03 58.74 68.20 9.46 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

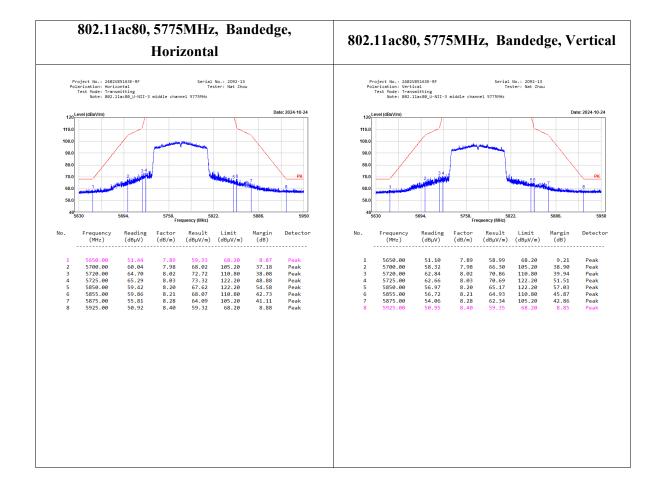
Report Template Version: FCC-WiFi5-Client-V1.2

Page 78 of 119




Page 79 of 119




Report Template Version: FCC-WiFi5-Client-V1.2

Page 80 of 119

#### Bay Area Compliance Laboratories Corp. (Dongguan)



Page 81 of 119



Page 82 of 119

### 5.3 Emission Bandwidth

| Sample No.: | 2092-17  | Test Date:   | 2024/07/19~2024/07/30 |
|-------------|----------|--------------|-----------------------|
| Test Site:  | RF       | Test Mode:   | Transmitting          |
| Tester:     | Roy Xiao | Test Result: | Pass                  |

### **Environmental Conditions:**

| Temperature:<br>(°C): | 26.2-27.1 | Relative<br>Humidity:<br>(%) | 49-66 | ATM Pressure:<br>(kPa) | 99.8-100.8 |
|-----------------------|-----------|------------------------------|-------|------------------------|------------|
|-----------------------|-----------|------------------------------|-------|------------------------|------------|

## Test Equipment List and Details:

| Manufacturer | Description           | Model               | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-----------------------|---------------------|---------------|---------------------|-------------------------|
| R&S          | Spectrum<br>Analyzer  | FSV40               | 101589        | 2023/10/18          | 2024/10/17              |
| Eastsheep    | Coaxial<br>Attenuator | 5W-N-JK-6G-<br>10dB | F-08-EM503    | 2024/06/07          | 2025/06/07              |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

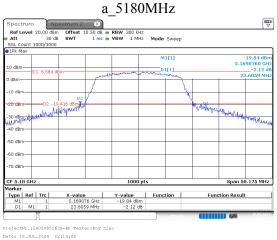
### Test Data:

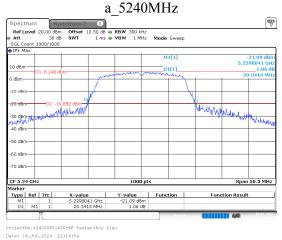
# 26dB Emission Bandwidth: 5.2G

| Mode         | Value<br>(MHz) |
|--------------|----------------|
| a_5180MHz    | 23.606         |
| a_5200MHz    | 21.356         |
| a_5240MHz    | 20.342         |
| n20_5180MHz  | 20.543         |
| n20_5200MHz  | 20.341         |
| n20_5240MHz  | 20.692         |
| n40_5190MHz  | 40.741         |
| n40_5230MHz  | 40.541         |
| ac80_5210MHz | 81.281         |

### 5.3G

| Mode         | Value<br>(MHz) |
|--------------|----------------|
| a_5260MHz    | 20.392         |
| a_5280MHz    | 19.920         |
| a_5320MHz    | 20.441         |
| n20_5260MHz  | 20.798         |
| n20_5280MHz  | 20.241         |
| n20_5320MHz  | 20.341         |
| n40_5270MHz  | 41.341         |
| n40_5310MHz  | 41.241         |
| ac80_5290MHz | 81.481         |

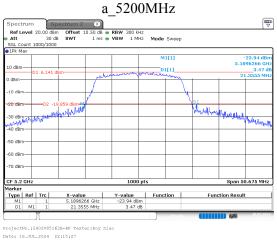

| Mode         | Value<br>(MHz) |
|--------------|----------------|
| a_5500MHz    | 20.443         |
| a_5580MHz    | 20.090         |
| a_5700MHz    | 20.139         |
| a_5720MHz    | 20.291         |
| n20_5500MHz  | 20.542         |
| n20_5580MHz  | 20.493         |
| n20_5700MHz  | 20.442         |
| n20_5720MHz  | 20.594         |
| n40_5510MHz  | 40.741         |
| n40_5550MHz  | 41.041         |
| n40_5670MHz  | 40.841         |
| n40_5710MHz  | 40.941         |
| ac80_5530MHz | 81.481         |
| ac80_5610MHz | 81.882         |
| ac80_5690MHz | 81.281         |

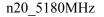

#### **5.6**G

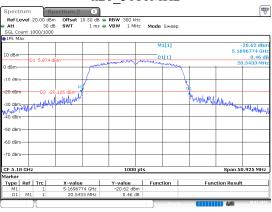
# 6dB Emission Bandwidth: 5.8G

| Mode         | Value<br>(MHz) | Limit<br>(MHz) | Result |
|--------------|----------------|----------------|--------|
| a_5745MHz    | 16.467         | 0.5            | Pass   |
| a_5785MHz    | 16.416         | 0.5            | Pass   |
| a_5825MHz    | 16.416         | 0.5            | Pass   |
| n20_5745MHz  | 17.668         | 0.5            | Pass   |
| n20_5785MHz  | 17.718         | 0.5            | Pass   |
| n20_5825MHz  | 17.618         | 0.5            | Pass   |
| n40_5755MHz  | 36.537         | 0.5            | Pass   |
| n40_5795MHz  | 36.036         | 0.5            | Pass   |
| ac80_5775MHz | 76.677         | 0.5            | Pass   |

### 5.2G



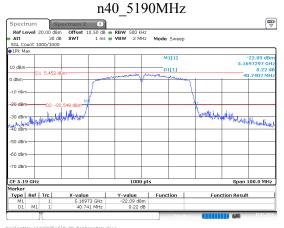


### $n20_5200MHz$

| Ref Level 20.00 dBm Offse    | 2 X<br>10.50 dB • RBW | 200 kH4     |          |                 |             | [ <del>"</del> |
|------------------------------|-----------------------|-------------|----------|-----------------|-------------|----------------|
| Att 30 dB SWT                | 1 ms - VBV            |             | e Sweep  |                 |             |                |
| SGL Count 1000/1000          | 1 115 🖶 404           | * 1 MHZ MOU | ie oweeh |                 |             |                |
| 1Pk Max                      |                       |             |          |                 |             |                |
|                              |                       |             | M1[1]    |                 |             | -19.93 dBr     |
|                              |                       |             |          |                 |             | 198295 GH      |
| 10 dBm D1 6.347 dBm          |                       |             | D1[1]    |                 |             | -0.18 d        |
|                              | water and the second  | any worken  | Munna-   |                 | 20          | 0.3410 MH      |
| 0 dBm                        | 1                     |             | 1 2      |                 |             |                |
| -10 dBm                      |                       |             | 1 1      |                 |             |                |
| -T0 GBM-                     |                       |             |          | (               |             |                |
| -20 dBm D2 -19.653 dBm       | M.                    |             |          | d1              |             |                |
|                              | M I                   |             |          | Hughey          |             |                |
| -30 dBm                      | q                     |             |          | . And Uper of H | Wall        |                |
| Judd the water of the second |                       |             |          |                 | - alter     | Manutha        |
| -40 dBm                      |                       |             |          |                 |             |                |
|                              |                       |             |          |                 |             |                |
| -50 dBm                      | -                     |             | _        |                 |             |                |
|                              |                       |             |          |                 |             |                |
| -60 dBm                      |                       |             |          |                 |             |                |
|                              |                       |             |          |                 |             |                |
| -70 dBm                      |                       |             |          |                 |             |                |
|                              |                       |             |          |                 |             |                |
| CF 5.2 GHz                   |                       | 1000 pts    |          |                 | Span 5      | 0.675 MHz      |
| 1arker                       |                       |             |          |                 |             |                |
| Type Ref Trc X-va            |                       |             | nction   | Fund            | tion Result | t              |
|                              |                       | .9.93 dBm   |          |                 |             |                |
| D1 M1 1 20                   | .341 MHz              | -0.18 dB    |          |                 |             |                |

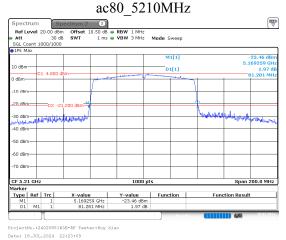
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:19:24

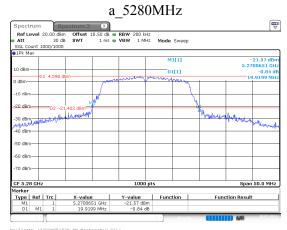







ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:18:19


#### n20\_5240MHz


| Att     | unt 1  | 30 di<br>000/1000 |              | 1 ms 🖷 | VBW 1M                                                                                                          | Hz    | Mode     | Sweep |          |       |               |             |
|---------|--------|-------------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------|-------|----------|-------|----------|-------|---------------|-------------|
| DIPk M  |        | 000/1000          |              |        |                                                                                                                 |       |          |       |          |       |               |             |
|         |        |                   |              |        |                                                                                                                 |       | M1       | [1]   |          |       |               | -21.91 dE   |
| 10 dBm  |        |                   |              |        |                                                                                                                 |       |          |       |          |       | 5.23          | 296283 G    |
| 10 0011 |        | 1 5.701 c         | Bm           |        | maranne                                                                                                         | JAN . | DI       | [1]   |          |       |               | -0.07       |
| 0 dBm-  | _      |                   |              | proved | part of the second s |       | - weight | many  |          |       | 2             | 0.6917 M    |
|         |        |                   |              | 1      |                                                                                                                 |       |          |       |          |       |               |             |
| -10 dBn | -      |                   |              | 1      |                                                                                                                 |       |          |       |          |       |               |             |
|         |        |                   | N            | 4      |                                                                                                                 |       |          |       | Υ.       |       |               |             |
| 20 dBn  | -      | -D2 -2            | 3.299 dBm    | -      | -                                                                                                               |       | _        |       | Art alth |       | an the second |             |
| 00.10   |        | A to be           | WAR          |        |                                                                                                                 |       |          |       | AP 160a  | White | AND IN T      |             |
| -30 GBN | Jacoby | MILLION MOT       | W Providence |        |                                                                                                                 |       |          |       |          |       | a subsection  | Weber.      |
| -40 dBn |        |                   |              |        |                                                                                                                 |       |          |       |          |       |               | . ( Ja . 10 |
|         |        |                   |              |        |                                                                                                                 |       |          |       |          |       |               |             |
| -50 dBn | -      |                   |              |        |                                                                                                                 |       |          |       |          |       |               |             |
|         |        |                   |              |        |                                                                                                                 |       |          |       |          |       |               |             |
| -60 dBn |        |                   |              |        |                                                                                                                 |       |          |       |          | -     |               |             |
|         |        |                   |              |        |                                                                                                                 |       |          |       |          |       |               |             |
| -70 dBn |        |                   |              |        |                                                                                                                 |       |          |       |          |       |               |             |
| CF 5.2  | ŧ GHz  |                   |              |        | 1000                                                                                                            | pts   |          |       |          |       | Span 51       | .6775 MH    |
| 1arker  |        |                   |              |        |                                                                                                                 |       |          |       |          |       |               |             |
| Type    | Ref    | Trc               | X-value      |        | Y-value                                                                                                         |       | Funct    | ion   |          | Funct | ion Resul     | t           |
| M1      |        | 1                 | 5.22962      |        | -21.91 dB                                                                                                       |       |          |       |          |       |               |             |
| D1      | M1     | 1                 | 20.69        | L7 MHz | -0.07                                                                                                           | JB    |          |       |          |       |               |             |

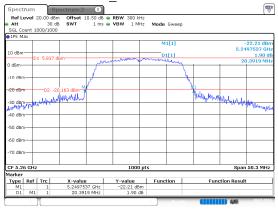
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:20:35



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:21:25






ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:25:59

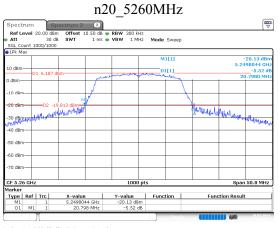




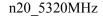
#### 5.3G

#### a 5260MHz



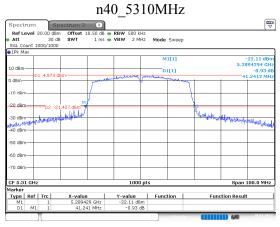

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:24:59

#### a 5320MHz

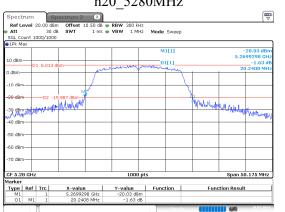

| SGL Co    |          | 000/1000   |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
|-----------|----------|------------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----------|---------------|--------------|----------------|
| JIEV IN   | a^       |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | MJ    | .[1]     |               |              | 20.44 dE       |
| 10 dBm    |          |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               | 5.30         | 198046 G       |
| TO GRU    |          | 1 5.812 d  | Rm          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | D1    | [1]      |               |              | -0.19          |
| 0 dBm-    |          | 1 5.512 0  |             | In     | and the second s | ***  | mou   | warmen   |               | . 20         | ).4408 M       |
| o abiii   |          |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
| -10 dBn   |          |            |             | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       | <u> </u> |               |              |                |
|           |          |            | M           | V      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          | V             |              |                |
| -20 dBn   | -        |            | ).188 dBm   |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |          | Bul ko        |              |                |
|           |          | man        | PUMANA.     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          | Mr. Mar Halan | 440.4        |                |
| -30 dBr   | uption t | 910-1071 · | 5.188 dBm M |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               | arthalamph,  | AND A DRAWLING |
| -40 dBn   |          |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
| -+to ubii |          |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
| -50 dBn   |          |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
|           |          |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
| -60 dBn   | 1        |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
|           |          |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
| -70 dBn   |          |            |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |          |               |              |                |
| CF 5.3    | 2 6Hz    |            |             |        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ints |       |          |               | Snan         | 50.05 MH       |
| Marker    |          |            |             |        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |          |               | opuiri       | 50100 11       |
| Type      | Ref      | Trc        | X-value     |        | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1    | Funct | ion      | Fun           | ction Result |                |
| M1        |          | 1          | 5.309804    |        | -20.44 di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |          |               |              |                |
| D1        | M1       | 1          | 20.440      | 38 MHz | -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB   |       |          |               |              |                |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:27:04

Report Template Version: FCC-WiFi5-Client-V1.2

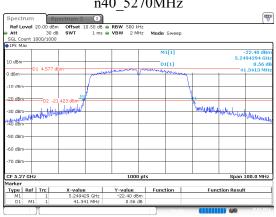



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:28:21

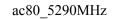


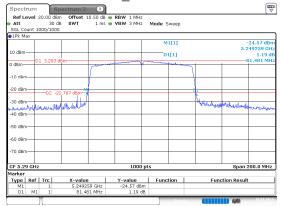



Date: 18.JUL.2024 22:30:42




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:32:20



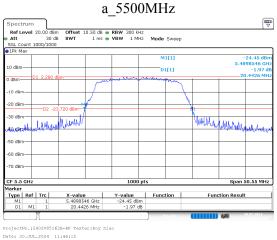


ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:29:36

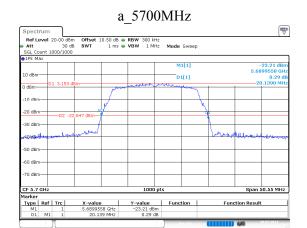
### n40 5270MHz



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:31:36



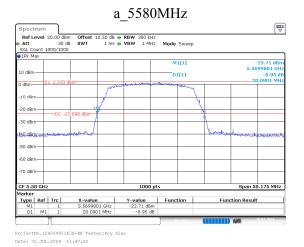




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:37:07

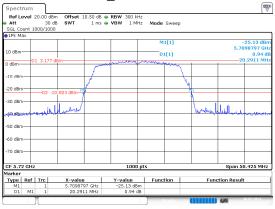
n20\_5280MHz

Report No.: 2402V85163E-RF-00D

#### **5.6G**





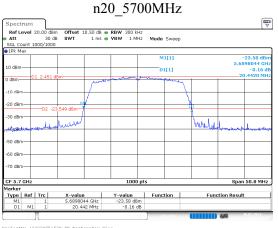


ProjectNo.:2402V85163E-RF Tester:R4 Date: 30.JUL.2024 11:48:37

| Spectr           |      |                  |                            |                              |             |         |       |             |              | ſ                |
|------------------|------|------------------|----------------------------|------------------------------|-------------|---------|-------|-------------|--------------|------------------|
| Att              |      | 20.00 de<br>30   | dB SWT 1                   | dB 👄 RBW 300<br>ms 🖶 VBW 1 M | kHz<br>vIHz | Mode S  | меер  |             |              |                  |
| SGL CO<br>1Pk Ma |      | 000/100          | U                          |                              |             |         |       |             |              |                  |
|                  |      |                  |                            |                              | Т           | M1[     | 1]    |             |              | 24.74 dE         |
| 10 dBm-          |      |                  |                            |                              | _           | DI      | a.    |             | 5.48         | 198063 G<br>0.29 |
|                  |      | 1 2.002          | dBm                        |                              |             |         |       |             | 2(           | 0.5415 M         |
| 0 dBm—           |      |                  |                            | man and an and               | 400         |         | manag |             |              |                  |
| -10 dBm          | _    |                  |                            |                              |             |         | - \   |             |              |                  |
|                  |      |                  |                            |                              |             |         | - \   |             |              |                  |
| -20 dBm          |      |                  | 23.998 dBm                 |                              |             |         | 1     | 1           |              |                  |
| -30 dBm          | _    |                  |                            |                              | _           |         |       | ĥ.          |              |                  |
| ليسب             | 14.  | J. Nal           | hepor hand the second      |                              |             |         |       | " work they | Multingdol   | hans             |
| <b>ethala</b> to | 2010 | , and the second |                            |                              |             |         |       |             | 110 9000     | and a shirt      |
| -50 dBm          | _    |                  |                            |                              | -           |         |       |             |              |                  |
|                  |      |                  |                            |                              |             |         |       |             |              |                  |
| -60 dBm          |      |                  |                            |                              | 1           |         |       |             |              |                  |
| -70 dBm          | -    |                  |                            |                              | -           |         |       |             |              |                  |
|                  |      |                  |                            |                              |             |         |       |             |              |                  |
| CF 5.5           | GHz  |                  | · · ·                      | 100                          | 0 pts       |         |       |             | Span 51.     | 3025 MH          |
| 1arker           | Ref  | Trc              | X-value                    | Y-value                      | - 1         | Functio | . 1   | Fund        | ction Result |                  |
| Type<br>M1       | rer  | 1                | 5.4898063 GH               |                              | Bm          | runctio |       | Fund        | Luon Resul   |                  |
| M1<br>D1         | M1   | 1                | 5.4898063 GH<br>20.5415 MH |                              |             |         |       |             |              |                  |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:37:41

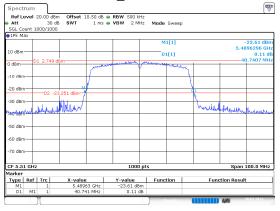







ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:49:49

#### n20\_5580MHz


|          | ах         |              |               |                                                                                                                |                         |            |               |                   |
|----------|------------|--------------|---------------|----------------------------------------------------------------------------------------------------------------|-------------------------|------------|---------------|-------------------|
|          |            |              |               |                                                                                                                | M1[1]                   |            |               | -24.23 dB         |
| 10 dBm   | _          |              |               |                                                                                                                |                         |            | 5.56          | 597536 G          |
|          |            |              |               |                                                                                                                | D1[1]                   |            | 21            | -0.15<br>0.4929 M |
| 0 dBm-   | - 0        | 1 2.284 (    | 18m           | man and a second se | and tobe for the second |            | 1             | 1.4929 m          |
|          |            |              |               |                                                                                                                |                         | 2          |               |                   |
| -10 dBn  |            |              | 1             |                                                                                                                |                         | 1          | -             | -                 |
|          |            |              |               |                                                                                                                |                         | N N        |               |                   |
| -20 dBn  | ר <u>ר</u> |              | 3.716 dBm     |                                                                                                                |                         | <b>d</b> 1 |               |                   |
| -30 dBn  |            |              |               |                                                                                                                |                         | î.         |               |                   |
| -30 UBI  |            |              |               |                                                                                                                |                         |            |               |                   |
| 40. dBn  |            | and death by | - N March     |                                                                                                                |                         | Maria      | www.          |                   |
| 0.0m.do. |            |              |               |                                                                                                                |                         |            |               |                   |
| -50 dBn  | 1          |              |               |                                                                                                                |                         |            | -             |                   |
|          |            |              |               |                                                                                                                |                         |            |               |                   |
| -60 dBn  | 1-         |              |               |                                                                                                                |                         |            | -             | -                 |
|          |            |              |               |                                                                                                                |                         |            |               |                   |
| -70 dBn  |            |              |               |                                                                                                                |                         |            |               |                   |
| CF 5.5   |            |              |               | 1000 p                                                                                                         |                         |            |               | 50.8 MH           |
| larker   | 0 GH2      |              |               | 1000 p                                                                                                         |                         |            | opan          | JU.8 MI           |
| Type     | Ref        | Trc          | X-value       | Y-value                                                                                                        | Function                | Eu         | nction Result |                   |
| M1       |            | 1            | 5.5697536 GHz | -24.23 dBm                                                                                                     |                         |            |               |                   |
| D1       | M1         | 1            | 20.4929 MHz   | -0.15 dB                                                                                                       |                         |            |               |                   |

ProjectNo.:2402V85163E-RF Taster:Roy Xiao Date: 30.JUL.2024 11:41:03

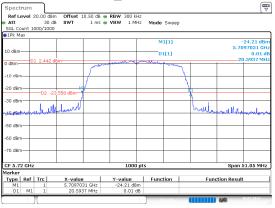


ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:42:26

### n40\_5510MHz



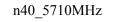
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:35:44

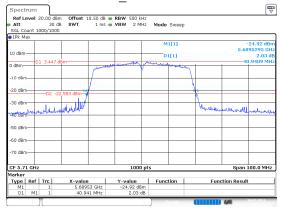

#### n40 5670MHz

|            |              |                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _                          |
|------------|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|
| Spectrum   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ( <b>T</b>                 |
| Ref Level  | 20.00 dBr    | n Offset 10.50 d      | 3 👄 RBW 500 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Iz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | (                          |
| Att        | 30 d         | B SWT 1 m             | s 🖶 VBW 2 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | z Mode Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                            |
| SGL Count  | 1000/1000    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| 1Pk Max    |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
|            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | -24.31 dBr                 |
|            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 5.6497297 GH               |
| 10 dBm     |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | -0.19 d                    |
|            | 01 2.293 6   | 18m                   | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | And the second s |            | 40.8408 MH                 |
| 0 dBm      |              |                       | and a start of the | and the second s | m .        |                            |
| -10 dBm    |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| -10 dBm-   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |                            |
| -20 dBm    |              | · · · ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N N        |                            |
| -20 UBIII  |              | 3.707 dBm             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>6</b> 1 |                            |
| -30 dBm    |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٩.         |                            |
| -30 UBIII  | 1            | don M                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.         |                            |
| -30 08/11  | phonestation | phillip in the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mounded    | in the later of the second |
| io abiii   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| -50 dBm    |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| -50 0.511  |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| -60 dBm    |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| 00 000     |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| -70 dBm    |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
|            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| CF 5.67 GH | z            |                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Span 100.0 MHz             |
| Marker     | -            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
|            | Trc          | X-value               | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eun        | ction Result               |
| M1         | 1            | 5.64973 GHz           | -24.31 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |
| D1 M:      | 1 1          | 40.841 MHz            | -0.19 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                            |
|            | 71           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40000000   | JAMA 30.07.2024            |
|            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Contraction of the second se |            | N/M                        |

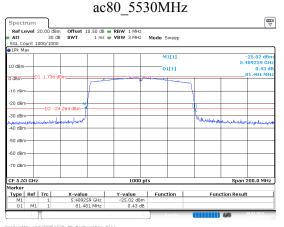
ProjectNo.:2402V85163E-RF Tester:Roy Xiao

Date: 30.JUL.2024 11:33:40

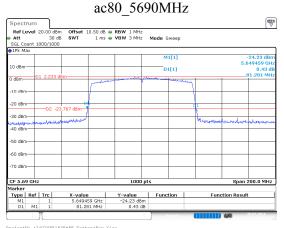

# n20\_5720MHz




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:43:47


#### $n40_{5550MHz}$ Ref Level 20.00 dBm Offset 10.50 dB RBW 500 kHz Att 30 dB SWT 1 ms VBW 2 MHz Mode Sweep SGL Count 1000/1000 1000/1000 1 ms VBW 2 MHz Mode Sweep -24.56 dE 5.5294294 0 M1[1] 10 dBm D1[1] 0 dBm— 1 2.256 10 dBm -20 dBm-30 dBm mandululu Math Ala Junk M ad galaria -50 dBm 60 dBm -70 dBm CF 5.55 GH 1000 pts Span 100.0 MHz X-value Y-value Function 5.529429 GHz -24.56 dBm 41.041 MHz 0.63 dB Marker Type Ref Trc M1 1 D1 M1 1 Function Result

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:32:31

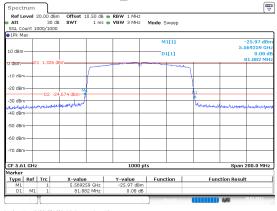





ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:34:46



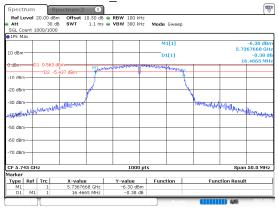
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:28:05




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:30:06

#### a\_5785MHz Ref Level 20.00 dBm X uu dBm Offset 10.3 30 dB SWT 1 /1000 Spectrum RBW 100 kHz VBW 300 kHz 0.50 dB 👄 1.1 ms 👄 Mode Sweep -5.82 di 5.7767669 M1[1] 0 dBm D1[1] 0.6 4164 955 dBm 10 dBm 20 dBm Herder Wally Manual and the Manual And W Jakou Marchal 50 dBm-60 dBr 70 dBm-CF 5.785 GH Span 50.0 MHz Marker Type Ref Trc M1 1 D1 M1 1 Function Result 1 440

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:58:40

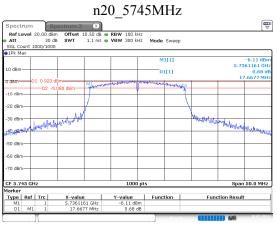

### ac80\_5610MHz



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:29:12

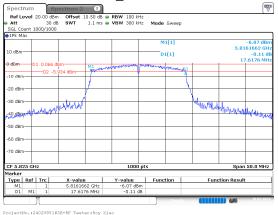
#### **5.8G**

#### a 5745MHz

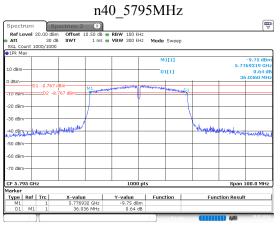



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:56:59

#### a\_5825MHz


| Att 🗧                                    |              | 30 d      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1 ms 🗧        | • VBW 300 k           | Hz Mode    | Sweep      |             |              |            |
|------------------------------------------|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|------------|------------|-------------|--------------|------------|
|                                          |              | 000/1000  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |            |            |             |              |            |
| ●1Pk M                                   | ax           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              |            |
|                                          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       | м          | 1[1]       |             | 5.01         | -6.67 dB   |
| 10 dBm                                   | -            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | -                     | D          | เกม        |             | 3.61         | 0.14       |
|                                          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             | 16           | .4164 M    |
| 0 dBm-                                   | -0           | 1 0.884 c | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Missing         | within white with the | Mar Marina | Manhan Dat |             |              |            |
| -10 dBo                                  |              |           | .116 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               |                       |            | 4          |             |              |            |
| -10 080                                  | ,            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |                       |            |            |             |              |            |
| -20 dBn                                  | -            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |                       |            | <u>\</u>   |             |              |            |
|                                          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y <sup>ge</sup> |                       |            | I          | 1           |              |            |
| -30 dBn                                  | 1            |           | - Incorrect off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | -                     |            |            | Rotation 1. |              |            |
|                                          |              | 1. Ald    | where a provided in the second s |                 |                       |            |            | diam. dillo | alut human   |            |
| n din din din din din din din din din di | <u>سامیں</u> | 000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              | 10 Mahalan |
|                                          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              |            |
| -50 dBn                                  |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              |            |
| -60 dBn                                  |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              |            |
| -00 001                                  | ·            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              |            |
| -70 dBn                                  |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              |            |
|                                          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              |            |
| CF 5.8                                   | 25 G⊢        | z         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 1000                  | ) pts      |            |             | Span         | 50.0 MH    |
| Marker                                   |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |            |            |             |              |            |
| Туре                                     | Ref          |           | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Y-value               | Func       | tion       | Fun         | ction Result |            |
| M1<br>D1                                 |              | 1         | 5.816766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | -6.67 dE              |            |            |             |              |            |
|                                          | M1           | 1         | 16.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 0.14                  |            |            |             |              |            |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:59:37

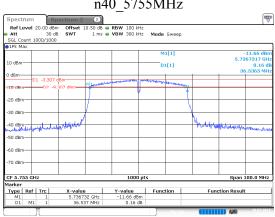



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:01:11

### n20 5825MHz



Date: 18.JUL.2024 23:03:30




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:06:17

#### trum Spectrum 1 evel 20.00 dBm Offset 30 dB SWT punt 1000/1000 10.50 dB • RBW 100 kHz 1.1 ms • VBW 300 kHz Mode Sweep Spectrum Ref Level 20.0 M1[1] -6.87 di 5.7761161 G 10 dBm D1[1] 0.1 17.7177 10 dBrr -20 dBm-30 dBm hand have never never nowhat -that the 50 dBm 60 dBm 70 dBm CF 5.785 GH 1000 pt Span 50.0 MHz Function Result

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:02:26

### n40 5755MHz



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:05:39

### ac80\_5775MHz

| Ref Le               | vel :  | 20.00 dB     | m Offset   | 10.50 dB | RBW  | 100 kHz   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
|----------------------|--------|--------------|------------|----------|------|-----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------|
| Att 🛛                |        | 30 c         | IB SWT     | 2 ms     | VBW  | 300 kHz   | Mode                  | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                |           |
| SGL CO               | unt 1  | 000/1000     | 3          |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
| 🛛 1Pk Ma             | зх     |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
|                      |        |              |            |          |      |           | M                     | 1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | 15.70 dB  |
| 10 dBm-              |        |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 5.7            | 36662 GF  |
| TO OPIU-             |        |              |            |          |      |           | D                     | 1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | -0.10 d   |
| 0 dBm—               |        |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                | 76.677 MH |
| o abiii-             | T      |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
| -10 dBm              | D      | 1 -7.251     | dBm        |          | mana | And Sugar | And the second second | and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                |           |
| =10 GBII             | _      |              | 3.251 dBm- | hennes   |      |           |                       | Character and a second s |                 |                |           |
| -20 dBm              | _      |              |            |          |      |           |                       | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2               |                |           |
| 20 000               |        |              |            |          |      |           |                       | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                |           |
| -30 dBm              |        |              |            | 1        |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
| 00 0011              |        |              |            | 1        |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ų –             |                |           |
| -40 dBm              | _      |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mar.            |                |           |
| مراسية المريسية والي | معليها | فبتيهم وحررا | Howwald    |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 N. W. BALWARD | hope when very | ward when |
| -50 dBm              | _      |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
|                      |        |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
| -60 dBm              | -      |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
|                      |        |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
| -70 dBm              | -      |              |            | -        | _    |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
|                      |        |              |            |          |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |
| CF 5.7               | 25.04  | 7            |            |          |      | 1000 pl   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Snan '         | 200.0 MHz |
| Marker               | o an   |              |            |          |      | 1000 p    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | span.          | 200.0 MH2 |
|                      | Ref    | Tre          | X-valu     | a        | Y-11 | alue      | Func                  | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Euro            | tion Result    |           |
| M1                   | KOI    | 1            |            | 62 GHz   |      | 5.70 dBm  | Tune                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - T une         | AIOH KESUN     |           |
| D1                   | M1     | 1            |            | 77 MHz   |      | -0.10 dB  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |           |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:07:43

n20\_5785MHz

### 5.4 99% Occupied Bandwidth

| Sample No.: | 2092-17  | Test Date:   | 2024/07/19~2024/07/30 |
|-------------|----------|--------------|-----------------------|
| Test Site:  | RF       | Test Mode:   | Transmitting          |
| Tester:     | Roy Xiao | Test Result: | /                     |

\_\_\_\_

### **Environmental Conditions:**

| Temperature:<br>(°C): | 26.2-27.1 | Relative<br>Humidity:<br>(%) | 49-66 | ATM Pressure:<br>(kPa) | 99.8-100.8 |
|-----------------------|-----------|------------------------------|-------|------------------------|------------|
|-----------------------|-----------|------------------------------|-------|------------------------|------------|

### **Test Equipment List and Details:**

| Manufacturer | Description           | Model               | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-----------------------|---------------------|---------------|---------------------|-------------------------|
| R&S          | Spectrum<br>Analyzer  | FSV40               | 101589        | 2023/10/18          | 2024/10/17              |
| Eastsheep    | Coaxial<br>Attenuator | 5W-N-JK-6G-<br>10dB | F-08-EM503    | 2024/06/07          | 2025/06/07              |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Test Data:**

### 5.2G

| Mode         | 99% OBW<br>(MHz) |
|--------------|------------------|
| a_5180MHz    | 16.550           |
| a_5200MHz    | 16.550           |
| a_5240MHz    | 16.550           |
| n20_5180MHz  | 17.700           |
| n20_5200MHz  | 17.650           |
| n20_5240MHz  | 17.650           |
| n40_5190MHz  | 36.200           |
| n40_5230MHz  | 36.300           |
| ac80_5210MHz | 75.200           |

#### Note:

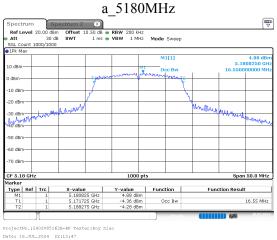
The 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.

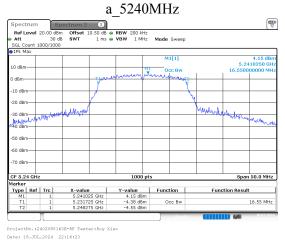
### 5.3G

| Mode         | 99% OBW<br>(MHz) |
|--------------|------------------|
| a_5260MHz    | 16.600           |
| a_5280MHz    | 16.550           |
| a_5320MHz    | 16.650           |
| n20_5260MHz  | 16.550           |
| n20_5280MHz  | 16.550           |
| n20_5320MHz  | 16.600           |
| n40_5270MHz  | 36.100           |
| n40_5310MHz  | 36.100           |
| ac80_5290MHz | 75.200           |

| Mode         | 99% OBW<br>(MHz) |
|--------------|------------------|
| a_5500MHz    | 16.500           |
| a_5580MHz    | 16.500           |
| a_5700MHz    | 16.450           |
| a_5720MHz    | 16.500           |
| n20_5500MHz  | 17.650           |
| n20_5580MHz  | 17.600           |
| n20_5700MHz  | 17.600           |
| n20_5720MHz  | 17.600           |
| n40_5510MHz  | 36.100           |
| n40_5550MHz  | 36.100           |
| n40_5670MHz  | 36.100           |
| n40_5710MHz  | 36.200           |
| ac80_5530MHz | 75.400           |
| ac80_5610MHz | 75.200           |
| ac80_5690MHz | 75.200           |

#### 5.6G

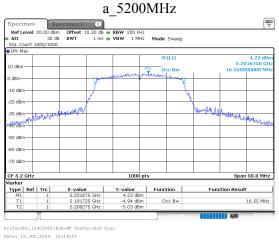

### 5.8G

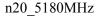

| Mode         | 99% OBW<br>(MHz) |
|--------------|------------------|
| a_5745MHz    | 16.550           |
| a_5785MHz    | 16.600           |
| a_5825MHz    | 16.650           |
| n20_5745MHz  | 17.650           |
| n20_5785MHz  | 17.600           |
| n20_5825MHz  | 17.600           |
| n40_5755MHz  | 36.100           |
| n40_5795MHz  | 36.200           |
| ac80_5775MHz | 75.200           |

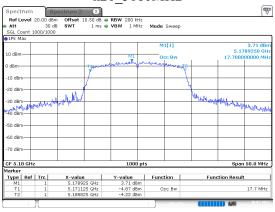
#### Note:

The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.

### 5.2G



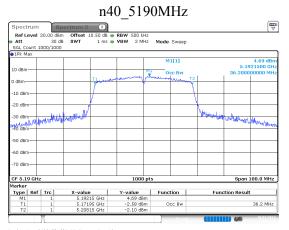


#### $n20_5200MHz$

| Refleve   | 20.00 dB   | m Offset 10.50 dB | • RBW 200 kHz |             |                             |                   |
|-----------|------------|-------------------|---------------|-------------|-----------------------------|-------------------|
| Att       | 30 c       |                   | VBW 1 MHz     | Mode Sweep  |                             |                   |
| SGL Count |            |                   | TON TIME      | Mode Sweep  |                             |                   |
| 1Pk Max   |            |                   |               |             |                             |                   |
|           |            |                   |               | M1[1]       |                             | 4.57 dBr          |
|           |            |                   |               |             |                             | 5.1978750 GH      |
| 10 dBm    |            |                   | mi            | Occ Bw      |                             | 17.650000000 MH   |
| 0 dBm     |            | T1                | manling       | arrangement |                             |                   |
| o ubiii   |            | A CONTRACTOR      |               | - and       | ÷                           |                   |
| -10 dBm   |            |                   |               |             |                             |                   |
|           |            | /                 |               |             | 1                           |                   |
| -20 dBm   |            | -                 |               |             | 1                           |                   |
|           |            | and a             |               |             | nh in 1                     |                   |
| -30 dBm   | un allt    | VPTW/DP4X.        |               |             | <ul> <li>Addrawt</li> </ul> | Minda and         |
| Way Bar   | Alberry a. | NUNAMEN           |               |             |                             | Windhand windhard |
| -40 dBm   |            |                   |               |             | -                           |                   |
| -50 dBm   |            |                   |               |             |                             |                   |
| -50 UBIII |            |                   |               |             |                             |                   |
| -60 dBm   |            |                   |               |             |                             |                   |
| -00 ubiii |            |                   |               |             |                             |                   |
| -70 dBm   |            |                   |               |             |                             |                   |
|           |            |                   |               |             |                             |                   |
| CF 5.2 GH | ,          |                   | 1000 pt       | 5           |                             | Span 50.0 MHz     |
| 1arker    |            |                   |               |             |                             |                   |
| Type   Re | f   Trc    | X-value           | Y-value       | Function    | Fund                        | tion Result       |
| M1        | 1          | 5.197875 GHz      | 4.57 dBm      |             |                             |                   |
| T1        | 1          | 5.191175 GHz      | -4.19 dBm     | Occ Bw      |                             | 17.65 MHz         |
| T2        | 1          | 5.208825 GHz      | -4.39 dBm     |             |                             |                   |

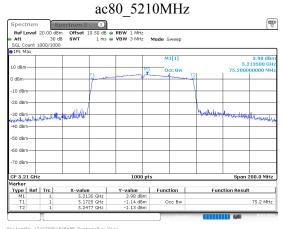
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:18:50







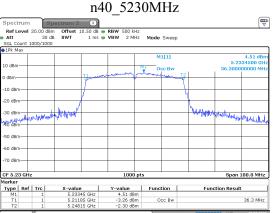

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:17:44


#### n20\_5240MHz

| Ref Le     | vel 3  | 0.00 dBr  | n Offset :           | 10.50 dB 👄 | RBW 200 k | Hz     |          |          |             |            |
|------------|--------|-----------|----------------------|------------|-----------|--------|----------|----------|-------------|------------|
| Att        |        | 30 d      | B SWT                | 1 ms 👄     | VBW 1 M   | riz Mo | de Sweep |          |             |            |
| SGL COL    | int 10 | 000/1000  | 1                    |            |           |        |          |          |             |            |
| 1Pk Ma     | х      |           |                      |            |           |        |          |          |             |            |
|            |        |           |                      |            |           |        | M1[1]    |          |             | 4.28 dB    |
| 10 dBm-    |        |           |                      |            |           |        |          |          | 5.3         | 2385250 GI |
| 10 dBm-    |        |           |                      |            | MI        |        | Occ Bw   |          | 17.650      | 1000000 MI |
| o dBm—     |        |           |                      | T1         | menery    | mound  | mannent  | 2        | 1           |            |
| o usin—    |        |           |                      | Activity   | · · · ·   |        | 1000     | Ý        |             |            |
| -10 dBm-   |        |           |                      | 1          |           |        |          | 1        |             |            |
| -10 GBIII- |        |           |                      | ¥.         |           |        |          | N.       |             |            |
| -20 dBm-   |        |           |                      | /          |           |        |          | 1        |             |            |
|            |        |           |                      |            |           |        |          | Autor a  |             |            |
| -30 dBm-   | _      |           | Mar Martin Provident |            |           |        | _        | Carley P | white and   |            |
| de Me      | we f   | radionali | and the Mark         |            |           |        |          |          | 1.004.00    | monthere   |
| -40 dBm-   |        |           |                      |            |           |        | _        |          |             | 11. 44     |
|            |        |           |                      |            |           |        |          |          |             |            |
| -50 dBm-   | -      |           |                      |            |           |        | _        |          | -           |            |
|            |        |           |                      |            |           |        |          |          |             |            |
| -60 dBm-   | -      |           | -                    |            | -         |        | -        | _        | -           |            |
|            |        |           |                      |            |           |        |          |          |             |            |
| -70 dBm-   |        |           |                      |            |           |        |          |          |             |            |
|            |        |           |                      |            |           |        |          |          |             |            |
| CF 5.24    | GHz    |           |                      |            | 1000      | pts    |          |          | Spa         | n 50.0 MH  |
| 1arker     |        |           |                      |            |           |        |          |          |             |            |
| Type       | Ref    | Trc       | X-value              | • I        | Y-value   | Fu     | nction   | Fui      | nction Resu | ılt        |
| M1         |        | 1         | 5.2385               | 25 GHz     | 4.28 dB   | m      |          |          |             |            |
| Τ1         |        | 1         | 5.2311               |            | -4.04 dB  |        | Occ Bw   |          |             | 17.65 MH   |
| T2         |        | 1         | 5.2488               | 25 GHz     | -3.71 dB  | m      |          |          |             |            |

ProjectNo.:2402V85163E-RF Taster:Roy Xiao Date: 18.JUL.2024 22:20:00

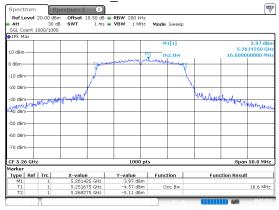



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:21:11



ProjectNo.:2402V85163E-RF Tester:Roy Xiac Date: 18.JUL.2024 22:22:52

#### a 5280MHz Ref Level 20.00 dBm X Spectrum RBW 200 kHz VBW 1 MHz 0 dBm Offset 10. 30 dB SWT Mode Sweep 1 ms 🖷 int 1000 M1[1] 4.69 de 5.2789750 G 16.550000000 M 10 dBm . MI -10 dBm--20 dBm Whith Mydride WHORK -30 dBm-. ubdat 40 dBm--50 dBm-60 dBm-70 dBm-Span 50.0 MHz 1000 p CF 5.28 GH Type Ref Trc X-value Y-value Function 5.278975 GHz 4.69 dBm 5.271725 GHz -4.61 dBm Occ Bw 5.288275 GHz -4.64 dBm Function Result T1 T2 16.55 MHz 440


ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:25:34



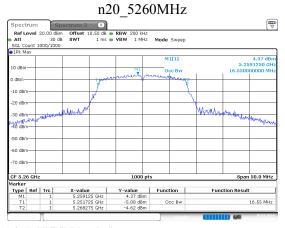
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:21:52

#### 5.3G

#### a 5260MHz



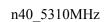
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:24:26


#### a 5320MHz

| Spectrum                      | Sp       | ectrum 2  | ×        |              |        |       |        |          |           |            | 1         |
|-------------------------------|----------|-----------|----------|--------------|--------|-------|--------|----------|-----------|------------|-----------|
| Ref Level 3                   |          |           |          |              |        |       |        |          |           |            |           |
| Att 🛛                         | 30 dB    | SWT       | 1 ms 👄   | <b>VBW</b> 1 | MHz    | Mode  | Sweep  |          |           |            |           |
| SGL Count 1                   | 000/1000 |           |          |              |        |       |        |          |           |            |           |
| 1Pk Max                       |          |           |          |              |        |       |        |          |           |            |           |
|                               |          |           |          |              |        | M     | L[1]   |          |           |            | 4.07 dB   |
| 10 dBm                        |          |           |          |              |        |       |        |          |           | 5.3        | 189750 G  |
| 10 dBm                        |          |           |          | M            | 1      | 00    | c Bw   |          |           | 16.650     | 000000 M  |
| 0 dBm                         |          |           | TI ABA   | mound        | you    | man   | Annu - |          |           | 1          |           |
| O UBIN                        |          |           | - August |              |        |       | at     |          |           |            |           |
| -10 dBm                       |          |           | 1        |              |        |       |        |          |           |            |           |
| 10 0011                       |          |           | 1        |              |        |       |        | N        |           |            |           |
| -20 dBm                       |          |           | 1        |              |        |       |        | <u> </u> |           |            | _         |
|                               |          | - i shal  | Î.       |              |        |       |        | - M      | heat      |            |           |
| -30 dBm                       | . Auto   | NY BARNES |          |              | -      |       |        | ,        | and Prove | MAN        | war when  |
| -20 dBm<br>-30 dBm<br>-40 dBm | NUPA . N |           |          |              |        |       |        |          |           |            | and when  |
| -40 dBm                       |          |           |          |              | -      |       |        |          |           |            | -         |
|                               |          |           |          |              |        |       |        |          |           |            |           |
| -50 dBm                       |          |           |          | -            | -      |       |        | _        |           |            | -         |
|                               |          |           |          |              |        |       |        |          |           |            |           |
| -60 dBm                       |          |           |          |              |        |       |        | _        |           |            |           |
|                               |          |           |          |              |        |       |        |          |           |            |           |
| -70 dBm                       |          |           |          |              |        |       |        |          |           |            |           |
|                               |          |           |          |              |        |       |        |          |           |            |           |
| CF 5.32 GHz                   |          |           |          | 10           | 00 pts | 5     |        |          |           | Spa        | n 50.0 MH |
| Marker                        |          |           |          |              |        |       |        |          |           |            |           |
| Type Ref                      | Trc      | X-value   | •        | Y-value      | 1      | Funct | ion    |          | Fun       | ction Resu | lt        |
| M1                            | 1        | 5.3189    |          | 4.07         |        |       |        |          |           |            |           |
| T1                            | 1        | 5.3116    |          | -4.18        |        | 0     | C Bw   |          |           |            | 16.65 MH  |
| T2                            | 1        | 5.3283    | 25 GHz   | -5.01        | dBm    |       |        |          |           |            |           |
|                               | 11       |           |          |              |        |       | _      | _        |           | -          | 19.07.20  |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:26:34

Report No.: 2402V85163E-RF-00D

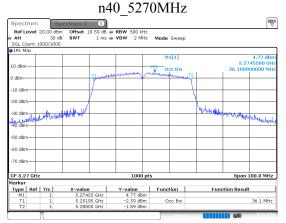

36.3 MHz



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:27:51



Date: 18.JUL.2024 22:30:10




| Spectrum      | Sp       | bectrum 2 | X      |             |         |       |        |             |                    | [ <b>9</b>   |
|---------------|----------|-----------|--------|-------------|---------|-------|--------|-------------|--------------------|--------------|
| Ref Level     |          |           |        | RBW 50      |         |       |        |             |                    |              |
| Att           | 30 di    |           | 1 ms 🍯 | VBW :       | 2 MHz   | Mode  | Sweep  |             |                    |              |
| SGL Count 1   | 000/1000 |           |        |             |         |       |        |             |                    |              |
| 1Pk Max       |          |           |        |             |         |       |        |             |                    |              |
|               |          |           |        |             |         | M:    | [1]    |             |                    | 4.52 dE      |
| 10 dBm        |          |           |        |             |         |       |        |             |                    | )68500 GI    |
| 10 000        |          |           |        |             |         | 00    | c Bw   |             | 36.1000            | 00000 M      |
| 0 dBm         |          |           | T1 and | 100 minutes |         | luomy | Nhu T2 |             |                    |              |
|               |          |           | ΙY     |             |         |       | 1      |             |                    |              |
| -10 dBm       |          |           | 1      | _           | _       |       |        |             |                    |              |
|               |          |           | 1      |             |         |       |        |             |                    |              |
| -20 dBm       |          |           |        | -           | -       |       |        | 1           |                    |              |
|               |          | 1.1.11    |        |             |         |       |        | Balancia    | and the second     |              |
| -30 dBm       | hastle   | Latter an |        |             |         |       |        | - Anadronik | A STATE OF A STATE | date of      |
| Party College |          |           |        |             |         |       |        |             | 1                  | b seather th |
| -40 dBm       |          |           |        |             |         |       |        |             |                    |              |
| -50 dBm       |          |           |        |             |         |       |        |             |                    |              |
| -50 UBIII-    |          |           |        |             |         |       |        |             |                    |              |
| -60 dBm       |          |           |        |             |         |       |        |             |                    |              |
| oo abiii      |          |           |        |             |         |       |        |             |                    |              |
| -70 dBm       |          |           |        | _           |         |       |        |             |                    |              |
|               |          |           |        |             |         |       |        |             |                    |              |
| CF 5.31 GHz   |          |           |        | 1           | 000 pts |       |        |             | Snan               | 100.0 MH     |
| 1arker        |          |           |        |             |         |       |        |             |                    |              |
| Type   Ref    | Trc      | X-value   | - I    | Y-valu      | e l     | Funct | ion    | Fun         | ction Resul        |              |
| M1            | 1        | 5.306     | B5 GHz | 4.52        | dBm     |       |        |             |                    |              |
| T1            | 1        |           | 95 GHz | -2.59       |         | 00    | c Bw   |             |                    | 36.1 MH      |
| T2            | 1        | 5.328     | D5 GHz | -1.85       | dBm     |       |        |             |                    |              |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:32:05

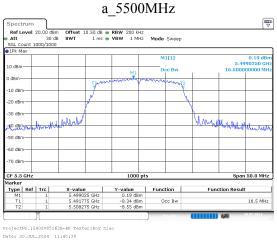


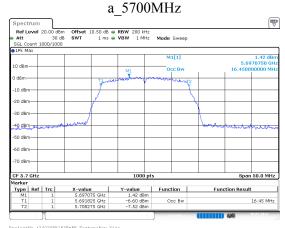
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:29:02



ProjectNo.:2402V85163E-RF Tester:Rov Xiac Date: 18.JUL.2024 22:31:21

# ac80 5290MHz Spectrum Spectrum Notest RefLevel 20.00 dBm Offset 10.50 dB RBW 1 MHz Att 30 dB SWT 1 ms VBW 3 MHz


|         | T     |             |         |                  |                        | M1[1]    |                | 4.55 dBn<br>5.286500 GH  |
|---------|-------|-------------|---------|------------------|------------------------|----------|----------------|--------------------------|
| 10 dBm  |       |             |         |                  | INLT                   | Occ Bw   |                | 75.20000000 MH           |
| 0 dBm—  |       |             |         | T1               | u and the second       |          | T2             |                          |
|         |       |             |         | (                |                        |          | 1              |                          |
| 10 dBm  | -     |             |         | (                |                        |          |                |                          |
| 20 dBm  | +     |             |         |                  |                        |          | _              |                          |
| -30 dBm |       |             | /       |                  |                        |          | A. Die         |                          |
| -30 UBI | I     | Malak       | AUNTHAL |                  |                        |          | Marshar Marsha | a vallette land war here |
| 40 dBm  |       | abidi atti. |         |                  |                        |          |                |                          |
| 50 dBrr | -     |             |         |                  |                        |          |                |                          |
| 60 dBm  |       |             |         |                  |                        |          |                |                          |
| ou ubii | - T   |             |         |                  |                        |          |                |                          |
| 70 dBm  | +     |             |         |                  |                        |          |                |                          |
| CF 5.2  | 9 GHz |             |         |                  | 1000 p                 | ts       |                | Span 200.0 MHz           |
| 1arker  |       |             |         |                  |                        |          |                |                          |
| Type    | Ref   | Trc         | X-value |                  | Y-value                | Function | Fun            | ction Result             |
| M1      |       | 1           |         | 55 GHz           | 4.55 dBm               |          |                |                          |
| T1      |       | 1           |         | 25 GHz<br>77 GHz | -1.75 dBm<br>-1.51 dBm | Occ Bw   |                | 75.2 MHz                 |

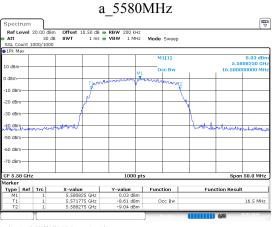

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:36:50

n20\_5280MHz

Report No.: 2402V85163E-RF-00D

#### **5.6G**






ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:48:02

#### $n20_{5500MHz}$

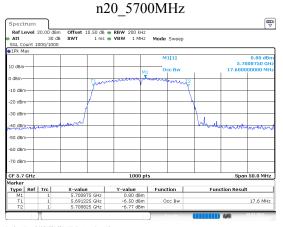

| Ref Leve             | 20.00 dB   | m Offset | 10.50 dB 😑 | <b>RBW</b> 200   | l kHz  |                |       |       |             |            |
|----------------------|------------|----------|------------|------------------|--------|----------------|-------|-------|-------------|------------|
| Att                  | 30 d       | B SWT    | 1 ms 👄     | <b>VBW</b> 1     | MHz    | Mode           | Sweep |       |             |            |
| SGL Count            | 1000/1000  | 1        |            |                  |        |                |       |       |             |            |
| ●1Pk Max             |            |          |            |                  |        |                |       |       |             |            |
|                      |            |          |            |                  |        | M1             | [1]   |       |             | -0.30 dBr  |
| 10 dBm               |            |          |            |                  |        |                |       |       |             | 10250 GH   |
| TO OPIII             |            |          |            |                  | M1     | Oc             | c Bw  |       | 17.6500     | 00000 MH   |
| 0 dBm                |            |          |            |                  | - m1   |                |       |       |             |            |
| o abiii              |            |          | Thomas     | mont             | "V"    | and the second | mont? |       |             |            |
| -10 dBm              |            |          | Y .        |                  |        |                | · Y   |       |             |            |
|                      |            |          | 17         |                  |        |                | 1     |       |             |            |
| -20 dBm              |            |          | 1          |                  | _      |                |       |       |             |            |
|                      |            |          | 1          |                  |        |                |       | h     |             |            |
| -30 dBm              |            |          | 4          |                  | -      |                |       | Ν.    |             |            |
|                      |            | monund   |            |                  |        |                |       | Monul | nhmm        |            |
| C49,4892.1.          | Mag Markey | 140.7    |            |                  |        |                |       | 6- IV | an more     | hilling    |
|                      |            |          |            |                  |        |                |       |       |             |            |
| -50 dBm              |            |          |            |                  |        |                |       |       |             |            |
| -60 dBm              |            |          |            |                  |        |                |       |       |             |            |
| -60 UBIII            |            |          |            |                  |        |                |       |       |             |            |
| -70 dBm              |            |          |            |                  |        |                |       |       |             |            |
| 70 00111             |            |          |            |                  |        |                |       |       |             |            |
| CF 5.5 GH            |            |          |            | 10               | 00 pts |                |       |       | - Cru an    | 50.0 MHz   |
| or ala Gri<br>Aarker | 2          |          |            | 10               | oo pes |                |       |       | span        | 1 30.0 MHZ |
|                      | f   Trc    |          |            |                  | - 1    |                |       | -     | tion Result |            |
| Type Re<br>M1        | 1 110      | X-valu   | e          | Y-value<br>-0.30 |        | Funct          |       | Fund  | auon kesun  |            |
| T1                   | 1          |          | 125 GH2    | -0.30            |        | 00             | c Bw  |       |             | 17.65 MHz  |
| T2                   | 1          |          | 325 GHz    | -7.82            |        | 00             |       |       |             | 11.05 MHz  |
| 1.001                |            |          |            |                  |        |                |       |       |             |            |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:37:09



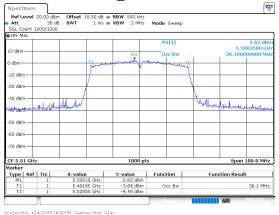
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:46:51






ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:49:18

#### n20\_5580MHz

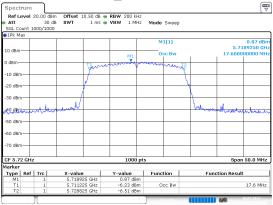

| Spectru   | el 20.00       | dia Offerst 1 | 0.50.40.0 | RBW 200 kH | -      |        |     |              | [ <sup>47</sup> |
|-----------|----------------|---------------|-----------|------------|--------|--------|-----|--------------|-----------------|
| Att       |                | ada SWT       | 1 ms e    |            |        |        |     |              |                 |
|           | -<br>nt 1000/1 |               | 1 ms e    | ADM TIMU   | 2 Mode | Sweep  |     |              |                 |
| 1Pk Max   |                | 000           |           |            |        |        |     |              |                 |
| JIEK Max  |                | -             |           | 1 1        |        | 1[1]   |     |              | 0.19 dB         |
|           |                |               |           |            |        | 1111   |     | 5.5          | 314250 GF       |
| 10 dBm—   | -              |               |           |            |        | CC BW  |     |              | 000000 MI       |
|           |                |               |           |            | M1 -   | 1      | 1   | 1            | 1               |
| 0 dBm     | -              |               | T1        | many       | mm     | bane.  | 12  | -            | -               |
| -10 dBm-  |                |               | Y         | 1 1        |        | 1.0040 | Y   |              |                 |
| -10 asm-  |                |               | 1         |            |        |        | 1   |              |                 |
| -20 dBm-  |                |               | 1         |            |        |        | 4   |              |                 |
| -20 00111 |                |               |           |            |        |        | 1   |              |                 |
| -30 dBm-  |                |               |           |            |        |        |     |              |                 |
|           |                | 1             |           |            |        |        |     |              |                 |
| -40 dBm-  |                | mann          |           |            |        |        | how | mound        |                 |
| -www.www. | - mondar -     |               |           |            |        |        |     |              | and and and     |
| -50 dBm-  | -              |               |           |            |        |        |     |              |                 |
|           |                |               |           |            |        |        |     |              |                 |
| -60 dBm—  | -              | _             |           | + +        |        | -      |     |              |                 |
|           |                |               |           |            |        |        |     |              |                 |
| -70 dBm-  |                |               |           |            |        |        |     |              |                 |
|           |                |               |           |            |        |        |     |              |                 |
| CF 5.58 ( | GHz            |               |           | 1000       | pts    |        |     | Spa          | 1 50.0 MH       |
| 1arker    |                |               |           |            |        |        |     |              |                 |
|           | Ref   Trc      | X-value       |           | Y-value    | Fund   | tion   | Fui | nction Resul | t               |
| M1        | 1              | 5.58142       |           | 0.19 dBn   |        |        |     |              |                 |
| Τ1        | 1              | 5.57122       |           | -6.87 dBn  |        | CC BW  |     |              | 17.6 MH         |
| T2        | 1              | 5.58882       | 5 GHz     | -7.45 dBn  | 1      |        |     |              |                 |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:40:31

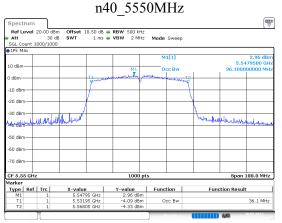


ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:41:49

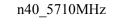
### n40\_5510MHz

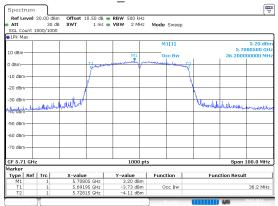



Date: 30.JUL.2024 11:35:28


#### n40 5670MHz

|            |                       |                   | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
|------------|-----------------------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Spectrum   | , )                   |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | E.                   |
| Ref Level  | 20.00 dB              | m Offset 10.50 dB | • RBW 500 kHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | (                    |
| Att        | 30 d                  | B SWT 1 ms        | VBW 2 MHz     | Mode Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      |
| SGL Count  | 1000/1000             |                   |               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                      |
| 1Pk Max    |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
|            |                       |                   |               | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 2.11 dBr             |
|            |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 5.6686500 GH         |
| 10 dBm-    |                       |                   | M1            | Occ Bw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 36.100000000 MH      |
| 0 dBm      |                       | T1                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 1                    |
| U asm      |                       | Ventertert        | - January     | and the second of the second o |          |                      |
| -10 dBm    |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| -10 UBIII  |                       | 1                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| -20 dBm    |                       | (                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| 20 00111   |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1      |                      |
| -30 dBm    |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |                      |
|            |                       | - deland          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Marile | Merelinderschungel   |
| -30 asm    | and the second second | endary            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | weider and a stander |
|            |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| -50 dBm    |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
|            |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| -60 dBm    |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
|            |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| -70 dBm-   |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
|            |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| CF 5.67 GH | z                     |                   | 1000 pt:      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Span 100.0 MHz       |
| Marker     |                       |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| Type   Ref | Trc                   | X-value           | Y-value       | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Functio  | n Result             |
| M1         | 1                     | 5.66865 GHz       | 2.11 dBm      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| T1         | 1                     | 5.65205 GHz       | -3.61 dBm     | Occ Bw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 36.1 MHz             |
| T2         | 1                     | 5.68815 GHz       | -5.12 dBm     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
|            | 1                     |                   |               | Peade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | A 30.07.2024         |
|            |                       |                   |               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                      |

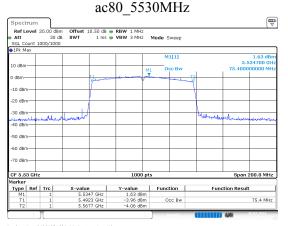

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:33:26



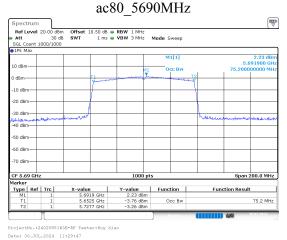

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:43:15



ProjectNo.:2402V85163E-RF Tester:Roy Xia Date: 30.JUL.2024 11:32:13







ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:34:31

n20\_5720MHz

Report No.: 2402V85163E-RF-00D



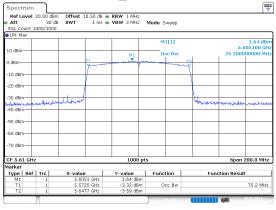
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:27:48



a 5785MHz Ref Level 20.00 dBm Spectrum X RBW 200 kHz VBW 1 MHz 0 dBm Offset 10 30 dB SWT Mode Sweep 1 ms 🖷 int 1000 M1[1] 4.41 dE 5.7839750 G 16.60000000 M 10 dBm M1 -10 dBm--20 dBmmphan when which and -30 dBm-40 dBm -50 dBm-60 dBm-70 dBm-Span 50.0 MHz 1000 p CF 5.785 GI Type Ref Trc 
 X-value
 Y-value
 Function

 5.783975 GHz
 4.41 dBm

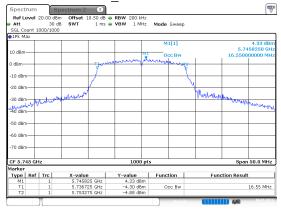
 5.776675 GHz
 -5.15 dBm
 Occ Bw


 5.793275 GHz
 -4.30 dBm

 Function Result T1 T2 16.6 MHz 

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:58:11

#### ac80\_5610MHz

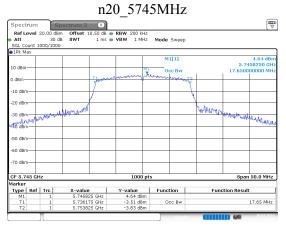

Report No.: 2402V85163E-RF-00D



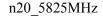
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:28:53

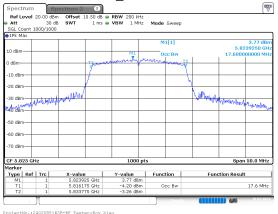
#### 5.8G

#### a 5745MHz

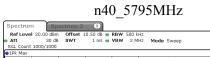



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:56:34


#### a\_5825MHz

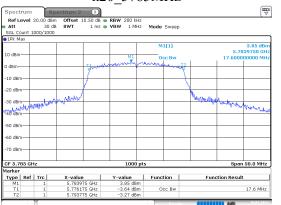

| Spectrum    |          | pectrum 2       | ×      |           |        |         |         |                | <b>_</b>         |
|-------------|----------|-----------------|--------|-----------|--------|---------|---------|----------------|------------------|
| Ref Level   |          |                 |        | RBW 200 k |        |         |         |                |                  |
| Att         | 30 d     |                 | 1 ms 👄 | VBW 1 M   | Hz Mod | e Sweep |         |                |                  |
| SGL Count 1 | 000/1000 |                 |        |           |        |         |         |                |                  |
| 1Pk Max     |          |                 |        |           |        |         |         |                |                  |
|             |          |                 |        |           |        | M1[1]   |         |                | 3.62 dB          |
| 10 dBm      |          |                 |        |           |        |         |         |                | 5.8264250 G      |
| 20 00       |          |                 |        |           | M1     | Occ Bw  |         | 16.            | 650000000 MI     |
| 0 dBm       |          |                 | TIMMER | mony      | when   | many    | ,       |                |                  |
|             |          |                 | Y      |           |        |         | 7       |                |                  |
| -10 dBm     |          |                 | 1      |           |        | -       |         | _              |                  |
|             |          | P               | pr.    |           |        |         | 4       |                |                  |
| -20 dBm     |          | <u> </u>        |        |           |        | -       |         | -              |                  |
|             |          | with the second |        |           |        |         | Test to | A 1            | krageneres       |
| -30 dBm     | had been | M Willipper .   |        |           |        |         | - W. S  | control of the | Y LAND .         |
| a some bear | land a   |                 |        |           |        |         |         |                | - and all a come |
| -40 dBm     |          |                 |        |           |        |         |         |                |                  |
|             |          |                 |        |           |        |         |         |                |                  |
| -50 dBm     |          |                 |        |           |        |         |         |                |                  |
| -60 dBm     |          |                 |        |           |        |         |         |                |                  |
| -bu ubili   |          |                 |        |           |        |         |         |                |                  |
| -70 dBm     |          |                 |        |           |        |         |         |                |                  |
| -70 ubili   |          |                 |        |           |        |         |         |                |                  |
|             |          |                 |        |           |        |         |         |                |                  |
| CF 5.825 GF | z        |                 |        | 1000      | pts    |         |         |                | Span 50.0 MH     |
| Marker      |          |                 |        |           |        |         |         |                |                  |
|             | Trc      | X-value         |        | Y-value   |        | iction  |         | Function R     | esult            |
| M1          | 1        | 5.826425        |        | 3.62 dB   |        |         |         |                |                  |
| T1          | 1        | 5.816675        |        | -4.88 dB  |        | Occ Bw  |         |                | 16.65 MH         |
| T2          | 1        | 5.833325        | GHZ    | -5.14 dB  | m      |         |         |                |                  |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 22:59:16



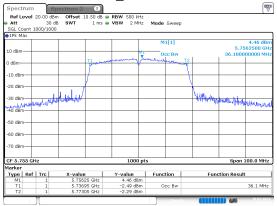

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:00:46



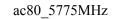


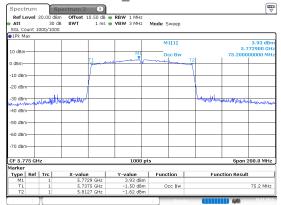

ProjectNo.:2402V85163E-RF Tes Date: 18.JUL.2024 23:03:10




|          | x    |          |              |                                       |          |                                         |          |               |             |          |
|----------|------|----------|--------------|---------------------------------------|----------|-----------------------------------------|----------|---------------|-------------|----------|
|          |      |          |              |                                       | 1        | M                                       | 1[1]     |               |             | 4.49 di  |
| 10 dBm-  |      |          |              |                                       |          |                                         |          |               |             | 29500 0  |
| 10 0011  |      |          |              |                                       | MI       | 0                                       | cc Bw    |               | 36.2000     | 00000 N  |
| 0 dBm—   |      |          |              | Thereman                              | manuty   | mune                                    | T. water | 2             |             |          |
| o abiii  |      |          |              | 7                                     | 1        | r i i i i i i i i i i i i i i i i i i i |          | ·             |             |          |
| -10 dBm  |      |          |              | /                                     |          |                                         |          | \             |             |          |
| 10 0.011 |      |          |              | /                                     |          |                                         |          | N             |             |          |
| -20 dBm  |      |          |              | · · · · · · · · · · · · · · · · · · · |          |                                         |          | 4             |             |          |
|          |      |          | I <i>. (</i> |                                       |          |                                         |          | A             |             |          |
| -30 dBm  | -    | Mulphalt | "WINAMU      |                                       |          |                                         |          | - Mappen Mill | www.        | 4        |
| motell   | NYUM | Ul Mali  |              |                                       |          |                                         |          |               | A - OLMONT  | Philippe |
| -40 dBm  | _    |          |              |                                       |          |                                         |          |               |             |          |
|          |      |          |              |                                       |          |                                         |          |               |             |          |
| -50 dBm  |      |          |              |                                       |          |                                         |          |               |             |          |
|          |      |          |              |                                       |          |                                         |          |               |             |          |
| -60 dBm  |      |          |              |                                       | -        |                                         |          | -             |             |          |
|          |      |          |              |                                       |          |                                         |          |               |             |          |
| -70 dBm  |      |          |              |                                       |          |                                         |          |               |             |          |
|          |      |          |              |                                       |          |                                         |          |               |             |          |
| CF 5.79  | 5 GH | z        |              |                                       | 1000     | pts                                     |          |               | Span 1      | .00.0 M  |
| 1arker   |      |          |              |                                       |          |                                         |          |               |             |          |
| Type     | Ref  | Trc      | X-value      |                                       | Y-value  | Func                                    | tion     | Fund          | tion Result |          |
| M1       |      | 1        |              | 95 GHz                                | 4.49 dB  |                                         |          |               |             |          |
| Τ1       |      | 1        |              | 95 GHz                                | -2.47 dB |                                         | cc Bw    |               |             | 36.2 M   |
| T2       |      | 1        | 5.813        | 15 GHz                                | -2.83 dB | m                                       |          |               |             |          |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:06:05





ProjectNo.:2402V85163E-RF Tester:Roy Xiac Date: 18.JUL.2024 23:01:58

### n40\_5755MHz



ProjectNo.:2402V85163E-RF Tester:Roy Xiac Date: 18.JUL.2024 23:05:27





ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:07:27

n20\_5785MHz

Report No.: 2402V85163E-RF-00D

### 5.5 Maximum Conducted Output Power

| Sample No.: | 2092-17  | Test Date:   | 2024/07/19~2024/07/30 |
|-------------|----------|--------------|-----------------------|
| Test Site:  | RF       | Test Mode:   | Transmitting          |
| Tester:     | Roy Xiao | Test Result: | Pass                  |

### **Environmental Conditions:**

| Temperature:<br>(°C): | 26.2-27.1 | Relative<br>Humidity:<br>(%) | 49-66 | ATM Pressure:<br>(kPa) | 99.8-100.8 |
|-----------------------|-----------|------------------------------|-------|------------------------|------------|
|-----------------------|-----------|------------------------------|-------|------------------------|------------|

### **Test Equipment List and Details:**

| Manufacturer | Description                    | Model           | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|--------------------------------|-----------------|------------------|---------------------|-------------------------|
| Eastsheep    | Coaxial<br>Attenuator          | 5W-N-JK-6G-10dB | F-08-EM504       | 2024/06/07          | 2025/06/07              |
| Anritsu      | Microwave Peak<br>Power Sensor | MA24418A        | 12618            | 2024/09/04          | 2025/09/03              |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

| Mode                                 | Average Output<br>Power<br>(dBm) | Limit<br>(dBm) | Result |  |  |  |
|--------------------------------------|----------------------------------|----------------|--------|--|--|--|
| a_5180MHz                            | 15.61                            | 24             | Pass   |  |  |  |
| a_5200MHz                            | 15.61                            | 24             | Pass   |  |  |  |
| a_5240MHz                            | 15.6                             | 24             | Pass   |  |  |  |
| n20_5180MHz                          | 15.46                            | 24             | Pass   |  |  |  |
| n20_5200MHz                          | 15.62                            | 24             | Pass   |  |  |  |
| n20_5240MHz                          | 15.47                            | 24             | Pass   |  |  |  |
| n40_5190MHz                          | 13.38                            | 24             | Pass   |  |  |  |
| n40_5230MHz                          | 13.25                            | 24             | Pass   |  |  |  |
| ac80_5210MHz                         | 13.19                            | 24             | Pass   |  |  |  |
| Note: The device is a Client device. |                                  |                |        |  |  |  |

#### 5.2G

### 5.3G

| Mode         | Average Output<br>Power<br>(dBm) |    | Result |
|--------------|----------------------------------|----|--------|
| a_5260MHz    | 14.21                            | 24 | Pass   |
| a_5280MHz    | 14.36                            | 24 | Pass   |
| a_5320MHz    | 14.26                            | 24 | Pass   |
| n20_5260MHz  | 14.24                            | 24 | Pass   |
| n20_5280MHz  | 14.25                            | 24 | Pass   |
| n20_5320MHz  | 13.88                            | 24 | Pass   |
| n40_5270MHz  | 13.01                            | 24 | Pass   |
| n40_5310MHz  | 12.73                            | 24 | Pass   |
| ac80_5290MHz | 11.38                            | 24 | Pass   |

| Mode         | Average Output<br>Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------|----------------------------------|----------------|--------|
| a_5500MHz    | 10.25                            | 24             | Pass   |
| a_5580MHz    | 10.22                            | 24             | Pass   |
| a_5700MHz    | 10.92                            | 24             | Pass   |
| a_5720MHz    | 11.1                             | 24             | Pass   |
| n20_5500MHz  | 10.42                            | 24             | Pass   |
| n20_5580MHz  | 10.29                            | 24             | Pass   |
| n20_5700MHz  | 10.97                            | 24             | Pass   |
| n20_5720MHz  | 10.96                            | 24             | Pass   |
| n40_5510MHz  | 10.88                            | 24             | Pass   |
| n40_5550MHz  | 10.83                            | 24             | Pass   |
| n40_5670MHz  | 10.94                            | 24             | Pass   |
| n40_5710MHz  | 11.81                            | 24             | Pass   |
| ac80_5530MHz | 9.79                             | 24             | Pass   |
| ac80_5610MHz | 9.85                             | 24             | Pass   |
| ac80_5690MHz | 9.89                             | 24             | Pass   |

### 5.6G

### **5.8**G

| Mode         | Average Output<br>Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------|----------------------------------|----------------|--------|
| a_5745MHz    | 14.52                            | 30             | Pass   |
| a_5785MHz    | 14.58                            | 30             | Pass   |
| a_5825MHz    | 14.15                            | 30             | Pass   |
| n20_5745MHz  | 14.52                            | 30             | Pass   |
| n20_5785MHz  | 14.59                            | 30             | Pass   |
| n20_5825MHz  | 14.39                            | 30             | Pass   |
| n40_5755MHz  | 13.56                            | 30             | Pass   |
| n40_5795MHz  | 13.61                            | 30             | Pass   |
| ac80_5775MHz | 12.62                            | 30             | Pass   |

Report Template Version: FCC-WiFi5-Client-V1.2

### **5.6 Power Spectral Density**

| Sample No.: | 2092-17  | Test Date:   | 2024/07/19~2024/07/30 |
|-------------|----------|--------------|-----------------------|
| Test Site:  | RF       | Test Mode:   | Transmitting          |
| Tester:     | Roy Xiao | Test Result: | Pass                  |

### **Environmental Conditions:**

| Temperature:<br>(°C): | 26.2-27.1 | Relative<br>Humidity:<br>(%) | 49-66 | ATM Pressure:<br>(kPa) | 99.8-100.8 |
|-----------------------|-----------|------------------------------|-------|------------------------|------------|
|-----------------------|-----------|------------------------------|-------|------------------------|------------|

### **Test Equipment List and Details:**

| Manufacturer | Description           | Model               | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-----------------------|---------------------|---------------|---------------------|-------------------------|
| R&S          | Spectrum<br>Analyzer  | FSV40               | 101589        | 2023/10/18          | 2024/10/17              |
| Eastsheep    | Coaxial<br>Attenuator | 5W-N-JK-6G-<br>10dB | F-08-EM503    | 2024/06/07          | 2025/06/07              |

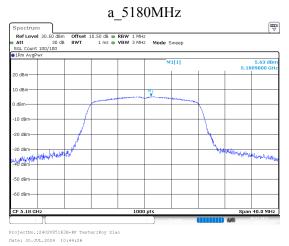
\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

| Mode                                 | Value<br>(dBm/MHz) | Duty Cycle<br>Factor(dB) | PSD<br>(dBm/MHz) | Limit<br>(dBm/MHz) | Result |  |
|--------------------------------------|--------------------|--------------------------|------------------|--------------------|--------|--|
| a_5180MHz                            | 5.63               | 0                        | 5.63             | 11                 | Pass   |  |
| a_5200MHz                            | 5.51               | 0                        | 5.51             | 11                 | Pass   |  |
| a_5240MHz                            | 5.49               | 0                        | 5.49             | 11                 | Pass   |  |
| n20_5180MHz                          | 5.09               | 0                        | 5.09             | 11                 | Pass   |  |
| n20_5200MHz                          | 5.34               | 0                        | 5.34             | 11                 | Pass   |  |
| n20_5240MHz                          | 5.05               | 0                        | 5.05             | 11                 | Pass   |  |
| n40_5190MHz                          | 0.25               | 0                        | 0.25             | 11                 | Pass   |  |
| n40_5230MHz                          | 0.24               | 0                        | 0.24             | 11                 | Pass   |  |
| ac80_5210MHz                         | -3.39              | 0                        | -3.39            | 11                 | Pass   |  |
| Note: The device is a Client device. |                    |                          |                  |                    |        |  |

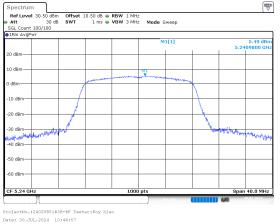
#### 5.2G

### 5.3G

| Mode         | Value<br>(dBm/MHz) | Duty Cycle<br>Factor(dB) | PSD<br>(dBm/MHz) | Limit<br>(dBm/MHz) | Result |
|--------------|--------------------|--------------------------|------------------|--------------------|--------|
| a_5260MHz    | 3.92               | 0                        | 3.92             | 11                 | Pass   |
| a_5280MHz    | 4.32               | 0                        | 4.32             | 11                 | Pass   |
| a_5320MHz    | 4.18               | 0                        | 4.18             | 11                 | Pass   |
| n20_5260MHz  | 4.10               | 0                        | 4.10             | 11                 | Pass   |
| n20_5280MHz  | 3.90               | 0                        | 3.90             | 11                 | Pass   |
| n20_5320MHz  | 3.53               | 0                        | 3.53             | 11                 | Pass   |
| n40_5270MHz  | -0.02              | 0                        | -0.02            | 11                 | Pass   |
| n40_5310MHz  | -0.34              | 0                        | -0.34            | 11                 | Pass   |
| ac80_5290MHz | -4.30              | 0                        | -4.30            | 11                 | Pass   |


| Mode         | Value<br>(dBm/MHz) | Duty Cycle<br>Factor(dB) | PSD<br>(dBm/MHz) | Limit<br>(dBm/MHz) | Result |
|--------------|--------------------|--------------------------|------------------|--------------------|--------|
| a_5500MHz    | 0.02               | 0                        | 0.02             | 11                 | Pass   |
| a_5580MHz    | 0.08               | 0                        | 0.08             | 11                 | Pass   |
| a_5700MHz    | 0.74               | 0                        | 0.74             | 11                 | Pass   |
| a_5720MHz    | 0.83               | 0                        | 0.83             | 11                 | Pass   |
| n20_5500MHz  | -0.37              | 0                        | -0.37            | 11                 | Pass   |
| n20_5580MHz  | -0.11              | 0                        | -0.11            | 11                 | Pass   |
| n20_5700MHz  | 0.65               | 0                        | 0.65             | 11                 | Pass   |
| n20_5720MHz  | 0.44               | 0                        | 0.44             | 11                 | Pass   |
| n40_5510MHz  | -2.20              | 0                        | -2.20            | 11                 | Pass   |
| n40_5550MHz  | -2.32              | 0                        | -2.32            | 11                 | Pass   |
| n40_5670MHz  | -2.26              | 0                        | -2.26            | 11                 | Pass   |
| n40_5710MHz  | -1.20              | 0                        | -1.20            | 11                 | Pass   |
| ac80_5530MHz | -6.78              | 0                        | -6.78            | 11                 | Pass   |
| ac80_5610MHz | -6.70              | 0                        | -6.70            | 11                 | Pass   |
| ac80_5690MHz | -6.53              | 0                        | -6.53            | 11                 | Pass   |

5.6G

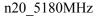

### **5.8**G

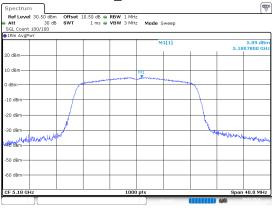
| Mode         | Value<br>(dBm/500kHz) | Duty Cycle<br>Factor(dB) | PSD<br>(dBm/500kHz) | Limit<br>(dBm/500kHz) | Result |
|--------------|-----------------------|--------------------------|---------------------|-----------------------|--------|
| a_5745MHz    | 2.57                  | 0                        | 2.57                | 30                    | Pass   |
| a_5785MHz    | 1.66                  | 0                        | 1.66                | 30                    | Pass   |
| a_5825MHz    | 1.12                  | 0                        | 1.12                | 30                    | Pass   |
| n20_5745MHz  | 2.81                  | 0                        | 2.81                | 30                    | Pass   |
| n20_5785MHz  | 2.94                  | 0                        | 2.94                | 30                    | Pass   |
| n20_5825MHz  | 2.90                  | 0                        | 2.90                | 30                    | Pass   |
| n40_5755MHz  | -1.18                 | 0                        | -1.18               | 30                    | Pass   |
| n40_5795MHz  | -1.17                 | 0                        | -1.17               | 30                    | Pass   |
| ac80_5775MHz | -5.49                 | 0                        | -5.49               | 30                    | Pass   |

### 5.2G









n20\_5200MHz

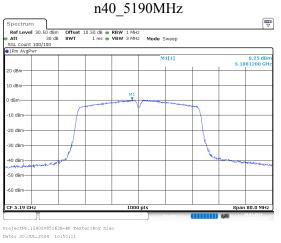
-20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 10:48:24



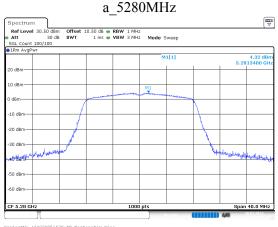





ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 10:47:42

5.34 dB 5.1988200 Gł

### n20\_5240MHz




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 10:49:11





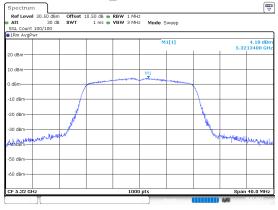
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 10:54:37



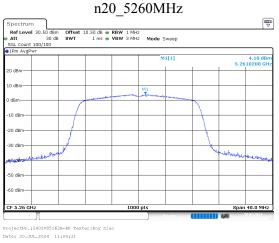
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:02:39

## Report No.: 2402V85163E-RF-00D

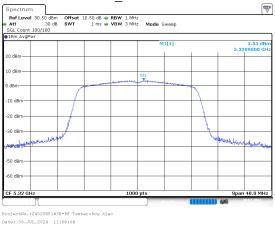


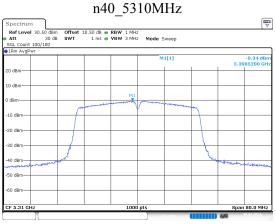



## a\_5260MHz



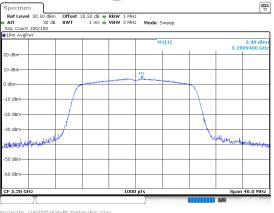

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:01:58


### a\_5320MHz

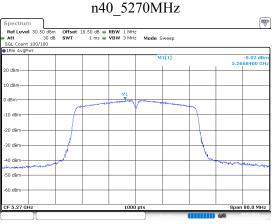



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:03:23

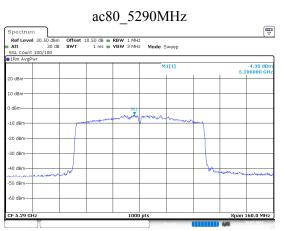



### $n20\_5320 MHz$






ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:07:50


### n20\_5280MHz



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:05:15



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:07:00




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:08:48

Page 111 of 119

#### **5.6G**







n20\_5500MHz 
 Spectrum

 RefLevel 30.50 dBm
 Offset 10.50 dB • RBW 1 MHz

 a Att
 30 dB SWT

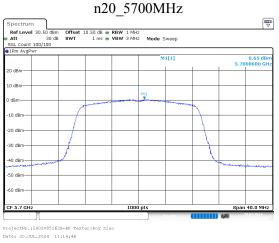
 1 ms • VBW 3 MHz
 Mode Sweep

 5G.Count 100/100
 100/100
 -0.37 dB 5.5014600 Gł 20 dBm-10 dBmdBm -10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm-CF 5.5 GHz 1000 pts 

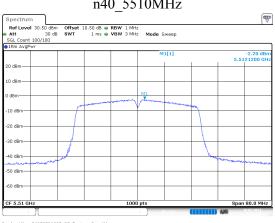
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:12:50



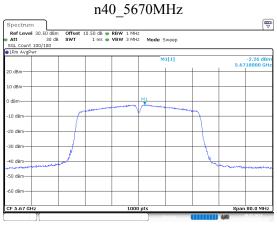



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:11:57

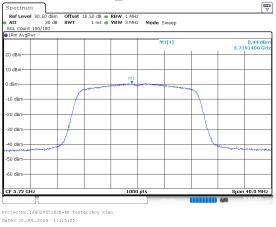

#### n20\_5580MHz

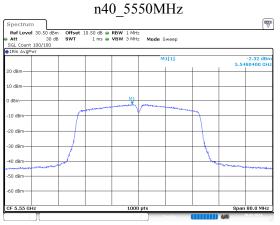



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:14:07



### $n40\_5510 MHz$



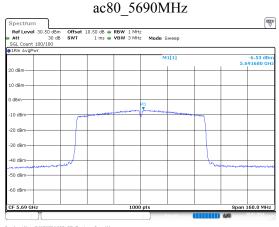


ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:16:18



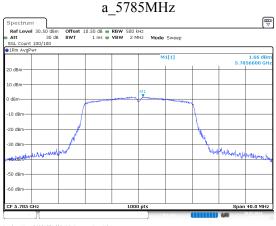
ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:18:28

# n20\_5720MHz



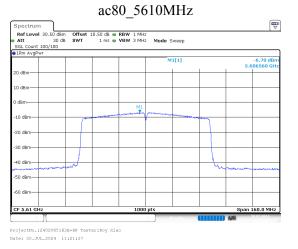



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:17:23



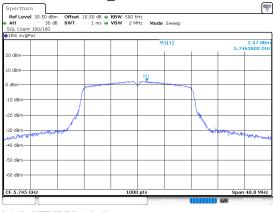

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:19:12





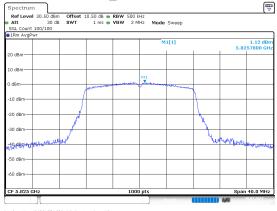

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 11:22:22



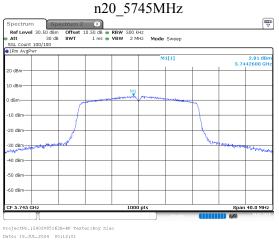

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 10:02:03

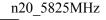
# Report No.: 2402V85163E-RF-00D

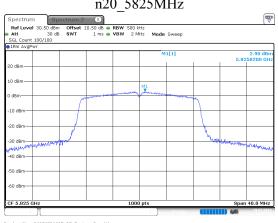



**5.8G** 

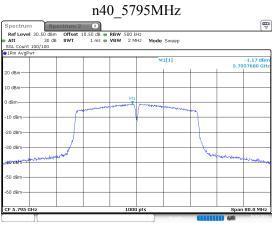
### a\_5745MHz



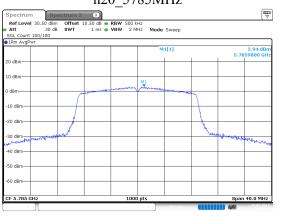


ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 10:01:16


### a\_5825MHz




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 30.JUL.2024 10:02:43

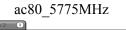







ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 19.JUL.2024 00:03:52




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 19.JUL.2024 00:08:19




ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 19.JUL.2024 00:02:58



ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 19.JUL.2024 00:04:52





ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 19.JUL.2024 00:09:42

n20\_5785MHz

Report No.: 2402V85163E-RF-00D

### 5.7 Duty Cycle

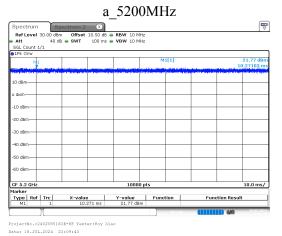
| Sample No.: | 2092-17  | Test Date:   | 2024/07/18   |
|-------------|----------|--------------|--------------|
| Test Site:  | RF       | Test Mode:   | Transmitting |
| Tester:     | Roy Xiao | Test Result: | /            |

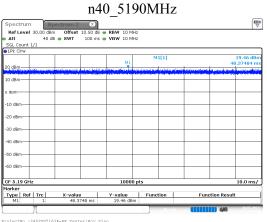
### **Environmental Conditions:**

| Temperature:<br>(°C): | 26.8 | Relative<br>Humidity:<br>(%) | 47 | ATM Pressure:<br>(kPa) | 100.9 |
|-----------------------|------|------------------------------|----|------------------------|-------|
|-----------------------|------|------------------------------|----|------------------------|-------|

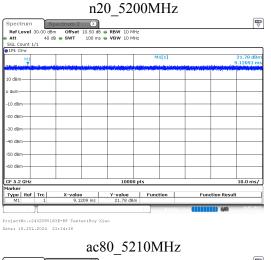
### **Test Equipment List and Details:**

| Manufacturer | Description           | Model               | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-----------------------|---------------------|---------------|---------------------|-------------------------|
| R&S          | Spectrum<br>Analyzer  | FSV40               | 101589        | 2023/10/18          | 2024/10/17              |
| Eastsheep    | Coaxial<br>Attenuator | 5W-N-JK-6G-<br>10dB | F-08-EM503    | 2024/06/07          | 2025/06/07              |


\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


5.2G

| Mode         | Ton<br>(ms) | Ton+Toff<br>(ms) | Duty Cycle<br>(%) | Duty Cycle<br>Factor(dB) | 1/Ton<br>(Hz) | VBW Setting<br>(kHz) |
|--------------|-------------|------------------|-------------------|--------------------------|---------------|----------------------|
| a_5200MHz    | 100         | 100              | 100               | 0                        | NA            | 0.010                |
| n20_5200MHz  | 100         | 100              | 100               | 0                        | NA            | 0.010                |
| n40_5190MHz  | 100         | 100              | 100               | 0                        | NA            | 0.010                |
| ac80_5210MHz | 100         | 100              | 100               | 0                        | NA            | 0.010                |


Duty Cycle = Ton/(Ton+Toff)\*100%

5.2G





ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:18:48



| JIFK CI        | rw       |      |         |        |             |              |      |                 |                   |                        |  |
|----------------|----------|------|---------|--------|-------------|--------------|------|-----------------|-------------------|------------------------|--|
|                |          |      |         |        |             | M1[1]        |      |                 |                   | 16.16 dB<br>26.34263 m |  |
| 20 dBm         |          |      | M1      |        | a autokou a | an an anlama |      | مادمار بالمالية | 0 to real and the | Louis                  |  |
| A reputer      |          |      |         |        |             |              |      |                 |                   |                        |  |
| u dem-         | _        |      |         |        |             |              |      |                 |                   |                        |  |
| 10 dBm         | <u> </u> |      |         |        |             |              |      |                 |                   |                        |  |
| 20 dBr         |          |      |         |        |             |              |      |                 |                   |                        |  |
|                |          |      |         |        |             |              |      |                 |                   |                        |  |
| 30 dBr         |          |      |         |        |             |              |      |                 |                   |                        |  |
| 40 dBri        | +        |      |         |        |             |              |      |                 |                   |                        |  |
| 50 dBri        |          |      |         |        |             |              |      |                 |                   |                        |  |
| 60 dBrr        |          |      |         |        |             |              |      |                 |                   |                        |  |
|                |          |      |         |        |             |              |      |                 |                   |                        |  |
| CF 5.2         | 1 GHz    |      |         |        | 1000        | 00 pts       |      |                 |                   | 10.0 ms,               |  |
| 1arker<br>Type | Rof      | Trol | X-value |        | Y-value     | Func         | tion | Euro            | ction Result      |                        |  |
| M1             | Rei      | 1    |         | 426 ms | 16.16 d     |              |      |                 | ettori ite suit   |                        |  |

ProjectNo.:2402V85163E-RF Tester:Roy Xiao Date: 18.JUL.2024 23:26:10

Page 117 of 119

## **EXHIBIT A - EUT PHOTOGRAPHS**

Please refer to the attachment 2402V85163E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2402V85163E-RF-INP EUT INTERNAL PHOTOGRAPHS.

## **EXHIBIT B - TEST SETUP PHOTOGRAPHS**

Please refer to the attachment 2402V85163E-RF-00D-TSP TEST SETUP PHOTOGRAPHS.

\*\*\*\*\* END OF REPORT \*\*\*\*\*