Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0Ω- 2.09jΩ | | | |--------------------------------------|---------------|--|--| | Return Loss | - 33.6 dB | | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.129 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | CDEAC | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: Z21-60422 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1176 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.382$ S/m; $\varepsilon_r = 39.76$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2021-02-03 Date: 10.19.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.37 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.83 W/kg Smallest distance from peaks to all points 3 dB below = 10.2 mm Ratio of SAR at M2 to SAR at M1 = 53% Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg Certificate No: Z21-60422 Page 5 of 6 ## Impedance Measurement Plot for Head TSL ## D1750V2 - SN: 1176 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D1750V2 - SN: 1176 | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | 1750MHz Head | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.19.2021 | -33.6 | | 50 | | -2.09 | | | 10.18.2022 | -30.9 | -7.94 | 47.2 | -2.78 | -0.3 | 1.78 | | | | | | | | | | | | | | | | | #### < Justification of the extended calibration > The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ## <Dipole Verification Data> Head 1750MHz _2022.10.18 Client B.V.ADT Certificate No: Z21-60336 ## **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d159 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 16, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | Power sensor NRP8S | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | Reference Probe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 21, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60336 lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 6 Certificate No: Z21-60336 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.2 ± 6 % | 1.42 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | (4442) | | ## SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 18.7 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.2Ω+ 7.76jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 21.4dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.106 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** Certificate No: Z21-60336 | Manufactured by | SPEAG | | |-----------------|-------|--| Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d159 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.416$ S/m; $\varepsilon_r = 40.23$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(7.81, 7.81, 7.81) @ 1900 MHz; Calibrated: 2021-02-03 Date: 09.16.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.85 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.08 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.3% Maximum value of SAR (measured) = 15.9 W/kg Certificate No: Z21-60336 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL ## D1900V2 - SN: 5d159 Extended Dipole Calibrations Referring to IEC 62209-1, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | D1900V2 - SN: 5d159 | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------|--| | 1900 Head | | | | | | | | | Date of
Measurement | Return-loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | | 2021.09.16 | -21.4 | | 54.2 | | 7.8 | | | | 2022.09.16 | -21.7 | -1.4 | 53.3 | -0.9 | 7.8 | 0 | #### <Justification of the extended calibration> The return loss is <-20dB, within 20% of prior calibration, and the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### <Dipole Verification Data> #### Head 1900MHz _2022.09.16 In Collaboration with # CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client 7layers Certificate No: Z21-60425 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 1048 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 21, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | Name | Function | Signature | | Calibrated by: | Zhao Jing | SAR Test Engineer | A.E. | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 25 | | | | | | Issued: October 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60425 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60425 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 18.7 % (k=2) | ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.6Ω+ 8.39jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 21.6dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.057 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z21-60425 Page 4 of 6 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 1048 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.809 \text{ S/m}$; $\varepsilon_r = 39.51$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03 Date: 10.21.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.05 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 47.1% Maximum value of SAR (measured) = 22.5 W/kg 0 dB = 22.5 W/kg = 13.52 dBW/kg Certificate No: Z21-60425 Page 5 of 6 ## Impedance Measurement Plot for Head TSL ### D2450V2 - SN: 1048 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D2450V2 - SN: 1048 | | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------|--|--| | | 2450MHz Head | | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | | | 10.21.2021 | -21.6 | | 50.6 | | 8.39 | | | | | 10.20.2022 | -22.5 | 3.94 | 51.3 | 0.72 | 7.5 | -0.90 | #### < Justification of the extended calibration > The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. <Dipole Verification Data> Head 2450MHz _2022.10.20 In Collaboration with Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com **B.V.ADT** Fax: +86-10-62304633-2504 http://www.chinattl.cn Certificate No: Z21-60339 ## CALIBRATION CERTIFICATE Object D2600V2 - SN: 1110 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 16, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|---|---| | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | 106277
104291
SN 7517
SN 1556
ID#
MY49071430 | 106277 23-Sep-20 (CTTL, No.J20X08336)
104291 23-Sep-20 (CTTL, No.J20X08336)
SN 7517 03-Feb-21(CTTL-SPEAG,No.Z21-60001)
SN 1556 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)
ID# Cal Date (Calibrated by, Certificate No.)
MY49071430 01-Feb-21 (CTTL, No.J21X00593) | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 21, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60339 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60339 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.95 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 18.7 % (k=2) | ## Appendix(Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.1Ω- 5.12jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.7dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.058 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| | | | | | | | | | | | | | 1 | 1 | | | | | | | #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1110 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.949 \text{ S/m}$; $\varepsilon_r = 39.04$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(7.1, 7.1, 7.1) @ 2600 MHz; Calibrated: 2021-02-03 Date: 09.16.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.13 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 45.2% Maximum value of SAR (measured) = 24.1 W/kg 0 dB = 24.1 W/kg = 13.82 dBW/kg Certificate No: Z21-60339 Page 5 of 6 ## Impedance Measurement Plot for Head TSL